RAIRO-Oper. Res. 55 (2021) 1113-1135 RAIRO Operations Research
https://doi.org/10.1051/ro/2021036 WWW.rairo-ro.org

A NOTE ON THE WAREHOUSE LOCATION PROBLEM WITH DATA
CONTAMINATION

XUEHONG Gaob?* AND CaN Cur?

Abstract. To determine the optimal warehouse location, it is usually assumed that the collected data
are uncontaminated. However, this assumption can be easily violated due to the uncertain environment
and human error in disaster response, which results in the biased estimation of the optimal warehouse
location. In this study, we investigate this possibility by examining these estimation effects on the ware-
house location determination. Considering different distances, we propose the corresponding estimation
methods for remedying the difficulties associated with data contamination to determine the warehouse
location. Although data can be contaminated in the event of a disaster, the findings of the study is
much broader and applicable to any situation where the outliers exist. Through the simulations and
illustrative examples, we show that solving the problem with center of gravity lead to biased solutions
even if only one outlier exists in the data. Compared with the center of gravity, the proposed methods
are quite efficient and outperform the existing methods when the data contamination is involved.
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1. INTRODUCTION

After large-scale disasters such as earthquakes, floods, tropical storms, and nuclear leaks, many people are
affected and injured severely. In the event of such a disaster, rapid and effective responses to a disaster are
required to relieve the detrimental situation [8,16,33,35,37,38,69]. Among them, the most expeditious response
is to help all those injured people who require medical attendance through life-saving operations [7]. In this case,
a number of temporary medical service centers that are considered as demand points are needed to be quickly
identified and set up to meet the urgent needs of medical services for reducing mortality and preventing health
deterioration from evacuees [2]. To guarantee reliability and avoid an unbalanced medical supply distribution,
a warehouse is needed to be set up to stock the medical supplies in advance and distribute the medical supplies
from the warehouse to the demand points possibly multiple times.

To determine the optimal warehouse location with respect to the objective function, it is usually assumed
that the collected data are uncontaminated. However, the previous conventional methods may not work properly
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when the data are collected under volatile operating conditions such as uncertain environment and human error
in disaster response. Once this assumption is violated in a serious manner, the estimated optimal warehouse
location may be located far away from the true optimal location. Thus, a statistically robust approach that is
less sensitive to the outliers is clearly warranted in this study.

To address the aforementioned questions and research gap, this study focuses on the warehouse location
problem under data contamination in disaster response. This study considers three different methods for three
distances (norms), namely, Manhattan distance, Euclidean distance, and squared Euclidean distance, to deter-
mine the optimal warehouse locations. The comparison results showed that the proposed location estimation
methods outperformed the CG method both in accuracy and robustness. Then a simulation study and several
illustrative examples are conducted to present that the proposed location estimation methods outperformed the
CG method in determining the optimal warehouse locations under data contamination.

The rest of this study is organized as follows. Section 2 reviews the previous studies including the facility
location problems and the methodologies to solve the problem, and then we highlight the main differences and
contributions from previous studies. In Section 3, the methodologies used to determine the optimal warehouse
location are described. Then extensive Monte Carlo simulations are carried out in Section 4 and an illustrative
case study from a benchmark is provided in Section 5. Finally, Section 6 summarizes this study and discusses
potential future works.

2. LITERATURE REVIEW

The facility location problem is an important issue in supporting the physical distribution as it contributes
significantly to the travel time or cost in logistics systems [9, 20,34, 39]. Because the travel time or cost can be
analyzed by discrete and continuous aspects in the space, the facility location problem is commonly divided into
two categories; namely, discrete-space and continuous-space facility location problems. For the discrete-space
facility location problem, the location of a facility can be only located at one of the specific points. On the
other hand, for the continuous-space facility location problem, the facility is allowed to be located anywhere in
the planning area [4]. Thus, we briefly review those two categories of facility location problems and introduce
the methodologies used for determining the facility location. Finally, the necessity and novelty of this study are
discussed and presented.

In the discrete-space facility location problem, the facility location needs to be selected from a pre-specified
set of potential locations, typically the nodes of a network. Several studies [1, 11,19, 23,41, 45,49] have been
developed to address this issue. Unfortunately, because the facility can be only located at one of the specific
points, the optimal discrete facility locations are worse compared to the optimal continuous solution for a given
metric. For the continuous-space facility location problem, anywhere in the plane can be considered as the facility
location. Thus, there is an infinite number of potential locations for the facility. So far, the continuous-space
facility location problem has received much attention in the literature and many studies have been developed
to identify the continuous-space facility location from different perspectives [28,48,51,52].

To determine the facility location, many methods have been developed to determine the single-facility location
[22, 46]. Among them, the center-of-gravity (CG) method is one of the most widely used approaches for its
simplicity in previous studies [30,53] as it can be deemed the optimal facility location. In the studies using the
CG methods, the goals are to minimize an objective function involving squared Euclidean distance, Euclidean
distance, or Manhattan distance between the facility and demand points. For instance, Ohsawa [55] aimed
to determine the CG so that the average squared Euclidean distance can be minimized from the facility to the
demand points, but he did not derive any distance-related travel time or cost.

Besides, the CG method is also generally applied in the clustering-based multi-facility location problems,
where the CG is severed as the optimal facility location within each cluster for its simplicity. Esnaf and
Kiigiikdeniz [27] applied Euclidean distance with a correction factor to determine the optimal plant location
within each cluster, and they used the weighted mean to obtain the CG. Nadizadeh et al. [54] used the mean
to obtain the CG that was considered as the location of the depot to minimize the total Euclidean distance
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to customers. Unfortunately, the (weighted) mean is not the optimal solution to minimize the total (weighted)
Euclidean distance between facilities. Besides, Gao et al. [36] developed a clustering-based genetic algorithm
for a multi-facility location problem, where the weighted mean (CG) was served as the optimal location when
the weighted Manhattan distance is used within each cluster. However, the weighted mean does not minimize
the total weighted Manhattan distance between facilities. The above three studies are not appropriate because
they used the same (weighted) mean to obtain the CG but under different distances. In urban areas, due to the
street configurations, the distance is usually modeled as L! norm (Manhattan distance), while in rural areas
the travel is faster, the distance is usually modeled as LP norm with p > 1 [70]. Thus, in this study, we focus
on identifying the optimal facility locations according to their specific distances.

Against the uncertain information after a disaster, there has been a great deal of research effort to develop
robust optimization models in their facility location problems. Most robust optimization models use different
scenarios ranging from the most optimistic to the worst case. For more detailed information on the scenario-based
robust optimization models, the readers are referred to previous studies, including Baron et al. [10], Ashtiani
et al. [5], Giilpmar et al. [42], De Rosa et al. [25] and An et al. [3] among others. In many practical problems,
the data can often be collected under volatile operating conditions [57,58], which results in contaminated data
and variability in parametric value in disaster response. Note that one possible reason for the existence of an
outlier is that an observation is contaminated. Another possible reason for the existence of an outlier is that
the underlying distribution of the sample has fat tails so that the observation is not contaminated but just an
extreme observation from one of the heavy-tailed ends of the underlying distribution. For more details on the
outliers and their effect on the estimator behavior, one should refer to Tukey [67], Rousseeuw and Croux [63],
Park [60] and Gao and Jin [34]. This data contamination and variability in parametric value have been receiving
insufficient attention in disaster response. Under such situations, the scenario-based robust optimization models
could be inappropriate or lead to infeasible solutions. It is required to obtain a robust solution when the data
contamination is involved in the facility location problem.

To address this challenge, a statistically robust approach that is less sensitive to the outliers or noises is
clearly warranted. Hence, in this paper, we develop several location estimation methods for different distances
so that the optimal warehouse location can be determined against outliers or noises. Besides, the facility location
problem with data contamination has never received any attention in the previous studies. As a consequence,
it is necessary to fill this research gap by developing several reasonable location estimation methods according
to their corresponding distances in this continuous-space warehouse location problem with data contamination.
In particular, given three different distances, namely Manhattan distance, Euclidean distance, and squared
Euclidean distance, we develop the corresponding location estimation methods so that the optimal warehouse
location can be obtained. We also compared their performance with previous methods to illustrate the supe-
riority. Finally, extensive Monte Carlo simulation studies are carried out and several illustrative examples are
provided.

3. METHODOLOGY

In this section, we develop the warehouse location estimation methods based on three different distances.
Here, there are two common assumptions that need to be declared: (i) the demand points with different priority
levels (weights) and locations are known, and (ii) the objective function is linearized with the distance. Before
the methods are presented, the notations used in the proposed model are given as follows.

Parameters

n Number of demand points (i =1,2,...,n).
X; X-coordinate of demand point .

Y; Y-coordinate of demand point i.
W,; Weight (Priority level) of demand point i.
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Decision variables

u X-coordinate of the warehouse.
v Y-coordinate of the warehouse.

In the continuous-space facility location problem, three different distances are usually applied, Manhattan
distance (L' norm), Euclidean distance (L? norm), and squared Euclidean distance (squared L? norm). These
three distances can easily be computed using geographic coordinates. The objective function is to minimize the
total weighted distance-related travel time or cost. We derive those warehouse location estimation methods for
the above three different distances into models 1, 2, and 3 in this study. Before developing the formulation for
the warehouse-location models, we normalize the weights first using the following equation

Wi
P; ST W, (3.1)

where P; is the normalized weight of demand point i.

3.1. Model 1 (L! norm)

When the Manhattan distance is considered in the model, the objective is to minimize the weighted L! norm,
which is given by

n
Obj, =Y P (IX; —ul +|Y; —v]), (3.2)
i=1
where | X; — u| +|Y; — v| is the distance measured along the axis at right angles, which is usually applied in the
urban area of interest due to the street configurations [21,37]. For instance, the determination of the bicycle-
sharing stations or the ambulance stations needs to consider the Manhattan distance. Let (@, ©) be the optimal
warehouse location based on the Obj;. Then we have

(@, ?) = argmin (Obj;) . (3.3)
(u,0)

The minimizer of Obj,, denoted by (@, ), can be obtained by the following estimating equations that need
to be solved for u and v [44].

90bj; B

. ;21 Pisgn (X; —u) =0 (3.4)
o0bj; <~ ' B

0 ;:1 Pisgn (Y; —v) =0. (3.5)

Then the optimal values % and ¥ can be calculated separately. It is easily seen that @ is the weighted median
of the z-axis observations and ¢ is the weighted median of the y-axis observations, which will be detailed later.
Note that the weighted median was first suggested by Edgeworth [26] and since then it has been widely used
in many applications [68]. As an illustration, we briefly introduce the conventional median. Then we introduce
the weighted median. As the values % and ¥ can be obtained separately, we consider the weighted median for
the z-axis observations. Then the weighted median for the y-axis observations is easily obtained using the same
method. Because the median can be obtained by using the empirical cumulative distribution function, we briefly
introduce the definition of the empirical cumulative distribution function which was introduced in Definition
2.1 of Owen [59]. Then we propose a new definition that can consider the weights.

Definition 3.1. Given a set of observations X1, Xo, ..., X, the empirical cumulative distribution function Fj,
is defined as

1 n
Fy () = — Y I(Xi<z), =z€ER, (3.6)
=1
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where I (A) represents the indicator function defined as

1 if A is satisfied
I(4)= {0 otherwise ’ (3.7)
Csorgo [24] defined the sample quantile function (inverse cumulative distribution function) as below.
F ' (p) =inf{z: F, (z) > p}. (3.8)
Using this, the conventional median F,;* (1/2) is obtained as:
1 1 k-1 1 &k
1 . . o . o

where X(l) < X(z) <...< X(n)

Definition 3.2. Given a set of observations X1, Xs, ..., X, with corresponding positive weights Py, P, ..., P,
such that Y | P, = 1, we have the empirical cumulative distribution function G,, () with weights, which is
defined as

n
Gn(x) =) PI(X;<u). (3.10)
i=1
Note that the above G, includes the conventional empirical cumulative distribution function F,,, as a special

case when P; = 1/n. Similar to the definition of the sample quantile function in Csorgo [24], we define the
sample quantile function with weights as below.

Gt (p) = inf {x : G (z) = p}. (3.11)

Next, our goal is to obtain the weighted median for the z-axis observations, which is given as

k—1 k
(1 . 1 . 1
Gnl <2> _lnf{l'ZGn((E)>2}_X(k) if E P(j)<§§ E P(j), k=1,2,...,n, (312)
j=1 j=1

where P(;) is the weight for X ;).
The above X() minimizes the weighted norm.

3.2. Model 2 (L? norm)

When the Euclidean distance is considered in this model, the objective is to minimize Obj, that includes the
weighted L? norm, which is given by

Obi, = 3 Piy/(Xs — w4 (¥ — ), (3.13)

where \/ (X; — u)2 + (Y; — v)2 is the straight-line distance between two points, which is widely applied in the
rural area of interest, long-distance cases, and signal propagation cases [18,27]. For instance, refer to the location
determination of 4/5 G stations or plants within a large-scale area. The goal is to minimize Obj, so that the
optimal location (@, ?) is given by the minimizer of Obj,, which is denoted by

(@, 0) = argmin (Obj,) . (3.14)
(uv)

Unlike the Manhattan distance, the optimal location based on the Obj, is not in explicit form. Thus, we
have to obtain it by using numerical methods. Here, we use the quasi-Newton method that is also called BFGS
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[14,29, 40, 65] to determine the optimal warehouse location so that the total weighted Euclidean distance can
be minimized. For specific details on the BFGS method, the reader can be referred to Byrd et al. [15]. The
BFGS algorithm is representative of the typical quasi-Newton method, which has been implemented in the R
language by R core Team [66]. Note that the BFGS method is able to find the optimal warehouse location due
to the convexity of Obj, (for more detail, see Appendix A). Because of the convexity of Obj,, we can obtain
the global optimal location by solving the following system of equations:

90bj, _ <~ P (u—X;) 0 (3.15)
du I -+ (Vi —0)?
d0bj, < P; (v —Y;)

- =0. (3.16)
; \/(Xi —u)® + (Y; —v)?

Then, the optimal location (@,?) can be calculated by using numerical methods. In this study, we use the
BFGS method to determine the warehouse location.

ov

3.3. Model 3 (squared L? norm)

Next, we consider the squared Euclidean distance for the warehouse location problem. The objective is to
minimize the weighted squared L? norm, which is given by

Obj, = ipi [(XZ- —u)? + (Y; —v)?|, (3.17)
=1

where (X; — u)® + (; — v)? is the squared value of the straight-line distance between two points. The goal is to
minimize Obj; so that the optimal location (@, ¥) is given by the minimizer of Objs, which is denoted by

(@, ?) = argmin (Objy) . (3.18)
(u,v)

Taking the derivative of the Objs in (3.17) with respect to w and v, we have the following equations:

90bjs _

g = ;:1: 2P; (u— X;) =0 (3.19)
90bj; B

50 = § 2P (v—Y;) =0. (3.20)

o= En: PX; (3.21)

5=Y Py, (3.22)

which are known as the weighted means. Note that the optimal warehouse location based on the weighted mean
is also known as the CG because (1, ¥) is the location of fulcrum when weights are located at the demand points.
Here, we provide three different distances in Figure 1. The Manhattan distance (D7) in Figure la is usually
applied in urban areas due to the street configurations. As an illustration, the travel distance D; (A, F') from
points A to F wvia points B,C, D, and F in Figure la is the summation of street distances, which is given by

D1 (A,F) =Dy (A,B)+ Dy (B,C) + Dy (C,D) + Dy (D, E) + Dy (E, F). (3.23)
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Ficure 1. Illustration of three distances. (a) Manhattan distance. (b) Euclidean distance.
(¢) Squared Euclidean distance.

Figure 1b shows an illustration of the Euclidean distance (D2) that is usually applied in rural areas. The
travel distance Dy (A, F') from points A to F is the length of the straight-line distance connecting those two
points via points B, C, D, and F that are strictly on this line, which is given by

Dy (A, F) =Dy (A,B) + Dy (B,C) + Dy (C,D) + Dy (D, E) + Dy (E, F). (3.24)

As shown in Figure 1c, D3 (A, F) is the squared Euclidean distance (squared L? norm) from points A to F,
it can be considered as the squared length of the straight-line distance connecting those two points, which is
given by

Ds (A, F) = Dy (A, F)*. (3.25)

Note that Ds (A, F') can be replaced by D3 (A, C) + D3 (C, F) due to the Pythagorean Theorem. Similarly,
D3 (A, C) can be replaced by D3 (A, B) + D3 (B,C) and D3 (C, F) can be replaced by D3 (C,E) + D3 (E, F),
where D3 (C, E) is the summation of D3 (C, D) and D3 (D, E). Thus, we can rewrite D3 (A, F') as

D3 (A, F) = D3 (A,C) + D3 (C, F)
— D3 (A, B) + D3 (B,C) + D3 (C, E) + Ds (E, F)
= D3 (A, B) + D3 (B,C) + D3 (C, D) + D3 (D, E) + D3 (E, F)
=.. (3.26)

It is obvious that the travel distance cannot be formulated by the squared Euclidean distance as its unrea-
sonable tracks from points A to F wia points B,C, D, and E in Figure lc. To check the validity of different
distances, we need to see if they satisfy the metric properties. According to the distance metrics from Parnas
and Ron [62], it is easily seen that only the squared L? norm is not a metric.

Here, we summarize the properties of the above three distances and their optimal locations in Table 1. As
shown in Table 1, the (weighted) median is able to minimize the total (weighted) Manhattan distance from
the warehouse to the demand points. The (weighted) mean is able to minimize the total (weighted) squared
Euclidean distance from the warehouse to the demand points. Unlike the (weighted) median and (weighted)
mean, to minimize the total (weighted) Euclidean distance, the optimal warehouse location is not in explicit form
so that we need to obtain it by using numerical methods. Unfortunately, many studies [17,27,36,54,56] applied
the (weighted) mean to minimize the total (weighted) Manhattan distance or squared (weighted) Euclidean
distance, which is unreasonable because the squared Euclidean distance is not a metric. In addition, the travel
time or cost generally is linearized with Manhattan distance or Euclidean distance between two nodes [10], which
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TABLE 1. Summary of optimal location estimation methods given different distances.

Objective  Optimal Metric  Robust
function location

Obj, (Weighted) median ~ Yes Yes
Obj, Numerical method  Yes Yes
Obj, (Weighted) mean No No

TABLE 2. Probability distributions under consideration.

CaseID n X; Y; P;
1 100  Normal (0,1) Normal (0,1) 0.5
2 100 Normal (0,1) Normal (0,1) Beta (1,1)
3 100 2% Beta(l,1) —1 2xBeta(l,1)—1 0.5
4 100 2% Beta(1,1)—1 2=*Beta(l,1) —1 Beta (1,1)
5 200 Normal (0,1) Normal (0,1) 0.5
6 200 Normal (0,1) Normal (0,1) Beta (1,1)
7 200 2=xBeta(l,1)—1 2x*Beta(l,1)—1 0.5
8 200 2xBeta(1,1)—1 2=*Beta(l,1)—1 Beta (1,1)

indicates that the (weighted) mean cannot be used to minimize the total travel time or cost as the squared
L? norm is not a metric. It is widely known that the median is a robust outlier-resistant location estimator,
whereas the mean is not [43]. Consider the weights at demand points, we investigate the robust property of the
weighted median and the other location estimation methods. Interestingly, we find that the robustness is an
additional gain of using L' and L? norms. To validate the proposed corresponding location estimation methods,
they are compared with the previous studies to illustrate their priorities in the accurateness and robustness.

4. SIMULATION STUDY

In this section, a simulation study is carried out to show the effectiveness of the proposed location estimation
methods. The proposed location estimation methods are compared with the conventional CG method. Regarding
the weighted median, we also develop its R function as shown in Appendix B. All the simulations are performed
on a computer with an Intel(R) Core(TM) i7-7700 CPU@3.6 GHz and 8 GB memory under Windows 10 Pro
system. Those location estimation methods are implemented in R language, which is a non-commercial and
open-source software for statistical computing and graphics originally developed by Thaka and Gentleman [47].

In this simulation study, as shown in Table 2, we use eight cases with randomly generated demand-point
locations and weights to obtain their optimal locations. To evaluate the performances of the proposed location
estimation methods, we apply the efficiency [64] to measure the quality of the solution. Here we replicate each
case 10000 times, which results in 10000 estimated locations for each of the distances.

Efficiency [64] is a method to measure the quality of an estimator in the experimental design. In this study,
the statistical efficiency of an estimator is related to the variance of the estimator. The relative efficiency of
the two procedures is the ratio of their variances, which is used as a metric for comparing the effectiveness of
the two estimators. For more details, see Section 2.2 of Lehmann [50] and Park and Leeds [61]. The relative
efficiency REjs of Obj; (uca,vea) to Obj; (U, vy) with respect to the Manhattan distance is defined as

Var [Objy (U, Vay)]

RE., — : x 100% 41
M= Var [Obj; (uca, vea)] ’ )
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TABLE 3. Relative efficiency in different methods for eight cases.

CaseID 1 2 3 4 5 6 7 8
REnr 99.43%  99.24% 99.34% 99.13%  99.72%  99.62% 99.67% 99.56%
REE 99.72%  99.63% 99.75% 99.66% 99.86% 99.82% 99.87%  99.83%

where (., v,) is the obtained warehouse location using weighted median and Obj; (., v4,) is the total weighted
Manhattan distance from (u.,,v,,) to the demand points. And (ucg,vce) is the obtained warehouse location
using the CG method and Obj; (ucg,vca) is the total weighted Manhattan distance from (ucg,veg) to the
demand points.
The relative efficiency REg of Obj, (uca,veg) to Obj, (up,vp) with respect to the Euclidean distance is
defined as
Var [Obj, (up,vp)]

REg = - x 100% 4.2
P Var [Obj, (uca, voa)] ’ (4.2)

where (up,vp) is the obtained warehouse location using the BFGS method and Obj, (up,vp) is the total
weighted Euclidean distance from (up,vp) to the demand points. And Obj, (uca,vee) is the total weighted
Euclidean distance from (ucq,vcg) to the demand points.

As shown in Table 3, the relative efficiencies are calculated and presented for Cases 1-8. Specifically, REj,
is always smaller than 100%, which indicates that the (weighted) median is more reasonable to minimize the
total Manhattan distance than the CG method. Besides, REg is also smaller than 100% in Cases 1-8, which
shows that the numerical method such as the BFGS method is able to find the optimal warehouse location
to minimize the total Euclidean distance. As a consequence, the CG method is not preferred to determine the
warehouse location as its worse performance.

As the data can be often collected under volatile operating conditions, which results in contaminated data
and variability in parametric values in disaster response. To evaluate the robustness of the proposed optimal
locations against an outlier, those eight cases with different outlier values are tested. We suppose that the
outliers exist in the customer’s (outlier) coordinates. To evaluate the robust performances of different methods,
we run the simulation given different values to the outlier in Cases 1-4. We use M to represent a customer’s
(outlier) coordinates. The comparison results are presented in Figures 2-5, which clearly shows the robustness
of the (weighted) median and BFGS methods in determining the optimal warehouse location, whereas the CG
method is strongly sensitive to the outlier. It is also obvious that the optimal warehouse location coordinate
shows a directly upward tendency with equal weights when M goes from 0 to 300 (see Figs. 2 and 4). Both
Figures 3 and 5 also present general upward trends but with some fluctuations as the random weights are
involved when M goes from 0 to 300.

In addition, to further illustrate their robust performance in determining the optimal warehouse location
against different outlier numbers B, we replicate Cases 5-8 randomly for 50 times to avoid the extreme cluttering,
which results in 50 estimated warehouse locations. Let M be 50 that is considered as the outlier value. Here, we
consider three situations that have 0, 5, and 10 outliers in each of the cases. The optimal warehouse locations
using different distances are plotted in Figures 6-9 where the red circles, the green triangles, and the blue squares
are the optimal warehouse locations with contamination using L', L?, and squared L? norms, respectively.

As shown in Figures 6-9, they provide a clear visual illustration of the outlier resistance behavior in three
different distances. Note that Figures 6a—6¢ have different coordinate intervals, which is the same as Figures7—
9. It is obvious that the warehouse locations without considering data contamination are around the optimal
location (x = 0,y = 0) for all the distances. However, with the data contamination, the warehouse locations
obtained using squared L? norm extreme shifts away from the true optimal location (z = 0,y = 0). Conversely,
those obtained optimal warehouse locations using L' and L? norms remain near the true optimal location. This
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FIGURE 2. Warehouse locations in different methods given different outlier values in Case 1.
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FIGURE 3. Warehouse locations in different methods given different outlier values in Case 2.
(a) u. (b) v.

is a piece of definitely strong evidence to show that the proposed using L' and L? norms are much more reliable
compared with the CG method.

5. ILLUSTRATIVE EXAMPLE

In addition to the simulation study, we also provide some illustrative examples from a benchmark to evaluate
the performance of the proposed models. Here, we first introduce the set of benchmark instances that are used
for the application of facility location in disaster management. We use these instances to (i) show the priorities of
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the proposed locations in accurateness given different distances (norms) and (ii) assess the robust performance
compared with the conventional CG method.

To validate the effectiveness of the proposed models, we use a benchmark (http://neo.lcc.uma.es/vrp/)
that is composed of 27 instances that are referred to Augerat et al. [6] (see Tab. 4). Each instance provides
customers’ (demand point) geographical coordinates and demand quantities. Here, the demand quantities are
deemed weights. Given the coordinates and weights associated with each demand point, the optimal warehouse
location can be obtained with the proposed location estimation methods. Note that we enlarged the last few
customers’ coordinates 10 times that are considered as outliers.
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Here, we use Instances 1-18 to compare the proposed optimal locations given different distances. Since
Obj, is not a metric, there is no need to compare and calculate the squared Euclidean distance. The obtained
warehouse location and the total travel distance are shown in Table 5. Specifically, it is obvious that the weighted
median provides a smaller Obj; value than the CG method in Instances 1-18, which indicates that the weighted
median is more reasonable to minimize the total weighted Manhattan distance. Besides, the BFGS method also
outperforms the CG method to minimize Obj, value in Instances 1-18. As a consequence, the CG method is
not preferred to determine the warehouse location as its worse performance in minimizing both Obj; and Obj,.
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To evaluate the robustness of the proposed optimal location estimation methods and the CG method against
the outliers, instances 19-27 with different outlier numbers H are tested. To evaluate the robust performances
of different methods, the biases are evaluated and compared. In this study, we calculate the distance between
the obtained warehouse location (., 0,) without outliers and the location (@, ?) with outliers, which are defined

as
Biasys = |tio — @] + |06 — 0|

and

Biasg = \/(fbo — 71)2 + (U0 — {))2

(5.1)

(5.2)
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TABLE 4. Summary of the benchmark instances.

Instance ID  Problem size Instance ID  Problem size Instance ID  Problem size
1 32 10 39 19 60
2 33 11 44 20 61
3 33 12 45 21 62
4 34 13 45 22 63
5 36 14 46 23 63
6 37 15 48 24 64
7 37 16 53 25 65
8 38 17 54 26 69
9 39 18 55 27 80

TABLE 5. Optimal warehouse locations based on Manhattan and Euclidean distances along
with their corresponding values of the objective functions.

Instance ID Manhattan distance Euclidean distance
CG1 Weighted median CG2 BFGS
(1, 9) Obj, (a,7) Obj, (u,0) Obj, (,7) Obj,

1 (54.7,39.4) 23,390.1 (58.0,39.0) 23,262.0 (54.7,39.4) 18,092.8 (61.7,38.4) 17,938.5
2 (47.0, 45.1) 21,423.1 (47.0,43.0) 21,372.0 (47.0,45.1) 16,826.2 (48.3,48.7) 16,793.9
3 (39.6, 49.7) 24,106.3 (45.0, 46.0) 24,036.0 (39.6,49.7) 18,500.5 (42.5, 53.4) 18,434.2
4 (49.9, 59.6) 23,360.5 (55.0, 75.0) 22,532.0 (49.9, 59.6) 17,667.9 (54.3,70.7) 17,251.8
5 (43.6, 50.4) 20,431.6 (33.0,49.0) 20,020.0 (43.6, 50.4) 15,407.6 (45.0, 50.1) 15,401.3
6 (53.5, 50.8) 18,793.9 (53.0,49.0) 18,777.0 (53.5,50.8) 14,820.1 (52.1,46.7) 14,734.0
7 (54.8,19.3) 26,428.2 (57.0, 50.0) 26,351.0 (54.8,49.3) 20,335.0 (55.0,49.2) 20,334.8
8 (53.6, 48.5) 23,182.7 (47.0, 43.0) 22,902.0 (53.6,48.5) 17,571.2 (47.7,46.4) 17,406.2
9 (48.7, 41.3) 22,486.1 (45.0, 35.0) 21,726.0 (48.7,41.3) 17,553.6 (48.0, 36.6) 17,461.3
10 (48.5, 45.3) 25,214.8 (41.0, 31.0) 24,340.0 (48.5,45.3) 19,581.1 (43.3,35.1) 19,083.5
11 (46.8, 50.6) 25,863.0 (42.0,47.0) 25,277.0 (46.8,50.6) 19,646.3 (42.5, 50.3) 19,520.3
12 (43.6, 48.8) 31,458.1 (36.0, 44.0) 31,165.0 (43.6,48.8) 23,795.1 (41.5, 46.7) 23,759.0
13 (55.0, 42.8) 28,739.1 (49.0, 35.0) 28,080.0 (55.0,42.8) 22,494.6 (53.4, 38.9) 22,402.3
14 (46.6, 42.2)  30,027.5 (43.0,41.0) 29,844.0 (46.6,42.2) 23,390.2 (46.3, 37.2) 23,275.0
15 (48.2,49.1) 32,851.1 (49.0,47.0) 32,818.0 (48.2,49.1) 25,461.2 (48.2,50.4) 25,453.2
16 (47.9, 47.1) 35,100.4 (53.0, 40.0) 34,842.0 (47.9,47.1) 26,754.0 (48.9, 48.5) 26,732.8
17 (49.2, 43.7) 34,074.9 (51.0, 53.0) 33,944.0 (49.2,43.7) 26,528.0 (50.8, 56.4) 26,479.0
18 (50.6, 50.3) 41,093.9 (50.0, 46.0) 40,877.0 (50.6, 50.3) 32,430.5 (45.9, 49.6) 32,284.5

Notes. CG1: based on the study of Gao et al. [37]; CG2: based on the study of Esnaf and Kii¢iikdeniz [27] and Nadizadeh
et al. [54].

for Manhattan distance and Euclidean distance, respectively.

As shown in Tables B.1-B.9, the warehouse locations and biases are summarized given different outlier
numbers in each of the instances. It is obvious that the CG method is extremely sensitive to the outliers, and
even a single outlier is enough to greatly influence the warehouse location in both distances. However, the
weighted median and BFGS methods are not sensitive to the outliers in Manhattan and Euclidean distances
respectively, which indicates that they have better performances than the CG method to estimate the facility
location against the outliers. Thus, we can conclude that the weighted median and BFGS methods are not only
able to minimize the total Manhattan distance and Euclidean distances respectively but also reliable to estimate
the facility location against the outliers.
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6. CONCLUDING REMARKS

This study focused on the warehouse location problem under data contamination in disaster response. We
applied three different methods for three distances (norms), namely, Manhattan distance, Euclidean distance,
and squared Euclidean distance, to determine the optimal warehouse locations. The locations were compared
to illustrate the effectiveness of the proposed location estimation methods. The comparison results showed that
the proposed location estimation methods outperformed the CG method both in accuracy and robustness.
Then a simulation study was conducted to present the robust performance of the proposed location estimation
methods. Finally, we carried out an illustrative example based on 27 instances in a benchmark to investigate
the effectiveness and efficiency of the proposed methods. The results clearly showed that the proposed location
estimation methods outperformed the CG method in determining the optimal warehouse locations when the
data contamination is involved.

According to the results obtained in Sections 5 and 6, the warehouse locations based on different distances were
cleared. As mentioned earlier, the CG method (weighted mean) was widely used in previous continuous-space
facility location problems. However, the weighted mean is unable to minimize the total weighted Manhattan
distance and Euclidean distance. Indeed the appropriate locations are very significant for decision-makers as
they are strongly related to the objectives. On one hand, in terms of Manhattan distance, we found that the
weighted median is the optimal solution to minimize the total weighted Manhattan distance in the urban area of
interest and then we developed the R function of the weighted median. On the other hand, as for the Euclidean
distance in the rural area of interest and long distance cases, we could not find the optimal warehouse location
in explicit form so that we need to use numerical methods. In this study, we applied the BFGS method to obtain
the optimal warehouse location as the convexity of Obj,. As a consequence, we conducted this study to help
decision-makers determine the optimal warehouse location based on the specific distance that they encountered.

In future work, some directions are meaningful that could be explored deeply from the following three
perspectives. This study considers a single-facility location in disaster response. However, it would be interesting
to develop a robust optimization model for the multi-facility location problem with data contamination. Besides,
minimizing the maximum distance between the facilities is also meaningful in the multi-facility location problem.
In addition, it is also meaningful to derive the breakdown point regarding the L? norm. These three questions
will be considered in future research.

APPENDIX A. PROOF OF THE CONVEXITY OF Obj,

In this study, we use the BFGS method that is able to find the optimal warehouse location due to the convex

Obj,. Before we minimize the objective function Obj,, let f (x,y) = \/(x —u)® + (y —v)?, then we have the
following Hessian matrix H:

8% f 9% f

o wwn | 1 [(y-v)’ —(z—u)(y—v)
e oy TPl @ow? } (A1)

Then we can construct the following equation:

< anfg - afe?

(- y-v) (z-u)’

2

(xU)(y’U)] [ﬂ :%[s(y_v)_t(x_u)fzo.
(A.2)

The above equation is always nonnegative for any values of (s,¢) and (z,y), which indicates that H is
positive semi-definite for any (s,t). Thus, f(z,y) is always convex, which results in that the summation of
convex functions Obj, is also convex. There can be only one optimal solution for (3.19) and (3.20), which is the
global minimum. For more details, see Section 3.4 of Boyd and Vandenberghe [13] and Section 2.1 of Beck [12].
As a consequence, it is easy for the BEFGS method to determine the optimal warehouse location.
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APPENDIX B. R FUNCTION OF WEIGHTED MEDIAN

We provide the R function for the weighted median. Note that the R language includes the weighted mean

as a basic function which is easily used by weighted.mean() command. The R function for the weighted median
is given by
1. weighted.median <- function(x, w) {
2. # Preparation
3. if (missing(w)) w = rep(1L,length(x))
4. if (length(w) != length(x)) stop(“‘x’ and 'w’ must have the same length”)
5. x = as.double(as.vector(x))
6. w = as.double(as.vector(w))
7. ok= complete.cases(x,w); xx=x[ok]; ww=w][ok]
8. stopifnot(all(w >= 0))
9. if(all(w <= 0)) stop(“All weights are zero”, call.=FALSE)
10. orderorderx = order(x)
11. xx = x[orderx]
12. ww = wlorderx] / sum(w)
13. Fn = cumsum(w)
14. tiny = sqrt(.Machine$double.eps)
15. # Main part
16. if (all(abs(Fn-0.5)>tiny)) { # any values of Fn is not 1/2.
17. k = sum(Fn < 0.5)
18. return(x[k+1])
19. } else {
20. k = which.min (signif(abs(Fn-0.5),digits=12)) # Find k with Fn=0.5
21. if (wlk+1] < tiny) { # check if wk+1] ==
22. return(x[k+1])
23. } else {
24. return(0.5%(x[k]+x[k+1]))
25. }
26. }
27. }



TABLE B.1. Optimal warehouse locations under different outlier numbers for different distances
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in Instance 19.

B Manhattan distance Euclidean distance
CG Weighted median CG BFGS
(a, ) Biasy (@, 0) Biasy  (@,0) Biasg  (u,0) Biasg

0 (51.3, 51.6) 0.0 (49.0, 57.0) 0.0 (51.3, 51.6) 0.0 (49.3, 52.4) 0.0
1 (67.6, 74.9) 39.6 (49.0, 57.0) 0.0 (67.6, 74.9) 28.4 (49.6, 52.2) 0.4
2 (71.9, 79.5) 48.5 (53.0, 57.0) 4.0 (71.9, 79.5) 34.7 (50.7, 53.5) 1.8
3 (93.2, 98.8) 89.1 (53.0, 57.0) 4.0 (93.2, 98.8) 63.1 (50.6, 53.7) 1.8
4 (110.0, 106.0)  113.1 (53.0, 59.0) 6.0 (110.0, 106.0)  80.0 (50.8, 55.0) 3.0
5 (116.0, 112.0) 125.1 (53.0, 59.0) 6.0 (116.0, 112.0) 88.5 (50.8, 54.9) 2.9
6 (121.0, 113.0) 131.1 (53.0, 61.0) 8.0 (121.0, 113.0) 92.9 (52.0, 56.0) 4.5
7 (122.0, 120.0) 139.1 (53.0, 61.0) 8.0 (122.0, 120.0) 98.4 (54.0, 58.6) 7.8
8 (133.0, 138.0) 168.1 (53.0, 61.0) 8.0 (133.0, 138.0) 119.0 (54.9, 58.5) 8.3
9 (158.0, 139.0) 194.1 (53.0, 61.0) 8.0 (158.0, 139.0) 138.0 (56.2, 60.1)  10.3
10 (160.0, 139.0) 196.1 (53.0, 65.0) 12.0 (160.0, 139.0)  139.0 (56.2, 60.5) 10.6

TABLE B.2. Optimal warehouse locations under different outlier numbers for different distances

in Instance 20.

B Manhattan distance Fuclidean distance
CG Weighted median CG BFGS
(u,v) Biasy (4, 0) Biasy (w6, 0) Biasg  (u,0) Biasg

0 (45.9, 48.6) 0.0 (47.0, 45.0) 0.0 (45.9, 48.6) 0.0 (42.7, 46.6) 0.0
1 (59.8, 54.8) 20.1 (47.0, 45.0) 0.0 (59.8, 54.8) 15.2 (42.5, 47.0) 0.5
2 (60.9, 59.3) 25.7 (47.0, 45.0) 0.0 (60.9, 59.3) 18.4 (43.1,47.3) 0.8
3 (75.0, 77.2) 57.7 (47.0, 45.0) 0.0 (75.0, 77.2) 40.8 (43.5,47.0) 0.9
4 (85.8,80.0)  71.3  (47.0,45.0) 0.0 (85.8,80.0)  50.8  (43.4,475) 1.1
5 (89.3, 85.2) 80.0 (47.0, 45.0) 0.0 (89.3, 85.2) 56.8 (43.5,47.5) 1.2
6 (99.0,90.1) 946  (47.0,47.0) 2.0 (99.0,90.1)  67.4  (43.8,48.9) 2.6
7 (100.0, 108.0) 113.5 (47.0, 47.0) 2.0 (100.0, 108.0)  80.3 (44.9, 49.3) 3.5
8 (105.0, 125.0) 135.5 (47.0, 47.0) 2.0 (105.0, 125.0)  96.6 (46.4, 49.5) 4.7
9 (121.0, 129.0)  155.5 (47.0,47.0) 2.0 (121.0, 129.0) 110.0  (46.5,50.3) 5.3
10 (130.0, 135.0) 170.5 (47.0, 49.0) 4.0 (130.0, 135.0) 121.0  (46.3, 51.0) 5.7
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TABLE B.3. Optimal warehouse locations under different outlier numbers for different distances
in Instance 21.

B Manhattan distance Euclidean distance
CG Weighted median CG BFGS
(u,0) Biasy (@, 0) Biasy  (@,0) Biasg (4, 0) Biasg

0 (50.1, 53.6) 0 (52.0, 53.0) 0.0 (50.1, 53.6) 0.0 (49.2, 57.4) 0.0
1 (52.3, 55.1) 3.7 (53.0, 55.0) 2.0 (52.3, 55.1) 2.7 (50.2, 58.2) 1.3
2 (53.7, 56.4) 6.4 (53.0, 55.0) 2.0 (53.7, 56.4) 4.6 (50.2, 58.5) 1.5
3 (71.7, 62.1) 30.1 (53.0, 61.0) 8.0 (71.7, 62.1) 23.2 (51.5,60.8) 4.1
4 (101.0, 64.3) 61.6 (53.0, 69.0) 16.0 (101.0, 64.3)  52.0 (52.8,63.0) 6.7
5 (111.0, 64.7) 72.0 (56.0, 69.0) 16.0 (111.0, 64.7) 61.9 (54.7, 64.7) 9.1
6 (121.0, 78.5)  95.8 (64.0, 70.0)  29.0 (121.0, 78.5) 75.1 (58.4, 68.0) 14.0
7 (122.0, 79.1) 97.4 (64.0, 70.0)  29.0 (122.0, 79.1)  76.3 (58.5, 68.2) 14.3
8 (124.0, 80.9) 101.2 (64.0, 70.0)  29.0 (124.0, 80.9) 78.8 (58.5, 68.2) 14.3
9 (125.0, 82.2) 103.5 (64.0, 70.0)  29.0 (125.0, 82.2)  80.2 (58.9, 68.5) 14.7
10 (126.0, 87.5) 109.8 (64.0, 70.0)  29.0 (126.0, 87.5) 83.1 (59.7, 69.0) 15.6

TABLE B.4. Optimal warehouse locations under different outlier numbers for different distances
in Instance 22.

B Manhattan distance Fuclidean distance
CG Weighted median CG BFGS
(u,v) Biasy (4, 0) Biasy (w6, 0) Biasg  (u,0) Biasg

0 (48.4, 49.8) 0.0 (45.0, 47.0) 0.0 (48.4, 49.8) 0.0 (47.1, 48.3) 0.0
1 (52.1, 50.8) 4.7 (45.0, 47.0) 0.0 (52.1, 50.8) 3.8 (47.6, 49.0) 0.9
2 (60.1, 61.6) 23.5 (49.0, 47.0) 4.0 (60.1, 61.6) 16.6 (49.8, 49.0) 2.8
3 (68.4, 74.8) 45.0 (57.0,47.0) 12.0 (68.4, 74.8) 32.0 (51.0, 48.7) 3.9
4 (68.7,90.3)  60.8  (57.0,47.0) 12.0  (68.7,90.3) 453  (52.4,49.6) 5.5
5 (70.4, 90.5) 62.7 (57.0,47.0) 12.0 (70.4, 90.5) 46.3 (52.5,49.7) 5.6
6  (80.4,90.7) 729  (59.0,47.0) 14.0  (80.4,90.7) 519  (53.8,51.0) 7.2
7 (99.4, 109.0) 110.2 (59.0, 47.0) 14.0 (99.4, 109.0) 78.1 (53.8, 51.0) 7.2
8 (103.0, 109.0) 113.8 (59.0, 59.0)  26.0 (103.0, 109.0)  80.5 (53.9,51.4) 7.5
9 (113.0, 132.0) 146.8 (59.0, 59.0)  26.0 (113.0, 132.0) 105.0  (55.3,51.2) 8.7
10 (121.0, 136.0) 158.8 (59.0, 59.0)  26.0 (121.0, 136.0) 113.0  (55.3,52.1) 9.0




TABLE B.5. Optimal warehouse locations under different outlier numbers for different distances

A NOTE ON THE WAREHOUSE LOCATION PROBLEM WITH DATA CONTAMINATION

in Instance 23.

B Manhattan distance Euclidean distance
CG Weighted median CG BFGS
( ) BiaSJW ( ) BiasM ( ) BiasE ( ) BiasE

0 (48.5, 52.3) 0.0 (41.0, 49.0) 0.0 (48.5, 52.3) 0.0 (44.4, 50.6) 0.0
1 (51.7, 56.9) 7.8 (46.0, 49.0) 5.0 (51.7, 56.9) 5.6 (44.4, 50.6) 0.0
2 (58.3, 65.0) 22.5 (46.0, 50.0) 6.0 (58.3, 65.0) 16.0 (46.7, 52.1) 2.8
3 (64.8, 73.7) 37.7 (46.0, 51.0) 7.0 (64.8, 73.7) 26.9 (49.5, 54.5) 6.4
4 (69.4, 75.8) 44.4 (55.0, 54.0)  19.0 (69.4, 75.8) 31.4 (49.5, 54.7) 6.5
5 (72.5, 86.8) 58.5 (60.0, 54.0)  24.0 (72.5, 86.8) 42.0 (51.0, 55.4) 8.2
6 (82.1, 110.0) 91.3 (60.0, 54.0)  24.0 (82.1, 110.0) 66.8 (52.2, 56.6) 9.8
7 (96.6, 123.0) 118.8 (60.0, 54.0)  24.0 (96.6, 123.0) 85.5 (52.2, 57.3) 10.3
8 (98.1, 136.0) 133.3 (60.0, 54.0)  24.0 (98.1, 136.0) 97.3 (54.7,60.2) 14.1
9 (102. O 141.0) 142.2 (60.0, 61.0)  31.0 (102. O 141.0) 104.0 (56.1, 62.0) 16.3
10 (112.0, 146.0) 157.2 (60.0, 70.0)  40.0 (112.0, 146.0) 113.0 (57.7,64.9) 19.5

TABLE B.6. Optimal warehouse locations under different outlier numbers for different distances

in Instance 24.

B Manhattan distance Fuclidean distance
CG Weighted median CG BFGS
(u,v) Biasy (4, 0) Biasy (w6, 0) Biasg  (u,0) Biasg

0 (49.9, 50.0) 0.0 (51.0,49.0) 0.0 (49.9, 50.0) 0.0 (44.4, 50.6) 0.0
1 (50.6, 52.0) 2.7 (51.0, 49.0) 0.0 (50.6, 52.0) 2.1 (44.4, 50.6) 0.0
2 (79.9, 80.0) 60.0 (55.0, 51.0) 6.0 (79.9, 80.0) 424 (49.5, 54.5) 6.4
3 (86.6, 81.4) 68.1 (55.0, 51.0) 6.0 (86.6, 81.4) 48.3 (49.5, 54.5) 6.4
4 (90.5,81.8) 724  (57.0,51.0) 8.0 (90.5,81.8)  51.6  (49.5,54.7) 6.5
5 (91.8, 84.7) 76.6 (57.0, 51.0) 8.0 (91.8, 84.7) 54.4 (51.0, 55.4) 8.2
6 (93.2, 90.3) 83.6 (59.0, 55.0)  14.0 (93.2, 90.3) 59.2 (52.2, 55.6) 9.3
7 (106.0, 104.0)  110.1 (59.0, 55.0)  14.0 (106. 0 104.0) 779 (52.2, 57.3) 10.3
8 (122.0, 106.0) 128.1 (59.0, 57.0)  16.0 (122.0, 106.0)  91.3 (54.7, 60.2) 14.1
9 (124.0,112.0) 136.1  (59.0,57.0) 16.0  (124.0,112.0) 96.6  (56.1, 62.0) 16.3
10 (129.0, 119.0) 148.1 (59.0, 57.0)  16.0 (129.0, 119.0) 105.0  (57.7,64.9) 19.5
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TABLE B.7. Optimal warehouse locations under different outlier numbers for different distances
in Instance 25.

B Manhattan distance Euclidean distance
CG Weighted median CG BFGS
( ) BiaSJW ( ) BiasM ( ) BiasE ( ) BiasE

0 (46.9, 47.5) 0.0 (49.0, 41.0) 0.0 (46.9, 47.5) 0.0 (47.3, 45.9) 0.0
1 (47.3, 56.9) 9.8 (49.0, 41.0) 0.0 (47.3, 56.9) 9.4 (48.1,46.7) 1.1
2 (49.4, 61.4) 16.4 (51.0, 55.0)  16.0 (49.4, 61.4) 14.1 (49.6, 50.3) 5.0
3 (53.5, 66.8) 25.9 (53.0, 59.0) 22.0 (53.5, 66.8) 20.4 (51.0, 52.7) 7.7
4 (55.4, 67.8) 28.8 (53.0, 59.0)  22.0 (55.4, 67.8) 22.0 (50.9, 52.8) 7.8
5 (71.2, 85.5) 62.3 (53.0, 59.0)  22.0 (71.2, 85.5) 45.1 (51.1, 52.6) 7.7
6 (82.6, 88.0) 76.2 (53.0, 63.0)  26.0 (82.6, 88.0) 54.0 (51.2,54.1) 9.1
7 (100.0, 95.6) 101.2 (53.0, 65.0)  30.0 (100.0, 95.6) 71.6 (51.0, 55.0) 9.8
8 (101.0, 95.9) 102.5 (55.0, 67.0) 32.0 (101.0, 95.9) 72.6 (51.0, 55.0) 9.8
9 (120.0, 100.0)  125.6 (55.0, 67.0)  32.0 (120.0, 100.0)  90.0 (52.2, 56.9) 12.0
10 (130.0, 106.0) 141.6 (59.0, 69.0) 38.0 (130.0, 106.0)  102.0 (54.0, 60.2) 15.8

TABLE B.8. Optimal warehouse locations under different outlier numbers for different distances
in Instance 26.

B Manhattan distance Fuclidean distance
CG Weighted median CG BFGS
(u,v) Biasy (4, 0) Biasy (w6, 0) Biasg  (u,0) Biasg

0 (42.2, 45.5) 0.0 (37.0,44.0) 0.0 (42.2, 45.5) 0.0 (39.5,44.9) 0.0
1 (45.6, 58.5) 16.4 (37.0, 44.0) 0.0 (45.6, 58.5) 13.4 (40.5, 45.2) 1.0
2 (67.9, 70.5) 50.7 (37.0,44.0) 0.0 (67.9, 70.5) 35.9 (40.3, 46.0) 1.4
3 (70.6, 75.3) 58.2 (38.0,44.0) 1.0 (70.6, 75.3) 41.2 (40.6, 45.9) 1.5
4 (89.4,81.2) 829  (38.0,46.0) 3.0 (89.4,81.2)  59.2  (40.7,47.2) 2.6
5 (96.9, 85.8) 95.0 (41.0, 46.0) 6.0 (96.9, 85.8) 67.9 (40.6, 47.4) 2.7
6  (106.0,85.8)  104.1  (41.0,51.0) 11.0  (106.0,85.8) 755  (42.3,48.7) 4.7
7 (110.0, 96.5) 118.8 (41.0, 51.0) 11.0 (110.0, 96.5) 84.8 (44.2,50.7) 7.5
8 (122.0, 103.0) 137.3 (41.0, 51.0) 11.0 (122.0, 103.0) 98.4 (44.0, 51.1) 7.7
9  (147.0,108.0) 167.3  (41.0,54.0) 14.0  (147.0,108.0) 122.0 (44.2,52.3) 8.8
10 (147.0, 114.0) 173.3 (41.0, 54.0)  14.0 (147.0, 114.0)  125.0 (44.7,52.7) 9.4
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TABLE B.9. Optimal warehouse locations under different outlier numbers for different distances
in Instance 27.

B Manhattan distance Euclidean distance
CG Weighted median CG BFGS
(u,0) Biasy (@, 0) Biasy  (@,0) Biasg (4, 0) Biasg

0 (55.4, 44.9) 0.0 (57.0, 42.0) 0.0 (55.4, 44.9) 0.0 (57.1, 43.6) 0.0
1 (75.3, 47.5) 22.5 (57.0,42.0) 0.0 (75.3, 47.5) 20.1 (57.0,44.0) 0.4
2 (76.3, 47.8) 23.8 (57.0, 42.0) 0.0 (76.3, 47.8) 21.1 (57.1,44.1) 0.5
3 (77.5, 49.0) 26.2 (57.0,42.0) 0.0 (77.5, 49.0) 22.5 (57.2,44.1) 0.5
4 (81.2, 59.7) 40.6 (57.0,42.0) 0.0 (81.2, 59.7) 29.7 (57.9,44.2) 1.0
5 (83.1, 60.9) 43.7 (58.0, 43.0) 2.0 (83.1, 60.9) 32.0 (58.3,44.5) 1.5
6 (93.5, 70.2) 63.4 (61.0,43.0) 5.0 (93.5, 70.2) 45.7 (59.5,44.1) 2.5
7 (102.0, 80.7) 82.4 (61.0, 43.0) 5.0 (102.0, 80.7)  58.8 (59.8, 44.0) 2.7
8 (103.0, 82.2) 84.9 (61.0,43.0) 5.0 (103.0, 82.2)  60.5 (59.9, 44.0) 2.8
9 (113.0, 85.6)  98.3 (61.0,45.0) 7.0 (113.0, 85.6)  70.5 (59.9,44.4) 2.9
10 (116.0, 89.5) 105.2 (61.0, 45.0) 7.0 (116.0, 89.5)  75.2 (60.1, 44.3) 3.1
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