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GREEN CLOSED-LOOP SUPPLY CHAIN NETWORK DESIGN: A NOVEL
BI-OBJECTIVE CHANCE-CONSTRAINT APPROACH

Amin Reza Kalantari Khalil Abad and Seyed Hamid Reza Pasandideh∗

Abstract. In this paper, a novel chance-constrained programming model has been proposed for han-
dling uncertainties in green closed loop supply chain network design. In addition to locating the facilities
and establishing a flow between them, the model also determines the transportation mode between fa-
cilities. The objective functions are applied to minimize the expected value and variance of the total
cost CO2 released is also controlled by providing a novel chance-constraint including a stochastic upper
bound of emission capacity. To solve the mathematical model using the General Algebraic Modeling
System (GAMS) software, four multi-objective decision-making (MODM) methods were applied. The
proposed methodology was subjected to various numerical experiments. The solutions provided by dif-
ferent methods were compared in terms of the expected value of cost, variance of cost, and CPU time
using Pareto-based analysis and optimality-based analysis. In Pareto-based analysis, a set of preferable
solutions were presented using the Pareto front; then optimality-based optimization was chosen as the
best method by using a Simple Additive Weighting (SAW) method. Experimental experiments and
sensitivity analysis demonstrated that the performance of the goal attainment method was 13% and
24% better that of global criteria and goal programming methods, respectively.
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1. Introduction

The supply chain design problem consists of defining where and how to deploy assets (plants, warehouses, and
distribution centers) and how flows of materials (raw materials, parts and final products) should be moved along
the network of entities (suppliers, manufactures, distributors, retailers, and customers) to enhance the overall
performance [40]. The goal of designing supply chain networks in early research has only been minimizing the
costs. In recent years, there has been the aggravation of the environmental pollution due to different industrial
activities in the developed and industrialized countries. Therefore, restrictive laws and ethical frameworks have
been presented by different governments to help future generations make a proper use of the environment. Laws
related to limiting the environmental damage, together with the intensification of the competitive environment
between companies, in addition to the economic goals, have created a broader concept called greenness in the
recent research.
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Issues such as reverse logistics, green manufacturing and remanufacturing, and waste management, as impor-
tant subsets of green supply chain management, have recently received increasing attention in both academia
and industry [49]. If both direct and reverse flows are considered simultaneously in a network, the resulting
network is referred to as closed loop supply chain [21]. Reversing the flow of the supply chains includes the end
of use (EOU), the end of life (EOL), the unused raw materials, etc. In many studies, only EOU products come
back to the return flow of the supply chain. According to the new European and American laws, due to the need
to increase productivity and reduce waste products, the recycling of EOL products should also be considered
in supply chain design.

Apart from green technology in the design of closed-loop supply chains, handling uncertainty in a wide
range of parameters should also be applied to enhance the resiliency of the decision-making process. Decision
variables in network design are divided into three categories: strategic (e.g., locating, capacities, etc.), tactical
(e.g., allocation, planning, etc.), and operational (e.g., order size, inventory, etc.) [12]. The cost of strategic,
tactical and strategical decisions, and many other parameters in the design of networks is uncertain. There are
different approaches based on the presence or absence of the historical data resulting from uncertain parameters
for modelling uncertainties. Uncertainty modelling methods include fuzzy programming [13], stochastic scenario
based programming [30], chance-constrained programming [43], robust optimization [19], and hybrid methods
such as fuzzy-stochastic programming or stochastic-possibilistic programming [17].

In addition to choosing the right method to control uncertainties, another important factor is the correct
selection of the parameters for uncertainty modelling. Some parameters include market demands and product
prices [11] costs parameters and demands [16] demands demands supplies processing time transportation short-
age capacity expansion costs [4] cost parameters and demand fluctuations [36], total available production time
for plants setup and operation times to produce products and all cost parameters [3]. These are selected by
researchers to control the involved uncertainties. An important issue in the modelling approach is the selection
of new uncertain effective parameters to best control of model uncertainties.

In this work, a four-level green closed loop supply chain has been developed. This supply chain includes
factories that produce and reproduce the product, storehouses that control and store products from factories,
customers that are the final users of the products, and disassembly centers that collect waste products from
customers and return them to the direct current after assembly. In the current green supply chain, greenhouse
gas emissions are controlled by the stochastic upper bound of the emission capacity, which is determined by
governments and regulatory bodies. The main goal of the design is to determine the location of the facility,
allocate the appropriate flow, and determine the appropriate transportation method between facilities to reduce
the costs and emissions of the greenhouse gases. The model was first formulated as a single-objective stochastic
mixed integer linear model.For the first time, the costs, the upper bound of the emission capacity, the minimum
percentage of the units of product to be disposed and collected from a customer, and the minimum percentage
of the units of product to be dismantled and shipped from a disassembly center (DC) were considered uncertain.
The resulting model, with the chance constraints for changing from a stochastic mode to a deterministic one,
became a two-objective nonlinear integer one. The first objective was minimizing the total expected value of
costs; the second one was minimizing the total variance of the costs. Then, to solve the model, four MODM
methods were used. These methods were carefully evaluated using Pareto-based and optimal-based analyses
based on the CPU time and the solution quality. The main contribution of the present study, addressing the
existing gaps, is as follows:

Modelling perspective: The novelties of the modelling approach include:

(1) For the first time, uncertainties in green closed-loop supply chain networks are modeled using a hybrid
probabilistic chance-constrained programming and cost function.

(2) This is the first research that considers all features including closed-loop, greenness, determination of the
transportation method with cost and environmental concerns, and the uncertainty issue for a wide range of
critical parameters in the design of green closed-loop supply chain.

(3) This study assumes new parameters with uncertainty that are not found in the literature.
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Solution method and sensitive analysis approach: The novelties of the present study, in comparison
with the recent research on solution methodology and sensitive analysis, include the following:

(1) Although there are some studies comparing different MODM solution methods [18], this is the first study
comparing four MODM methods including ε-constraint, Lp-metrics, Goal programming, and Goal attain-
ment in the design of green closed loop supply chain network.

(2) A comprehensive analysis was conducted. To help the decision maker in the decision-making process, in
addition to generating efficient solutions using the Pareto front (Pareto-based analysis), the solutions ob-
tained from the three MODM methods were compared and the best solution was selected in terms of three
critical indicators (Optimality-based analysis).

Here are the questions of research of the paper:

(1) Which potential facilities should be activated?
(2) How much material flow should be transferred between established facilities?
(3) How the transportation mode could be determined between each of the actived facilities?
(4) What are the environmental impacts of the supply chain and how are they calculated and bounded?
(5) How the fluctuations of fundamental uncertain parameters could be controlled?
(6) How to provide a set of effective solutions for a multi-objective model using exact methods?
(7) How different exact methods could be compared for solving a multi-objective models?

The structure of the present study is organized as follows; Section 2 is a review of the past studies and the
existing literature gaps. Section 3 describes the hypotheses, goals and problem applications in the real world,
sets, parameters and decision variables. Further, it introduces the single-objective linear probabilistic model and
the multi-objective non-linear deterministic one. Section 4 examines various MODM methods used to solve the
model. Finally, Section 5 compares various MODM methods by some numerical experiments to select the best
method by the decision maker.

2. Literature review

Network design has been one of the most attractive fields for researchers. The development of supply chain
design model hypotheses is of particular importance in moving towards reality. Therefore, the review of the
previous research in this section is based on various assumptions made in recent studies. First, those studies
on network design that have not considered green technology and control of uncertainties have been reviewed.
Then, green network design studies and finally, green network design studies along with modelling uncertainties
have been reviewed. At the end, the recent studies concerned with modelling different uncertain parameters
have also been discussed.

2.1. Supply chain design

Many researchers have been designing supply chain networks. Atiparmark et al. [3], for instance, have designed
a supply chain using the multi-objective programming approach. They have used a new method based on the
Genetic Algorithm (GA) to solve problem; for the numerical testing of the model, they applied actual data at a
plastic manufacturing plant in Turkey. Liu et al. [33] have also presented a multi-objective mixed integer linear
programming (MILP) approach to model production, distribution, and capacity planning for a global supply
chain. They have considered the objectives of costs, responsiveness, and the customer service level in the model;
they have also used the methods of ε-constraint and Pareto-based analysis to solve problem. Further, Alshamsi
and Diabat [2] have presented a mixed integer linear programming model for the reverse logistics design. Their
model could consider options for the transportation of components using the internal fleet as well as outsourcing
options. Further, Bottani et al. [7] have provided a bi-objective mixed integer linear programming model for
a multi-product resilient food supply chain network. Their goals in designing the model were to maximize the
total profit and to minimize the total supply chain lead-time. To solve the model, the adapted Ant Colony
Optimization (ACO) algorithm was tested based on a real case study.
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2.2. Closed-loop supply chain design

The growing environmental and social concerns around the world have led many researchers to design supply
chain networks with reverse flow to reproduce and recycle products. Özceylan et al. [41] have proposed a linear
programming model to design a closed-loop supply chain network for end-of-life vehicles. Their proposed model
has been evaluated based on the real study of an automotive industry in Turkey. Zohal and Soleimani [59]
have also developed a multi-objective single product model for designing a green closed-loop gold supply chain
network. The first objective of their model was to minimize total costs and the second one was to minimize
greenhouse gas emissions. They have used a novel ACO algorithm to solve the model. Khatami et al. [32]
also proposed a Benders decomposition algorithm for the problem of designing a multi-product, multi-product
closed-loop supply chain network. They have used Cholesky’s factorization and k-means clustering methods
to generate a scenario based on the demand distribution function. Nurjanni et al. [40] have also proposed a
new multi-objective model for designing a sustainable closed-loop supply chain. Their model, in addition to
the EOU products, also included EOL products in the return flow. They also used three different scalarization
methods to transform their two-objective model into a single objective one and provided the Pareto-optimal set.
Further, Samuel et al. [50] have provided a deterministic mathematical model and its robust variant to design a
closed-loop supply chain network by taking into account multiple products, multiple customer zones, the quality
of returns, and the effects of emission policies. They have evaluated the effects of the quality of returns on the
closed loop network under carbon cap and carbon cap-and-trade policies.

2.3. Green supply chain design

With the growth of environmental pollutants, the imposition of international limiting laws and the need to
change the structure of supply chains, the attention of researchers and companies has been drawn to the design
of a network of green and sustainable supply chains. In this regard, Jamshidi et al. [29] have designed a green
supply chain for economic and environmental goals. In the model provided by them, there are several options for
shipping on each chain level. They have also used the Taguchi method for parameter tuning and combination of
the memetic algorithm for solving their model. Mohtashami et al. [39], on the other hand, developed a nonlinear
programming (NLP) model for designing a supply chain network with direct and reverse flow. They used the
queuing system to optimize the transportation and waiting time of the transportation fleets’ network. The exact
solution methods were applied to solve the model in a small size, while meta-heuristic approach was employed
to solve the model in a large size. Vasei and Polyakorskiy [54] have also provided a model for supply chain
design by ng considering economic, social, and environmental dimensions of sustainability. They have solved
two mixed integer linear models with the ε-constraint method by CPLEX. Mardan et al. [34] also designed
a multi-product, multi-product green closed-loop supply chain network. They used the Lp-metric method to
convert the multi-objective model into a single-objective one. An accelerated Benders algorithm was used to
solve the large-scale model.

2.4. Green supply chain design under uncertain environment

Network design is complete when uncertainties are handled in decisions. Some researchers, assuming no
historical data regarding their indeterminate parameters of models, have considered the fuzzy programming
method to control uncertainties. Paksoy et al. [42] have also presented a fuzzy multi-objective model for designing
a green supply chain network. They used the analytic hierarchy process (AHP), fuzzy AHP (F-AHP), and
fuzzy TOPSIS (F-TOPSIS) approaches for numerical testing to help decision makers. Mohamed and Wang
[38] have also provided a four-objective model for designing a green supply chain network. They used fuzzy
programming to model uncertainties. Accordingly, the LP-metrics method, the ε-constraint method, and the
goal programming method were applied to solve the model; also, the use was made of the Max–Min method
to select the best solution. Fakhrzad and Goodarzian [13] have proposed a fuzzy multi-objective programming
model for designing a multi-product and multi-period green closed-loop supply chain network. The objectives
of their model included minimizing the total cost and the gas emissions costs, and improving the reliability of
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the delivery demand. They used a modified version of the Imperialist Competitive Algorithm (ICA) to solve the
resulting model. Researchers have also used probabilistic programming methods such as robust optimization,
scenario-based programming, chanced-constrained programming, and hybrid methods to model uncertainty
when historical data is available for their uncertain parameters. Further, Rezaee et al. [46] have designed a
green open-loop loop supply chain network with a carbon trading scheme. They have assumed demand and
carbon prices as uncertain and used two-stage stochastic scenario-based programming to control uncertainties.
Yavari and Geraeli [56] have also developed a mixed-integer linear model for designing a closed-loop green
supply chain that used robust optimization to control uncertainty in demand, return rates, and quality of the
return products. In addition, Keyvanshokooh et al. [31] have proposed a new model for designing a closed loop
supply chain. In their model, transportation costs have been modeled using stochastic scenarios; demand and
returns have been modeled using robust optimization. Zhen et al. [58] have provided a bi-objective optimization
model for designing a green and sustainable closed-loop network. They used a two-stage stochastic scenario-
based programming approach to model the demand uncertainty. They have developed the Lagrangian-Relaxian
method to solve the model. Further, Pasandideh et al. [43] have presented a multi-objective non-linear model
for designing an open loop supply chain in which costs, the customer’s demand, production time, and set-up
time were considered uncertain. They used the chance-constrained method to model uncertainty. According
to the literature related to supply chain network design, there is no previous research based on possibilistic-
programming (hybrid chance-constrained programming and cost function) to design green and sustainable
closed-loop supply chain networks.

In addition to selecting the appropriate method for uncertainty modelling, selecting the most effective parame-
ters with uncertainty is also very important. Previous studies have assumed various parameters with uncertainty.
Table 1 illustrates these parameters.

Table 1 describes the first research gap covered by the present research. Previous studies have mainly assumed
the demand, costs, time, supply, etc. to be uncertain. Meanwhile, in the design of green closed-loop supply chain
networks, the parameters causing the return flow and the upper bound of greenhouse gases emission are the
important sources of fluctuations in decisions. Therefore, this study, for the first time, considers the uncertainty
in the most sensitive parameters of the model, namely, cost parameters, the minimum percentage of the units
of product to be disposed and collected from a customer, the minimum percentage of the units of product to
be dismantled and shipped from a DC, and the upper bound of total CO2 released, simultaneously.

Table 2 represents the research gaps in the previous studies from another perspective. According to this table,
researchers have not applied the hybrid probabilistic chance-based constrained programming and cost function
approach to the design of green closed-loop supply chain network. Also, no study has considered all features
including closed-loop, greenness, determination of the transportation method with cost and environmental
concerns, and the uncertainty issue for a wide range of critical parameters in the design of green closed-loop
supply chain. Accordingly, the present study has considered all these mentioned features and presented a new
approach based on stochastic chance-based constrained programming. So, previous studies have not examined
different MODM methods in multi-objective green closed-loop supply chain network design problems. Another
contribution of this study is the comparison of three different MODM methods and the formation of the Pareto
front using the Lp-metric method.

3. Problem description and assumptions

In this problem, four different levels for supply chain, including the factory I, the warehouse J , the customer
K and L DC, are considered. Figure 1 shows the structure of the green supply chain studied.

The goals of the design of such a network include: (1) covering the customer’s deterministic demand, (2)
locating facilities, (3) establishing an appropriate flow of facilities, (4) choosing the best transportation method
among components, (5) controlling greenhouse gas emissions, (6) controlling disposal products and returning
them to the direct current through disassembly and recovery, and (7) controlling the uncertainty of effective
parameters for more realistic modelling. The proposed model can be used to design complex networks of global
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Table 1. Summary of uncertain modelling methods and uncertain parameters in the literature.

Authors Methods of uncertainty modelling Uncertain parameters

Ruiz-Femenia et al.
[48]

Stochastic scenario-based Demand

Mirzapour Al-e-
hashem et al. [36]

Robust optimization Costs and demand fluctuations

Guillena et al. [22] Two-stage stochastic programming Production
Azaron et al. [4] Stochastic programming Demands, supplies, processing time, and

costs
Hnaiena et al. [25] Stochastic programming Lead time
Song et al. [51] Hybrid Possibilistic and stochastic pro-

gramming
Material supplies, production times, and
demands

Zhang et al. [57] Hybrid fuzzy and Possibilistic program-
ming

Price and demand

Rezaee et al. [46] Two-stage scenario-based programming Demand and carbon price
Zhen et al. [58] Two-stage stochastic scenario-based pro-

gramming
Demand

Mohammed and
Wang [38]

Fuzzy programming Supply capacity and demand

Imran et al. [28] Fuzzy programming Product complaints
Badri et al. [5] Two-stage stochastic programming Demands and the maximum available

number of cores in each customer zone
Qu et al. [45] Robust optimization (basis Monte Carlo

simulation)
Structural design parameters (shaping di-
mensions positioning dimensions and
radius)

Heidari-Fathian and
Pasandideh [23]

Robust optimization Supply and demand for blood products

Yavari and Geraeli
[56]

Robust optimization Demand, rate of return, and quality of the
return products

Al-Juboori and
Datta [1]

Multi-objective stochastic programming Heterogeneous hydraulic conductivity

Pasandideh et al. [43] Possibilistic programming (hybrid chance-
constraint and cost function)

Costs,demand, production, and set-up
times,

This paper Possibilistic programming (hybrid chance-
constraint and cost function)

Costs, upper bound of the emission capac-
ity, minimum percentage of the units of
product to be disposed and collected from
a customer, and the minimum percentage
of the units of product to be dismantled
and shipped from a DC

supply chains, large-scale supply chain networks such as petrochemicals, petroleum and automobiles, and various
types of small and medium-sized industries.

The assumptions of the problem are as follows:

(1) The model is single-period and single-product.
(2) The time period of strategic (long-term) and tactical (medium-term) decisions is assumed to be large enough

in the model, such that the lag between forward and backward supply chain is included in its framework.
(3) Customer demand is definitive.
(4) Shortage is allowed for all customer demands.
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Figure 1. The structure of communication along with various transportation methods among
various facilities in the green supply chain network.

(5) All cost parameters, the upper bound of the emission capacity, and the minimum percentage of the units
of product to be disposed and collected from a customer and to be dismantled and shipped from a DC are
assumed with uncertainty.

(6) All uncertain parameters are assumed to have a normal distribution.
(7) For transportation between facilities, several options including sea, land, air, rail, etc. are assumed.

The demand parameter is designated by customer under a series of prior contracts. So, the demand is
considered deterministic. However, the present assumption is applied in cases where the customer demand
is uncertain, but the variance of customer demands in the single period is negligible. Fixed costs of facility
construction, variable costs of flow between components, transportation, and shortage costs are modeled with
uncertainty; this is because these costs are subjected to various conditions that can change, such as sanctions,
inflation, natural disasters, etc. To control the emissions of greenhouse gases, an upper bound of emission
capacity has been used. This upper bound can have different values due to different environmental conditions.
Also, the minimum percentage of the units of product to be disposed and collected from a customer and to be
dismantled and shipped from a DC is modeled with uncertainty to handle other uncertainties.

3.1. Indices of the problem

Four indexes are defined for factories, warehouses, customers and DCs; four others are also considered for
the transportation method between facilities.

3.2. Parameters

For greenhouse gases emitted through production, reproduction, maintenance, collection, and transportation,
an upper bound of emission capacity was considered with uncertainty. Also, for all parameters with uncertainty,
including the fixed cost, variable costs, transportation cost and shortage cost, the upper bound of emission
capacity was applied; also, the minimum percentage of the units of product to be disposed and collected from
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Table 3. Indices of the mathematical model.

Indexes Description

i Index for factories (i = 1, 2, . . . , |I|)
j Index for storehouses (j = 1, 2, . . . , |J |)
k Index for customers (k = 1, 2, . . . , |K|)
l Index for DCs (l = 1, 2, . . . , |L|)
m Index for transportation options from factories (m = 1, 2, . . . , |M |)
n Index for transportation options from storehouses (n = 1, 2, . . . , |N |)
o Index for transportation options from customers (o = 1, 2, . . . , |O|)
v Index for transportation options from DCs (v = 1, 2, . . . , |V |)

a customer and the minimum percentage of the units of product to be dismantled and shipped from a DC were
considered as the specified mean and variance, respectively.

3.3. Decision variables

The model decision variables were divided into strategic and tactical decision ones. The strategic decision
variables included the construction of factories, warehouses and DCs, while the tactical decision variables in-
volved establishing the flows between different facilities and determining the shortage of each customer. Table 5
represents the strategic decision variables and Table 6 illustrates the tactical ones.

3.4. Model formulation

In this sub-section, the stochastic cost function and chance constraints are presented. The stochastic objective
function involves the cost of strategic and tactical decisions; all of these costs are uncertain. First, a single-
objective stochssastic model is presented, as follows:

minQ =
I∑
i=1

c̃piFpi +
J∑
j=1

c̃wjFwj +
L∑
l=1

c̃dlFdl +
I∑
i=1

c̃′pl

J∑
j=1

M∑
m=1

PWm
i,j

+
J∑
j=1

c̃′hj

K∑
k=1

N∑
n=1

WCnj,k +
K∑
k=1

c̃′ck

K∑
k=1

N∑
n=1

WCnj,k +
L∑
l=1

c̃′dl

K∑
k=1

O∑
o=1

CI0k,l

+
I∑
i=1

c̃′rl

L∑
l=1

V∑
v=1

IPvl,i + +
I∑
i=1

J∑
j=1

M∑
m=1

c̃′′pml,jPWm
i,j +

J∑
j=1

K∑
k=1

N∑
n=1

c̃′′wnj,kWCnj,k

+
K∑
k=1

L∑
l=1

O∑
o=1

c̃′′cok,lCI0k,l +
L∑
l=1

I∑
i=1

V∑
v=1

c̃′′dvl,iIP
v
l,i +

K∑
k=1

c̃′qkSHk. (3.1)

The first, second, and third terms of equation (3.1) are stochastic strategical fixed costs for establishing
facilities. The fourth to ninth terms are the random variable costs of production, maintenance, collection,
disassembly, and reproduction. The tenth to thirteenth terms are the stochastic transportation costs. The
fourteenth term is the random customer’s shortage cost.

There are several chance-constraints in the model. As upper bound of emission capacity is assumed uncertain,
the constraint of total greenhouse gas emissions can be modeled as the chance constraint shown in equation
(3.2).

p


I∑
i=1

rpi

J∑
j=1

M∑
m=1

PWm
i,j +

J∑
j=1

rwj

K∑
k=1

N∑
n=1

WCnj,k +
L∑
l=1

rdl

K∑
k=1

O∑
o=1

CI0k,l
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Table 4. The defined parameters for modelling.

Parameter Explanation

c̃pi Fixed cost (million Rials) for establishing the factory i ∈ I with the
mean µcpi, and the variance σcpi

c̃wj Fixed cost (million Rials) for establishing the storehouse j ∈ J with
the mean µcwj , and the variance σcwj

c̃dl Fixed cost (million Rials) for establishing DC l ∈ L with the mean
µcdl, and the variance σcdl

c̃′pi Unit variable cost (million Rials) for producing a unit product in the
factory i ∈ I with the mean µc′′, and the variance σc′′

c̃′hj Unit variable cost (million Rials) for handling a unit of product in the
storehouse j ∈ J with the mean µc′′, and the variance σc′′

c̃′ck Unit variable cost (million Rials) for collecting a unit of product to be
disposed from the customer k ∈ K with the mean µc′′, and the variance
σc′′

c̃′dl Unit variable cost (million Rials) for disassembling a unit of product to
be disposed in DC l ∈ L with the mean µc′′, and the variance σc′′

c̃′ri Unit variable cost (million Rials) for reproducing a unit product in the
factory i ∈ I with the mean µc′′, and the variance σc′′

c̃′qk Unit shortage cost (million Rials) for a unit product in the customer
k ∈ K with the mean µc′′, and the variance σc′′

c̃′′pmi,j Unit transportation cost (million Rials) from the factory i to the store-
house j with the transportation method m, the mean µc′′, and the
variance σc′′

c̃′′wnj,k Unit transportation cost (million Rials) from the storehouse j to the
customer k with the transportation method n, the mean µc′′, and the
variance σc′′

c̃′′cok,l Unit transportation cost (million Rials) for collecting the unit of prod-
uct from the customer k to DC l with the transportation method o, the
mean µc′′, and the variance σc′′

c̃′′dvl,i Unit transportation cost (million Rials) from DC l to the factory i with
the transportation method v, the mean µc′′, and the variance σc′′

rpi Rate of CO2 (Kg) released to produce one unit of product in the factory
i

rwj Rate of CO2 (Kg) released to handle and store one unit of product in
the storehouse j

rdl Rate of CO2 (Kg) released to disassemble one unit of product to be
disposed in DC l

rri Rate of CO2 (Kg) released to remanufacture one unit of product to be
dismantled in the factory i

r′′pm CO2 (Kg) released by the transportation method m to forward a unit
of product from factory to storehouse for a unit distance

r′′wn CO2 (Kg) released by the transportation method n to forward a unit
of product from the storehouse to the customer for a unit distance

r′′co CO2 (Kg) released by the transportation method m to collect a unit
disposal from customer to DC for a unit distance

r′′dv CO2 (Kg) released by the transportation method v to ship a unit of
product to be dismantled from DC to factory for a unit distance

upi Maximum production capacity of the factory i
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Table 4. continued.

Parameter Explanation

uwj Maximum storage and the handling and processing capacity of the
storehouse j

udl Maximum disassembly capacity of DC l
uri Maximum reproduction capacity of the factory i
αpmi,j Transportation rate from the factory i to the storehouse j with the

transportation method m
αwnj,k Transportation rate from the storehouse j to the customer k with the

transportation method n
αcok,l Transportation rate cost for collecting the unit of product from the

customer k to DC l with the transportation method o
αdvl,i Transportation rate from DC l to the factory i with the transportation

method v
spi,j Distance (km) between the factory i and the storehouse j
swj,k Distance (km) between the storehouse j and the customer k
sck,l Distance (km) between the customer k and DC l
sdl,i Distance (km) between DC l and the factory i
γ̃ Minimum percentage of the units of product to be disposed to be col-

lected from a customer with the mean µγ and the variance σγ

γ̃′ Minimum percentage of the units of product to be dismantled to be
shipped from a DC with the mean µγ′ and the variance σγ′

dk Demand of the customer k

ŨB Upper bound of the emission capacity of CO2 released, as determined by
government and regulatory bodies with the mean µUB and the variance
σUB

β The chance of rejecting a solution that does not satisfy a constraint
Z1−β The lower critical point of the standard normal distribution used for a

(1− β)% chance constraint on the solution obtained

Table 5. Strategic decision variables of the mathematical model.

Strategic decision variable Description

Fpi

{
1 if the factory i is established
0 o.w

Fwj

{
1 if the storehouse j is established
0 o.w

Fdl

{
1 if DC l is established
0 o.w

+
I∑
i=1

rri

L∑
l=1

V∑
v=1

IPvl,i
M∑
m=1

r′′Pm

I∑
i=1

J∑
j=1

αpmi,jspi,jPWm
i,j

+
N∑
n=1

r′′wn

J∑
j=1

K∑
k=1

αwnj,kswj,kWCnj,k +
O∑
o=1

r′′co

K∑
k=1

L∑
l=1

αcok,lsck,lCI0k,l
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Table 6. Tactical decision variables of the mathematical model.

Tactical decision variables Description

PWm
i,j Amount of the unit product shipped from the factory i to the storehouse

j with the transportation method m
WCnj,k Amount of the unit product shipped from the storehouse j to the cus-

tomer k with the transportation method n
CI0k,l Amount of the unit product to be disposed and collected from the

customer k to DC l with the transportation method o
IPvl,i Amount of the unit product to be dismantled and shipped from DC l

to the factory i with the transportation method v
SHk Amount of shortage for the customer k

+
V∑
v=1

r′′dp

J∑
j=1

K∑
k=1

αdvl,isdl,iIP
v
l,i ≤ ŨB

 ≥ 1− β. (3.2)

Similarly, since the parameters of the minimum percentage of the units of product to be disposed to be
collected from a customer and the minimum percentage of the units of product to be dismantled to be shipped
from a DC are considered as stochastic parameters, the constraints for establishing the return flow from customer
to DCs and DCs to factories can also be modeled as chance-constraints, as shown in equations (3.3) and (3.4).

p

{
I∑
l=1

O∑
o=1

CI0k,l ≥ γ̃ · (dk − SHk)

}
≥ 1− β ∀ k ∈ K (3.3)

p

{
I∑
i=1

V∑
v=1

IPvl,i ≥ γ̃′ ·
K∑
k=1

CI0k,l

}
≥ 1− β ∀ l ∈ L. (3.4)

3.5. Model reformulation

The process of converting a stochastic single-objective model to a deterministic bi-objective one is described
here. First, the objective function and then the chance constraints are completely rewritten.

The random function Q, as shown in equation (3.1), consists of the mean F1 and the variance F2. The
mean and variance of Q must be calculated and minimized separately to handle uncertainty. As a result, the
single-objective function should be converted into F1 and F2 functions.

F1 = E (Q)
F2 = Var (Q) .

(3.5)

Each of the chance constraints should be transformed into the deterministic mode. For example, in equation
(3.2), given the assumption of the normal distribution for the upper bound of the emission capacity, ŨB−µUB√

σUB
has

the standard normal distribution with the mean 0 and the variance 1. According to equation (3.6), the function
of the total emission is equal to h. In this way, the cumulative distribution function is shown as equation (3.7):

h =
I∑
i=1

rpi

J∑
j=1

M∑
m=1

PWm
i,j +

J∑
j=1

rwj

K∑
k=1

N∑
n=1

WCnj,k +
L∑
l=1

rdl

K∑
k=1

O∑
o=1

CI0k,l

+
I∑
i=1

rri

L∑
l=1

V∑
v=1

IPvl,i +
M∑
m=1

r′′Pm

I∑
i=1

J∑
j=1

αpmi,jspi,jPWm
i,j
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+
N∑
n=1

r′′wn

J∑
j=1

K∑
k=1

αwnj,kswj,kWCnj,k +
O∑
o=1

r′′co

K∑
k=1

L∑
l=1

αc0k,lsck,lCI0k,l

+
V∑
v=1

r′′dp

J∑
j=1

K∑
k=1

αdvl,i sdl,iIP
v
l,i (3.6)

p
(

ŨB ≥ h
)

= F

(
−h− µUB√

σ2UB

)
· (3.7)

According to the table values of the standard normal distribution function and the coefficient confidence
value, Eq. (3.7) is rewritten as Eq. (3.8).

−h− µUB√
σUB

≥ Z1−β . (3.8)

After simplifying equation (3.8), equation (3.11) is obtained.
After covering uncertainty in these parameters, the deterministic non-linear bi-objective model is as follows:

minF1 =
I∑
i=1

µcpiFpi +
J∑
j=1

µcwjFwj +
L∑
l=1

µcdlFdl +
I∑
i=1

µc′pi

J∑
j=1

M∑
m=1

PWm
i,j

+
J∑
j=1

µc′hj

K∑
k=1

N∑
n=1

WCnj,k +
K∑
k=1

µc′ck

K∑
k=1

N∑
n=1

WCnj,k + +
L∑
l=1

µc′dl

K∑
k=1

O∑
o=1

CI0k,l

+
I∑
i=1

µc′ri

L∑
l=1

V∑
v=1

IPvl,i +
I∑
i=1

J∑
j=1

M∑
m=1

µc′′pmi,jPWm
i,j +

J∑
j=1

K∑
k=1

N∑
n=1

µc′′wnj,kWCnj,k

+
K∑
k=1

L∑
l=1

O∑
o=1

µc′′c0k,lCI0k,l +
L∑
l=1

I∑
i=1

V∑
v=1

µc′′dvl,iIP
v
l,i +

K∑
k=1

µc′qkSHk (3.9)

minF2 =
I∑
i=1

σcpiFp
2
i +

J∑
j=1

σcwjFw
2
j +

L∑
l=1

σcdlFd
2
l +

I∑
i=1

σc′pi

J∑
j=1

M∑
m=1

PWm2

i,j

+
J∑
j=1

σc′hj

K∑
k=1

N∑
n=1

WCn
2

j,k +
K∑
k=1

σc′ck

K∑
k=1

N∑
n=1

WCn
2

j,k + +
L∑
l=1

σc′dl

K∑
k=1

O∑
o=1

CI0
2

k,l

+
I∑
i=1

σc′ri

L∑
l=1

V∑
v=1

IPv
2

l,i +
I∑
i=1

J∑
j=1

M∑
m=1

σc′′pmi,jPWm2

i,j +
J∑
j=1

K∑
k=1

N∑
n=1

σc′′wnj,kWCn
2

j,k

+
K∑
k=1

L∑
l=1

O∑
o=1

σc′′c0k,lCI0
2

k,l + +
L∑
l=1

I∑
i=1

V∑
v=1

σc′′dvl,iIP
v2

l,i +
K∑
k=1

σc′qkSH2
k. (3.10)

Equations (3.9) and (3.10) are the first and second objective functions of the deterministic form of the
model. Equation (3.9) refers to the expected value of a stochastic strategic and tactical cost function. The first,
second, and third terms are the fixed costs of establishing factories, warehouses, and customers. The fourth
to ninth terms are the variable costs of production, maintenance, collection, disassembly, and reproduction.
The tenth to thirteenth terms are the transportation costs between factories to warehouses, warehouses to
customers, customers to DCs, and DCs to factories. The cost of the transportation system depends on the
chosen transportation mode in the network. The fourteenth term is the penalty cost for the customer’s shortage.
Penalty cost of the customer shortage includes the cost of losing the customer or the cost of delay in receiving the
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product price. Equation (3.10) describes the variance of equation (3.1), which controls the scatter of uncertain
costs. The first, second, and third terms are the variance of the fixed costs of establishing factories, warehouses,
and customers. The fourth to ninth terms are the variance of the variable costs of production, maintenance,
collection, disassembly, and reproduction. The tenth to thirteenth terms are the variance of the transportation
costs between factories to warehouses, warehouses to customers, customers to DCs, and DCs to factories. The
fourteenth term is the variance of the penalty cost for the customer’s shortage. This equation is the mixed
integer nonlinear programming (MINLP) form.

Subject to:
I∑
i=1

rpi

J∑
j=1

M∑
m=1

PWm
i,j +

J∑
j=1

rwj

K∑
k=1

N∑
n=1

WCnj,k +
L∑
l=1

rdl

K∑
k=1

O∑
o=1

CI0k,l

+
I∑
i=1

rri

L∑
l=1

V∑
v=1

IPvl,i
M∑
m=1

r′′pm +
I∑
i=1

J∑
j=1

αpmi,jspi,jPWm
i,j

+
N∑
n=1

r′′wn +
J∑
j=1

K∑
k=1

αwnj,kswj,kWCnj,k +
O∑
o=1

r′′co +
K∑
k=1

L∑
l=1

αcok,lsck,lCI0k,l

+
V∑
v=1

r′′dp

J∑
j=1

K∑
k=1

αdvl,isdl,iIP
v
l,i + Z1−β

√
σUB ≤ µUB (3.11)

J∑
j=1

M∑
m=1

PWm
i,j ≤ upiFpi ∀i ∈ I (3.12)

L∑
l=1

V∑
v=1

IPvl,i ≤ uriFpi ∀i ∈ I (3.13)

I∑
i=1

M∑
m=1

PWm
i,j ≤ uwjFwj ∀j ∈ J (3.14)

K∑
k=1

O∑
o=1

CI0k,l ≤ udlFdl ∀l ∈ L (3.15)

I∑
i=1

M∑
m=1

PWm
i,j ≥

K∑
k=1

N∑
n=1

WCnj,k ∀j ∈ J (3.16)

J∑
j=1

N∑
n=1

WCnj,k ≥ dk − SHk ∀k ∈ K (3.17)

L∑
l=1

O∑
o=1

CI0k,l ≤ dk − SHk ∀k ∈ K (3.18)

I∑
l=1

O∑
o=1

CI0k,l + µγSHk + Z1−β

√
σγSH2

k + σγd2
k ≥ µγdk ∀k ∈ K (3.19)

I∑
i=1

V∑
v=1

IPvl,i + Z1−β

√√√√σγ′
K∑
k=1

CI0
2

k,l ≥ µγ′ ·
K∑
k=1

CI0k,l ∀l ∈ L (3.20)

Fpi, Fwj , Fdl ∈ {0, 1} (3.21)
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PWm
i,j ≥ 0,WCnj,k ≥ 0,CI0k,l ≥ 0, IPvl,i ≥ 0,SHk ≥ 0. (3.22)

Equation (3.11) is the deterministic form of equation (3.2), indicating the total amount of CO2 released. The
first to fourth terms refer to CO2 emission through producing, holding, disassembling, and remanufacturing.
The fifth to eighth terms describe the CO2 released through transportation between factories to warehouses,
warehouses to customers, customers to DCs, and DCs to factories. The emission of the transportation system
depends on the chosen transportation mode in the network. The total amount of greenhouse emission should
be lower than the upper bound of the emission capacity. The upper bound of CO2 released is assumed as a
stochastic parameter, as determined by government or regulatory bodies. Equations (3.12)–(3.15) show that
the total inputs to each of the facilities should not exceed their capacities. These Equations are called facility
capacity constraints. Equations (3.12) and (3.13) refer to the maximum capacity of production and re-production
in the factories. The total amount of the units produced and reproduced in each active factory to be sent to
different storehouses must be less than its maximum production and reproduction capacity. Equation (3.14) is
related to the maximum capacity for the control and storage in storehouses. The total amount of the units sent
from different factories to each storehouses should not exceed its maximum capacity. Equation (3.15) also refers
to the maximum capacity of a disassembly in DCs. If a DC is built, the total amount of the units disassembled
must be less than its maximum disassembly capacity. Equation (3.16) states that the amount of the output
products from storehouses should be equal or smaller than that of the input products entering them. These
constraints balance the flow of materials in storehouse. Equation (3.17) shows that all products shipped from
storehouses to each customer should be as many as customer demands. The difference between the demand and
product received by the customer has been considered a shortage. In fact, each customer’s demand may be faced
with shortage. Equation (3.18) determines that the amount of products to be disposed from each customer is
not greater than that received by them. Each customer can send as much as the amount of the products received
by DC units as the waste products. The total received products to each customer node is equal to the difference
between the demand and shortage of customers. Equations (3.19) and (3.20) are the definite forms of equations
(3.3) and (3.4). These constraints force the model to establish the return flow in the supply chain. According to
equation (3.19), a minimum percentage of the received products by each customer should be considered as waste
products. Equation (3.20) also forces the model to return a minimum percentage of the disposable products
for reproduction to factories. The minimum percentage of the units of product to be disposed to be collected
from a customer and dismantled to be shipped from a DC is deemed uncertain based on the experience of
industry owners. Equation (3.21) demonstrates the binary variables of the strategic decisions (locating facilities
and determining the transportation mode between them); equation (3.22) represents the continuous variables
of tactical decisions (allocating the flow between facilities).

4. Proposed solution methods

To solve multi-objective programming models, there are many methods, depending on the time and type of
information obtained from decision maker. Multi-objective decision-making (MODM) methods, based on the
interaction between decision maker and analyst, are divided into four categories. The first category belongs to
the methods that make decision without information from decision-maker. The global criteria, Max–Min, and
filtering/displaced ideal solution (DIS) are related to this category. The second category refers to the methods
that act on the basis of the primitive information from decision-maker. The utility function and the ε-constraint
method in this category can apply only quantitative information. Goal programming, goal attainment, and
lexicography are methods belonging to this category; they use both quantitative and qualitative information
for decision making. The third category includes the methods that operate with the interactive information
from decision maker. Many methods, such as the Geofrion method, SIMOLP method, STEM method, etc., can
be fitted into this category. The fourth category consists of those methods that take the initial information
from decision maker after the problem is solved; these are such as multi-criteria simplex method, the minimum
deviation method, the Denovo programming and so on [9, 26].
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In this work, four MODM methods including ε-constraint, goal-programming, goal-attainment, and lexicog-
raphy methods were used from the first and second categories. The efficiency of the solutions of these methods
was compared with that of Pareto-based and optimality-based analyses. For the Pareto-based analysis, the ex-
pected value and variance of the costs were compared using the ε-constraint method at different levels. For the
optimality-based analysis, goal programming, goal attainment, and lexicography methods were compared using
two groups of analyses: statistical approaches (hypothesis testing) and multi-criteria decision-making (MCDM).
In both analyses, the solutions of different methods in terms of CPU time and quality were investigated.

All analyses were performed to improve decision-making and to optimize the supply chain structure. Different
MODM methods use different processes to solve the model. The ε-constraint method considers one or more main
objectives and also meets a minimum level of other less important objectives. The goal programming brings
each objective to its goal. The goal attainment minimizes the maximum distance of the objectives from their
goals, and the lexicography method minimizes the distance of e objectives from their optimal value. A summary
of the MODM methods used to solve the model is as follows:

4.1. ε-constraint method

In this method, one of the objectives is considered as the main objective function, and the upper and lower
bounds are assumed for the others in proportion to the acceptable risk level.

The following model represents this method. obj is the main objective and Qj refers to m− 1 less important
objectives.

min obj
s.t.
Lj ≤ Qj ≤ Uj ∀j = 1, . . . ,m− 1
Qj ∈ S. (4.1)

For all methods, S is the feasible region of the original model. In this research, after selecting each of the
objectives as the main objective, the relevant efficient solutions were generated to form the Pareto-front.

4.2. Goal programming

According to this method, a numerical value called goal is considered for each of the objectives. For each
objective, depending on the type of the objective function (cost or profit), there is a desirable deviation and an
undesirable one from the goal. The diversion of the objectives from their goals is determined by d+

j , d
−
j . The

amount of the undesirable deviations of the objectives from goals is considered as the new objective function
and the original objective function is placed in the constraints. The following model describes this method:

min
m∑
j=1

wjXj(d+
j , d

−
j )

s.t.
Qj − d+

j + d−j = Q∗j ∀j = 1, . . . ,m

d+
j ≥ 0, d−j ≥ 0
Qj ∈ S. (4.2)

In this model, wj is the weight given by the decision maker according to the priority of the objectives, often
in terms of the power of 10, and Q∗j refers to the goals. Also, the function Xj

(
d+
j , d

−
j

)
is defined as follows:

Xj

(
d+
j , d

−
j

)
=


d+
j if Qj is a cost function
d−j if Qj is a prof function
d+
j + d−j o.w.

(4.3)
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The Goal programming method for the presented bi-objective mathematical model is developed as follows:

min d+
1 + d+

2

s.t.
F1 − d+

1 + d−1 = F ∗1

F2 − d+
2 + d−2 = F ∗2

d+
1 , d

+
2 ≥ 0, d−1 , d

−
2 ≥ 0

F1, F2 ∈ S. (4.4)

It should be noted that F ∗1 and F ∗2 are the optimal values of the first and second objective functions solved
by the individual optimization method.

4.3. Goal attainment

Goal attainment is an extended form of goal programming. In this method, the maximum diversion of
objectives from their goals is minimized using the developed model, as shown below:

min y
s.t.
Qj + w′jy ≥ Q∗j
y is un-restricted in sign,
Qj ∈ S. (4.5)

The value of w′j refers to the weights that have an inverse relationship with the priority of the objectives.
Also,

∑m
j=1 w

′
j = 1. In this study, the priority of the goals was assumed to be equal. The Goal attainment

method for the presented bi-objective model is described as follows:

min y
s.t.

F1 +
1
2
y ≥ F ∗1

F2 +
1
2
y ≥ F ∗2

y is urs
F1, F2 ∈ S. (4.6)

4.4. Global criteria

This method is such that at first, the optimal value of all objectives is calculated separately. Then, the
distance of each of the targets from their optimal amount is minimized using the following function:

min

((
Qj −Q∗j
Q∗j

)p) 1
p

s.t.
Qj ∈ S. (4.7)

The value of p is determined based on the importance of the goal distance from its optimal value. In this
research, the Global criteria method for the presented bi-objective mathematical model is provided as follows:

min
F1 − F ∗1
F ∗1

+
F2 − F ∗2
F ∗2
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Table 7. Effective solution set of the Pareto front.

Number of effective solutions Excepted value of cost
(million Rials)

Standard deviation of cost
(million Rials)

s1 23 969.953 504.907
s2 23 982.676 475.38
s3 24 017.858 445.853
s4 24 085.915 416.327
s5 24 204.675 386.8
s6 24 418.075 357.273
s7 24 713.637 327.747
s8 25 031.97 298.22
s9 25 494.778 268.693
s10 26 112.31 239.167
s11 27 888.986 209.64

s.t.
F1, F2 ∈ S. (4.8)

5. Experimental examples and sensitive analysis

In this section, numerical experiments and various analyses were conducted to help decision makers design
a structure of green supply chain. Initially, 30 different examples with the same size, including 3 factories, 3
storehouses, 8 customers, 3 DCs and 3 different transportation options between facilities, were used to compare
different objective functions and solution methods using the GAMS software. Two groups of analyses were
conducted on the existing data to compare the solutions and facilitate the decision-making process. A brief
explanation of these analyses is presented below. The decision maker can use the Pareto-based approach to
generate a preferred solution. The decision maker can also apply the optimality-based approach to choose the
best MODM method based on three effective criteria and solve the resulting single objective model in the best
way.

5.1. Pareto-based analysis

In multi-objective models, objectives are usually contradictory. This makes it impossible to find a solution
in which all objectives would be optimized. Decision makers are usually looking for an effective solution, rather
than finding the optimal one for all objectives. The Pareto front approach provides a set of effective solutions
to the problem. In this study, the Pareto front approach is described in Table 7. The first row of the table is
the optimal point of the first objective function, while the last one represents the optimal point of the second
objective function. Between these two points, 9 preferable solutions are presented for the model. Figure 2 shows
these effective solutions and the comparison between them.

The Pareto-based analysis was performed using the ε-constraint method. On the Pareto front, the confidence
level was 0.95 for the chance constraints. The decision maker, in accordance with Figure 2 and in proportion
to the level of the risk acceptance in each of the objective functions, could select any of the efficient solutions
and implement the design process based on them. If the decision maker assumes the same priority for goals, the
analyst selects the ninth effective response from the Pareto front approach.

5.2. Optimality-based analysis

Optimality-based analyses are based on three MODM methods. At first, 30 different examples considering
the differences in some effective parameters were solved using goal programming, goal attainment, and global
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Figure 2. Pareto optimal set.

Table 8. Comparison of the three MODM methods in terms of the expected value of the total
cost, variance of costs, and CPU time based on 30 test problems created by changes in effective
uncertain parameters.

Test

No.

Changed

Parameters

Global criteria Goal attainment Goal programming

First

objective

(million

Rials)

Second

objective

(million

Rials)2

CPU time

(second)

First

objective

(million

Rials)

Second

objective

(million

Rials)2

CPU

time

(second)

First

objective

(million

Rials)

Second

objective

(million

Rials)2

CPU

time

(second)

1 d1 = 16 26 963.905 40 931.363 20.39 23 366.499 230 366.499 3.09 23 361.144 244 559.902 6.02

2 d4 = 18 27 116.527 41 808.399 30.47 23 477.387 230 477.387 10.65 23 472.017 243 975.52 11.89

3 d1 = 18 27 303.256 42 511.615 11.45 23 672.984 230 672.984 3.34 23 499.63 245 717.371 7.28

4 d5 = 14,

µcap = 200

27 241.518 48 007.299 15.66 23 765.971 230 765.971 7.51 23 586.226 259 770.284 3.9

5 d3 = 14 27 471.786 43 407.956 11 23 821.817 230 821.817 4.7 23 647.088 248 448.626 4.99

6 µcap = 250,

Beta=1.95

27 481.302 40 286.043 48.54 23 730.39 230 730.39 3.34 23 715.228 267 604.42 25.74

7 d8 = 16 27 413.126 49 031.757
184.53

23 926.676 230 926.676 3.43 23 742.791 264 909.379 16.32

8 d2 = 24,

µcap = 200

27 243.76 48 099.096 359.51 23 764.739 230 764.213 4.87 23 753.538 263 986.863 4.19

9 d4 = 20,

µcap = 200

27 406.266 48 943.766 8.29 23 910.201 230 910.2 4.15 23 897.534 266 419.295 7.96

10 µcap = 210,

Beta=1.95

27 360.713 50 084.786 205.69 23 907.739 230 907.739 2.53 23 907.703 231 818.551 9.13

11 d2 = 24,

µcap = 180

27 141.249 56 146.37 24.85 23 928.253 230 928.253 1.82 23 927.628 232 897.121 4.04

12 Original

problem

27 644.38 44 174.361 10.46 23 979.884 230 979.884 3.01 23 969.953 254 930.985 7.1
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Table 8. continued.

Test

No.

Changed

Parameters

Global criteria Goal attainment Goal programming

First

objective

(million

Rials)

Second

objective

(million

Rials)2

CPU time

(second)

First

objective

(million

Rials)

Second

objective

(million

Rials)2

CPU

time

(second)

First

objective

(million

Rials)

Second

objective

(million

Rials)2

CPU

time

(second)

13 d4 = 20,

µcap = 190,

Beta=1.95

27 083.966 57 503.114 9.2 23 988.401 217 538.55 5.01 23 988.401 217 033.095 8.41

14 d8 = 18 27 750.988 50 773.741 12.69 24 238.743 231 238.723 8.18 24 052.81 267 287.822 4.67

15 d5 = 14,

d8 = 20,

µcap = 210,

Beta=1.95

27 526.67 50 854.123 8.52 24 059.596 225 321.42 3.2 24 059.595 225 320.918 5.91

16 d2 = 24,

µcap = 17

27 075.816 61 417.36 96.78 24 108.506 210 717.214 3.68 24 108.505 210 713.308 6.56

17 d8 = 19 27 919.09 51 680.835 231.73 24 394.805 231 394.805 6.67 24 209.328 266 530.064 4.11

18 µcap = 180 27 477.764 58 253.36 8.34 24 249.956 231 249.95 4.21 24 247.015 237 897.483 4.08

19 d3 = 16,

d8 = 16,

µcap = 180

27 648.387 59 367.685 9.76 24 432.453 231 432.453 4.01 24 256.059 235 968.858 7.07

20 d5 = 14,

d8 = 20,

µcap = 190,

Beta=1.95

27 422.109 59 546.645 9.81 24 319.618 219 163.638 4.43 24 319.618 219 161.962 30.02

21 d8 = 20 28 086.231 52 612.781 6.85 24 550.872 231 550.872 3.65 24 365.761 265 897.882 5.1

22 µcap = 170 27 410.765 63 704.858 75.75 24 427.485 215 754.291 4.51 24 427.485 215 754.175 14.51

23 d2 = 24,

d5 = 18,

d6 = 19,

d8 = 20,

µcap = 280

28 422.34 38 450.485 30.05 24 463.724 231 463.719 15.26 24 448.75 300 949.648 23.53

24 d3 = 16,

d8 = 18,

µcap = 160

27 499.781 71 578.742 110.25 24 748.27 204 489.093 3.56 24 576.145 201 419.301 5.47

25 µcap = 160 27 326.028 70 236.951 4.91 24 576.952 203 001.512 3.31 24 576.952 203 001.25 4.03

26 d1 = 18,

d2 = 20,

d3 = 16,

d4 = 22

28 320.288 47 600.381 143.13 24 632.178 231 632.178 2.46 24 601.877 274 325.994 3.88

27 d1 = 18,

d2 = 20,

d3 = 16,

d4 = 22,

d5 = 18,

d6 = 19,

d8 = 20

28 298.939 50 462.588 203.56 24 688.409 231 688.409 3.09 24 663.662 276 969.193 12.78

28 d3 = 16,

d8 = 16,

µcap = 150

27 428.819 79 926.874 8.76 24 907.566 200 735.341 4.56 24 734.031 197 614.325 5.45

29 µcap = 140 27 202.79 88 512.952 5.85 24 913.786 207 315.029 2.82 24 902.813 299 336.486 12.07

30 d3 = 16,

d4 = 22,

d8 = 16,

µcap = 140

27 373.124 90 177.001 6.73 25 093.112 213 420.775 3.18 24 911.856 297 774.094 20.8

criteria methods with the GAMS software. Table 8 compares the values of the first, second, and third objective
functions obtained from the three different MODM methods. Figure 3 illustrates the values of the first objective
function. Figure 4 shows the values of the second objective function, and Figure 5 represents the values of the
CPU time. These graphs show that the solutions provided by MODM methods are different and comparable.

Two sets of analyses were required to select the best MODM methods in the optimality-based analysis. In the
first category, the equivalence of the solutions of different methods was tested using the hypothesis test; after
ensuring the difference in the mean of solutions, in the second category, the solution proposed to the decision
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Figure 3. Comparison of the Goal programming, Goal attainment, and Global criteria methods
in terms of the expected value of costs.

Figure 4. Comparison of the Goal programming, Goal attainment, and Global criteria methods
in terms of the variance of costs.
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Figure 5. Comparison of the Goal programming, Goal attainment, and Global criteria methods
in terms of the CPU time.

maker was selected using Multi-Attribute Decision Making (MADM) methods. In the following, two groups of
optimization-based analyses, including statistical tests and the MADM approach, have been described.

5.2.1. Statistical tests

After presenting the methods for solving the proposed two-objective planning model, the performance of
them should be examined. To compare and contrast the solutions obtained from each of the proposed MODM
methods, there must be a statistically significant difference in the performance of each of them. In this work,
two statistical hypothesis tests were implemented, using Minitab 19 software, to prove the difference between
the values of the first and second objective functions and the CPU time obtained from each of the solution
methods. First, the Welch’s test was used to compare the mean of e abnormal societies with the assumption
of the inequality of variances. The hypothesis test was considered to be strict to ensure that the mean of the
solution obtained by each method would not be equal. Accordingly, the null assumption was that all means
were equal (µGP = µGA = µGC); the alternative hypothesis was that not all means were equal. The significance
level was also considered to be 0.5. Tables 9–14 represent the Welch’s test and the confidence interval for the
expected value of cost, the variance of cost, and the CPU time. Given the P -value and its comparison with the
F -value, the null assumption was rejected for all objective functions and the CPU time. In fact, the mean of
the solution methods was not equal to the concurrent comparison. However, it was still possible to equalize the
means of each pair of the solution methods. For this reason, the Games-Howell Simultaneous Test was also used
to compare the pair of different MODM methods. Tables 9–14 demonstrate the Games-Howell test. Tables 15
and 16 describe the paired hypothesis test for the expected value of the costs obtained by the proposed solution
methods. Based on the interval plot shown in Figure 6, the goal programming and goal attainment did not differ
significantly in terms of the value of the first objective function. Other solution methods differed significantly for
the expected value of the costs function. Tables 17 and 18 show the paired hypothesis test for the cost variance
obtained by the proposed solution methods. The solution methods differed significantly in terms of the second
objective function, as shown in Figure 7. Tables 19 and 20 represent the paired hypothesis for the CPU time
of the solution methods. As shown in Figure 8, the solution methods differed significantly in terms of the CPU
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Table 9. Welch’s Test for the value of the costs expected value.

Source Degree of Freedom (DF) Number DF Den F -Value P -Value

Factor 2 57.6535 699.76 0.000

Table 10. Mean, standard deviation, and 95% confidence interval for the value of the costs
expected value.

Factor Number of examples Mean Standard deviation 95% CI

Goal programming 30 24 131.0 432.0 (23 969.7; 24 292.4)
Goal attainment 30 24 201.6 443.6 (24 035.9; 24 367.2)
Global criteria 30 27 502.1 374.4 (27 362.2; 27 641.9)

Table 11. Welch’s Test for the value of variance of the costs.

Source DF number DF den F -value P -value

Factor 2 52.8048 1605.56 0.000

Table 12. Means, standard deviations, and 95% confidence intervals for the value of variance
of the costs.

Factor Number of examples Mean Standard deviation 95% CI

Goal programming 30 247 933 28 872 (237 152; 258 714)
Goal attainment 30 224 612 10 253 (220 783; 228 441)
Global criteria 30 55 203 13 458 (50 178; 60 228)

time. The conditions for the implementation of the MADM method were provided according to the statistical
analysis.

The decision maker (s) can use the proposed statistical method of this research to show the difference between
the obtained answers after presenting a suitable mathematical model and solving it with the arbitrary methods.
They should expose the generated data from the test problem to the hypothetical tests and a pairwise comparison
scheme. The choice of the hypothesis test type strongly depends on the possible distribution of the resulting
data. If the null hypothesis is rejected and the inequality of the mean of each solution methods is proved, the
decision maker (s) can choose a robust method with different MADM methods.

Table 13. Welch’s Test for the CPU time.

Source DF number DF den F -value P -value

Factor 2 43.5922 12.57 0.000
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Figure 6. Interval plot of goal programming, goal attainment, and global criteria for the value
of the costs expected value.

Figure 7. Interval plot of goal programming, goal attainment, and global criteria for the value
of the costs variance.
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Table 14. Mean, standard deviation, and 95% confidence interval for the CPU time

Factor Number of examples Mean Standard deviation 95% CI

Goal programming 30 9.57 7.10 (6.91; 12.22)
Goal attainment 30 4.608 2.733 (3.587; 5.628)
Global criteria 30 63.8 89.7 (30.3; 97.3)

Table 15. Mean and grouping information for the value of the expected value of costs using
the Games-Howell method.

Factor Number of examples Mean Grouping

Global criteria 30 27 502.1 A
Goal attainment 30 24 201.6 B
Goal programming 30 24 131.0 B

Notes. Means that do not share a letter are significantly different.

Table 16. Games-Howell simultaneous tests for the differences of means for the value of the
costs expected value.

Difference of
levels

Difference of
means

Standard
Error (SE)
of difference

95% CI T -value Adjusted
P -value

Goal Attainment –
Goal Programming

71 113 (−201; 342) 0.62 0.808

Global Criteria –
Goal Programming

3371 104 (3120; 3622) 32.30 0.000

Global Criteria –
Goal Attainment

3300 106 (3046; 3555) 31.14 0.000

Table 17. Mean and grouping information for the value of the variance of costs using the
Games-Howell method.

Factor Number of examples Mean Grouping

Goal programming 30 247933 A
Goal attainment 30 224612 B
Global criteria 30 55203 C

Notes. Means that do not share a letter are significantly different.

5.2.2. MADM approach

After comparing the means of the solutions provided by using different methods, it is now the time to choose
the best method. In this paper, a MADM method called Simple Additive Weighting (SAW) [27] was used to
select the appropriate method. In the SAW method, the first step for decision-making is the formation of the
decision matrix. In the decision matrix, the rows represent the MODM methods (options) and the columns show
the objective functions and the CPU time (criteria). Also, each element of the decision matrix is the mean of
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Table 18. Games-Howell simultaneous tests for the differences of means for the value of the
variance of costs.

Difference of
levels

Difference of
means

SE of
difference

95% CI T -value Adjusted
P -value

Goal Attainment –
Goal Programming

−23 321 5594 (−37 007;
−9635)

−4.17 0.001

Global Criteria –
Goal Programming

−192 730 5816 (−206 877;
−178 583)

−33.14 0.000

Global Criteria –
Goal Attainment

−169 409 3089 (−176 857;
−161 961)

−54.84 0.000

Table 19. Mean and grouping information for the value of the CPU time.

Factor Number of examples Mean Grouping

Global criteria 30 63.8 A
Goal programming 30 9.57 B
Goal attainment 30 4.608 C

Notes. Means that do not share a letter are significantly different.

Table 20. Games-Howell simultaneous tests for the differences of means for the CPU time

Difference of
Levels

Difference of
means

SE of
difference

95% CI T -value Adjusted
P -value

Goal attainment –
Goal programming

−4.96 1.39 (−8.35;
−1.57)

−3.57 0.003

Global criteria –
Goal programming

54.2 16.4 (13.7; 94.7) 3.30 0.007

Global criteria –
Goal attainment

59.2 16.4 (18.8; 99.6) 3.61 0.003

the solutions obtained from the 30 provided examples.

F1 F2 CPU
time

GP
GA
GC

 24 131 247 933 9.57
24 201.6 224 612 4.608
27 502.1 55 203 63.8

 . (5.1)

In the next step, the decision matrix should be non-scaled. Normalizing is a process for non-scaling matrices.
Then, the weight of each index should be multiplied in the normalized decision matrix. In this study, the weight
of each of the criteria (objective functions and the CPU time) could be assumed to be equal. The final SAW
matrix is as follows:

SAW =

0.33333 0.07421 0.1605
0.33236 0.08192 0.33333
0.29247 0.33333 0.02407

 (5.2)
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Figure 8. Interval plot of goal programming, goal attainment, and global criteria for the CPU
time.

The score for each of the methods is obtained from the sum of the rows of the decision matrix. The comparison
of the scores for each method is as follows:

Score of goal attainment > Score of global criteria > Score of goal programming.

According to the comparison, based on the assumption of the equal importance of all three indicators, the
expected value of costs, the cost variance, and the CPU time, the goal-attainment method with the highest
score was selected by the analyst.

6. Conclusion and future studies

In this paper, a new kind of modelling for the design of a green supply chain network was presented with han-
dling the uncertainty involved in some parameters. In this mathematical formulation, two aspects of greenness
and handling uncertainty were of particular importance. In order to achieve the greenness goals, for all green-
house gas emissions, an uncertain upper bound was considered. Also, to control the uncertainty of decisions,
a number of parameters were assumed to be uncertain. The resulting stochastic single-objective model was
formulated to form a deterministic model as a two-objective one; then the chance constraints of the model were
reformulated to be deterministic. To solve the two-objective model, four MODM methods were used to solve 30
different examples. Solutions of various methods were examined by Pareto-based and optimality-based analy-
ses. In the Pareto-based analysis, the ε-constraint method was used and the Pareto front was provided to help
decision-makers find the efficient solutions. In the optimal analysis, three methods including goal-programming,
goal-attainment, and global criteria were used. In this analysis, to compare different methods and propose the
appropriate one to the decision maker, two steps were taken. In the first step, the difference between the means
of various methods was verified using the hypothesis test. Then, in the second step, by making the decision
matrix and using the SAW method, the proposed method was presented to the decision maker.

For the future studies, suggestions can be made in four categories. These include (1) developing hypotheses,
(2) presenting new modelling methods, (3) expanding and improving the way of controlling uncertainty, and
(4) providing new solving methods. These suggestions are as follows:
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– considering new objective functions such as minimizing risk, waste product, delivery time, etc.,
– using robust optimization, stochastic scenario-based programming, and hybrid methods for the better control

of uncertainties,
– considering fuzzy numbers for some uncertain problem parameters,
– using metaheuristic methods to solve large-scale problems and create the Pareto front by developing analyses,

by applying other MODM methods such as Max–Min method, the STEM method, Denovo programming
etc., and

– using more advanced approaches such as fuzzy SAW, fuzzy TOPSIS [10,47], TOPPRA [24], etc. to perform
the optimality-based analysis.
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