RAIRO-Oper. Res. 55 (2021) 639-652 RAIRO Operations Research
https://doi.org/10.1051/ro/2021034 WWW.rairo-ro.org

OPEN CAPACITATED ARC ROUTING PROBLEM BY HYBRIDIZED ANT
COLONY ALGORITHM

BiLAL Kanso'*, ALt KANSOU! AND ADNAN YASSINE?

Abstract. The Open Capacitated Arc Routing Problem OCARP is a well-known NP-hard real-world
combinatorial optimization problem. It consists of determining optimal routes for vehicles in a given
service area at a minimal cost distance. The main real application for OCARP is the Meter Reader
Routing Problem (MRRP). In MRRP problem, each worker in the electric (or gas) company must
visit and read the electric (or gas) meters to a set of customers by starting his route from the first
customer on his visit list and finishing with the last one. The worker leaves where he wants once all
the associated customers have been visited. In this paper, a metaheuristic called an Hybridized Ant
Colony Algorithm (HACA) is developed and hybridized with a local search algorithm that involves
the 2-opt, Swap, Relocate and Cross-exchange moves to solve OCARP problem. Computational results
conducted on five different sets of OCARP-instances showed that our proposed algorithm HACA has
reached good and competitive results on benchmark instances for the problem.

Mathematics Subject Classification. 90C32, 90C26, 90C59.

Received June 16, 2019. Accepted March 2, 2021.

1. INTRODUCTION

The Open Capacitated Arc Routing Problem (OCARP) is a special variant of the Capacitated Arc Routing
Problem (CARP) where a vehicle starts at a given edge and does not return to the depot after servicing the
last edge on a route. In the last ten years, OCARP received attention in the operation research literature.
Indeed, it turns out that it is suitable to model for a wide range of real-life applications such as package delivery
problem, newspaper home delivery problem, school bus problem or meter reader routing problem [14,21]. In
such applications, the employees use their own vehicles to serve edges and are not required to return to depot
after completing service of edges. The objective is to design a set of routes of total minimum distance travelled
by all vehicles. The authors in [17] showed that OCARP is NP-hard and proposed a formal definition of this
variant of CARP which can be described as follows: (1) the graph G(N, E, E,.) is directed where N is the set of
nodes, E is the set of all edges and E,. is the set of required edges (called tasks) with demands strictly positive;
(2) a fleet of M identical vehicles of capacity @ where M is predefined; (3) each task must be served by one
direction and by one and only one vehicle; (4) every route (made by a vehicle) starts from the first task, serves

Keywords. Open Capacitated Arc Routing Problem, metaheuristic, Ant Colony Algorithm, local search, Simulated Annealing.

1 Department of Computer Science, Lebanese University, Beirut, Lebanon.

2 Normandie University, 25 rue Philippe Lebon, Le Havre, France.
*Corresponding author: bilal.kanso@hotmail.com, bilal kanso@hotmail.com

Article published by EDP Sciences © EDP Sciences, ROADEF, SMAI 2021


https://doi.org/10.1051/ro/2021034
https://www.rairo-ro.org
mailto:bilal.kanso@hotmail.com
mailto:bilal_kanso@hotmail.com
https://www.edpsciences.org

640 B. KANSO ET AL.

an order of tasks and finally ends at the last served task; (5) routes must verify the capacity constraint. Thus,
OCARP aims to find at most M set of feasible routes with minimum total cost distance.

The authors in [17] proposed a heuristic based on a Reactive Path-Scanning (RPS) with ellipse rule to
solve OCARP and found the first known solutions. In [18], the authors developed an exact branch-and-bound
algorithm and improved the best known lower bounds. In [19], the authors developed a greedy randomized
adaptive search procedure (GRASP) with evolutionary path-relinking which slightly improved the solutions
found in [18]. In the last work on OCARP [1], the authors developed Hybrid Genetic Algorithm (HGA) and
provided the best metaheuristic solutions for OCARP.

In this paper, we introduce a new approach based on Hybrid Ant Colony Algorithm (HACA). The represen-
tation of ants is considered as a giant route containing all tasks of F, in such a way each task is served in one
direction. Each ant is represented by only one vehicle and does not verify the capacity constraint. An evaluation
procedure adapted from the splitting algorithm introduced in [16] is developed to make the ants feasible and
then evaluate them. Our method is hybridized with a local search procedure based on Simulated Annealing (SA)
which operates by sequentially performing moves to existing feasible solutions in order to eventually improve
them as the search progresses [9]. The main move used in SA algorithm is the cross-exchange which is adapted
for OCARP for the first time in this work. Finally, experiments that we have conducted are capable of solving
significantly larger instances of the OCARP existing in the literature [2,6] and found good (some are optimal)
solutions without expending much computational execution time.

This paper is organized as follows. Section 2 describes our studied problem OCARP. Section 3 presents our
hybrid HACA algorithm which is a combination of an ant colony method with a local search procedure based
on Simulated Annealing (SA) to efficiently solve OCARP. Section 4 shows the computational experiments that
we conducted and analyses the results. Finally, a conclusion about this work is summarized in Section 5.

2. PROBLEM DESCRIPTION

The Open Capacited Arc Routing Problem (OCARP) was introduced and described in [17]. In this variant
of CARP, each vehicle starts in its first task (required edge with a demand strictly positive) and finish at the
last visited task. The number of vehicles is limited and each task can be visited once by a specific vehicle. The
capacity of vehicles (@ is predefined and homogeneous for all used vehicles. A travelling distance Cp, is considered
between each couple of tasks (p,q). A feasible solution is a set of feasible routes where each feasible route is
a sequence of tasks visited and serviced by the same vehicle considering the capacity constraint. The main
objective of OCARP is to minimize the total travelling distance by all feasible routes in the feasible solution.
Other objective functions and constraints can be considered, like time windows and heterogeneous vehicles, but
they are out of our work.

Therefore, the details of OCARP can be described as follows: let K be a set of M identical vehicles and
G = (N,E,E,) be a graph where N is the node set that represents the starting and ending points of edges
and F = E. U E,, is the edge set. E, contains the required edges (called tasks) where each task p represents
an edge with demand d, > 0 and must be served by one and only one vehicle k € K. E,, is the set of all no
required edges with demand zero. Firstly, a travelling distance D, between nodes is associated to each couple
(x,y) € N x N. The cost Cp, between two tasks p = (z,y) and ¢ = (z,¢) will be calculated by Dijkstra’s
algorithm from the final node y of p to the origin node z of ¢q. The notation of the cost C}, = D, is used to
traverse the task p = (z,y), Vp € E, where (z,y) € N x N. The notation Cost(S) is used to get the total cost
of a given solution S which is considered as the total sum of costs of all routes involved in the solution S.

3. AN ANT COLONY ALGORITHM FOR THE OCARP

We propose an ant colony algorithm to solve the OCARP. Ant Colony Optimization algorithms (ACO) are
global search optimization techniques based on the foraging behaviour of real ants which have been found to
be very effective for solving the travelling salesman problem (TSP) [3,5,15] and the capacitated arc routing
problem (CARP) [7]. In this work, we construct an initial solution Sy by the basic Path Scanning algorithm



OPEN CAPACITATED ARC ROUTING PROBLEM 641

(PS) [17]. The ACO algorithm uses a colony of N, artificial ants where each ant g represents a non-capacitated
giant route (order of all different tasks in E,), i.e. the constraint capacity is not verified. At each iteration of
the ACO, every ant starts its route at a random task. Moving of ants depends on two amounts: (1) visibility
amount p,, which is a constant and represents the inverse of the cost between two tasks p and ¢; (2) pheromone
amount 7,, which is a variable and initially represents the inverse of the cost of initial solution, i.e. 7,4 =
m Vp,q € E,.. The amount of pheromone will be updated at the end of each iteration ¢ by the following

rule Tpq(t+1) = prpq(t) + (1 — p) AT,y where p is the evaporation parameter in [0, 1] and A7y, equals to m
if task ¢ is used just after task p by the ant that gives the best solution best and zero otherwise.

The following subsection explains how to find an initial solution Sy by Path Scanning heuristic. The second
subsection presents the evaluation procedure to split and make feasible a giant route. The four moves used in the
local search procedure and the detailed algorithm are explained in the third subsection. Finally, the components
and the pseudo-code of the ACO algorithm are presented in the last subsection.

3.1. Path Scanning heuristic for OCARP problem

The classic Path Scanning heuristic (PS) is used for building the feasible initial solution Sy of our proposed
ACO metaheuristic. PS constructs the routes in a sequential manner, i.e. it begins to build the first route
without exceeding the capacity of the vehicle used on this route. Once a route is constructed, PS tries to build
other routes in the same way. Note that, when the number of vehicles exceeds the predefined number of vehicles
M, then the obtained solution is not taken into consideration.

PS builds each feasible route as follows. Firstly, PS selects a random task to be the starting one of the
constructed route. Then , it chooses the next task s to add after the last selected task [ among the candidate
tasks using the nearest neighbour rule. If there are more than one task that meet the capacity constraint and

have the same cost from [, then one rule of the following five rules is applied: (1) minimize d—s; (2) maximize

%; (3) minimize the cost back to a virtual depot 0; (4) maximize the cost back to a virtual depot 0; and (5)

use rule (3) if the vehicle has used more than half of its capacity @, and rule (4) otherwise.

The used virtual depot 0 represents the node 1 in the node set NV in each graph instance G used in the
numerical results (instance files are explained in Sect. 4). Indeed, the node 1 is used to be the first depot in
the basic instance files of CARP with single depot. Furthermore, in our experiments each node in N has been
tested to be the virtual depot 0, but no better results are attained. The heuristic PS is repeated 1000 times for
each instance and the best costs of feasible obtained solutions are recorded (see results in Sect. 4). Finally, the
best solution with the minimal total cost distance is the initial feasible solution Sy used for ACO.

3.2. Evaluation procedure

The split procedure is commonly used for capacitated arc routing problem CARP [10,16]. We adopt it to
make each ant feasible by splitting it into a set of feasible routes (i.e. a feasible OCARP solution) and to evaluate
its fitness. Given an ant ¢ = (g1, ¢2,...,¢-) of r tasks, we construct an acyclic auxiliary graph H (T, Z) with
r + 1 nodes, where T is a vertex set containing nodes indexed from 0 to r, and Z is a set of evaluated directed
arcs. 0 is a fictitious node and every node i € T'\ {0} represents the task g; in g. An arc (i, j) such that i < j, is

J
associated to Z if it represents a feasible route i.e. a subsequence of tasks (g;+1,...,g;) where E R dg, < Q.
=1

Every arc (i,7) € Z will be evaluated by the cost z;; which is calculated by the following rule:

j—2

ng + Z[Cgk+1 + C(ngrlvngr?)] if Jj—i122
k=1

Cy, it j—i=1.

Zij =



642 B. KANSO ET AL.

For each ant g, the shortest path SPY from node 0 to node r of T in graph H by using at most M arcs of
Z, is calculated by Algorithm 1. This algorithm is an adaptation of Bellman-Ford algorithm [4] to take into
consideration at most M arcs on the target shortest path. Hence, the shortest path SPY represents the optimal
partition of the corresponding ant ¢ (giant route). The fitness cost of the optimal solution is denoted by Cost(S5Y)

where S9 is the corresponding feasible OCARP solution from ant g and Cost(SY) = 2(4 esp Zij-
%,] 9

Algorithm 1: Shortest path with at most k arcs (vehicles).

Input: an auxiliary graph H (T, Z), source node src, number of arcs M
Output: array dist with dist[i] is the shortest distance from node src to node i, matrix pred with pred[i][j] is the
predecessor of node j at iteration i(i < k)
Objective: find shortest path in A from src to other nodes using at most M arcs
Initialization:
temporary array of previous distances distTemp
distTempli] = oo, dist[i] = oo for each node i # src in A and distTemp[src] = dist[src] =0
pred[i][j] = —1 if j = s otherwise oo for each node ¢ and each iteration j
iter =0
for iter < 1 to k do
for s — 0 to |T|—1do
| distTemp[s] = dist[s]
for (u,v) € Z do
if zy, # oo then
if distTemplu]! = co and dist[v] > distTemplu] + zu» then
dist[v] = distTemplu] + zuv
L pred[iter][v] = u

Table 1 illustrates an example of six tasks g1, g2, g3, 94, g5 and gg required to explain the details of our split
procedure. The number of vehicles is M = 2 and the vehicle capacity is @ = 20. Suppose that the costs among
tasks are given as follows: Cy, g, = 33,C,g, = 38, Cyg,q, = 27,Cy,4; = 32 and Cj, 4, = 30.

Figure 1A illustrates the auxiliary graph H (T, Z) associated to the following giant route g (or ant g):

’91\92\93\94\95\96\

As two examples, the arc (0,1) represents a feasible route containing g; (i.e. only g1 is served) with cost
201 = C4, = 22 and the arc (0, 2) means that a vehicle serves g; then g with cost zg2 = Cy, + Cyyq, + Cy, =
22433 +20 = 75. Figures 1B and 1C illustrate two routes generated from the auxiliary graph using our adapted
Bellman—Ford algorithm presented in Algorithm 1. For the proposed example, SPY is composed of two arcs (0, 2)
and (2,6) and then the corresponding feasible solution S? is composed of two routes presented respectively in
Figures 1B and 1C. The cost of S? is Cost(SY) = zg2 + 206 = 75 + 175 = 250.

TABLE 1. Information about an example with 6 tasks.

Task g1 g2 g3 ga G5 Ge

Demand 8 8 5 6 4 5
Cost 22 20 20 25 26 15




OPEN CAPACITATED ARC ROUTING PROBLEM 643

128

175(93949596)

g1 g2 g3 94 gs ge
(B) (©)

FIGure 1. Example of the split procedure. (A) Auxiliary graph. (B) First route (cost=75).
(C) Second route (cost =175).

3.3. Local search procedure

In order to improve the obtained feasible solutions by the proposed ACO algorithm, we apply the Simulated
Annealing algorithm (SA) in the local search procedure. The SA is a metaheuristic which is commonly used
to prevent the optimization algorithm to quickly fall into local minimum [12,20]. It is based on the random
acceptance strategy with certain probability. The local search moves that we implemented in the SA algorithm
are the following:

(a) Swap move: two versions of this move have been implemented. The first one consists of exchanging two
distinct tasks p and ¢ belonging to the same feasible route. The second one consists of exchanging two
distinct tasks belonging to two different feasible routes. For each call of the “Swap” move, we choose
randomly the way to apply it.

(b) Relocate move: this move consists of removing one task from a position ¢ on a route R and putting it in
another position 7 chosen in the same route R or in another route R'.

(¢) 2-opt move: this move consists of choosing two positions 7 and j in a given route R and then re-organizes
R by replacing the sequence of tasks (i, i+1,..., j) by the sequence (inv(j), inv(j—1),..., inv(i)) where
inv(t) represents the inverse task for the task ¢. For each call of the “2-opt” move, we apply it to every
route into the considered solution.

(d) Cross-exchange move: this move involves two routes R; and Rz where it chooses a task in a position ¢
of Ry and a task in a position j of Ry. It generates two new routes R] and R} as follows: R} takes the first
part of R; from first task to task located at position i completed by another part of the route Ry starting
with the task located at position j. R} is built in the same way and that by linking the remaining first part
of Ry with the second remaining part of R;.

Note that all moves are applied only if the resulting solutions are feasible. The Simulated Annealing method
in the local search procedure is presented in Algorithm 2.



644 B. KANSO ET AL.

Algorithm 2: Simulated Annealing algorithm.

Input: a feasible solution S, Tiin, Tmax and K
Initialization: T = Tmax

while T < Thin do

for I € {Swap, Relocate, 2-opt, Cross-exchange} do

generate a feasible neighbourhood solution S’ by applying the local search move .
calculate AE = Cost(S’) — Cost(S) and the probability P(AE,T) = e F
if AE <0 then

| accept S’ and update the best solution S = S’

else
| accept S’ with the probability P(AE,T)

| update the temperature T'= K x T
return the best solution found so far S.

3.4. The proposed HACA algorithm

Suppose that Visited, is the set of already visited tasks by ant g. An ant g moves from the last visited task
i to another task j by choosing the closest task j (j ¢ Visitedy) to 4 if the random variable ¢ is strictly less
than go. Otherwise, it is chosen by using the following probability rule:

« B
T X My

it j ¢ Visited

]

P9 — ) Xkevisitedy Tik X Hik I
¥

0 otherwise

where o and (3 are respectively the pheromone and visibility parameters, qo is a constant parameter belongs to
[0,1] and ¢ is a random parameter in [0, 1]. The proposed HACA algorithm is shown in Algorithm 3.

Algorithm 3: HACA algorithm.

Initialization:
find a feasible initial solution Sy with cost Cost(So) by the classic heuristic PS
Tij = m and p;; = %j, Vi, j € set of tasks
make empty N, ants, define «, 3, p, p, and iter A
iter =1
while iter < iter A do
every ant g starts its giant route randomly by a task g:
every g completes the route by using the probability Pigj
evaluate each ant by using the evaluation procedure
apply the local search procedure on each ant with a probability p,
update the best solution so far
update the pheromone quantities
iter = iter +1

return the best solution found so far.




OPEN CAPACITATED ARC ROUTING PROBLEM 645

TABLE 2. Results of the HACA algorithm on ogdb’s instances.

Instance M 1b RPS GRASP HGA HACA GR GG GH T

ogdbl 7 252 252 252 252 252 0 0 0 <1
ogdb2 8 291 291 291 291 291 0 0 0 <1
ogdb3 7 233 233 233 233 233 0 0 0 <1
ogdb4 6 238 238 238 238 238 0 0 0 <1
ogdbb 8 316 316 316 316 316 0 0 0 <1
ogdb6 7 260 260 260 260 260 0 0 0 <1
ogdb7 7 262 262 262 262 262 0 0 0 <1
ogdb8 12 210 210 210 210 210 0 0 0 <1
ogdb9 12 219 219 219 219 219 0 0 0 <1
ogdb10 6 252 252 252 252 252 0 0 0 <1
ogdbl1 7 356 360 358 358 358 0 0 0 <1
ogdb12 9 336 336 336 336 336 0 0 0 <1
ogdb13 8 509 509 509 509 509 0 0 0 <1
ogdb14 7 96 96 96 96 96 0 0 0 <1
ogdblb 6 56 56 56 56 56 0 0 0 <1
ogdb16 7 119 119 119 119 119 0 0 0 <1
ogdbl17 7 84 84 84 84 84 0 0 0 <1
ogdb18 7 158 158 158 158 158 0 0 0 <1
ogdb19 5 45 45 45 45 45 0 0 0 <1
ogdb20 6 105 105 105 105 105 0 0 0 <1
ogdb21 8 149 149 149 149 149 0 0 0 <1
ogdb22 10 191 191 191 191 191 0 0 0 <1
ogdb23 12 223 223 223 223 223 0 0 0 <1

4. EXPERIMENTS AND RESULTS

4.1. Benchmark instances and experiments

For our computational experiments, we use five sets of standard test instances: ogdb, oAi, oBi, oval and
oegl. These sets are extensions of standard sets of CARP! instances. Thus, our OCARP Benchmark includes
23 ogdb [8], 32 0Ai, 24 oBi, 34 oval [2] and 24 oegl [6], totalling 137 instances. M = M* + 2 is the number of
vehicles used in our experiments where M™* represents the minimal value of the number of vehicles required for
finding a feasible solution reported in [17]. The experiments were implemented in Java and run on a 2.6 GHz
Dual Core computer with a memory of 16 GB under Windows Ten.

Throughout the section, the results of our experiments are compared with respect to three methods from
literature: RPS (Reactive Path-Scanning with ellipse rule) heuristic [17], GRASP (Greedy Randomized Adaptive
Search Procedure with path relinking) metaheuristic [19] and HGA (Hybrid Genetic Algorithm) [1]. Tables 2-6
show the obtained results of all instances after running our algorithm. For each table, the columns correspond
respectively to: (1) problem name instance; (2) the number of vehicles M; (3) lower bound (Ib) which is the
corresponding bound to the best feasible solution as reported in [17]; (4) cost obtained by RPS method; (5) cost
obtained by GRASP method; (6) cost obtained by HGA method; (7) cost obtained by our hybrid ant algorithm
(HACA); (8) gap in percentage (G-R(%)) of RPS cost compared to HACA; (9) gap in percentage (G-G(%))
of GRASP cost compared to HACA; (10) gap in percentage (G-H(%)) of HGA cost compared to HACA; (11)
running time in seconds for HACA (T). The gaps G-R(%), G-G(%) and G-H(%) are computed by the following

rule: G-X= XHACA 100 with X € {RPS, GRASP, HGA}.

LCARP’s instances can be found at http://www.uv.es/Belengue/carp.html; http://www.hha.dk/sanw.


http://www.uv.es/Belengue/carp.html
http://www.hha.dk/sanw

646 B. KANSO ET AL.

TABLE 3. Results of the HACA algorithm on 0Ai’s instances.

Instance M 1b RPS GRASP HGA HACA GR GG GH T
0Ail0A 6 43 43 43 43 43 0 0 0 <1
0Ai10B 5 43 43 43 43 43 0 0 0 <1
0Ai10C 4 43 43 43 43 43 0 0 0 <1
0Ai10D 3 43 45 43 43 43 4.44 0 0 <1
0Ail3A 10 85 85 85 85 85 0 0 0 <1
0Ail13B 6 85 85 85 85 85 0 0 0 <1
0Ail13C 4 85 88 85 85 85 3.41 0 0 <1
0Ail3D 4 85 91 85 85 85 6.59 0 0 <1
0Ail15A 10 92 92 92 92 92 0 0 0 <1
0Ail5B 7 92 92 92 92 92 0 0 0 <1
0Ail5C 5 92 92 92 92 92 0 0 0 <1
0Ail5D 4 92 94 92 92 92 2.13 0 0 <1
0Ai20A 13 113 113 113 113 113 0 0 0 <1
0Ai20B 9 113 113 113 113 113 0 0 0 <1
0Ai20C 6 113 113 113 113 113 0 0 0 <1
0Ai20D 5 113 116 113 113 113 2.59 0 0 <1
0Ai24A 14 139 139 139 139 139 0 0 0 <1
0Ai24B 9 139 139 139 139 139 0 0 0 <1
0Ai24C 6 139 151 145 145 145 3.98 0 0 <1
0Ai24D 5 139 154 148 148 148 3.9 0 0 <1
0AiI27A 12 188 188 188 188 188 0 0 0 <1
0Ai27B 8 188 191 188 188 188 1.57 0 0 <1
0Ai27C 5 194 202 197 197 197 248 0 0 1
0Ai27D 4 197 208 202 202 202 2.88 0 0 <1
0Ai31A 21 271 274 271 271 271 1.1 0 0 7.6
0Ai31B 13 271 271 271 271 271 0 0 0 4.5
0Ai31C 8 271 282 277 277 277 1.77 0 0 5.4
0Ai31D 6 271 292 284 284 284 2.74 0 0 4
0Ai40A 27 329 385 355 355 355 8.4 0 0 151.5
0Ai40B 15 329 334 329 329 329 1.5 0 0 63
0Ai40C 9 329 345 336 336 336 0 0 0 43.1
0Ai40D 7 329 356 344 344 344 2.61 0 0 16.3

4.2. Comparison based on benchmark sets

Table 7 reports the obtained average of all gaps and the average of computational times in seconds required
for solving the problem by each method. From this table, we can conclude the following:

— For ogdb’s set of instances, HACA obtained the same results as all the other methods. The gaps G-R, G-G
and G-H are equal to zero. 21 from 23 solutions (91.3%) were proven optimal i.e. the value obtained by
HACA is the same as the lower bound lb. The CPU computing time was less than one second on average.

— For 0Ai’s set of instances, 20 from 32 solutions (62.5%) were proven optimal (i.e. HACA =1b). The com-
putational time average is 9.98s. HACA significantly performs better than RPS where G-R is 1.75%. In
fact, it outperforms RPS method by 16 solutions and obtains the same solutions as RPS for the remaining
instances. HACA slightly performs better than both GRASP and HGA methods where G-G and G-H are
both equal to 0.15. It outperforms both GRASP and HGA methods by one solution and attains the same
results obtained by GRASP and HGA methods for the rest of instances.

— For oBi’s set of instances, 22 from 24 solutions (91.667%) were proven optimal (i.e. HACA =1b). The CPU
computing time was 3.3 s on average. HACA clearly performs better than RPS where G-R is 0.44%. Indeed,



OPEN CAPACITATED ARC ROUTING PROBLEM 647

TABLE 4. Results of the HACA algorithm on oBi’s instances.

Instance M 1b RPS GRASP HGA HACA GR GG GH T
oBil0B 7 45 45 45 45 45 0 0 0 <1
oBil10C 5 45 45 45 45 45 0 0 0 <1
oBil10D 4 45 45 45 45 45 0 0 0 <1
oBil3B 9 60 60 60 60 60 0 0 0 <1
oBi13C 6 60 60 60 60 60 0 0 0 <1
oBi13D 5 60 60 60 60 60 0 0 0 <1
oBil5B 9 74 74 74 74 74 0 0 0 3
oBil15C 6 74 74 74 74 74 0 0 0 <1
oBil5D 5 74 74 74 74 74 0 0 0 <1
oBi20B 11 99 99 99 99 99 0 0 0 <1
0Bi20C 7 99 99 99 99 99 0 0 0 <1
oBi20D 5 99 102 99 99 99 2.94 0 0 <1
oBi24B 11 109 109 109 109 109 0 0 0 1
oBi24C 7 107 110 107 107 107 0 0 0 <1
oBi24D 5 113 116 113 113 113 0 0 0 7
oBi27B 18 188 188 188 188 188 0 0 0 <1
oBi27C 10 185 185 185 185 185 0 0 0 2
oBi27D 8 185 185 185 185 185 0 0 0 9
oBi31B 21 274 282 282 282 282 0 0 0 3
oBi31C 12 274 274 274 274 274 0 0 0 <1
oBi31D 9 274 277 274 274 274 1.08 0 0 2
oBi40B 23 267 275 267 267 267 2.9 0 0 2
0Bi40C 13 267 272 267 267 267 1.84 0 0 23
oBi40D 9 267 279 274 274 274 1.79 0 0 13

it outperforms RPS method in 5 out of 24 instances and obtains the same results obtained by GRASP and
HGA where G-G and G-H are both equal to 0.

— For oval’s set of instances, 8 from 34 solutions (23.53%) were proven optimal (i.e. HACA =1b). The CPU
computing time was 7.8 s on average. HACA clearly performs better than RPS where G-R is 1.64%, outper-
forms RPS method by 28 solutions and obtains the same solutions as RPS method for the rest of instances.
HACA exactly performs as both GRASP and HGA methods where the G-G and G-H are both equal to
Zero.

— For oegl’s set of instances, HACA fails to reach lb for all instances (similarly as RPS, GRASP and HGA
methods). The CPU computing time was 335.08s on average. HACA outperforms the RPS method for all
the 24 solutions and G-RPS on average is 9.45. HACA succeeds to perform better than both GRASP and
HGA in one solution (s1B). It obtains the same results as GRASP and HGA for seven solutions. The G-G
is —1.81 and the G-H is —1.94 which are considered as very slight gaps.

By analysing the results presented in Table 7, it can be deduced that our method HACA similarly performs
or better than RPS, GRASP and HGA for four sets (i.e ogdb, oval, 0Ai and oBi), significantly outperforms
RPS for oegl set and slightly gets worse results than both GRASP and HGA for some oegl’s instances.

RPS, GRASP and HGA were executed at 2.4 GHz processor while HACA was executed at 2.6 GHz proces-
sor. To give a fair comparison that takes into consideration the different speeds of the machines used in the
computational experiments, we normalized the average computational time obtained by HACA. This is done
by multiplying the recorded time with the CPU speed ratio which equals to CPU speed of used machine over
CPU speed of the slowest machine in other studies (i.e. 2.4 GHz) as proposed in [11,13]. The CPU speed ratio
is then equal to 1.08. Hence, in Table 7, we added the column “NT-HACA” which indicates the normalized



648 B. KANSO ET AL.

TABLE 5. Results of the HACA algorithm on oval’s instances.

Instance M 1b RPS GRASP HGA HACA GR GG GH T
ovallA 4 146 154 149 149 149 3.25 0 0 <1
ovallB 5 146 149 147 147 147 1.43 0 0 <1
ovallC 10 146 146 146 146 146 0 0 0 <1
oval2A 4 185 195 189 189 189 3.08 0 0 <1
oval2B 5 185 192 186 186 186 3.13 0 0 <1
oval2C 10 185 185 185 185 185 0 0 0 <1
oval3A 4 65 71 67 67 67 5.63 0 0 <1
oval3B 5 65 67 66 66 66 0 0 0 <1
oval3C 9 65 65 65 65 65 149 0 0 <1
ovaldA 5 344 358 350 350 350 223 0 0 <1
oval4dB 6 343 354 347 347 347 198 0 0 6
oval4C 7 343 350 345 345 345 1.43 0 0 <1
ovaldD 11 343 346 343 343 343 0.87 0 0 <1
oval5A 5 367 381 374 374 374 0 0 0 <1
oval5B 6 367 376 371 371 371 1.84 0 0 2
oval5C 7 367 372 368 368 368 1.08 0 0 3
oval5D 11 367 370 367 367 367 0.82 0 0 <1
oval6A 5 190 195 192 192 192 1.54 0 0 2
oval6B 6 190 192 191 191 191 0.52 0 0 <1
oval6C 12 190 190 190 190 190 0 0 0 <1
oval7A 5 249 263 256 256 256 2.66 0 0 1
oval7B 6 249 259 253 253 253 232 0 0 7
oval7C 11 249 250 249 249 249 0.4 0 0 32
oval8A 5 347 359 354 354 354 1.39 0 0 2
oval8B 6 347 354 351 351 351 0.85 0 0 4
oval8C 11 347 348 347 347 347 029 0 0 8
oval9A 5 278 299 292 292 292 2.34 0 0 19
oval9B 6 278 298 290 290 290 2.68 0 0 7
oval9C 7 278 294 288 288 288 2.04 0 0 13
oval9D 12 278 288 280 280 280 0 0 0 21
ovall0A 5 376 403 391 391 391 2.98 0 0 9
ovall0OB 6 376 399 388 388 388 276 0 0 34
ovall0OC 7 376 394 385 385 385 228 0 0 23
ovalloOD 12 376 387 377 377 377 258 0 0 57

average running time of HACA. Tt is clear that HACA is many times faster than RPS, GRASP and HGA for
all instances. For example, the overall time performance for oegl’s set of instances is 5.49, 2.86 and 2.67 faster
than RPS, GRASP and HGA respectively.

Table 8 shows for each set of instances and for each method the number of same solutions with the same cost,
the number of worse solutions and the number of better solutions in comparison with HACA. Table 8 shows for
each set of instances and for each method the number of same solutions with the same cost, the number of worse
solutions and the number of better solutions in comparison with HACA. HACA overcomes RPS in 74 instances
and obtains the same solutions in 63 instances. HACA outperforms GRASP in one instance, obtains the same
solutions in 120 instances and is overcame by GRASP in 16 solutions. Finally, HACA outperforms HGA in one
instance, obtains the same solutions as it in 120 instances and is outperformed by HGA in 16 solutions.



OPEN CAPACITATED ARC ROUTING PROBLEM

TABLE 6. Results of the HACA algorithm on oegl’s instances.

Instance M 1b RPS GRASP HGA HACA GR GG G-H T
oegl-el-A 7 1590 1755 1659 1659 1659 5.47 0 0 99
oegl-el-B 9 1524 1726 1589 1589 1589 7.94 0 0 125
oegl-el-C 12 1490 1610 1542 1542 1542 4.22 0 0 165
oegl-e2-A 9 1965 2256 2035 2035 2043 9.44 -0.39 —-0.39 119
oegl-e2-B 12 1912 2166 1971 1971 1971 9 0 0 181
oegl-e2-C 16 1879 2151 1964 1964 1964 8.69 0 0 189
oegl-e3-A 10 2245 2676 2372 2366 2382 10.99 —-0.42 -0.68 171
oegl-e3-B 14 2203 2596 2321 2321 2350 9.48 —1.25 —1.25 286
oegl-e3-C 19 2188 2565 2270 2260 2280 11.11 —-0.44 -0.88 181
oegl-e4-A 11 2453 2825 2556 2554 2573 8.92 —0.67 —0.74 344
oegl-e4-B 16 2453 2853 2517 2517 2537 11.08 —-0.79 0.79 237
oegl-e4-C 21 2453 2805 2491 2497 2524 10.02 -—-1.32 -—1.08 371
oegl-sl-A 9 1503 1787 1604 1604 1604 10.24 0 0 399
oegl-s1-B 12 1426 1729 1579 1579 1565 9.49 0.89 0.89 144
oegl-s1-C 16 1397 1757 1512 1512 1512 1394 0 0 222
oegl-s2-A 16 3205 4068 3567 3566 3665 9.91 —-2.75 —2.78 354
oegl-s2-B 22 3174 4009 3442 3428 3595 10.33 —4.45 —4.87 392
oegl-s2-C 29 3174 3904 3341 3340 3534 9.48 —5.78 —5.81 651
oegl-s3-A 17 3381 4242 3734 3704 3776 10.99 —-1.12 —-1.94 612
oegl-s3-B 24 3379 4158 3564 3558 3704 10.92 —-3.93 —4.1 439
oegl-s3-C 31 3379 4102 3492 3495 3588 12.53 —2.75 —2.66 197
oegl-s4-A 21 4186 4965 4409 4399 4544 8.48 —-3.06 -3.3 484
oegl-s4-B 29 4186 4973 4323 4312 4523 9.05 —4.63 —4.89 552
oegl-s4-C 37 4186 5019 4309 4282 4536 9.62 —-5.27 —=5.93 1128

TABLE 7. Gap and time comparisons of HACA with RPS, GRASP and HGA.

Set GR GG G-H T-RPS T-GRASP T-HGA T-HACA NT-HACA
ogdb 0 0 0 66.2 <0.2 <0.1 <0.1 <1

0Ai 1.63 0 0 447.7 17.2 40.1 9.98 10.077

oBi 044 0 0 345.8 32 32 3.3 3.564

oval 164 0 0 756.1 71.8 12 7.8 8.42

oegl 945 —1.81 —1.94 1989.6 1034.5 968.1 335.08 361.9

TABLE 8. Comparison of different obtained solutions of HACA with RPS, GRASP and HGA.

RPS GRASP HGA
Set nb Same Worse Better Same Worse Better Same Worse Better
ogld 23 23 0 0 23 0 0 23 0 0
oAl 32 16 0 16 32 0 0 32 0 0
oBi 24 18 0 6 24 0 0 24 0 0
oval 34 6 0 28 34 0 0 34 0 0
oegl 24 0 0 24 7 16 1 7 16 1
Total 137 63 0 74 120 16 1 120 16 1

649



650 B. KANSO ET AL.

TABLE 9. Comparison of HACA with RPS, GRASP and HGA.

Class 1 Class 2 Class 3
|[E-] <50 50<]|E. <100 [E,]> 100
ogdb 22 1 0
0Ai 24 8 0
oBi 21 3 0
oval 9 25 0
oegl 0 15 9
Total 76 52 9
G-R 0.45 3.9 9.63
G-G 0 —0.08 —4.35
G-H 0 —0.09 —4.63
Final gap 0.15 1.24 0.21

4.3. Comparison based on instance sizes

The purpose of this subsection is to provide a new comparison of experiment results based on the size of
the instances. Indeed, there is still a need to make a reasonably consistent and fair comparison taking into
consideration the number of tasks in each instance. To do so, we classify all instances presented in Section 4.1
into three classes according to the number of tasks |E,|. The first class contains all instances whose number of
tasks is less than 50. The second class contains all instances whose number of tasks is between 50 and 100. The
third class contains all instances whose number of tasks is greater than 100. Table 9 represents the number of
instances in each class and the new gaps. The total number of instances belonging to the first class is 76 and
HACA reaches a much better performance than RPS, GRASP and HGA where the gaps are respectively 0.45,
0 and 0. The total number of instances belonging to the second class is 52 and HACA gets better results than
RPS (G-R is 3.9) and obtains almost the same results as GRASP and HGA where both gaps G-G (—0.08) and
G-H (—0.09) are of negligible significance. Finally, the number of instances in the third class is 9 and HACA
succeeds to surpass RPS where G-R is 9.63 and slightly gets worse than GRASP and HGA with G-G is —4.35
and G-H is —4.63.

The experiments that we conducted using HACA have shown the production of a population of infeasible
solutions at high rates because of number of vehicles constraint. The algorithm maintains the population in only
the feasible search space, thus excluding infeasible solutions during the algorithm evolution. This significantly
reduces the quality of solutions since the search space is restricted to feasible region. Thus, our proposed
algorithm fails to find solutions for some instances with M* and M* 4 1 and when finding such solutions, their
costs are not competitive with those reported in [1]. The authors in [1] showed that the feasibility rate for almost
all instances with the number of vehicles M* and M™* + 1 is very small and this rate is higher when running
large-scale problems (i.e. Eglese’s instances). Then, they equipped their method with a feasibility technique
in order to overcome the presence of infeasible solutions with respect to the number of vehicles. That justifies
our choice to perform our experiments only with number of vehicles M* 4+ 2 and why our algorithm HACA
works efficiently and succeeds to obtain competitive results with both GRASP and HGA methods for small and
medium instances (as shown in both class 1 and class 2 — Tab. 9), but fails to obtain good quality solutions for
large instances (as shown in class 3 — Tab. 9).

4.4. Parameter setting

For each set of instances, several runs of the program with different parameter values were performed and
the best obtained values are summarized in the following. The values of N,, a, 3, p and ¢y are found and
recommended by Dorigo et al. [5]. We use between 500 and 2500 maximum iterations Nite, in HACA algorithm.



OPEN CAPACITATED ARC ROUTING PROBLEM 651

In the Simulated Annealing algorithm, K is tested between 0.5 and 0.9, Tj,.x is tested between 180 and 260
and T, is tested between 10 and 30. The parameter values obtaining the best improvement solutions with an
acceptable computational time are N, = 20, = 1,8 = 2,p = 0.85, g9 = 0.6, Niter = 1750, K = 0.7, Tinax = 200
and T = 10.

5. CONCLUSION

Open Capacitated Arc Routing Problem (OCARP) has important real-world applications like the Meter
Reader Routing Problem (MRRP), but it has not been extensively studied in literature. We have adapted a
constructive heuristic to find an initial solution for OCARP. We used the strategy of a giant route and then an
optimal splitting method is applied to make the solution feasible and then evaluate it. We have proposed an ant
colony algorithm hybridized with a local search method based on four important moves to solve this problem.
We have presented results for different OCARP instances on five different sets from literature. The obtained
results are very good in comparison with the well-known Reactive Path Scanning (RPS) which is guided by a
cost-demand edge-selection and ellipse rules. Comparing the solution quality of the proposed algorithm with
the existing meta-heuristics GRASP and HGA in literature, the computational results indicate that HACA
performs very good and provides competitive results.

Extending description of OCARP problem to cover more operational constraints such as maximum worker
time or customer time windows could be a promising direction to be more studied in the future. We also intend
to equip our approach with a feasibility method in order to tackle instances with number of vehicles M* and
M* +1.

Acknowledgements. This work has been jointly funded with the support of the National Council for Scientific Research
in Lebanon CNRS-L and Lebanese University.

REFERENCES

[1] R.K. Arakaki and F.L. Usberti, Hybrid genetic algorithm for the open capacitated arc routing problem. Comput. Oper. Res.
90 (2018) 221-231.

[2] E. Benavent, V. Campos, A. Corberdn and E. Mota, The capacitated arc routing problem: lower bounds. Networks 22 (1992)
669-690.

[3] A. Colorni, M. Dorigo and V. Maniezzo, Distributed optimization by ant colonies (1991) 134-142.
[4] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to Algorithms, 3rd edition. The MIT Press (2009).

[5] M. Dorigo, V. Maniezzo and A. Colorni, Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man
Cybern. Part B (Cybern.) 26 (1996) 29-41.

[6] R.W. Eglese, Routing winter gritting vehicles. Disc. Appl. Math. 48 (1994) 231-244.
[7] B.L. Golden and R.T. Wong, Capacitated arc routing problems. Networks 11 (1981) 305-315.
[8] B.L. Golden, J.S. Dearmon and E.K. Baker, Computational experiments with algorithms for a class of routing problems.
Comput. Oper. Res. 10 (1983) 47-59.
[9] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Optimization by simulated annealing. Science 220 (1983) 671-680.
[10] P. Lacomme, C. Prins and W. Ramdane-Chérif, Evolutionary algorithms for periodic arc routing problems. Eur. J. Oper. Res.
165 (2005) 535-553. Project Management and Scheduling.

[11] L. Muyldermans and G. Pang, A guided local search procedure for the multi-compartment capacitated arc routing problem.
Comput. Oper. Res. 37 (2010) 1662-1673.

[12] I.H. Osman and C.N. Potts, Simulated annealing for permutation flow-shop scheduling. Omega 17 (1989) 551-557.

[13] L. Santos, J. Coutinho-Rodrigues and J.R. Current, An improved ant colony optimization based algorithm for the capacitated
arc routing problem. Trans. Res. B: Methodol. 44 (2010) 246-266.

[14] H.I. Stern and M. Dror, Routing electric meter readers. Comput. Oper. Res. 6 (1979) 209-223.

[15] T. Stutzle and M. Dorigo, A short convergence proof for a class of ant colony optimization algorithms. IEEE Trans. Evol.
Comput. 6 (2002) 358-365.

[16] G. Ulusoy, The fleet size and mix problem for capacitated arc routing. Eur. J. Oper. Res. 22 (1985) 329-337.

[17] F.L. Usberti, P.M. Franga and A.L.M. Franca, The open capacitated arc routing problem. Comput. Oper. Res. 38 (2011)
1543-1555.

[18] F.L. Usberti, P.M. Franca and A.L.M. Franga, Branch-and-bound algorithm for an arc routing problem. Annals XLIV SBPO,
Rio de Janeiro (2012).



652 B. KANSO ET AL.

[19] F.L. Usberti, P.M. Franca and A.L.M. Franca, Grasp with evolutionary path-relinking for the capacitated arc routing problem.
Comput. Oper. Res. 40 (2013) 3206-3217.

[20] P.J.M. van Laarhoven, E.-H.L. Aarts and J.K. Lenstra, Job shop scheduling by simulated annealing. Oper. Res. 40 (1992)
113-125.

[21] J. Wunderlich, M. Collette, L. Levy and L. Bodin, Scheduling meter readers for Southern California gas company. INFORMS
J. Appl. Anal. 22 (1992) 22-30.



	Introduction
	Problem description
	An ant colony algorithm for the OCARP
	Path Scanning heuristic for OCARP problem
	Evaluation procedure
	Local search procedure
	The proposed HACA algorithm

	Experiments and results
	Benchmark instances and experiments
	Comparison based on benchmark sets
	Comparison based on instance sizes
	Parameter setting

	Conclusion
	References

