
RAIRO-Oper. Res. 55 (2021) 561–569 RAIRO Operations Research
https://doi.org/10.1051/ro/2021030 www.rairo-ro.org

A NOTE ON PARALLEL-MACHINE SCHEDULING WITH CONTROLLABLE
PROCESSING TIMES AND JOB-DEPENDENT LEARNING EFFECTS

Shan-Shan Lin∗

Abstract. This note studies a unrelated parallel-machine scheduling problem with controllable pro-
cessing times and job-dependent learning effects, where the objective function is to minimize the
weighted sum of total completion time, total load, and total compression cost. We show that the
problem can be solved in O(nm+2) time, where m and n are the numbers of machines and jobs. We
also show how to apply the technique to several single-machine scheduling problems with total criteria.

Mathematics Subject Classification. 90B35, 68M20.

Received July 31, 2020. Accepted February 23, 2021.

1. Introduction

Unlike classical scheduling, in scheduling problems with controllable processing times (resource allocation),
the processing time of a job may be controlled by allocating extra resources (e.g., fuel, gas, or catalyzers, see
[25,26,40]). Scheduling problems with controllable processing times have attracted many scheduling researchers
in recent years; see e.g., [13, 21,29,38].

On the other hand, the idea of scheduling with a learning effect, understood as dependency of a job processing
time on the job position number in schedule was introduced by Gawiejnowicz [6]. Examples of learning effects
often appear in logistics, manufacturing and services settings [22]. For more studies on scheduling with learning
effects, we refer the reader to Azzouz et al. [3] and Tai [31]. A more recent review of scheduling with learning
effect can be found in books by Agnetis et al. [2], Strusevich and Rustogi [30], and Gawiejnowicz [7].

Recently, there has been increasing attention to scheduling problems involving both controllable processing
times and learning effects (see [15, 19, 20, 34, 35]). Yin and Wang [39] considered single machine scheduling
problem with controllable processing times and learning effects, i.e., the actual processing time Pj of job Jj in
position r is Pj(xj , r) = (pj−xj)ra, where pj is normal processing time of Jj , xj is compression of the processing
time of job Jj , 0 ≤ xj ≤ mj , mj is maximum reduction in processing time of job Jj , and a ≤ 0 is a learning
effect. For a cost function containing total completion time (waiting), total absolute differences in completion
(waiting) times and total compression cost, they proved that the problem can be solved in polynomial time. Li
et al. [16] addressed single machine scheduling problems with controllable processing times and job-dependent
learning effects, i.e., the actual processing time of job Jj in position r is Pj(xj , r) = (pj−xj)raj , where aj ≤ 0 is
the job-dependent learning index of job Jj [24]. In this note, we consider a model of parallel-machine scheduling,

Keywords. Scheduling, unrelated parallel-machine, controllable processing times, learning effect.

School of Business and Management, Fujian Jiangxia University, Fuzhou 350108, P.R. China.
∗Corresponding author: 1257290990@qq.com

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2021

https://doi.org/10.1051/ro/2021030
https://www.rairo-ro.org
mailto:1257290990@qq.com
https://www.edpsciences.org

562 S.-S. LIN

the goal of which is to determine the optimal job compressions and a job sequence such that the weighted sum of
total completion time, total load, and total compression cost is minimized. Applying the technique of positional
weights we show that the problem remains polynomially solvable if the number of machines is fixed. We also
show how to apply the technique to several single-machine scheduling problems.

This note is organized as follows: Section 2 gives the problem formulation. In Sections 3–6, some preliminary
results, main result and other results are given, respectively. Finally, Section 7 gives the conclusions.

2. Problem formulation

The problem under investigation can be described as follows: There are n independent jobs represented as
{J1, J2, . . . , Jn}, which have to be processed on m unrelated parallel machines, denoted as {M1,M2, . . . ,Mm}.
All the jobs are available at time zero and preemptive steps are not allowed, as the machine cannot process two
or more jobs simultaneously. Let ni be the number of jobs assigned to machine Mi and

∑m
i=1 ni = n. Let pij ,

aij and bij be the normal processing time, job-dependent learning effect, and compression rate of job Jj if it is
scheduled on machine Mi, respectively. In this note, we consider a general model, i.e., if job Jj is scheduled in
the rth position on machine Mi, its actual processing time is defined by

Pij(xij , r) = (pij − bijxij)raij , (2.1)

where 0 ≤ xij ≤ mij ≤ pij

bij
, mij is the maximum reduction in processing time of job Jj on machine Mi.

Let Cij and vij be the completion time of job Jj on machine Mi and the unit cost to compress job
Jj on machine Mi, respectively. The objective is to determine the optimal job compressions and the opti-
mal job sequence to minimize the following total cost function: F = θ1

∑m
i=1

∑ni

j=1 Cij + θ2
∑m

i=1 C
i
max +

θ3
∑m

i=1

∑ni

j=1 vijxij , where θ1 ≥ 0, θ2 ≥ 0, θ3 ≥ 0 are given constants, Ci
max is the makespan of machine Mi,

and
∑m

i=1 C
i
max is the total load. As in Agnetis et al. [2], Gawiejnowicz [7], and Strusevich and Rustogi [30],

we denote our scheduling problem as Rm |Pij(xij , r) = (pij − bijxij)raij | θ1
∑m

i=1

∑ni

j=1 Cij + θ2
∑m

i=1 C
i
max +

θ3
∑m

i=1

∑ni

j=1 vijxij , where Rm indicates the unrelated parallel-machine setting. For the single-machine schedul-
ing (i.e.,m = 1), the subscript i can be removed, i.e., the actual processing time of Jj is Pj(xj , r) = (pj−bjxj)raj ,
and other symbols can be defined similarly.

In Table 1, we classify in the tabular form the single-machine and parallel-machine scheduling problems with
controllable processing times and/or learning effects.

3. Preliminary results

For a given vector (n1, n2, . . . , nm) and a sequence of jobs on each machine, substituting Ci[j] =
∑j

l=1(pi[l] −
bi[l]xi[l])lai[l] , Ci

max =
∑ni

j=1 pi[j] and xi[j] = 1
bi[j]

(
pi[j] − PA

i[j]j
−ai[j]

)
into θ1

∑m
i=1

∑ni

j=1 Cij + θ2
∑m

i=1 C
i
max +

θ3
∑m

i=1

∑ni

j=1 vijxij , we have

θ1

m∑
i=1

ni∑
j=1

Cij + θ2

m∑
i=1

Ci
max + θ3

m∑
i=1

ni∑
j=1

vijxij

= θ1

m∑
i=1

ni∑
j=1

Ci[j] + θ2

m∑
i=1

Ci
max + θ3

m∑
i=1

ni∑
j=1

vi[j]xi[j]

= θ1

m∑
i=1

ni∑
j=1

(ni − j + 1)PA
i[j] + θ2

m∑
i=1

ni∑
j=1

PA
i[j] + θ3

m∑
i=1

ni∑
j=1

vi[j]

(
1
bi[j]

(
pi[j] − PA

i[j]j
−ai[j]

))

=
m∑

i=1

ni∑
j=1

λijP
A
i[j] + θ3

m∑
i=1

ni∑
j=1

vi[j]

(
1
bi[j]

(
pi[j] − PA

i[j]j
−ai[j]

))

A NOTE ON PARALLEL-MACHINE SCHEDULING 563

=
m∑

i=1

ni∑
j=1

(
λij −

θ3vi[j]j
−ai[j]

bi[j]

)
PA

i[j] + θ3

m∑
i=1

ni∑
j=1

vi[j]pi[j]

bi[j]
, (3.1)

where λij = θ1(ni − j + 1) + θ2.
Let

Ωij = λij −
θ3vi[j]j

−ai[j]

bi[j]
, 1 ≤ i ≤ m; 1 ≤ j ≤ ni, (3.2)

where Ωij(1 ≤ i ≤ m; 1 ≤ j ≤ ni) represents the position weight of position j in the sequence π on machine Mi.
Since θ3

∑ni

j=1

∑n
j=1

vi[j]pi[j]

bi[j]
is a constant, obviously, for any given sequence, the optimal processing times can

be written as follows:

PA∗

i[j] =

pi[j]j
ai[j] , if Ωij < 0,

(pi[j] − bi[j]ti[j])jai[j] , if Ωij = 0,
(pi[j] − bi[j]mi[j])jai[j] , if Ωij > 0,

(3.3)

where 0 ≤ ti[j] ≤ mi[j] and PA∗

i[j](1 ≤ i ≤ m; 1 ≤ j ≤ ni) represent the optimal processing time of the job in
position j on machine Mi. Therefore, the optimal compressions can be obtained by

x∗i[j] =
1
bi[j]

(
pi[j] − PA∗

i[j]j
−ai[j]

)
, 1 ≤ i ≤ m; 1 ≤ j ≤ ni. (3.4)

In order to obtain the optimal sequence of the problemRm |Pij(xij , r) = (pij − bijxij)raij | θ1
∑m

i=1

∑ni

j=1 Cij+
θ2
∑m

i=1 C
i
max + θ3

∑m
i=1

∑ni

j=1 vijxij , for a given (n1, n2, . . . , nm) vector, we formulate it as an assignment
problem.

From (3.2) and (3.3), let

Ωijr = λir −
θ3vijr

−aij

bij
, i = 1, 2, . . . ,m; r, j = 1, 2, . . . , ni, (3.5)

and

Pijr =

pijr
aij , if Ωijr < 0,

(pij − bijtij)raij , if Ωijr = 0,
(pij − bijmij)raij , if Ωijr > 0,

(3.6)

where 0 ≤ tij ≤ mij . Furthermore, let Xijr be a 0/1 variable such that Xijr = 1 if job Jj is scheduled in
position r on machine Mi, and Xjr = 0, otherwise. As in Lin [19], the optimal matching of jobs to positions
can be obtained by the following assignment problem:

min
m∑

i=1

n∑
j=1

ni∑
r=1

ΩijrPijrXijr (3.7)

subject to
n∑

j=1

Xijr = 1, i = 1, 2, . . . ,m; r = 1, 2, . . . , ni, (3.8)

m∑
i=1

ni∑
r=1

Xijr = 1, j = 1, 2, . . . , n, (3.9)

Xijr = 0 or 1, i = 1, 2, . . . ,m; r = 1, 2, . . . , ni, j = 1, 2, . . . , n. (3.10)

564 S.-S. LIN

T
a
b
l
e

1
.

M
ai

n
sc

he
du

lin
g

pr
ob

le
m

s
w

it
h

co
nt

ro
lla

bl
e

jo
bs

an
d

le
ar

ni
ng

eff
ec

ts
.

P
ro

b
le

m
C

o
m

p
le

x
it

y
R

ef
.

1
|P

j
(x

j
)

=
p

j
−
x

j
|∑

n j
=

1
w

j
C

j
+
∑

n j
=

1
v

j
x

j
N

P
-h

a
rd

W
a
n

et
a
l.

[3
2
]

a
n

d

H
o
o
g
ev

ee
n

a
n

d
W

o
eg

in
g
er

[1
1
]

1
|C

O
N
,P

j
(x

j
)

=
p

j
−
x

j
|∑

n j
=

1
(α
E

j
+
β
T

j
)

+
∑

n j
=

1
v

j
x

j
O

(n
3
)

P
a
n
w

a
lk

a
r

a
n

d
R

a
ja

g
o
p

a
la

n
[2

7
]

1
|C

O
N
/
S

L
K
,P

j
(x

j
)

=
p

j
−
x

j
|∑

n j
=

1
(α
E

j
+
β
T

j
+
δ
d

j
)

+
∑

n j
=

1
v

j
x

j
O

(n
3
)

C
h

en
g

et
a
l.

[5
]

1
|C

O
N

W
,P

j
(x

j
)

=
p

j
−
x

j
|∑

n j
=

1
(α
E

j
+
β
T

j
+
δ
d
′ j

+
γ
D
′ j
)

+
∑

n j
=

1
v

j
x

j
O

(n
3
)

L
im

a
n

et
a
l.

[1
7
,1

8
]

1
|P

j
(x

j
)

=
p

j
−
x

j
|θ

1
C

m
a
x

+
θ 2
T
C

+
θ 3

T
A

D
C

+
θ 4
∑

n j
=

1
v

j
x

j
O

(n
3
)

W
a
n

g
a
n

d
X

ia
[3

6
]

1
|P

j
(x

j
)

=
p

j
−
x

j
|θ

1
C

m
a
x

+
θ 2

T
W

+
θ 3

T
A

D
W

+
θ 4
∑

n j
=

1
v

j
x

j
O

(n
3
)

W
a
n

g
a
n

d
X

ia
[3

6
]

1
∣ ∣ ∣P

j
(x

j
)

=
p

j
−
x

j
,p

j
−
p
′ j

=
m
∣ ∣ ∣θ

1
C

m
a
x

+
θ 2
T
C

+
θ 3

T
A

D
C

+
θ 4
∑

n j
=

1
v
x

j
O

(n
lo

g
n

)
W

a
n

g
a
n

d
X

ia
[3

6
]

1
∣ ∣ ∣P

j
(x

j
)

=
p

j
−
x

j
,p

j
−
p
′ j

=
m
∣ ∣ ∣θ

1
C

m
a
x

+
θ 2

T
W

+
θ 3

T
A

D
W

+
θ 4
∑

n j
=

1
v
x

j
O

(n
lo

g
n

)
W

a
n

g
a
n

d
X

ia
[3

6
]

1
|P

j
(x

j
,r

)
=

(p
j
−
x

j
)r

a
|θ

1
C

m
a
x

+
θ 2
T
C

+
θ 3

T
A

D
C

+
θ 4
∑

n j
=

1
v

j
x

j
O

(n
3
)

Y
in

a
n

d
W

a
n

g
[3

9
]

1
|P

j
(x

j
,r

)
=

(p
j
−
x

j
)r

a
|θ

1
C

m
a
x

+
θ 2

T
W

+
θ 3

T
A

D
W

+
θ 4
∑

n j
=

1
v

j
x

j
O

(n
3
)

Y
in

a
n

d
W

a
n

g
[3

9
]

1
|P

j
(x

j
,r

)
=

(p
j
−
x

j
)r

a
j
|θ

1
f

+
θ 2
∑

n j
=

1
v

j
x

j
O

(n
3
)

L
i
et

a
l.

[1
6
]

1
|C

O
N
/
S

L
K
/
D

IF
,P

j
(x

j
,r

)
=

(p
j
−
x

j
)r

a
j
|θ

1
∑

n j
=

1
(α
E

j
+
β
T

j
+
δ
d

j
)

+
θ 2
∑

n j
=

1
v

j
x

j
O

(n
3
)

L
i
et

a
l.

[1
6
]

1
|C

O
N

W
/
S

L
K

W
/
D

IF
W
,P

j
(x

j
,r

)
=

(p
j
−
x

j
)r

a
j
|θ

1
∑

n j
=

1
(α
E

j
+
β
T

j
+
δ
d
′ j

+
γ
D
′ j
)

+
θ 2
∑

n j
=

1
v

j
x

j
O

(n
3
)

L
i
et

a
l.

[1
6
]

1
|C

O
N

W
,P

j
(x

j
,r

)
=

(p
j
−
b j
x

j
)r

a
j
|θ

1
∑

n j
=

1
(α
E

j
+
β
T

j
+
δ
d
′
+
γ
D
′)

+
θ 2
C

m
a
x

+
θ 3
∑

n j
=

1
v

j
x

j
O

(n
3
)

C
o
ro

ll
a
ry

5
.1

1
|S

L
K

W
,P

j
(x

j
,r

)
=

(p
j
−
b j
x

j
)r

a
j
|θ

1
∑

n j
=

1
(α
E

j
+
β
T

j
+
δ
q
′
+
γ
D
′)

+
θ 2
∑

n j
=

1
v

j
x

j
O

(n
3
)

C
o
ro

ll
a
ry

5
.1

1
|D

IF
W
,P

j
(x

j
,r

)
=

(p
j
−
b j
x

j
)r

a
j
|θ

1
∑

n j
=

1
(α
E

j
+
β
T

j
+
δ
d
′ j

+
γ
D
′ j
)

+
θ 2
∑

n j
=

1
v

j
x

j
O

(n
3
)

C
o
ro

ll
a
ry

5
.1

1
|C

O
N
,P

j
(x

j
,r

)
=

(p
j
−
b j
x

j
)r

a
j
|θ

1
∑

n j
=

1
(α
E

j
+
β
T

j
+
δ
d
)

+
θ 2
∑

n j
=

1
v

j
x

j
O

(n
3
)

C
o
ro

ll
a
ry

5
.1

1
|S

L
K
,P

j
(x

j
,r

)
=

(p
j
−
b j
x

j
)r

a
j
|θ

1
∑

n j
=

1
(α
E

j
+
β
T

j
+
δ
q
)

+
θ 2
∑

n j
=

1
v

j
x

j
O

(n
3
)

C
o
ro

ll
a
ry

5
.1

1
|D

IF
,P

j
(x

j
,r

)
=

(p
j
−
b j
x

j
)r

a
j
|θ

1
∑

n j
=

1
(α
E

j
+
β
T

j
+
δ
d

j
)

+
θ 2
∑

n j
=

1
v

j
x

j
O

(n
3
)

C
o
ro

ll
a
ry

5
.1

1
|P

j
(x

j
,r

)
=

(p
j
−
b j
x

j
)r

a
j
|θ

1
g

+
θ 2
∑

n j
=

1
v

j
x

j
O

(n
3
)

C
o
ro

ll
a
ry

5
.1

R
m
|P

ij
(x

ij
,r

)
=

(p
ij
−
b i

j
x

ij
)r

a
i
j
|θ

1
∑

m i=
1

∑
n

i
j
=

1
C

ij
+
θ 2
∑

m i=
1
C

i m
a
x

+
θ 3
∑

m i=
1

∑
n

i
j
=

1
v

ij
x

ij
O

(n
m

+
2
)

T
h

eo
re

m
4
.2

N
o
te

s.
w

j
is

th
e

w
ei

g
h
t

o
f

jo
b

J
j
,
f
∈
{C

m
a
x
,T

C
,T

W
,T

A
D

C
,T

A
D

W
},

g
∈
{C

m
a
x
,T

C
,T

W
,T

A
D

C
,T

A
D

W
}.

A NOTE ON PARALLEL-MACHINE SCHEDULING 565

4. Main results

The optimal solution algorithm for the problem Rm |Pij(xij , r) = (pij − bijxij)raij | θ1
∑m

i=1

∑ni

j=1 Cij +
θ2
∑m

i=1 C
i
max + θ3

∑m
i=1

∑ni

j=1 vijxij can be found by the following algorithm:

Algorithm 4.1.

Input: sequence (pij , aij , bij , vij ,mij) for 1 ≤ i ≤ m, 1 ≤ j ≤ n, numbers θ1, θ2, θ3.
Output: an optimal sequence π.

Step 1: Construct set T := {(n1, n2, . . . , nm) ∈ Z : 0 ≤ ni ≤ n :
∑m

i=1 ni = n};
Step 2: For all (n1, n2, . . . , nm) ∈ T do solve the assignment problem (3.7)–(3.10);
Step 3: Calculate min{F (n1, n2, . . . , nm) : (n1, n2, . . . , nm) ∈ T};
Step 4: π∗ ← the sequence corresponding to the minimum total cost computed in Step 3;

return π∗.

The remaining question is how many (n1, n2, . . . , nm) vectors exist? Note that ni may be 0, 1, 2, . . . , n (i =
1, 2, . . . ,m). Therefore, if we know that ni (i = 1, 2, . . . ,m−1), then nm can be determined (since

∑m
i=1 ni = n),

an upper bound on the number of vectors (n1, n2, . . . , nm) is (n+ 1)m−1. If (n1, n2, . . . , nm) is given, then the
optimal job sequence can be obtained by assignment problem (3.7)–(3.10) in O(n3) time by using the Hungarian
method [14]. Consequently, we have the following result:

Theorem 4.2. The problem Rm |Pij(xij , r) = (pij − bijxij)raij | θ1
∑m

i=1

∑ni

j=1 Cij + θ2
∑m

i=1 C
i
max +

θ3
∑m

i=1

∑ni

j=1 vijxij can be solved in O(nm+2) time.

Remark: For the assignment problem, finding the optimal assignment is equivalent to finding a perfect matching
of maximum weight in a bipartite graph G = (V,E) with weights, where V is the set of vertices and E is the
set of edges. To solve it, we can apply Kuhn’s sequential algorithm [14] or the parallel algorithms by Goldberg
and Tarjan [8], Goldberg et al. [9], and Goldberg et al. [10] for bipartite graphs with weights, whose complexity
is less.

5. Other results

In this section, some common optimality criteria can be expressed as a weighted sum, where positional
weights appear. That is, for some single machine scheduling problems their optimality criteria are in the form
of
∑n

j=1 λjP[j].
Makespan Cmax =

∑n
j=1 λjP[j], where λj = 1;

Total completion time TC =
∑n

j=1 Cj =
∑n

j=1 λjP[j], where λj = n− j + 1;
Total waiting time TW =

∑n
j=1Wj =

∑n
j=1 λjP[j], where λj = n− j and Wj is the waiting time of job Jj ;

Total absolute differences in completion times [12] TADC =
∑n

j=1

∑n
i=1 |Cj − Ci| =

∑n
j=1 λjP[j], where

λj = (j − 1)(n− j + 1);
Total absolute differences in waiting times [4] TADW =

∑n
j=1

∑n
i=1 |Wj −Wi| =

∑n
j=1 λjP[j], where λj =

(j − 1)(n− j + 1);
Common due date (CON) assignment problem [27]:

∑n
j=1(αEj + βTj + δd) =

∑n
j=1 λjP[j], where

λj =
{
nδ + (j − 1)α, for j = 1, 2, . . . , h;
β(n− j + 1), for j = h, h+ 1 . . . , n, (5.1)

Ej (Tj) is the earliness (tardiness) of job Jj , and d is the common due date of all jobs (d = C[h]).
Slack due date (SLK) assignment problem [1]:

∑n
j=1(αEj + βTj + δq) =

∑n
j=1 λjP[j], where

λj =
{
nδ + jα, for j = 1, 2, . . . , h− 1;
β(n− j), for j = h, h+ 1 . . . , n, (5.2)

566 S.-S. LIN

dj is the due date of job Jj and dj = PA
j + q (q = C[h−1]).

Unrestricted due date (DIF) assignment problem [28]:
∑n

j=1(αEj + βTj + δdj) =
∑n

j=1 λjP[j], where

λj = min{β, δ}(n− j + 1), j = 1, 2, . . . , n. (5.3)

Common due window (CONW) assignment problem [17, 18]:
∑n

j=1(αEj + βTj + δd′ + γD′) =
∑n

j=1 λjP[j],
where

λj =

 θ1[nδ + (j − 1)α] + θ2, for j = 1, 2, . . . , h;
θ1nγ + θ2, for j = h+ 1, h+ 2, . . . , l;
θ1β(n− j + 1) + θ2, for j = l + 1, l + 2 . . . , n,

(5.4)

the common due window of job Jj is [d′, d′′], D′ = d′′ − d′ is common due window size for all jobs, d′ = C[h]

and d′′ = C[l].
Slack due window (SLKW) assignment problem [23, 33, 37]:

∑n
j=1(αEj + βTj + δq′ + γD′) =

∑n
j=1 λjP[j],

where

λj =

nδ + jα, for j = 1, 2, . . . , h− 1;
nγ, for j = h, h+ 1, . . . , l − 1;
β(n− j), for j = l, l + 1 . . . , n,

(5.5)

the due window of job Jj is [d′j , d
′′
j], d′j = PA

j + q′, d′′j = PA
j + q′′, D′ = d′′j − d′j = q′′ − q′, q′ = C[h−1] and

q′′ = C[l−1].
Unrestricted due window (DIFW) assignment problem [33]:

∑n
j=1(αEj + βTj + δd′j + γD′j) =

∑n
j=1 λjP[j],

where

λj = min{β, δ}(n− j + 1), j = 1, 2, . . . , n (5.6)

the due window of job Jj is [d′j , d
′′
j], and D′j = d′′j − d′j is due window size of job Jj .

Corollary 5.1. If m = 1, then problem 1 |Pj(xj , r) = (pj − bjxj)raj | θ1X+θ2
∑n

j=1 vjxj can be solved in O(n3)
time, where X ∈ {Cmax,TC,TW,TADC,TADW,

∑n
j=1(αEj + βTj + δd),

∑n
j=1(αEj + βTj + δq),

∑n
j=1(αEj +

βTj + δdj),
∑n

j=1(αEj + βTj + δd′ + γD),
∑n

j=1(αEj + βTj + δq′ + γD′),
∑n

j=1(αEj + βTj + δd′j + γD′j)}.

6. Computational experiments

In order to verify the effectiveness of Algorithm 4.1 for the problem
Rm |Pij(xij , r) = (pij − bijxij)raij | θ1

∑m
i=1

∑ni

j=1 Cij + θ2
∑m

i=1 C
i
max + θ3

∑m
i=1

∑ni

j=1 vijxij , using Microsoft
Visual C++ 2008, we implemented Algorithm 4.1. For each problem size, 20 instances were generated randomly
and solved on a PC with a 3.10 GHz CPU, Intel Core i5-10500, and 8.00 GB RAM. The characteristics of the
instances are given as follows:

(1) n = 50, 100, 150, 200, 300, 400, m = 1, 3, 5, 7, 9, and θ1 = θ2 = θ3 = 1;
(2) pij (j = 1, 2, . . . , n; i = 1, 2, . . . ,m) is uniformly distributed over [1, 100];
(3) aij (j = 1, 2, . . . , n; i = 1, 2) is uniformly distributed over [−0.50, 0];
(4) bij (j = 1, 2, . . . , n; i = 1, 2) is uniformly distributed over [1, 10] and bij ≤ pij ;
(5) vij (j = 1, 2, . . . , n; i = 1, 2) is uniformly distributed over [1, 10];
(6) mij (j = 1, 2, . . . , n; i = 1, 2) is uniformly distributed over [1, 10] and mij ≤ pij

bij
.

The computational experiments of Algorithm 4.1 are summarized as follows. The average and max CPU time
(second (s)) required to find the optimal solutions is shown in Table 2. From Table 2, we can observe that the
computation time of Algorithm 4.1 increases moderately as n increases from 200 to 400. Table 2 also shows that
the running time grows exponentially with the number of machines (i.e., m).

A NOTE ON PARALLEL-MACHINE SCHEDULING 567

Table 2. Computation time of Algorithm 4.1 in s.

Jobs (n) Machines (m) Mean Max

1 0.266 0.277
3 0.734 0.866

50 5 2.081 2.132
7 2.928 3.019
9 3.797 3.817
1 2.111 2.239
3 8.761 9.013

100 5 11.703 13.857
7 16.247 18.315
9 21.897 25.112
1 2.177 2.322
3 6.254 7.105

150 5 17.385 30.229
7 35.648 40.138
9 73.748 80.256
1 3.766 3.991
3 11.029 12.109

200 5 68.321 75.236
7 110.833 121.701
9 255.927 263.529
1 8.252 8.934
3 21.589 23.731

300 5 198.364 209.335
7 400.523 413.965
9 974.135 989.231
1 13.953 14.652
3 36.506 38.125

400 5 195.603 653.401
7 636.357 2010.352
9 3379.671 3435.047

7. Conclusions

In this note, the unrelated parallel-machine scheduling problem with controllable processing times and job-
dependent learning effects has been considered. If the number of machines is fixed, we proved that this problem
is polynomially solvable. For single-machine scheduling problems, we demonstrated that many problems can
be solved in polynomial time. Further research might involve considering scheduling with other models of con-
trollable processing times and learning effects, or considering flow shop scheduling with controllable processing
times and job-dependent learning effects.

Acknowledgements. We are grateful to two anonymous referees for their helpful comments on earlier versions of this
note.

References

[1] G.I. Adamopoulos and C.P. Pappis, Single machine scheduling with flow allowances. J. Oper. Res. Soc. 47 (1996) 1280–1285.

[2] A. Agnetis, J.-C. Billaut, S. Gawiejnowicz, D. Pacciarelli and A. Soukhal, Multiagent Scheduling: Models and Algorithms.
Springer-Verlag, Berlin (2014).

568 S.-S. LIN

[3] A. Azzouz, M. Ennigrou and L.B. Said, Scheduling problems under learning effects: classification and cartography. Int. J.
Prod. Res. 56 (2018) 1642–1661.

[4] U.B. Bagchi, Simultaneous minimization of mean and variation of flow-time and waiting time in single machine systems. Oper.
Res. 37 (1989) 118–125.

[5] T.C.E. Cheng, C. Oğaz and X.D. Qi, Due-date assignment and single machine scheduling with compressible processing times.
Int. J. Prod. Econ. 43 (1996) 29–35.

[6] S. Gawiejnowicz, A note on scheduling on a single processor with speed dependent on a number of executed jobs. Inf. Process.
Lett. 57 (1996) 297–300.

[7] S. Gawiejnowicz, Models and Algorithms of Time-Dependent Scheduling. Springer-Verlag, Berlin (2020).

[8] A.V. Goldberg and R.E. Tarjan, A new approach to the maximum-flow problem. J. Assoc. Comput. Mach. 35 (1988) 921–940.

[9] A.V. Goldberg, S.A. Plotkin and P.M. Vaidya, Sublinear-time parallel algorithms for matching and related problems. In: 29th
Annual Symposium on Foundations of Computer Science, White Plains, New York, USA (1988) 174–185.

[10] A.V. Goldberg, S.A. Plotkin, D.B. Shmoys and E. Tardos, Using interior-point methods for fast parallel algorithms for bipartite
matching and related problems. SIAM J. Comput. 21 (1992) 140–150.

[11] H. Hoogeveen and G.J. Woeginger, Some comments on sequencing with controllable processing times. Computing 68 (2002)
181–192.

[12] J.J. Kanet, Minimizing variation of flow time in single machine systems. Manage. Sci. 27 (1981) 1453–1459.

[13] S. Karhia and D. Shabtay, Single machine scheduling to minimise resource consumption cost with a bound on scheduling plus
due date assignment penalties. Int. J. Prod. Res. 56 (2018) 3080–3096.

[14] H.W. Kuhn, The Hungarian method for the assignment problem. Nav. Res. Logistics Q. 2 (1955) 83–97.

[15] G. Li, M.-L. Luo, W.-J. Zhang and X.-Y. Wang, Single-machine due-window assignment scheduling based on common flow
allowance, learning effect and resource allocation. Int. J. Prod. Res. 53 (2015) 1228–1241.

[16] L. Li, P. Yan, P. Ji and J.-B. Wang, Scheduling jobs with simultaneous considerations of controllable processing times and
learning effect. Neural Comput. App. 29 (2018) 1155–1162.

[17] S.D. Liman, S.S. Panwalkar and S. Thongmee, A single machine scheduling problem with common due window and controllable
processing times. Ann. Oper. Res. 70 (1997) 145–154.

[18] S.D. Liman, S.S. Panwalkar and S. Thongmee, Common due window size and location determination in a single machine
scheduling problem. J. Oper. Res. Soc. 49 (1998) 1007–1010.

[19] S.-S. Lin, Due-window assignment and resource allocation scheduling with truncated learning effect and position-dependent
weights. Discrete Dyn. Nat. Soc. 2020 (2020) 9260479.

[20] W.-W. Liu and C. Jiang, Due date assignment scheduling involving job-dependent learning effects and convex resource alloca-
tion. Eng. Optim. 52 (2020) 74–89.

[21] L. Liu, J.-J. Wang and X.-Y. Wang, Due-window assignment scheduling with resource processing times to minimise total
resource consumption cost. Int. J. Prod. Res. 54 (2016) 1186–1195.

[22] Y.-Y. Lu, F. Teng and Z.-X. Feng, Scheduling jobs with truncated exponential sum-of-logarithm-processing-times based and
position-based learning effects. Asia-Pac. J. Oper. Res. 32 (2015) 1550026.

[23] G. Mosheiov and D. Oron, Job-dependent due-window assignment based on a common flow allowance. Found. Comput. Decis.
Sci. 35 (2010) 185–195.

[24] G. Mosheiov and J.B. Sidney, Scheduling with general job-dependent learning curves. Eur. J. Oper. Res. 147 (2003) 665–670.

[25] E. Nowicki and S. Zdrzalka, A survey of results for sequencing problems with controllable processing times. Discrete Appl.
Math. 26 (1990) 271–287.

[26] S.S. Panwalkar and R. Rajagopalan, Single-machine sequencing with controllable processing times. Eur. J. Oper. Res. 59
(1992) 298–302.

[27] S.S. Panwalker, M.L. Smith and A. Seidmann, Common due-date assignment to minimize total penalty for the one machine
scheduling problem. Oper. Res. 30 (1982) 391–399.

[28] A. Seidmann, S.S. Panwalkar and M.L. Smith, Optimal assignment of due dates for a single processor scheduling problem. Int.
J. Prod. Res. 19 (1981) 393–399.

[29] D. Shabtay and G. Steiner, A survey of scheduling with controllable processing times. Discrete Appl. Math. 155 (2007)
1643–1666.

[30] V.A. Strusevich and K. Rustogi, Scheduling with Time-Changing Effects and Rate-Modifying Activities. Springer-Verlag,
Berlin (2017).

[31] L. Tai, Optimizing batch-processing operations with batch-position-based learning effects. RAIRO:OR 55 (2020) S253–S269.

[32] G. Wan, B.P.C. Yen and C.L. Li, Single machine scheduling to minimize total compression plus weighted flow cost is NP-hard.
Inf. Process. Lett. 79 (2001) 273–280.

[33] J.-B. Wang, L. Liu and C. Wang, Single machine SLK/DIF due window assignment problem with learning effect and deterio-
rating jobs. Appl. Math. Modell. 37 (2013) 8394–8400.

[34] J.-B. Wang, D.-Y. Lv, J. Xu, P. Ji and F. Li, Bicriterion scheduling with truncated learning effects and convex controllable
processing times. Int. Trans. Oper. Res. 28 (2021) 1573–1593.

[35] J.-B. Wang and J.-J. Wang, Research on scheduling with job-dependent learning effect and convex resource dependent pro-
cessing times. Int. J. Prod. Res. 53 (2015) 5826–5836.

[36] J.-B. Wang and Z.-Q. Xia, Single machine scheduling problems with controllable processing times and total absolute differences
penalties. Eur. J. Oper. Res. 177 (2007) 638–645.

A NOTE ON PARALLEL-MACHINE SCHEDULING 569

[37] Y.-B. Wu, L. Wan and X.-Y. Wang, Study on due-window assignment scheduling based on common flow allowance. Int. J.
Prod. Econ. 165 (2015) 155–157.

[38] D.-L. Yang, C.-J. Lai and S.-J. Yang, Scheduling problems with multiple due windows assignment and controllable processing
times on a single machine. Int. J. Prod. Econ. 150 (2014) 96–103.

[39] N. Yin and X.-Y. Wang, Single-machine scheduling with controllable processing times and learning effect. Int. J. Adv. Manuf.
Technol. 54 (2011) 743–748.

[40] S. Zdrzalka, Scheduling jobs on a single machine with release dates, delivery times and controllable processing times: worst-case
analysis. Oper. Res. Lett. 10 (1991) 519–524.

	Introduction
	Problem formulation
	Preliminary results
	Main results
	Other results
	Computational experiments
	Conclusions
	References

