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TRIPARTITE GAME MODELS IN A DUAL-CHANNEL SUPPLY CHAIN:
COMPETITION AND COOPERATION

Zhenkai Lou1, Fujun Hou1,∗, Xuming Lou2 and Yubing Zhai1

Abstract. This paper considers tripartite games in a dual-channel supply chain which involves a
manufacturer, an offline retailer and an online retailer. Both competition and cooperation issues are
analyzed. In the competition model, a Stackelberg game between the manufacturer and two retail-
ers and a Bertrand game between two retailers occur simultaneously. It is shown that the channel
which attracts more consumers’ purchase preference is charged a higher wholesale price and it mean-
while declares a higher sales price. In the presence of revenue sharing, cooperation issues between the
three participants are studied and the change of the revenue of each participant is analyzed when
partial cooperation exists. Further, the definition of the optimum two-player coalition is proposed. We
demonstrate that the channel which attracts more preference of consumers is definitely in the optimum
coalition. The structure of the two-player coalition is analyzed. Finally, under revenue sharing and cost
apportionments, the change of each participant’s profit is examined.
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1. Introduction

With the development of Internet technique, more and more people prefer to purchase through the e-commerce
platform. Owing to this, many manufacturers redesign their traditional channel structures by engaging in direct
sales [5]. The selling channel brought by the Internet endows the manufacturers with more opportunities for cost
savings, revenue growth, and expansion to new market segments [4]. Because of various preference of consumers,
demands on the traditional retail channel and the online channel are always different under a same retail price.
It is proved that the channel preference plays a critical role in pricing decisions of manufacturers and retailers
[14].

In dual-channel supply chains, pricing issues always involve multiple participants. In order to possess high
bargaining power, some participant may look for an appropriate cooperator. When a contract between the
same type of participants (manufacturers or retailers) reaches, a crosswise alliance forms with the purpose
of enhancing the revenue of each participant in it [20]. In other cases, vertical alliances may form to acquire
more bargaining power. There are many examples in practice with regard to this point. For instance, Wal-Mart
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chooses Procter & Gamble as its cooperator to form a vertical alliance. In other situations, the online channel
may cooperate with physical stores so as to reduce its delivery cost [7, 26]. For the members in an alliance,
they can share information and jointly make decisions to gain a higher total revenue. However, few literatures
discussed the superiority of a crosswise alliance or a vertical alliance till now.

Inspired by the above phenomenon, we explore competition and cooperation issues in a dual-channel supply
chain. In practice, a manufacturer sometimes is involved in the competition between different channel retailers.
For instance, there are a supermarket and an online platform (e.g., Dmall) in a certain region, both of which
sell fresh products to consumers in this region. When a manufacturer sells dairy products or vegetables to the
two channel retailers, a Stackelberg game occurs between the three participants.

This paper reveals some theoretic results and highlights some managerial insights. Firstly, it is shown that
the channel retailer who possesses more consumers’ preference gains more expected profits. Secondly, it is
demonstrated that the revenue of one participant definitely decreases when the other two choose to cooperate.
Following that, the concept of an optimal two-player alliance is proposed to deal with the case in which not all
of the participants can jointly make decisions on account of some reasons. Finally, an allocation based on the
equal distribution criterion is proposed. In the tripartite cooperation case, we demonstrate that the members
in the optimal two-player alliance are dominant when allocating the total profits. In practice, issues of how an
alliance forms and expands are significant, as well as the change of each participant’s profit.

The reminder of this paper is organized as follows. Section 2 presents some literature related to this paper,
and shows the main contributions. Section 3 introduces the notation and constructs the objective functions
for all the participants. In Section 4, a competition tripartite game is conducted. In Section 5, we consider
the cooperation issues between the three participants, and allocate the profit for each participant according
to the priority of cooperation. Section 6 provides a numerical illustration to verify the obtained conclusions
under different price-sensitive coefficients. Section 7 summarizes the paper. All proofs of this paper are in the
appendices.

2. Literature review

There is a growing body of literature on hunting optimal prices for dual-channel supply chains. Paper [22]
considered channel conflict issues when involving an e-commerce channel, and demonstrated a number of coun-
terintuitive structural properties. Paper [24] did a significant work on determining competitive pricing policies
between the brick-and-mortar retail channel and the online distribution channel. Paper [6] proposed a model in
which consumers chose the purchase channel based on both price and service qualities. Paper [9] developed a
pricing-and-production integrated model for a dual-channel supply chain. Paper [21] considered both competi-
tion and coordination issues between dual sales channels in a supply chain. Sometimes, a manufacturer manages
dual sales channels, and he has to trade off all costs and revenues in this situation [18].

The above literature mostly considers dual-channel issues as two-person decision problems, which sometimes
may not coincide with practical cases. For example, the online channel, just like the traditional retail channel,
may price its product independently. In this case, both offline and online channels participate in making decisions,
just similar to the discussion in [10]. Paper [23] discussed a tripartite Stackelberg game in which the retailer
is the leader and two manufacturers are followers. Paper [16] studied competition and cooperation issues in a
dual-channel supply chain consisting of one manufacturer and two retailers, which is similar to our framework.
In addition, paper [11] studied game models of dual channels involving one manufacturer and multiple retailers.

In spite of a large number of researches related to pricing issues on dual-channel supply chains, there is a lack
of discussion on the superiority of a crosswise alliance and a vertical alliance. For the purpose of maximizing
the profit, the participants will look for their optimal cooperator. This paper shows that the members in the
optimum two-player coalition possess the superiority when allocating the final profits, which is a research gap.
In addition, we propose a judging criterion to determine which two-player alliance is the optimal, which is of
significance for a dual-channel supply chain when dealing with the selection of the optimal cooperator.
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Table 1. Notation definition.

Symbol Description

a Potential product demands of the market for the product
λ Proportion of the offline channel’s market share
1− λ Proportion of the online channel’s market share
δ Expected marginal demand with respect to the sales price
θ Shift between the two channels with regards to the price
pm Wholesale price by which the manufacturer sells to the offline retailer
pn Wholesale price by which the manufacturer sells to the online retailer
pr Retail price of the offline channel determined by the offline retailer
ps Retail price of the online channel determined by the online retailer
dr Expected demand in the offline channel, dr = λa− δpr + θps

ds Expected demand in the online channel, ds = (1− λ)a− δps + θpr

Z Total expected revenue of the manufacturer
U Expected revenue of the offline retailer
V Expected revenue of the online retailer

The framework of this paper is similar to paper [8]. We construct both a decentralized model and a centralized
model for the dual-channel supply chain. A Stackelberg game between the manufacturer and two retailers and
a Bertrand game between two retailers occur simultaneously in the competition case. In the cooperation case,
joint pricing always occurs by coordinating between different participants [1, 12]. Besides, the dominance of
the manufacturer or the retailer was examined in the pricing issues of the dual-channel supply chain [15].
Different from the existing literature, we examine the optimal two-player coalition in the cooperative situation,
by considering the fact that any two participants’ cooperation incurs a reduction on the revenue of the other one.
The superiority of the vertical alliance and the crosswise alliance is compared. In addition, paper [25] examined
the change on the price incurred by cooperation. Our research yields more results at this point of view.

To be specific, this paper discusses the following problems. In the competition case, the manufacturer deter-
mines optimal wholesale prices for the two channels, aiming to maximize its total revenue. Then the offline
retailer and the online retailer declare their retail prices simultaneously. Optimal prices and revenues of the two
retailers are compared. While considering cooperative issues, the total profit is assumed to be transferable, i.e.,
we investigate transferable utility games, just similar to [17,21]. Because the revenue of one participant changes
when the other two participants choose to cooperate, classical allocation methods may not be applicable. In
this paper, we propose an allocation method based on the equal distribution criteria by considering the number
of participants to allocate the increased profit. The allocation approach guarantees the vested interest for those
who have formed an alliance.

3. Notations and assumptions

In this paper, the selling period is finite and the expected demand refers to the expected sales volume within
this period. A single product is sold and shortage is not permitted. All the participants acquire complete
information. Quality problems are not concerned and sales return is not considered either.

Consider a two-echelon supply chain which involves a manufacturer, an online retailer, and an offline retailer.
The notations used throughout the paper are given as Table 1:

The coefficient of each channel’s market share follows [3,13]. Besides, by [2] we know that δ ≥ θ always holds
so as to guarantee dr + ds ≤ a. Because the potential product demand a cannot be reached for pr > 0 and
ps > 0, we further assume that δ > θ to enhance the rate of the decline in total demands with respect to the
sales prices.
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Given the above notations and assumptions, the objective function of the manufacturer with pm and pn as
its decision variables is

Z = pmdr + pnds.

Similarly, the objective function of the offline retailer is formulated as follows:

U = (pr − pm)dr.

And the objective function of the online retailer with ps as its decision variable is as follows:

V = (ps − pn)ds.

For the sake of following discussion, some premises are given as follows:

(1) The production capacity of the manufacturer is assumed to be sufficient to meet the market demand, i.e.,
this paper doesn’t consider stock-out issues.

(2) In practice, the inventory cost sometimes is a fixed fee – mainly refers to facilities costs and house rental
costs, which doesn’t affect the participants’ decision. Following this scenario, this paper doesn’t take the
inventory cost into account.

4. Competition tripartite-game model

This section concerns competition issues among a manufacturer, an online retailer and an offline retailer
within a known finite selling period. The manufacturer is required to determine wholesale prices first, and then
the offline retailer and the online retailer declare their retail prices simultaneously. We inversely examine the
models to obtain the equilibrium solution.

According to the decision order, the manufacturer needs to take into account the decisions of the two retailers,
while either of the retailers only needs to consider the other retailer’s decision. By these analyses, the involved
model is presented.

The model of the manufacturer for acquiring optimal wholesale prices pm and pn is given as follows:

max Z
pm,pn

= pm (λa− δpr + θps) + pn[(1− λ)a− δps + θpr]

s.t. pr ∈ arg maxU, ps ∈ arg maxV. (4.1)

The model of the offline retailer with pr as its decision variable is

maxU
pr

= (pr − pm) (λa− δpr + θps) . (4.2)

Meanwhile, the model of the online retailer with ps as its decision variable is

maxV
ps

= (ps − pn)[(1− λ)a− δps + θpr)]. (4.3)

Clearly, the manufacturer is the leader and two retailers are followers. Hence, a Stackelberg game consisting
of the above three models is presented. In addition, model (4.2) and model (4.3) compose a Bertrand game,
without considering the decision variables of the manufacturer.

By differentiating U , we obtain the following equation:

∂U

∂pr
= −2δpr + θps + δpm + λa = 0. (4.4)

Examining the second-order derivative of U , we have

∂2U

∂p2
r

= −2δ < 0,
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which means that the solution of equation (4.4) is the unique solution of max U .
Similarly, the corresponding equation of V is

∂V

∂ps
= −2δps + θpr + δpn + (1− λ)a = 0,

the solution of which is the unique solution of max V .
We denote by p∗r and p∗s the solutions of model (4.2) and model (4.3), respectively. The solutions of p∗r and

p∗s are acquired by handling the above two equations:p∗r = 2δ2pm+δθpn+2δλa+θ(1−λ)a
4δ2−θ2

p∗s = δθpm+2δ2pn+2δ(1−λ)a+θλa
4δ2−θ2

. (4.5)

Apparently, (4.5) is the unique equilibrium solution of the discussed Bertrand game.
The objective function of Z is then obtained by substituting solutions (4.5) into the objective function of

model (4.1):

Z = − 2δ3 − δθ2

4δ2 − θ2
p2
m −

2δ3 − δθ2

4δ2 − θ2
p2
n +

2δ2θ
4δ2 − θ2

pmpn

+
2δ2λa+ δθ(1− λ)a

4δ2 − θ2
pm +

2δ2(1− λ)a+ δθλa

4δ2 − θ2
pn. (4.6)

Differentiating Z, we obtain the partial derivatives of Z. Letting them both be equal to zero, we have
∂Z
∂pm

= − 2(2δ3−δθ2)
4δ2−θ2 pm + 2δ2θ

4δ2−θ2 pn + 2δ2λa+δθ(1−λ)a
4δ2−θ2 = 0

∂Z
∂pn

= − 2(2δ3−δθ2)
4δ2−θ2 pn + 2δ2θ

4δ2−θ2 pm + 2δ2(1−λ)a+δθλa
4δ2−θ2 = 0

. (4.7)

Denoting by p∗m and p∗n the solution of equation set (4.7), we havep∗m = 8δ3λa+8δ2θ(1−λ)a−2δθ2λa−2θ3(1−λ)a
(4δ2−2θ2)2−4δ2θ2

p∗n = 8δ3(1−λ)a+8δ2θλa−2δθ2(1−λ)a−2θ3λa
(4δ2−2θ2)2−4δ2θ2

. (4.8)

In fact, by recombining factors in the denominator, we have(
4δ2 − 2θ2

)2 − 4δ2θ2 = 16δ4 − 20δ2θ2 + 4θ4 = 4
(
δ2 − θ2

) (
4δ2 − θ2

)
,

by which (4.8) is transformed to {
p∗m = δλa+θ(1−λ)a

2δ2−2θ2

p∗n = δ(1−λ)a+θλa
2δ2−2θ2

.

The Hessian matrix of Z given by function (4.6)

H =

− 2(2δ3−δθ2)
4δ2−θ2

2δ2θ
4δ2−θ2

2δ2θ
4δ2−θ2 − 2(2δ3−δθ2)

4δ2−θ2


is clearly negative definite by considering δ > θ > 0, which implies that solution (4.8) is the unique solution of
max Z given by model (4.1). Hence, the Stackelberg game also has a unique equilibrium solution.
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By substituting (4.8) into (4.5), the values of p∗r and p∗s are then acquired:p∗r = 6δ3λa+5δ2θ(1−λ)a−3δθ2λa−2θ3(1−λ)a
(4δ2−θ2)(2δ2−2θ2)

p∗s = 6δ3(1−λ)a+5δ2θλa−3δθ2(1−λ)a−2θ3λa
(4δ2−θ2)(2δ2−2θ2)

. (4.9)

If the offline channel attracts more preference of consumers, i.e., λ > 1/2, it is obtained that

p∗m − p∗n =
(δ − θ)(2λ− 1)a

2δ2 − 2θ2
> 0

and

p∗r − p∗s =

(
6δ3 − 5δ2θ − 3δθ2 + 2θ3

)
(2λ− 1)a

(4δ2 − θ2) (2δ2 − 2θ2)

>

(
6δ3 − 6δ2θ − 3δθ2 + 3θ3

)
(2λ− 1)a

(4δ2 − θ2) (2δ2 − 2θ2)

=

(
6δ2 − 3θ2

)
(δ − θ)(2λ− 1)a

(4δ2 − θ2) (2δ2 − 2θ2)
> 0,

which suggest that the wholesale price of the offline retailer determined by the manufacturer and the retail price
of the offline retailer are both higher than the online retailer’s ones.

Similarly, if the online channel attracts more consumers’ preference, i.e., by 0 < λ < 1/2, we have

p∗n − p∗m =
(δ − θ)(1− 2λ)a

2δ2 − 2θ2
> 0

and

p∗s − p∗r =

(
6δ3 − 5δ2θ − 3δθ2 + 2θ3

)
(1− 2λ)a

(4δ2 − θ2)(2δ2 − 2θ2)

>

(
6δ3 − 6δ2θ − 3δθ2 + 3θ3

)
(1− 2λ)a

(4δ2 − θ2)(2δ2 − 2θ2)
> 0,

which imply that the wholesale price of the online retailer and the retail price of the online retailer are higher
in this situation.

Given the above, we have the following conclusion:

Proposition 4.1. For the channel which possesses more consumers’ preference, both the wholesale price given
by the manufacturer and the sales price declared by the channel itself are higher than the other channel.

The above conclusion reveals a fact that, the channel retailer which possesses more consumers’ preference
often declares a higher sales price to gain more profits. While for the other channel retailer, a lower sales price
is more reasonable for guaranteeing a certain sale quantity.

By solution (4.8) and solution (4.9), the value of max Z is obtained:

maxZ =
2δ3λ2a2 + 2δ3(1− λ)2a2 + 6δ2θλ(1− λ)a2 + δθ2λ2a2 + δθ2(1− λ)2a2

(4δ2 − θ2) (4δ2 − 4θ2)
· (4.10)
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Similarly, the value of max U is

maxU =
δ [2δλ+ θ(1− λ)]2 a2

4 (4δ2 − θ2)2
(4.11)

and the value of max V is as follows:

maxV =
δ[2δ(1− λ) + θλ]2a2

4 (4δ2 − θ2)2
· (4.12)

Comparing the value of max U and the value of max V , if λ > 1/2, we have

maxU −maxV =
[(2δ − θ)(2λ− 1)](2δ + θ)δa2

4 (4δ2 − θ2)2
> 0.

Otherwise, maxU −maxV < 0. Hence, we have the following conclusion:

Proposition 4.2. The channel retailer who possesses more consumers’ preference definitely gains more expected
revenue.

In practice, a high sales quantity doesn’t always lead to a high profit. The above conclusion makes sense only
in the discussed framework.

5. Cooperation tripartite-game models

In this section, the cooperative behavior among the three participants is considered under the premise that
revenues are transferable. The changes of optimal prices are analyzed. Moreover, an allocation method based
on the equal distribution criteria by considering the number of participants to allocate the increased profit.

In practice, the two sales channels sometimes are not able to cooperate because they may both try to grab
the market share. In this situation, the manufacture is entitled to choose a better cooperator. Without loss of
generality, we first consider the cooperation between the manufacturer and the offline retailer. In this situation,
the wholesale price pm no longer exists [19]. The corresponding model for maximizing their aggregate expected
revenue is

max(Z + U)
pn,pr

= pr(λa− δpr + θps) + pn[(1− λ)a− δps + θpr]

s.t. ps ∈ arg maxV. (5.1)

The model of the online retailer is still (4.3). In order to make a distinction, we denote by V ′ the expected
revenue of the online retailer in this section, and p∗s the solutions of model of model (5.1). Then the expression
of solution of model (4.3) is

p∗s =
(1− λ)a+ θpr + δpn

2δ
,

by which the objective function of model (5.1) is transformed to

Z + U = −2δ2 − θ2

2δ
p2
r −

δ

2
p2
n + θprpn +

2δλa+ θ(1− λ)a
2δ

pr +
(1− λ)a

2
pn. (5.2)

Differentiating (Z + U) and letting the partial derivatives both be equal to zero, we have{
∂(Z+U)
∂pr

= − 2δ2−θ2
δ pr + θpn + 2δλa+θ(1−λ)a

2δ = 0
∂(Z+U)
∂pn

= −δpn + θpr + (1−λ)a
2 = 0

. (5.3)
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Denoting by p∗r and p∗n the solution of equation set (5.3), it is then obtained{
p∗r = δλa+θ(1−λ)a

2δ2−2θ2

p∗n = δ(1−λ)a+θλa
2δ2−2θ2

. (5.4)

Examining the Hessian matrix of equation set (5.3),

H =

[
− 2δ2−θ2

δ θ

θ −δ

]

is negative definite by considering δ > θ, which implies that solution (5.4) is the unique solution to max (Z+U).
By solution (5.4), we have

p∗s =
3δ2(1− λ)a+ 2δθλa− θ2(1− λ)a

2δ (2δ2 − 2θ2)
· (5.5)

Substituting solution (5.4) and solution (5.5) into function (5.2), the solution of model (5.1) is then acquired:

max(Z + U) =
2δ2λ2a2 + δ2(1− λ)2a2 + 4δθλ(1− λ)a2 + θ2(1− λ)2a2

4δ (2δ2 − 2θ2)
· (5.6)

And the value of max V ′ is

maxV ′ =
(1− λ)2a2

16δ
· (5.7)

Next, values of (max Z+ max U) and max (Z+U) are compared. The first one is determined in the tripartite
competition game, and the second one is determined in the competition-and-cooperation mixed game.

In order to be convenient, we first compare max (Z + U) and max Z and simplify as follows:

max(Z + U)−maxZ =
[2δλ+ θ(1− λ)]2a2

8δ (4δ2 − θ2)
·

Then we have

max(Z + U)−maxZ −maxU =

(
4δ2 − θ2

) [
2δλ+ θ(1− λ)2

]
a2

8δ(4δ2 − θ2)2
− 2δ2 [2δλ+ θ(1− λ)]2 a2

8δ (4δ2 − θ2)2

=

(
4δ2 − 2δ2 − θ2

)
[2δλ+ θ(1− λ)]2a2

8δ(4δ2 − θ2)2

> 0.

By the above result, it is shown that the total revenue of the manufacturer and the offline retailer is definitely
higher when they jointly make decisions in the tripartite game, i.e.,

max(Z + U) > maxZ + maxU.

We call the value of (max(Z + U)−maxZ −maxU) the additional revenue increased by cooperation.
Comparing solution (4.12) and solution (5.7), we have

maxV ′ −maxV =
(1− λ)2a2

16δ
− δ[2δ(1− λ) + θλ2]a2

4(4δ2 − θ2)2

<
(1− λ)2a2

16δ
− δ[2δ(1− λ)]2a2

4× 16δ4

= 0,
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which suggests that the online retailer gains less expected revenue when the manufacturer and the offline retailer
cooperate to make their decisions.

According to the equal distribution criterion of the additional revenue increased by cooperation, the expected
revenue of the manufacturer Z1 is

Z1 = maxZ +
max(Z + U)−maxZ −maxU

2
=

max(Z + U) + maxZ −maxU
2

· (5.8)

Similarly, the expected revenue of the offline retailer U1 is

U1 =
max(Z + U)−maxZ + maxU

2
· (5.9)

Besides, V1 = maxV ′.
Based on the symmetry property between the revenue functions of the two retailers, the cooperation between

the manufacturer and the online retailer is analyzed by the same way, and some similar results are obtained.
We use the same notations to denote optimal prices and present the results as follows.

Based on the coalition of the manufacturer and the online retailer, a bi-level framework with objective
functions max (Z + V ) and max U is formulated. The optimal prices of the coalition are{

p∗s = δ(1−λ)a+θλa
2δ2−2θ2

p∗m = δλa+θ(1−λ)a
2δ2−2θ2

. (5.10)

The optimal price of the offline retailer is

p∗r =
3δ2λa+ 2δθ(1− λ)a− θ2λa

2δ (2δ2 − 2θ2)
· (5.11)

The expected revenue of the coalition is

max(Z + V ) =
2δ2(1− λ)2a2 + δ2λ2a2 + 4δθλ(1− λ)a2 + θ2λ2a2

4δ (2δ2 − 2θ2)
· (5.12)

And the value of max U ′ is

maxU ′ =
λ2a2

16δ
· (5.13)

According to the equal distribution criterion of the additional revenue increased by cooperation, the expected
revenue of the manufacturer Z2 is

Z2 =
max(Z + V ) + maxZ −maxV

2
· (5.14)

Similarly, the expected revenue of the online retailer V2 is

V2 =
max(Z + V )−maxZ + maxV

2
· (5.15)

Besides, U2 = maxU ′. It is easy to verify that max U ′ < max U by comparing the values of (4.11) and (5.13).
Similar to the previous situation, we can obtain the following results by the same process:

max(Z + V ) > maxZ + maxV

and
maxU ′ < maxU.
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Next, the coalition of the two retailers is considered when they have willingness to cooperate.
The model of the manufacturer is still model (4.1). In order to make a distinction, we denote by Z ′ the

expected revenue of the manufacturer here. In order to figure out it, the model of the two-retailers coalition
needs to be analyzed first.

The model for maximizing their aggregate expected revenue is

max(U + V )
pr,ps

= (pr − pm)(λa− δpr + θps) + (ps − pn)[(1− λ)a− δps + θpr]. (5.16)

Differentiating (U + V ) and letting the partial derivatives both be equal to zero, we have{
∂(U+V )
∂pr

= −2δpr + 2θps + λa+ δpm − θpn = 0
∂(U+V )
∂ps

= −2δps + 2θpr + (1− λ)a+ δpn − θpm = 0
. (5.17)

Denoting by p∗r and p∗s the solution of equation set (5.18). Solving it, we have{
p∗r = pm

2 + δλa+θ(1−λ)a
2δ2−2θ2

p∗s = pn

2 + δ(1−λ)a+θλa
2δ2−2θ2

, (5.18)

which is the unique solution of equation set (5.17) on the basis of the negative definite of the Hessian matrix of
(U + V ):

H =
[−2δ 2θ

2θ −2δ

]
.

By expressions (5.18), the objective function of model (4.1) is transformed to

Z ′ = −δ
2
p2
m −

δ

2
p2
n + θpmpn +

λa

2
pm +

(1− λ)a
2

pn. (5.19)

Letting the partial derivatives of Z ′ both be equal to zero, we have{
∂Z′

∂pm
= −δpm + θpn + λa

2 = 0
∂Z′

∂pn
= −δpn + θpm + (1−λ)a

2 = 0
. (5.20)

Denoting by p∗m and p∗n the solution of equation set (5.20), we have{
p∗m = δλa+θ(1−λ)a

2δ2−2θ2

p∗n = δ(1−λ)a+θλa
2δ2−2θ2

. (5.21)

Then p∗r and p∗s are obtained by substituting solution (5.21) into expressions (5.18):{
p∗r = 3δλa+3θ(1−λ)a

4δ2−4θ2

p∗s = 3δ(1−λ)a+3θλa
4δ2−4θ2

. (5.22)

The value of max (U + V ) is acquired as follows by solution (5.21) and solution (5.22):

max(U + V ) =
δλ2a2 + δ(1− λ)2a2 + 2θλ(1− λ)a2

16 (δ2 − θ2)
· (5.23)

Moreover, the expected revenue of the manufacturer is as follows:

maxZ ′ =
δλ2a2 + δ(1− λ)2a2 + 2θλ(1− λ)a2

8 (δ2 − θ2)
· (5.24)
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Comparing max (U + V ) and (max U+ max V ), we have

max(U + V )−maxU −maxV =

(
4δ3θ2 + 5δθ4

)
λ2a2 +

(
16δ2θ3 + 2θ5

)
λ(1− λ)a2 +

(
4δ3θ2 + 5δθ4

)
(1− λ)2a2

16 (δ2 − θ2) (4δ2 − θ2)2

> 0.

Comparing max Z and max Z ′, we have

maxZ =
2δ3λ2a2 + 2δ3(1− λ)2a2 + 6δ2θλ(1− λ)a2 + δθ2λ2a2 + δθ2(1− λ)2a2

(4δ2 − θ2) (4δ2 − 4θ2)

>
2δ3λ2a2 + 2δ3(1− λ)2a2 + 6δ2θλ(1− λ)a2

16δ2 (δ2 − θ2)

>
δλ2a2 + δ(1− λ)2a2 + 2θλ(1− λ)a2

8 (δ2 − θ2)
= maxZ ′.

According to the equal distribution criterion, the expected revenue of the offline retailer U3 is

U3 =
max(U + V ) + maxU −maxV

2
· (5.25)

The expected revenue of the online retailer V3 is

V3 =
max(U + V )−maxU + maxV

2
· (5.26)

In addition, Z3 = maxZ ′.
Given all the above results, we draw some meaningful conclusions as follows:

Proposition 5.1. Under the equal distribution criterion of the additional revenue increased by cooperation, any
two participants enhance their individual profits by cooperation.

Proposition 5.2. Any two participants’ cooperation incurs a reduction on the revenue of the other one.

Actually, the bargaining power of the noncooperative participant suffers a loss when the other two participants
form an alliance.

Next, the optimum two-player coalition is examined based on the equal distribution criterion of the additional
revenue increased by cooperation.

If the offline channel attracts more consumers’ preference, i.e., λ > 1/2, it is obtained that max U > max V
according to Proposition 4.2. Comparing the additional revenues increased by cooperation, we obtain

[max(Z + U)−maxZ −maxU ]− [max(Z + V )−maxZ −maxV ]
= [max(Z + U)−max(Z + V )]− (maxU −maxV )

=

[
δ2λ2 − θ2λ2 − δ2(1− λ)2 + θ2(1− λ)2

]
a2

4δ (2δ2 − 2θ2)

−
[
4δ3λ2 − δθ2λ2 − 4δ3(1− λ)2 + δθ2(1− λ)2

]
a2

4 (4δ2 − θ2)2

=
λ2a2 − (1− λ)2a2

8δ
− δλ2a2 − δ(1− λ)2a2

4 (4δ2 − θ2)

>
δλ2a2 − δ(1− λ)2a2

8δ2
− δλ2a2 − δ(1− λ)2a2

12δ2
> 0,
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which implies that the manufacturer gains more additional revenues by cooperating with the offline retailer.
If λ < 1/2, maxV > maxU holds according to Proposition 4.2. Then we have

[max(Z + V )−maxZ −maxV ]− [max(Z + U)−maxZ −maxU ]
= [max(Z + V )−max(Z + U)]− (maxV −maxU)

=
(1− λ)2a2 − λ2a2

8δ
− δ(1− λ)2a2 − δλ2a2

4 (4δ2 − θ2)

>
δ(1− λ)2a2 − δλ2a2

8δ2
− δ(1− λ)2a2 − δλ2a2

12δ2
> 0,

which means that the manufacturer gains more additional revenues by cooperating with the online retailer.
Given the above, we have the following conclusion:

Proposition 5.3. The manufacturer always chooses the channel retailer who attracts more consumers’ prefer-
ence to form a coalition.

Of course, the retailer who attracts more consumers’ preference naturally considers that whether the even-
tually revenue would be higher by cooperating with the other retailer instead of the manufacturer.

Without loss of generality, the offline retailer is assumed to be the one who attracts more preference of
consumers in the following discussion (the handling is similar when the online channel attracts more preference
of consumers). Then it is required to consider the following formula:

[max(U + V )−maxU −maxV ]− [max(Z + U)−maxZ −maxU ]. (5.27)

If it is positive, the offline retailer prefers to choose the online retailer to form a two-player coalition. Otherwise,
the manufacturer is its optimal option. Moreover, the value of formula (5.27) depends on λ, δ and θ. We show
the proof in the Appendix A.

For the two-player coalition, we propose the following definition:

Definition 5.4. A two-player coalition is deemed to be optimal, if and only if both of the two participants gain
more revenues in this coalition than in other coalitions.

In view of the above discussion, the following conclusion is drawn:

Proposition 5.5. The retail channel which attracts more consumers’ preference is one member of the optimum
two-player coalition.

Although the more attractive retail channel has the priority to choose a cooperator, the optimal cooperator
is certain for any given case. Given this point, we hold the opinion that the members in the optimal two-player
coalition are of equal importance. Hence, the allocation method based on the equal distribution criteria is
reasonable for allocating the increased profit.

The one, the manufacturer or the retail channel with less attraction, who is not in the two-player coalition,
pursues to cooperate with the coalition so as to enhance his revenue. However, he has less bargaining power
than the optimal two-player coalition. In order to reflect this point, we use the allocation method based on the
equal distribution criteria by considering the number of participants to allocate the increased profit.

The model for maximizing their aggregate expected revenue is

max(Z + U + V )
pr,ps

= pr(λa− δpr + θps) + ps[(1− λ)a− δps + θpr]. (5.28)
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Differentiating (Z + U + V ) and letting the partial derivatives be equal to zero, we have{
∂(Z+U+V )

∂pr
= −2δpr + 2θps + λa = 0

∂(Z+U+V )
∂ps

= −2δps + 2θpr + (1− λ)a = 0
. (5.29)

The solution of equation set (5.29) is {
p∗r = δλa+θ(1−λ)a

2δ2−2θ2

p∗s = δ(1−λ)a+θλa
2δ2−2θ2

, (5.30)

which is the unique solution by considering the negative definite of the Hessian matrix of (U + V ):

H =
[−2δ 2θ

2θ −2δ

]
.

By solution (5.30), the value of max (Z + U + V ) is obtained:

max(Z + U + V ) =
δλ2a2 + δ(1− λ)2a2 + 2θλ(1− λ)a2

4δ2 − 4θ2
· (5.31)

Clearly, both
max(Z + U + V ) > max(Z + U) + maxV ′

and
max(Z + U + V ) > max(U + V ) + maxZ

hold as the solution given by formula (5.30) is the unique solution of max (Z + U + V ).
Hence, we have the following results by the equal distribution criterion:

(1) If (Z, U) is the optimum two-player coalition, the ultima revenue of the manufacturer is

Z∗ =
max(Z + U) + maxZ −maxU

2
+

max(Z + U + V )−max(Z + U)−maxV ′

3

=
2 max(Z + U + V ) + max(Z + U) + 3 maxZ − 3 maxU − 2 maxV ′

6
· (5.32)

Similarly, the eventual revenue of the offline retailer is

U∗ =
2 max(Z + U + V ) + max(Z + U)− 3 maxZ + 3 maxU − 2 maxV ′

6
· (5.33)

And the revenue of the online retailer is

V ∗ =
max(Z + U + V )−max(Z + U) + 2 maxV ′

3
· (5.34)

(2) If (U , V ) is the optimum two-player coalition, the final revenue of the manufacturer is

Z∗ =
max(Z + U + V )−max(U + V ) + 2 maxZ ′

3
· (5.35)

The ultima revenue of the offline retailer is

U∗ =
max(U + V ) + maxU −maxV

2
+

max(Z + U + V )−maxZ ′ −max(U + V )
3

=
2 max(Z + U + V ) + max(U + V )− 2 maxZ ′ + 3 maxU − 3 maxV

6
· (5.36)

Similarly, the eventual revenue of the online retailer is

V ∗ =
2 max(Z + U + V ) + max(U + V )− 2 maxZ ′ − 3 maxU + 3 maxV

6
· (5.37)
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Figure 1. Surfaces of the two increased profit functions.

Obviously, the members of the optimum two-player alliance always gain more revenues than they earn in the
competition situation. But for the other participant who is not in the alliance, we have following conclusions
for the above two situations (the proof is shown in the Appendix B):

(1) When (Z, U) is the optimum two-player coalition, the difference between V ∗ and max V depends on δ, θ,
and λ.

(2) When (U , V ) is the optimum two-player coalition, the difference between Z∗ and max Z also depends on δ,
θ, and λ.

6. A numerical example

This section provides a numerical illustration to verify the obtained conclusions under different price-sensitive
coefficients. Consider the following scenario: a = 200, λ = 0.6, δ ∈ [1.1, 2], θ ∈ [0.5, 1].

Clearly, according to proposition 6, the offline retailer is one member of the optimal two-player coalition.
The function surfaces are as follows, where I represents [max(U + V ) − maxU − maxV ], and II represents
[max(Z + U)−maxZ −maxU ]: (Fig. 1)

It is shown by the graph that the two channel retailers may form a coalition first only when the two price-
sensitive coefficients are close.

Next, we take a sample to see how the pricing alliance forms, and compare the profit of the last member in
the tripartite competition model and in the centralized decision model.

Given a = 200, λ = 0.6, δ = 2 and θ = 1. Apparently, the offline retailer is one member of the optimal
two-player coalition. Then we focus on finding out the other member. Because

[max(U + V )−maxU −maxV ]− [max(Z + U)−maxZ −maxU ] = 139.6− 609.8 = −470.2,

the manufacturer is the other member of the optimal two-player coalition (see Fig. 2 below).
We show the following line chart to describe the change of online retailer’s profit, where point 1 represents the

profit in the tripartite competition case, point 2 represents the profit in the case when the optimal two-player
coalition forms, and point 3 represents the profit in the case when the online retailer joins in the coalition.

By the above illustration, we know that the profit of online retailer in the big alliance is lower than the one
in the tripartite competition situation. However, if he doesn’t join the alliance, his profit must be lower.
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Figure 2. The change of online retailer’s profit in different situations.

7. Conclusions

In this paper, we investigate tripartite games in a dual-channel supply chain under both competition and
cooperation situations.

In the competition situation, a Stackelberg game between the manufacturer and two retailers and a Bertrand
game between two retailers are involved. The uniqueness of all the optimal prices is demonstrated. The impor-
tance of the channel preference is highlighted. It is shown that the channel which attracts more consumers’
purchasing preference is charged a higher wholesale price by the manufacturer and the channel meanwhile
declares a higher sales price.

In the cooperation situation, the fact that any two participants’ cooperation incurs a reduction on the revenue
of the other one is revealed. The equal distribution criterion of the additional revenue increased by cooperation
is proposed to allocate the aggregate revenue. Following that, the issue of an optimum two-player coalition is
discussed.

This paper hasn’t considered the difference of both the expected marginal demands and the shift coefficients
for the two channels, which is a limitation of the current research. Actually, consumers may have different
sensibilities for the sales prices on different sales channels. Some different results may be obtained by considering
this point. Besides, in order to avoid a great deal of computation, stock-holding costs, ordering costs, and
distribution costs are not considered. In our following research, we will take more factors into consideration
when dealing with dual-channel pricing issues.

Appendix A.

The proof for the following conclusion: the value of

[max(U + V )−maxU −maxV ]− [max(Z + U)−maxZ −maxU ]

depends on δ and θ, where λ > 1/2.

Proof. By the obtained results, we have

max(U + V ) =
δλ2a2 + δ(1− λ)2a2 + 2θλ(1− λ)a2

16 (δ2 − θ2)
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=
16δ5λ2a2 + 16δ5(1− λ)2a2 + 324δθλ(1− λ)a2

16 (δ2 − θ2) (4δ2 − θ2)2
+
δθ4λ2a2 + δθ4(1− λ)2a2 + 2θ5λ(1− λ)a2

16 (δ2 − θ2) (4δ2 − θ2)2

− 8δ3θ2λ2a2 + 8δ3θ2(1− λ)2a2 + 16δ2θ3λ(1− λ)a2

16 (δ2 − θ2) (4δ2 − θ2)2
,

maxU =
δ[2δλ+ θ(1− λ)]2a2

4 (4δ2 − θ2)2
=

16δ5λ2a2 + 16δ4θλ(1− λ)a2 + 4δ3θ2(1− λ)a2

16 (δ2 − θ2) (4δ2 − θ2)2

− 16δ3θ2λ2a2 + 16δ2θ3λ(1− λ)a2 + 4δθ4(1− λ)2a2

16 (δ2 − θ2) (4δ2 − θ2)2
,

and

maxV =
δ [2δ(1− λ) + θλ]2 a2

4 (4δ2 − θ2)2
=

16δ5(1− λ)2a2 + 16δ4θλ(1− λ)a2 + 4δ3θ2λ2a2

16 (δ2 − θ2) (4δ2 − θ2)2

− 16δ3θ2(1− λ)2a2 + 16δ2θ3λ(1− λ)a2 + 4δθ4λ2a2

16 (δ2 − θ2) (4δ2 − θ2)2
·

Afterwards, it is obtained that

max(U + V )−maxU −maxV

=
4δ3θ2

[
λ2 + (1− λ)2

]
a2 + 16δ2θ3λ(1− λ)a2 + 5δθ4

[
λ2 + (1− λ)2

]
a2 + 2θ5λ(1− λ)a2

16 (δ2 − θ2) (4δ2 − θ2)2
· (A.1)

In addition, for the other additional value, we have

max(Z + U) =
2δ2λ2a2 + δ2(1− λ)2a2 + 4δθλ(1− λ)2a2 + θ2(1− λ)2a2

4δ(2δ2 − 2θ2)

=
32δ6λ2a2 + 16δ6(1− λ)2a2 + 64δ5θλ(1− λ)a2 − 16δ4θ2λ2a2 + 8δ4θ2(1− λ)2a2

8δ (δ2 − θ2) (4δ2 − θ2)2

− 32δ3θ3λ(1− λ)a2 − 2δ2θ4λ2a2 + 7δ2θ4(1− λ)2a2 − 4δ5θλ(1− λ)a2 − θ6(1− λ)2a2

8δ (δ2 − θ2) (4δ2 − θ2)2
,

maxZ =
2δ3λ2a2 + 2δ3(1− λ)2a2 + 6δ2θλ(1− λ)a2 + δθ2λ2a2 + δθ2(1− λ)2a2

(4δ2 − θ2) (4δ − 4θ)

=
16δ6λ2a2 + 16δ6(1− λ)2a2 + 48δ5θλ(1− λ)a2 + 4δ4θ2λ2a2 + 4δ4θ2(1− λ)2a2

8δ (δ2 − θ2) (4δ2 − θ2)2

− 12δ3θ3λ(1− λ)a2 + 2δ2θ4λ2a2 + 2δ2θ4(1− λ)2a2

8δ (δ2 − θ2) (4δ2 − θ2)2
,

and

maxU =
δ [2δλ+ θ(1− λ)]2 a2

4 (4δ2 − θ2)2

=
8δ6λ2a2 + 8δ5θλ(1− λ)a2 + 2δ4θ2(1− λ)2a2

8δ (δ2 − θ2) (4δ2 − θ2)2

− 8δ4θ2λ2a2 + 8δ3θ3λ(1− λ)a2 + 2δ2θ4(1− λ)2a2

8δ (δ2 − θ2) (4δ2 − θ2)2
·
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Then we obtain that

max(Z + U)− maxZ −maxU

=
8δ6λ2a2 + 8δ5θλ(1− λ)a2 + 2δ4θ2(1− λ)2a2 − 12δ4θ2λ2a2 − 12δ3θ3λ(1− λ)a2

8δ (δ2 − θ2) (4δ2 − θ2)2

+
4δ2θ4λ2a2 − 3δ2θ4(1− λ)2a2 + 4δθ5λ(1− λ)a2 + θ3(1− λ)2a2

8δ (δ2 − θ2) (4δ2 − θ2)2

=

[
8δ4λ2 − 4δ2θ2λ2 + 8δ3θλ(1− λ)− 4δθ3λ(1− λ) + 2δ2θ2(1− λ)2 − θ4(1− λ)2

]
a2

8δ (4δ2 − θ2)
· (A.2)

It is easy to find that the value of [max(U + V ) − maxU − maxV ] will be very large when the difference
between δ and θ is small enough. By contrast, the value of [max(Z+U)−maxZ−maxU ] isn’t affected directly
by the difference between δ and θ. Hence, when the difference between δ and θ is smaller than a certain threshold
value, the value of [max(U+V )−maxU−maxV ] will be larger than the value of [max(Z+U)−maxZ−maxU ].

Moreover, by comparing the highest order items in (A.1) and (A.2), we find that the value of [max(Z +U)−
maxZ−maxU ] grows faster than the value of [max(U+V )−maxU−maxV ] with the increase on the difference
between δ and θ.

For example, when δ = 2θ, (A.1) is transformed to

max(Z + U)−maxZ −maxU

=

[
8δ4λ2 − 4δ2θ2λ2 + 8δ3θλ(1− λ)− 4δ3θλ(1− λ) + 2δ2θ2(1− λ)2 − θ4(1− λ)2

]
a2

8δ (4δ2 − θ2)2

=
3θ2

[
16δ4λ2 − 8δ2θ2λ2 + 16δ3θλ(1− λ)− 8δθ3λ(1− λ) + 4δ2θ2(1− λ)2 − 2θ4(1− λ)2

]
a2

16δ (δ2 − θ2) (4δ2 − θ2)2
·

By δ > θ, we have

max(Z + U)−maxZ −maxU

=
3θ2

[
16δ4λ2 − 8δ2θ2λ2 + 16δ3θλ(1− λ)− 8δθ3λ(1− λ) + 4δ2θ2(1− λ)2 − 2θ4(1− λ)2

]
a2

16δ (δ2 − θ2) (4δ2 − θ2)2

>
3θ2

[
8δ4λ2 + 8δ3θλ(1− λ) + 2δ2θ2(1− λ)2

]
a2

16δ (δ2 − θ2) (4δ2 − θ2)2

=
24δ4θ2λ2a2 + 24δ3θ3λ(1− λ)a2 + 6δ2θ4(1− λ)2a2

16δ (δ2 − θ2) (4δ2 − θ2)2
·

Besides, by λ > 1/2 we have

max(U + V )−maxU −maxV

=
4δ4θ2

[
λ2 + (1− λ)2

]
a2 + 16δ3θ3λ(1− λ)a2 + 5δ2θ4

[
λ2 + (1− λ)2

]
a2 + 2δθ5λ(1− λ)a2

16δ (δ2 − θ2) (4δ2 − θ2)2

<
9δ4θ2λ2a2 + 9δ4θ2(1− λ)2a2 + 18δ3θ3λ(1− λ)a2

16δ (δ2 − θ2) (4δ2 − θ2)2

<
18δ4θ2λ2a2 + 18δ3θ3λ(1− λ)a2

16δ (δ2 − θ2) (4δ2 − θ2)2
·

Hence, the value of [max(Z +U)−maxZ −maxU ] is larger than the value of [max(U + V )−maxU −maxV ]
under δ = 2θ.
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Moreover, the proportion of the market share also plays an important role by comparing the above expressions.
Given the above, whether the value of

[max(U + V )−maxU −maxV ]− [max(Z + U)−maxZ −maxU ]

is positive or negative depends on λ, δ and θ. �

Appendix B.

The proof for the following two conclusions:
(1) When (Z, U) is the optimum two-player coalition, the difference between V ∗ and max V depends on δ, θ,

and λ.
(2) When (U , V ) is the optimum two-player coalition, Z∗ is higher than max Z, i.e., the final revenue of the

manufacturer is still higher than the one he gains in the complete competition situation, though he is not a
member of the optimum two-player coalition.

Proof. (1) We consider the conclusion with regard to V ∗ (given by (5.34)) and maxV (given by (4.12)). The
difference between max(Z + U + V ) and max(Z + U) is

max(Z + U + V )−max(Z + U) =
(1− λ)2a2

8δ
·

By (5.34), the value of V ∗ is then obtained as follows:

V ∗ =
(1− λ)2a2

12δ
·

By comparing V ∗ and maxV , we have

V ∗ −maxV =

[
4δ4(1− λ)2 − 12δ3θλ(1− λ)− 3δ2θ2λ2 − 8δ2θ2(1− λ)2 + θ4(1− λ)2

]
a2

12δ (4δ2 − θ2)2
·

By the above expression we can see, whether the difference between V ∗ and maxV is positive or negative,
depends on δ, θ, and λ.

(2) First, the difference between max(Z + U + V ) and max(U + V ) is given as follows:

max(Z + U + V )−max(U + V ) =
3δλ2a2 + 3δ(1− λ)2a2 + 6θλ(1− λ)a2

16 (δ2 − θ2)
·

By (5.35), the value of Z∗ is then obtained as follows:

Z∗ =
7δλ2a2 + 7δ(1− λ)2a2 + 14θλ(1− λ)a2

48 (δ2 − θ2)
·

By comparing Z∗ and max Z, we have

Z∗ −maxZ =

(
4δ3 − 19δθ2

) [
λ2 + (1− λ)2

]
a2 −

(
16δ2θ + 14θ3

)
(1− λ)λa2

48 (4δ2 − θ2) (δ2 − θ2)
·

By the above expression we can see, whether the difference between Z∗ and max Z is positive or negative,
depends on δ, θ, and λ.
In reality, by the expressions, V ∗ (or Z∗) may be larger than max V (or max Z) only when δ is great larger
than θ.
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