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A LOWER BOUND ON THE GLOBAL POWERFUL ALLIANCE NUMBER IN
TREES

SALIHA QUATIKI"* AND MOHAMED BOUZEFRANE?

Abstract. For a graph G = (V,E), a set D C V is a dominating set if every vertex in V — D is
either in D or has a neighbor in D. A dominating set D is a global offensive alliance (resp. a global
defensive alliance) if for each vertex v in V — D (resp. v in D) at least half the vertices from the closed
neighborhood of v are in D. A global powerful alliance is both global defensive and global offensive.
The global powerful alliance number 7,4 (G) is the minimum cardinality of a global powerful alliance of
G. We show that if T is a tree of order n with [ leaves and s support vertices, then v,q(T") > Mﬁ”
Moreover, we provide a constructive characterization of all extremal trees attaining this bound.
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1. INTRODUCTION

Let G = (V,E) be a finite and simple graph of order n. The open neighborhood of a vertex v is N(v) =
{u € V | uv € E} and the closed neighborhood of v is N [v] = N(v) U{v}. The degree of v, denoted by dg(v), is
the size of its open neighborhood. For a vertex v, the eccentricity of v is the maximum of the distance to any
vertex in the graph. The diameter of G noted diam(G) is the maximum of the eccentricity of any vertex in the
graph. A vertex of degree one is called a pendant vertex or a leaf and its neighbor is called a support vertex. A
support vertex with exactly one non-leaf neighbor is called a pendant support vertex. If v is a support vertex,
then L, will denote the set of the leaves attached at v. A support vertex v is said to be strong if |L,| > 2 and
weak otherwise. We denote the set of leaves of a graph G by L(G) and the set of support vertices by S(G),
and let |L(G)| = I(G), |S(G)| = s(G) (we use [, s if there is no ambiguity). We write P, for the path of order
n. If a tree T' = P, we consider without loss of generality that P, has one support vertex and one leaf, so
I(Py) = s(Py) = 1. A star S, is the complete bipartite graph K ,. A tree containing exactly two non-pendant
vertices is called a double star. A double star with respectively p and ¢ leaves attached at each support vertex
is denoted by S, 4. Denote by T}, the subtree induced by a vertex x and its descendants in a rooted tree 7.

In [8], Hedetniemi et al. introduced several types of alliances in graphs including the offensive and the defensive
alliances and the powerful alliances we consider here. A dominating set D of G is called a global offensive alliance
(resp. a global defensive alliance) if for each vertex v in V' — D (resp. v in D) at least half the vertices from
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the closed neighborhood of v are in D : |[N[v] N D| > |N[v] — D|. Alliances in graph were studied in [1-9]. A
global powerful alliance is both global defensive and global offensive which is equivalent to saying that for every
vertex v in V,|N[v] N D| > |N[v] — D|. The global powerful alliance number v,,(G) is the minimum cardinality
of a global powerful alliance. The entire vertex set is both a global offensive alliance and a global defensive
alliance for any graph G, so every graph G has a global powerful alliance number. Note that this parameter
has been little studied in literature since its introduction. We abbreviate global powerful alliance as gpa. A gpa
with minimum cardinality 7,,(G) is called a 7,4(G)-set. A lower bound for a global powerful alliance number
for any tree with equal powerful alliance and global powerful alliance numbers was given in [2] in term of the
maximum degree A(G). They show that v, (T) > [%] and they characterize all such trees achieving this
bound. In [3], Cami et al. have proved that finding an optimal global powerful (offensive, defensive) alliance is
an NP-complete problem. However, a linear time algorithm that finds the smallest global powerful alliance of
any weighted tree was given in [7].

2. LOWER BOUND

We begin by giving the global powerful alliance number of a tree T', where T is either a star or a double star.

2411,

Observation 2.1. If T' is a star S, then 7,,(S)) 5

Observation 2.2. If T is a double star S, ¢, then v,4(Sp,q) = [Z51] + [ ].
The following observation about a support in a y,q(G)-set will be useful.

Observation 2.3. If G is a connected graph of order at least three, then there exists a v, (G)-set that contains
all support vertices.

Proof. If a 7,4 (G)-set, D does not contain a support vertex u, then D contains all leaves of u. So, we can replace
any leaf of u by u in D. O

We now present our main result of this section.

Theorem 2.4. Let T be a tree of order n with | leaves and s support vertices. Then Ypo(T') > W

Proof. We proceed by induction on the order of T'. Clearly, the result holds for 1 < n < 3 where T is P, and
thus e (T) > w Let n > 4 and assume that every tree T” of order n’,4 < n’ < n with I’ leaves
and s’ support vertices verifies 7y, (1") > w}# Let T be a tree with [ leaves and s support vertices.
If diam(T) = 2, then T is a star S, and from Observation 2.1, 7,4 (Sp) = [%1 Since, n = p+1,s =1
and [ = p, we get vpo(T) > W = %. If diam(T) = 3, then T = S, ; and from Observation 2.2,
Ypa(Spq) = [EEL] + |41, Since n =p+ g+ 2,1 = p+ ¢ and s = 2, we obtain v, (Sy,q) > LHECS = 3n=2l-st2
and hence the result is valid. Assume that diam(T) = ¢ > 4. Let T be rooted at a leaf u; of a maximum
eccentricity, that is ecc(u;) = diam(T) and let u; be a support vertex at distance diam(T) — 1 from wu;. Let
ui+1,0 <4 <t —1 be the parent of u; in the rooted tree. Let P : ug,uq,...,us be then the resultant diametral
path. It’s clear that uy is a pendant support vertex. Let D be a 7,q(T)-set with a fewest possible number of

leaves. Consider the following cases.

Case 1. |L,,| = k > 3. By the choice of D, both vertices u; and us are in D and D contains | %51 leaves of

uy. Let v/ be any leaf of uy not in D. Let T/ =T — (L,, — ') (see Fig. 1), then n’ =n—-k+1,I'=1—-k+1
and s’ = s. Since, diam(T) > 4 then n’ > 5. Clearly DN V(T") is a gpa of T" and s0 Ypa(T”) < vpa(T) — [ 552 ].
Using the inductive hypothesis on T”, we get vpo (1) > w + L%J Sincen’ =n—k+1,I'=1—-k+1

and s' = s then v, (T) > n=2l=st2 4 1ok 4 | kol |, Sno2lostd
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FiGURE 1. T =T — (L,, — ).

ut(t > 4) ut
o o

(a) : [N[u2] N D| > [N[uzg] — D|. (®) : [N[uz] N D| = [N[uz] — D|.

FIGURE 2. The black vertices are in D. In (a), T/ = T — T,,. In (b), T" = T — {v} or
T =T — (T, U{v'}).

Case 2. |L,,| = k < 2and DNL(u1) = 0. Any child of us is either a leaf or a support vertex. By Observation 2.3
and the minimality of D, both u; and uy are in D.

Subcase 2.1 dr(uz) > 3. Assume us is a support vertex with |L,,| = p > 2 or us has a child which is a support
vertex. Then, if [Nug]ND| > |Nuz] — D|, let us consider T/ = T'—T,, (see (a) in Fig. 2). As diam(T') > 4, then
n’ > 4.1t is obvious that DNV (T"”) is a gpa of T” implying that v,q(T") < Ype(T)—1. Hence, Ypo (T) > Ypa(T")+1.
Using the inductive hypothesis on 7", we obtain 7, (1) > w + 1. Sincen’ =n—-1-kIl'=1-k
and s’ = s — 1, we get Ypo(T) > W + % > 3”_21%"’2 Suppose now that uy is a support vertex with
|N[ug] N D| = |Nuz] — D|. Let v' be a leaf-neighbor of us not in D and let T/ = T — (T, U {v'}) (see (b.2)
in Fig. 2). Clearly, D N V(I") is a gpa of T" which implies that 7,4 (T") < 7pa(T) — 1. Using the inductive
hypothesis on T”, we get Ypq (1) > 73’”,*22]*542 +1.Sincen'=n—-2—-k,I'=1—k—1and s’ = s—1, we obtain
’Ypa(T) Z 3n72l575+2 + % Z 3n72éfs+2-

Suppose now that usy is a support vertex with |L,,| = 1 and dr(uz) = 3 (see (a.2) in Fig. 2). If ug € D,
then we consider 7" = T'— T),,. As before, it can be seen that vy, (T) > 32=2.=%2 Thus, assume that uz & D.
Hence, ug is not a support vertex according to the Observation 2.3. Let vy be the unique leaf of us in T" and let
us consider 77 = T — {wo} (see (b.1) in Fig. 2). We have diam(T') > 4 and so n’ > 5. The set DNV (T") is a
gpa of T” implying that v,q(T") < vpe(T). Using the inductive hypothesis on 7" and since n’ =n—-1,I'=1-1
and s’ = s — 1, we obtain v, (T) > 3”_21%”

Subcase 2.2 dr(us) = 2. Suppose uz € D. Any child of us is either a leaf or a support vertex or a non-leaf
neighbor of a support vertex. According to Observation 2.3, and the minimality of D, any non-leaf neighbor of
ug is in D. Assume that |[N[uz]ND| > |N[ug] — D] (see (a.1) in Fig. 3). Let us consider 7/ = T'—T,,. It is easy to
check that if 7" = K then n = k+4,0l = k+1 and s = 2 and 50 7, (T) = 3 > 32=2=st2 — k410 4 the result
holds. Further, T" # S5 otherwise |N[ug] N D| = |N[us] N (V — D)|. Thus n’ > 4 and DNV (T’) is a gpa of T"
implying that v,q(T") < vpa(T) — 2. Using the inductive hypothesis on 7" and since n’ =n—2—k,I' <l—-k+1
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gan
(1)
(a) : IN[uz] N D| > [N[uz] — D|.

FIGURE 3. In (a): either ug is in D or not, we consider 7" =T — T,.

Uug

() : IN[ug] N D| = [N[ug] — DI.

F1GURE 4. In (b), if ug € D,T' =T — {wo} if dr(us) = 3, otherwise, T/ =T — (T, U {wo}).
fus & D, T =T —T,,.

and s’ < s, we obtain v, (T) > w + % > W Let us remark that the case when dr(u3) = 2 is
included in this case.

Suppose now that |N[us] N D| = |N[ug] — D|. If dp(us) = 3, then |L,,| = 1 and u4 is not in D (see (b.1)
in Fig. 4). Let wy be the unique leaf of uz and let us consider 77 = T — {wg}. As diam(T) > 4 then n’ > 5.
Clearly, DN V(T") is a gpa of T implying that v, (T") < Ypa(T'). Using the inductive hypothesis on 7" and
sincen’ =n—1,I'=1—1and s = s — 1, we obtain v, (7)) > 32=2=st2

Suppose now that dp(us) > 3. So, |Ly,| > 2 and uz has necessarily a leaf say wy ¢ D. Let us consider
T =T—(Ty, U{wo}) (see (b.2) in Fig. 4). If uy € D then |L,,| > 3 and so n’ > 4. Otherwise, ug & D, |Ly,| > 2
and L,, N D = . Thus, us has a non-leaf child in DNV (T”) and then n’ > 4. Clearly, DNV (T") is a gpa of T”
implying that vpe(T") < 4pa(T) — 2. Using the inductive hypothesis on 7" and since n’ =n—-3—k, ' =1—-1—k
and ' = s — 1, we obtain 7, (T) > ?’”'*QEA +2 > 3n=2lost2 4 4ok Gince k < 2 then we obtain v, (T) >
3”’21%*2. Suppose now that uz € D. Then ug is different from a support vertex according to Observation 2.3.
Further, ug cannot be the unique non-leaf neighbor of a support vertex as it can replace any leaf in D of its
support neighbor which is a contradiction. So, any neighbor of usz is in D. If |N]usz] N D| > |N[us] — D] (see
(a.2) in Fig. 3). Let us consider 7" = T — T,,, and we proceed with the same manner as previously (the case
dr(u3) = 2 is included here). Assume now that |N[uz]ND| = |N[us]— D|. So, dr(u3) = 3 and uy4 is not in D (see
(b.3) in Fig. 4). Let w, v be the children of ug and w, respectively in T,,, and let us consider 7" =T —T,,,. If w is
a support vertex then |L,,| = 1 otherwise, us may replace a leaf of w in D which is a contradiction. Set |L, | = p.
By analogy to L, p < 2. As uyg,us € D, then uy has at least two neighbors in DNV (T"). The vertex u; cannot
be a parent of u4 otherwise uy is a support vertex and then u, will be in D which is a contradiction. So, n’ > 4.
It is obvious that D NV(T”) is a gpa of T” implying that v,,(T") < vpa(T) — 4. Using inductive hypothesis on
T and sincen’ >n—6—p—k,I' <l—p—Fkand s <s—2, we obtain y,,(T) > 3"_Qé_s+2 + 4_(€+k). As
p+ k < 4 then we get v, (T) > W and the result holds.
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_ 3n—2l—s+2
3. TREES WITH 7, (T) = =5
In this section, we characterize the extremal trees attaining the bound given in the Theorem 2.4. For the
purpose, we define a family § of all trees T' that can be obtained from the sequence 11,75, ...,Tk(k > 1) of
trees, where 73 is the path Py, T = T}, and if k > 2, T} is obtained recursively from 7; by the operation listed
below.

— Operation O: Assume u is a support vertex of T;. Then the tree T;,1 is obtained from T; by adding one leaf
by attachment edge to v and by adding a path Ps : zyz by joining u to y.

3.1. Preliminary results
From the way in which a tree T € § is constructed, we make the following observation.

Observation 3.1. Let T be a tree of § different from P,. Then every non-leaf vertex of T is a strong support
vertex.

Theorem 3.2. Let T be a nontrivial tree with | leaves and s support vertices. If T' € § then vpq(T) = w

Proof. Let T be a tree of §. We use induction on the number of operations O performed to construct 7.
Clearly, if T = T1 = P> then v,,(T) =1 = ?’”_21%"’2 Assume that the property is true for all trees of
§ constructed with & — 1 > 0 operations, and let T be a tree of § constructed with k operations. Thus
T is obtained by performing the operation O on a tree T = Tp_; € § of order n’ with I’ leaves and s’
support vertices. By the induction hypothesis, we have v,,(T") = w By Observation 2.3, there exist
a Ypa(T")-set that contains the support vertex w. Such a set can be extend to a gpa of T by adding y. Then,
Ypa(T) < vpo(T') + 1 = w + 1. On the other hand, let D be a 7,,(T)-set with a fewest possible
number of leaves. So, by the minimality of D and Observation 2.3, both u and y are in D. Let «' be the leaf
of uin T—T.Hw ¢ D then DNV(T') is a gpa of T'. Otherwise, we replace v’ € D by any leaf of u in
T’ not in D. It follows then that D NV(T”) is a gpa of T' implying that v,(T") < Ypa(T) — 1. We deduce
then that 7po(T) = Ypa(T") + 1 = W +1. Sincen’ =n—-41' =1—-3and s = s — 1, we get
’Vpa(T) —_ 3n—2é—s+2. 0

3.2. The main result

Theorem 3.3. Let T be a nontrivial tree with | leaves and s support vertices. Then vpq(T) = W if and
only if T € §.

Proof. The sufficiency follows from Theorem 3.2. To prove the necessity, we proceed by induction on the order
n of a tree T' verifying ypq(T) = 32=2=542 We shall prove that T' € §. If diam(T) = 1, then T = K, € §. If
diam(T) = 2 then T is a star S, with p > 2 and from Observation 2.1, 7,,(T) = [2H1] > % = Sn=2lostd f
diam(T) = 3 then T is a double star S, ; and by Observation 2.2, v, (T) = [ 25|+ [ 22 | = p+g+6 = Sn=2los?
if and only if p=¢ =2 and Sz 2 € §. So, diam(T) > 4. Suppose now that every tree T” of order n’,5 <n’ <n
with I’ leaves and s’ support vertices such that v, (") = w is in §.

If any non-pendant support vertex, say t of T is weak, then let 7" be the tree obtained from T' by removing
a leaf, say t' adjacent to t. So, any 7, (T')-set with a fewest possible number of leaves is a gpa of T” implying
that v, (7") < 32=2=2%2 Sincen = n' + 1,1 = '+ 1 and s = s’ + 1 we get ypa(T") < w The
equality holds by Theorem 2.4 and consequently by using the inductive hypothesis, we deduce that 77 € §.
By Observation 3.1, we deduce that t is a strong support vertex of T” as it is different from a leaf which is a
contradiction. Henceforth, we can assume that any non-pendant support vertex of T is strong.

Let diam(T) = t and let P : ug,uy,...,us, (t > 4) be a diametral path and root T at u;. Clearly ug is a
pendant support vertex. Let D be any ~,,(T)-set that contains the fewest possible number of leaves.
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(@) : ug is not a support. (b) : [Lug| = 2.

FIGURE 5. In both cases (a) and (b), T =T — T, .

Claim 3.4. |L,, | <2.

Proof. Suppose |L,,| = k > 3. By the choice of D, both vertices u; and us are in D and D contains | %]
leaves of u;. Let v’ be any leaf of u; not in D. Let T/ = T — (L,, — {v'}) (see Fig. 1). As diam(T) > 4 and
k—12>2thenn’ > 5. Clearly, DNV(T") is a gpa of T” and 50 Ypa(T") < vpa(T) — LQJ = Sn=2lost? Lkzlj
Sincen=n"+k—1,l=0I'4+k—1and s =4, Weobtaulnvpa(T’)<371_2[7_ng2 Lij 3"_2[%“
which contradicts Theorem 2.4. g

By Claim 3.4 and the choice of D, both u; and ug are in D and D N L(uy) = 0. Consider the following cases.
Case 1. dp(uz) > 3.

Claim 3.5. us is a support vertex.

Proof. Any child of us is either a leaf or a support vertex. Suppose uo has a neighbor say v which is a support
vertex (see (a) in Fig. 5). By Claim 3.4, |L,| < 2 and so {uy,u2,v} C D. Let us consider 7" = T — T,,,. So

diam(T’) > 4 and then n’ > 5. Obviously, D NV (T”) is a gpa of T" implying that v,4(T") < vpe(T) — 1 =
Sn=2lost2 1 Since n =n'+1+|Ly,|,l =1'+|Ly,| and s = s'+1, we obtain 7,4 (") < 3”/*21;7842 1L 175

5
3n'—2U' —s'+2 1 < 3n'—2U' —s'+2
5 5 5

O IA

which contradicts Theorem 2.4.

Claim 3.6. |L,,| > 3.

Proof. By Claim 3.5, us is a non-pendant support vertex, then by the remark given above, us is a strong support
vertex. Assume that |L,,| = 2. By the minimality of D and Observation 2.3, {u1,us2,us} C D. Let us consider
T =T-T,, (see (b) in Fig. 5). As diam(T) > 4 and |L,,| = 2 then n’ > 5. We proceed with the same manner
as in the proof of Claim 3.5 and we get a contradiction. O

Claim 3.7. |L,,| =2.

Proof. By Claim 3.4, |L,,| < 2. Suppose |L,,| = 1. By the minimality of D, Observation 2.3 and Claim 3.6, D

contains {u1, us, us} and L‘L“?#J leaves of ug. Since ug € D and D is a defensive alliance, then |N[ug] N D] >
|N[ug] — D| (see Fig. 6). Suppose this inequality is strict and let us consider 77 = T — Ty, (see (a) in Fig. 6).
We get a contradiction with the same manner as in the proof of the Claim 3.5.

Thus, |N[uz] N D| = |N[ug] — D|. Let v be a leaf of ug not in D. Let us consider then 7/ =T — T, — {v}
(see (b) in Fig. 6). As diam(T) > 4 and |L,,| > 3, then n’ > 5. Clearly, DNV (T") is a gpa of T’ implying
that vpq (1) < Ypa(T) — 1 = 32=2=542 _ 1 Since n = n' + 2+ |Ly,|,l = ' + 1+ |L,,| and s = s’ + 1, we
deduce that v, (T") < 3"/_2l5:_5/+2 + IL“I‘ 2 Since |Ly,| = 1, then v,,(T") < w which contradicts
Theorem 2.4. (]
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O uQ O ug
(a) : [N[ug] N D[ > [N[ug] = D|.  (b) : [N[uz] N D| = |[N[uz] — D]|.

FIGURE 6. Case |L,,|=1.In(a): 7' =T —Ty,,in (b): T =T - T,, — {v}.

So, by Claim 3.7 and its proof, |L,,| = 2 and |N[ug] N D| = |N[ug] — D|. Let then v be a leaf of us not in
D and let us consider then 7" = T' — T, — {v}. From the proof of Claim 3.7, we get v,q(T") < ?’",_2%#
Thus, the equality holds by Theorem 2.4. Using the inductive hypothesis, we deduce that 7/ € §. Thus T € §
since it is obtained from T” by applying operation O.

Case 2. dp(u2) = 2.
Claim 3.8. dp(us3) > 3.

Proof. Suppose dr(ug) = 2. Either us or uy is in D. Without loss of generality, we suppose that uy € D as
we may replace ug in D by u4. Let us consider 7" = T — Ty, (see (a) in Fig. 7). It is easy to check that if
T' = Sp,1 < p < 3orT = Py then 7,,(T) € {3,4} > 3n=2=st2 o p/ > 5. Clearly, D N V(") is a gpa
of T implying that vpe(T7) < Ypa(T) — 2 = W — 2. We have n = n’ + 2+ |Ly,|. If uyg is a support
vertex then s = s’ +1and [ =1' — 1+ |Ly,|. Thus, v,,(T") < 3”,7215/75/” + ‘L“'15|_3. By Claim 3.4, |L,,| <2
then 7, (T7) < w — % < w which contradicts Theorem 2.4. Suppose now that uy is not
a support vertex, so s = s’ and | = ' — 1+ |L,,|. It follows that v,(7") < 3”/_2{,1_5/"’2 + ‘L'“%I_z. Since
|Ly, | < 2,if |Ly,| = 1, we get vpo(T7) < w which contradicts Theorem 2.4. So |L,,| = 2 and then
Ypa(T") < 37/—215& We get the equality by Theorem 2.4 and using the induction hypothesis, we deduce that

T’ € §. So, by Observation 3.1, every non-leaf vertex of T” is a strong support vertex. Thus, u4 is a support
vertex in T' which contradicts our assumption. O

Claim 3.9. |N[u3] N D| = |N[us] — D|.

Proof. By Claim 3.8, dr(us) > 3. Each child of ug is either a leaf or a support vertex or a non-leaf neighbor
of a support vertex. Assume that |N[ug] N D| > |N[us] — D|. Let us consider 7" =T — T,,, (see (b) in Fig. 7).
We can easily check that 7" # S,,2 < p < 3 and T" # P, otherwise v, (1) > 3”_21%” which contradicts the
assumption on 7. So n’ > 5. Clearly, DNV (1) is a gpa of T” implying that v,q(T") < vpa(T)—2 = 3”_21%“—2.
Since n =n'4+2+ |Ly,|,l =U'4+|Ly,| and s = s’ + 1, we obtain 7,,(T") < 3"/*215'75/“ + lL“g|75. By Claim 3.4,
|Ly, | < 2 then v,q(T") < W -2« W which contradicts Theorem 2.4. O

Claim 3.10. ug is a support vertex.

Proof. Assume that ug is not a support vertex. So, by the minimality of D and Observation 2.3, every child of
ug is in D as it is either a support vertex or a non-leaf neighbor of a support vertex. Consequently, if ug € D
then |Nus] N D| > |N[ug] — D| (see (b) in Fig. 7) which contradicts Claim 3.9. So, us ¢ D and according to
Claim 3.9, dr(u3) = 3 and uyg € D (see (a) in Fig. 8). Then wuy is different from a support vertex, otherwise, by
the minimality of D and Observation 2.3, uy will be in D. Let v, u be the children of us and v, respectively in
Ty, If v is a support vertex then |L,| = 1 otherwise uz will be in D as it may replace any leaf of v in D. But the
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o] O

(a) : dp(uz) = 2. (®) : dp(ug) = 3, [N[uz] N D| > [N[uz] — D|.

FIGURE 7. In (b),us may be a support. In both cases (a) and (b), T/ =T — T,,.

|[N[uz] N D| = |N[us] — D

FiGURE 8. In (a): ug,uqs &€ D, T =T — T,,. In (b), ug is a strong support vertex and 7" =
T— T’u2 - {wo}

weakness of v contradicts our remark given above about the non-pendant support vertices which must be strong.
So, v is not a support vertex. Let us consider 7/ =T — T,,,. Since uyq & D, then uy has at least two neighbors in
DNV(T"). The vertex u; cannot be the parent of uy, otherwise uy € D as it may replace u; in D. Further, uy4
cannot be adjacent to a leaf or a support vertex, otherwise u4 is in D as it is a support or it can replace any leaf
in D of its support neighbor. It follows that diam(T") > 4 and n’ > 5. The set DNV (T”) is a gpa of T" implying
that Vpa(T") < Ypa(T) — 4 = 32222242 4 Since n = n' 4+ 5+ |Lu, |+ [Lul,l =" + |Ly, | + |Lyu| and s = 5" + 2,
we obtain 7,4 (7") < 3n’—21;—s/+2 + lLu1‘+5|Lu|_7. By Claim 3.4, |Ly, | + |Lu| < 4, we get v, (T") < w
which contradicts Theorem 2.4. O

It follows from the previous Claims and the remark given above that us is a strong support vertex verifying
|N[ug] N D| = |N[us] — D|. Let wg be a leaf of uz not in D. Let us consider 7" = T — (T}, U {wp}) (see (b)
in Fig. 8). It is easy to check that u; cannot be the parent of uz otherwise 77 = S3 and then ~,,(T) = 4.
So Ypa(T) > M%H which is a contradiction. So, n’ > 5. Clearly, D N V(T") is a gpa of T' implying that
Ypa(T") < Ypa(T) — 2 = 32=2=s42 _ 9 Since n = n' + 3+ Ly, |,l = '+ 1+ |Ly,| and s = s’ + 1 we get
Ypa(T') < S=2=s32 o [Ln o2 By Claim 3.4, |Ly,| < 2 and then ,e(T7) < 30/=2L=s"42 2 o dn/=2l/=s'+2
which contradicts Theorem 2.4 and the proof is complete. (I

4. CONCLUSION

We give in this paper a lower bound on the global powerful alliance number of any tree in terms of its
order and its numbers of leaves and support vertices. Moreover, we characterize all extremal trees attaining this
bound. Bouzefrane [1] shows that any tree T different from a star .S, with order n > 4,1 leaves and s support
vertices verifies 7y, (T) < %. The first author of this paper characterizes all extremal trees achieving this
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bound in [9]. Thus, we obtain a framing of the global powerful alliance number in the class of trees. Among the
open problems raised by our results, the following are of particular interest.

— Explore the bounds on the global powerful alliance number in particular classes of graphs like the unicycle
graphs, bipartite ones and the cactus.
— Characterize trees with a unique minimum global powerful alliance.
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the manuscript.
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