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A LOWER BOUND ON THE GLOBAL POWERFUL ALLIANCE NUMBER IN
TREES

Saliha Ouatiki1,∗ and Mohamed Bouzefrane2

Abstract. For a graph G = (V,E), a set D ⊆ V is a dominating set if every vertex in V − D is
either in D or has a neighbor in D. A dominating set D is a global offensive alliance (resp. a global
defensive alliance) if for each vertex v in V −D (resp. v in D) at least half the vertices from the closed
neighborhood of v are in D. A global powerful alliance is both global defensive and global offensive.
The global powerful alliance number γpa(G) is the minimum cardinality of a global powerful alliance of
G. We show that if T is a tree of order n with l leaves and s support vertices, then γpa(T ) ≥ 3n−2l−s+2

5
.

Moreover, we provide a constructive characterization of all extremal trees attaining this bound.
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1. Introduction

Let G = (V,E) be a finite and simple graph of order n. The open neighborhood of a vertex v is N(v) =
{u ∈ V | uv ∈ E} and the closed neighborhood of v is N [v] = N(v)∪ {v}. The degree of v, denoted by dG(v), is
the size of its open neighborhood. For a vertex v, the eccentricity of v is the maximum of the distance to any
vertex in the graph. The diameter of G noted diam(G) is the maximum of the eccentricity of any vertex in the
graph. A vertex of degree one is called a pendant vertex or a leaf and its neighbor is called a support vertex. A
support vertex with exactly one non-leaf neighbor is called a pendant support vertex. If v is a support vertex,
then Lv will denote the set of the leaves attached at v. A support vertex v is said to be strong if |Lv| ≥ 2 and
weak otherwise. We denote the set of leaves of a graph G by L(G) and the set of support vertices by S(G),
and let |L(G)| = l(G), |S(G)| = s(G) (we use l, s if there is no ambiguity). We write Pn for the path of order
n. If a tree T = P2, we consider without loss of generality that P2 has one support vertex and one leaf, so
l(P2) = s(P2) = 1. A star Sp is the complete bipartite graph K1,p. A tree containing exactly two non-pendant
vertices is called a double star. A double star with respectively p and q leaves attached at each support vertex
is denoted by Sp,q. Denote by Tx the subtree induced by a vertex x and its descendants in a rooted tree T .

In [8], Hedetniemi et al. introduced several types of alliances in graphs including the offensive and the defensive
alliances and the powerful alliances we consider here. A dominating set D of G is called a global offensive alliance
(resp. a global defensive alliance) if for each vertex v in V − D (resp. v in D) at least half the vertices from
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the closed neighborhood of v are in D : |N [v] ∩ D| ≥ |N [v] − D|. Alliances in graph were studied in [1–9]. A
global powerful alliance is both global defensive and global offensive which is equivalent to saying that for every
vertex v in V, |N [v] ∩D| ≥ |N [v]−D|. The global powerful alliance number γpa(G) is the minimum cardinality
of a global powerful alliance. The entire vertex set is both a global offensive alliance and a global defensive
alliance for any graph G, so every graph G has a global powerful alliance number. Note that this parameter
has been little studied in literature since its introduction. We abbreviate global powerful alliance as gpa. A gpa
with minimum cardinality γpa(G) is called a γpa(G)-set. A lower bound for a global powerful alliance number
for any tree with equal powerful alliance and global powerful alliance numbers was given in [2] in term of the
maximum degree 4(G). They show that γpa(T ) ≥ d4(T )+1

2 e and they characterize all such trees achieving this
bound. In [3], Cami et al. have proved that finding an optimal global powerful (offensive, defensive) alliance is
an NP-complete problem. However, a linear time algorithm that finds the smallest global powerful alliance of
any weighted tree was given in [7].

2. Lower bound

We begin by giving the global powerful alliance number of a tree T , where T is either a star or a double star.

Observation 2.1. If T is a star Sp, then γpa(Sp) = dp+1
2 e.

Observation 2.2. If T is a double star Sp,q, then γpa(Sp,q) = bp+1
2 c+ b q+1

2 c.

The following observation about a support in a γpa(G)-set will be useful.

Observation 2.3. If G is a connected graph of order at least three, then there exists a γpa(G)-set that contains
all support vertices.

Proof. If a γpa(G)-set, D does not contain a support vertex u, then D contains all leaves of u. So, we can replace
any leaf of u by u in D. �

We now present our main result of this section.

Theorem 2.4. Let T be a tree of order n with l leaves and s support vertices. Then γpa(T ) ≥ 3n−2l−s+2
5 .

Proof. We proceed by induction on the order of T . Clearly, the result holds for 1 ≤ n ≤ 3 where T is Pn and
thus γpa(T ) ≥ 3n−2l−s+2

5 . Let n ≥ 4 and assume that every tree T ′ of order n′, 4 ≤ n′ < n with l′ leaves
and s′ support vertices verifies γpa(T ′) ≥ 3n′−2l′−s′+2

5 . Let T be a tree with l leaves and s support vertices.
If diam(T ) = 2, then T is a star Sp and from Observation 2.1, γpa(Sp) = dp+1

2 e. Since, n = p + 1, s = 1
and l = p, we get γpa(T ) > 3n−2l−s+2

5 = p+4
5 . If diam(T ) = 3, then T = Sp,q and from Observation 2.2,

γpa(Sp,q) = bp+1
2 c+ b q+1

2 c. Since n = p+ q + 2, l = p+ q and s = 2, we obtain γpa(Sp,q) ≥ p+q+6
5 = 3n−2l−s+2

5
and hence the result is valid. Assume that diam(T ) = t ≥ 4. Let T be rooted at a leaf ut of a maximum
eccentricity, that is ecc(ut) = diam(T ) and let u1 be a support vertex at distance diam(T ) − 1 from ut. Let
ui+1, 0 ≤ i ≤ t− 1 be the parent of ui in the rooted tree. Let P : u0, u1, . . . , ut be then the resultant diametral
path. It’s clear that u1 is a pendant support vertex. Let D be a γpa(T )-set with a fewest possible number of
leaves. Consider the following cases.

Case 1. |Lu1 | = k ≥ 3. By the choice of D, both vertices u1 and u2 are in D and D contains bk−1
2 c leaves of

u1. Let u′ be any leaf of u1 not in D. Let T ′ = T − (Lu1 − u′) (see Fig. 1), then n′ = n− k + 1, l′ = l − k + 1
and s′ = s. Since, diam(T ) ≥ 4 then n′ ≥ 5. Clearly D ∩ V (T ′) is a gpa of T ′ and so γpa(T ′) ≤ γpa(T )− bk−1

2 c.
Using the inductive hypothesis on T ′, we get γpa(T ) ≥ 3n′−2l′−s′+2

5 + bk−1
2 c. Since n′ = n− k+ 1, l′ = l− k+ 1

and s′ = s then γpa(T ) ≥ 3n−2l−s+2
5 + 1−k

5 + bk−1
2 c >

3n−2l−s+2
5 .
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Figure 1. T ′ = T − (Lu1 − u′).

Figure 2. The black vertices are in D. In (a), T ′ = T − Tu1 . In (b), T ′ = T − {v0} or
T ′ = T − (Tu1 ∪ {v′}).

Case 2. |Lu1 | = k ≤ 2 and D∩L(u1) = ∅. Any child of u2 is either a leaf or a support vertex. By Observation 2.3
and the minimality of D, both u1 and u2 are in D.

Subcase 2.1 dT (u2) ≥ 3. Assume u2 is a support vertex with |Lu2 | = p ≥ 2 or u2 has a child which is a support
vertex. Then, if |N [u2]∩D| > |N [u2]−D|, let us consider T ′ = T −Tu1 (see (a) in Fig. 2). As diam(T ) ≥ 4, then
n′ ≥ 4. It is obvious that D∩V (T ′) is a gpa of T ′ implying that γpa(T ′) ≤ γpa(T )−1. Hence, γpa(T ) ≥ γpa(T ′)+1.
Using the inductive hypothesis on T ′, we obtain γpa(T ) ≥ 3n′−2l′−s′+2

5 + 1. Since n′ = n − 1 − k, l′ = l − k
and s′ = s− 1, we get γpa(T ) ≥ 3n−2l−s+2

5 + 3−k
5 > 3n−2l−s+2

5 . Suppose now that u2 is a support vertex with
|N [u2] ∩ D| = |N [u2] − D|. Let v′ be a leaf-neighbor of u2 not in D and let T ′ = T − (Tu1 ∪ {v′}) (see (b.2)
in Fig. 2). Clearly, D ∩ V (T ′) is a gpa of T ′ which implies that γpa(T ′) ≤ γpa(T ) − 1. Using the inductive
hypothesis on T ′, we get γpa(T ) ≥ 3n′−2l′−s′+2

5 + 1. Since n′ = n− 2− k, l′ = l− k− 1 and s′ = s− 1, we obtain
γpa(T ) ≥ 3n−2l−s+2

5 + 2−k
5 ≥ 3n−2l−s+2

5 .
Suppose now that u2 is a support vertex with |Lu2 | = 1 and dT (u2) = 3 (see (a.2) in Fig. 2). If u3 ∈ D,

then we consider T ′ = T − Tu1 . As before, it can be seen that γpa(T ) > 3n−2l−s+2
5 . Thus, assume that u3 6∈ D.

Hence, u3 is not a support vertex according to the Observation 2.3. Let v0 be the unique leaf of u2 in T and let
us consider T ′ = T − {v0} (see (b.1) in Fig. 2). We have diam(T ′) ≥ 4 and so n′ ≥ 5. The set D ∩ V (T ′) is a
gpa of T ′ implying that γpa(T ′) ≤ γpa(T ). Using the inductive hypothesis on T ′ and since n′ = n− 1, l′ = l− 1
and s′ = s− 1, we obtain γpa(T ) ≥ 3n−2l−s+2

5 .

Subcase 2.2 dT (u2) = 2. Suppose u3 ∈ D. Any child of u3 is either a leaf or a support vertex or a non-leaf
neighbor of a support vertex. According to Observation 2.3, and the minimality of D, any non-leaf neighbor of
u3 is in D. Assume that |N [u3]∩D| > |N [u3]−D| (see (a.1) in Fig. 3). Let us consider T ′ = T −Tu2 . It is easy to
check that if T ′ = K2 then n = k+ 4, l = k+ 1 and s = 2 and so γpa(T ) = 3 > 3n−2l−s+2

5 = k+10
5 and the result

holds. Further, T ′ 6= S2 otherwise |N [u3] ∩D| = |N [u3] ∩ (V −D)|. Thus n′ ≥ 4 and D ∩ V (T ′) is a gpa of T ′

implying that γpa(T ′) ≤ γpa(T )−2. Using the inductive hypothesis on T ′ and since n′ = n−2−k, l′ ≤ l−k+ 1
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Figure 3. In (a): either u3 is in D or not, we consider T ′ = T − Tu2 .

Figure 4. In (b), if u3 ∈ D,T ′ = T − {w0} if dT (u3) = 3, otherwise, T ′ = T − (Tu2 ∪ {w0}).
If u3 6∈ D,T ′ = T − Tu3 .

and s′ ≤ s, we obtain γpa(T ) ≥ 3n−2l−s+2
5 + 2−k

5 ≥ 3n−2l−s+2
5 . Let us remark that the case when dT (u3) = 2 is

included in this case.
Suppose now that |N [u3] ∩ D| = |N [u3] − D|. If dT (u3) = 3, then |Lu3 | = 1 and u4 is not in D (see (b.1)

in Fig. 4). Let w0 be the unique leaf of u3 and let us consider T ′ = T − {w0}. As diam(T ) ≥ 4 then n′ ≥ 5.
Clearly, D ∩ V (T ′) is a gpa of T ′ implying that γpa(T ′) ≤ γpa(T ). Using the inductive hypothesis on T ′ and
since n′ = n− 1, l′ = l − 1 and s′ = s− 1, we obtain γpa(T ) ≥ 3n−2l−s+2

5 .
Suppose now that dT (u3) > 3. So, |Lu3 | ≥ 2 and u3 has necessarily a leaf say w0 6∈ D. Let us consider

T ′ = T − (Tu2 ∪{w0}) (see (b.2) in Fig. 4). If u4 ∈ D then |Lu3 | ≥ 3 and so n′ ≥ 4. Otherwise, u4 6∈ D, |Lu3 | ≥ 2
and Lu3 ∩D = ∅. Thus, u3 has a non-leaf child in D ∩ V (T ′) and then n′ ≥ 4. Clearly, D ∩ V (T ′) is a gpa of T ′

implying that γpa(T ′) ≤ γpa(T )−2. Using the inductive hypothesis on T ′ and since n′ = n−3−k, l′ = l−1−k
and s′ = s− 1, we obtain γpa(T ) ≥ 3n′−2l′−s′+2

5 + 2 ≥ 3n−2l−s+2
5 + 4−k

5 . Since k ≤ 2 then we obtain γpa(T ) >
3n−2l−s+2

5 . Suppose now that u3 6∈ D. Then u3 is different from a support vertex according to Observation 2.3.
Further, u3 cannot be the unique non-leaf neighbor of a support vertex as it can replace any leaf in D of its
support neighbor which is a contradiction. So, any neighbor of u3 is in D. If |N [u3] ∩ D| > |N [u3] − D| (see
(a.2) in Fig. 3). Let us consider T ′ = T − Tu2 and we proceed with the same manner as previously (the case
dT (u3) = 2 is included here). Assume now that |N [u3]∩D| = |N [u3]−D|. So, dT (u3) = 3 and u4 is not in D (see
(b.3) in Fig. 4). Let w, v be the children of u3 and w, respectively in Tu3 and let us consider T ′ = T −Tu3 . If w is
a support vertex then |Lw| = 1 otherwise, u3 may replace a leaf of w in D which is a contradiction. Set |Lv| = p.
By analogy to Lu1, p ≤ 2. As u4, u3 6∈ D, then u4 has at least two neighbors in D∩V (T ′). The vertex ut cannot
be a parent of u4 otherwise u4 is a support vertex and then u4 will be in D which is a contradiction. So, n′ ≥ 4.
It is obvious that D ∩ V (T ′) is a gpa of T ′ implying that γpa(T ′) ≤ γpa(T )− 4. Using inductive hypothesis on
T ′ and since n′ ≥ n − 6 − p − k, l′ ≤ l − p − k and s′ ≤ s − 2, we obtain γpa(T ) ≥ 3n−2l−s+2

5 + 4−(p+k)
5 . As

p+ k ≤ 4 then we get γpa(T ) ≥ 3n−2l−s+2
5 and the result holds.
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�

3. Trees with γpa(T ) = 3n−2l−s+2
5

In this section, we characterize the extremal trees attaining the bound given in the Theorem 2.4. For the
purpose, we define a family F of all trees T that can be obtained from the sequence T1, T2, . . . , Tk(k ≥ 1) of
trees, where T1 is the path P2, T = Tk, and if k ≥ 2, Ti+1 is obtained recursively from Ti by the operation listed
below.

– Operation O: Assume u is a support vertex of Ti. Then the tree Ti+1 is obtained from Ti by adding one leaf
by attachment edge to u and by adding a path P3 : xyz by joining u to y.

3.1. Preliminary results

From the way in which a tree T ∈ F is constructed, we make the following observation.

Observation 3.1. Let T be a tree of F different from P2. Then every non-leaf vertex of T is a strong support
vertex.

Theorem 3.2. Let T be a nontrivial tree with l leaves and s support vertices. If T ∈ F then γpa(T ) = 3n−2l−s+2
5 .

Proof. Let T be a tree of F. We use induction on the number of operations O performed to construct T .
Clearly, if T = T1 = P2 then γpa(T ) = 1 = 3n−2l−s+2

5 . Assume that the property is true for all trees of
F constructed with k − 1 ≥ 0 operations, and let T be a tree of F constructed with k operations. Thus
T is obtained by performing the operation O on a tree T ′ = Tk−1 ∈ F of order n′ with l′ leaves and s′

support vertices. By the induction hypothesis, we have γpa(T ′) = 3n′−2l′−s′+2
5 . By Observation 2.3, there exist

a γpa(T ′)-set that contains the support vertex u. Such a set can be extend to a gpa of T by adding y. Then,
γpa(T ) ≤ γpa(T ′) + 1 = 3n′−2l′−s′+2

5 + 1. On the other hand, let D be a γpa(T )-set with a fewest possible
number of leaves. So, by the minimality of D and Observation 2.3, both u and y are in D. Let u′ be the leaf
of u in T − T ′. If u′ 6∈ D then D ∩ V (T ′) is a gpa of T ′. Otherwise, we replace u′ ∈ D by any leaf of u in
T ′ not in D. It follows then that D ∩ V (T ′) is a gpa of T ′ implying that γpa(T ′) ≤ γpa(T ) − 1. We deduce
then that γpa(T ) = γpa(T ′) + 1 = 3n′−2l′−s′+2

5 + 1. Since n′ = n − 4, l′ = l − 3 and s′ = s − 1, we get
γpa(T ) = 3n−2l−s+2

5 . �

3.2. The main result

Theorem 3.3. Let T be a nontrivial tree with l leaves and s support vertices. Then γpa(T ) = 3n−2l−s+2
5 if and

only if T ∈ F.

Proof. The sufficiency follows from Theorem 3.2. To prove the necessity, we proceed by induction on the order
n of a tree T verifying γpa(T ) = 3n−2l−s+2

5 . We shall prove that T ∈ F. If diam(T ) = 1, then T = K2 ∈ F. If
diam(T ) = 2 then T is a star Sp with p ≥ 2 and from Observation 2.1, γpa(T ) = dp+1

2 e >
p+4
5 = 3n−2l−s+2

5 . If
diam(T ) = 3 then T is a double star Sp,q and by Observation 2.2, γpa(T ) = bp+1

2 c+b
q+1
2 c = p+q+6

5 = 3n−2l−s+2
5

if and only if p = q = 2 and S2,2 ∈ F. So, diam(T ) ≥ 4. Suppose now that every tree T ′ of order n′, 5 ≤ n′ < n

with l′ leaves and s′ support vertices such that γpa(T ′) = 3n′−2l′−s′+2
5 is in F.

If any non-pendant support vertex, say t of T is weak, then let T ′ be the tree obtained from T by removing
a leaf, say t′ adjacent to t. So, any γpa(T )-set with a fewest possible number of leaves is a gpa of T ′ implying
that γpa(T ′) ≤ 3n−2l−s+2

3 . Since n = n′ + 1, l = l′ + 1 and s = s′ + 1 we get γpa(T ′) ≤ 3n′−2l′−s′+2
3 . The

equality holds by Theorem 2.4 and consequently by using the inductive hypothesis, we deduce that T ′ ∈ F.
By Observation 3.1, we deduce that t is a strong support vertex of T ′ as it is different from a leaf which is a
contradiction. Henceforth, we can assume that any non-pendant support vertex of T is strong.

Let diam(T ) = t and let P : u0, u1, . . . , ut, (t ≥ 4) be a diametral path and root T at ut. Clearly u1 is a
pendant support vertex. Let D be any γpa(T )-set that contains the fewest possible number of leaves.
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Figure 5. In both cases (a) and (b), T ′ = T − Tu1 .

Claim 3.4. |Lu1 | ≤ 2.

Proof. Suppose |Lu1 | = k ≥ 3. By the choice of D, both vertices u1 and u2 are in D and D contains bk−1
2 c

leaves of u1. Let u′ be any leaf of u1 not in D. Let T ′ = T − (Lu1 − {u′}) (see Fig. 1). As diam(T ) ≥ 4 and
k− 1 ≥ 2 then n′ ≥ 5. Clearly, D∩V (T ′) is a gpa of T ′ and so γpa(T ′) ≤ γpa(T )−bk−1

2 c = 3n−2l−s+2
5 −bk−1

2 c.
Since n = n′ + k − 1, l = l′ + k − 1 and s = s′, we obtain γpa(T ′) ≤ 3n′−2l′−s′+2

5 + k−1
5 − b

k−1
2 c <

3n′−2l′−s′+2
5

which contradicts Theorem 2.4. �

By Claim 3.4 and the choice of D, both u1 and u2 are in D and D ∩L(u1) = ∅. Consider the following cases.
Case 1. dT (u2) ≥ 3.

Claim 3.5. u2 is a support vertex.

Proof. Any child of u2 is either a leaf or a support vertex. Suppose u2 has a neighbor say v which is a support
vertex (see (a) in Fig. 5). By Claim 3.4, |Lv| ≤ 2 and so {u1, u2, v} ⊆ D. Let us consider T ′ = T − Tu1 . So
diam(T ′) ≥ 4 and then n′ ≥ 5. Obviously, D ∩ V (T ′) is a gpa of T ′ implying that γpa(T ′) ≤ γpa(T ) − 1 =
3n−2l−s+2

5 −1. Since n = n′+1+ |Lu1 |, l = l′+ |Lu1 | and s = s′+1, we obtain γpa(T ′) ≤ 3n′−2l′−s′+2
5 + |Lu1 |−3

5 ≤
3n′−2l′−s′+2

5 − 1
5 <

3n′−2l′−s′+2
5 which contradicts Theorem 2.4. �

Claim 3.6. |Lu2 | ≥ 3.

Proof. By Claim 3.5, u2 is a non-pendant support vertex, then by the remark given above, u2 is a strong support
vertex. Assume that |Lu2 | = 2. By the minimality of D and Observation 2.3, {u1, u2, u3} ⊆ D. Let us consider
T ′ = T −Tu1 (see (b) in Fig. 5). As diam(T ) ≥ 4 and |Lu2 | = 2 then n′ ≥ 5. We proceed with the same manner
as in the proof of Claim 3.5 and we get a contradiction. �

Claim 3.7. |Lu1 | = 2.

Proof. By Claim 3.4, |Lu1 | ≤ 2. Suppose |Lu1 | = 1. By the minimality of D, Observation 2.3 and Claim 3.6, D
contains {u1, u2, u3} and b |Lu2 |−2

2 c leaves of u2. Since u2 ∈ D and D is a defensive alliance, then |N [u2]∩D| ≥
|N [u2] −D| (see Fig. 6). Suppose this inequality is strict and let us consider T ′ = T − Tu1 (see (a) in Fig. 6).
We get a contradiction with the same manner as in the proof of the Claim 3.5.

Thus, |N [u2] ∩D| = |N [u2] −D|. Let v be a leaf of u2 not in D. Let us consider then T ′ = T − Tu1 − {v}
(see (b) in Fig. 6). As diam(T ) ≥ 4 and |Lu2 | ≥ 3, then n′ ≥ 5. Clearly, D ∩ V (T ′) is a gpa of T ′ implying
that γpa(T ′) ≤ γpa(T ) − 1 = 3n−2l−s+2

5 − 1. Since n = n′ + 2 + |Lu1 |, l = l′ + 1 + |Lu1 | and s = s′ + 1, we

deduce that γpa(T ′) ≤ 3n′−2l′−s′+2
5 + |Lu1 |−2

5 . Since |Lu1 | = 1, then γpa(T ′) < 3n′−2l′−s′+2
5 which contradicts

Theorem 2.4. �
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Figure 6. Case |Lu1 | = 1. In (a): T ′ = T − Tu1 , in (b): T ′ = T − Tu1 − {v}.

So, by Claim 3.7 and its proof, |Lu1 | = 2 and |N [u2] ∩D| = |N [u2] −D|. Let then v be a leaf of u2 not in
D and let us consider then T ′ = T − Tu1 − {v}. From the proof of Claim 3.7, we get γpa(T ′) ≤ 3n′−2l′−s′+2

5 .
Thus, the equality holds by Theorem 2.4. Using the inductive hypothesis, we deduce that T ′ ∈ F. Thus T ∈ F

since it is obtained from T ′ by applying operation O.

Case 2. dT (u2) = 2.

Claim 3.8. dT (u3) ≥ 3.

Proof. Suppose dT (u3) = 2. Either u3 or u4 is in D. Without loss of generality, we suppose that u4 ∈ D as
we may replace u3 in D by u4. Let us consider T ′ = T − Tu2 (see (a) in Fig. 7). It is easy to check that if
T ′ = Sp, 1 ≤ p ≤ 3 or T ′ = P4 then γpa(T ) ∈ {3, 4} > 3n−2l−s+2

5 . So, n′ ≥ 5. Clearly, D ∩ V (T ′) is a gpa
of T ′ implying that γpa(T ′) ≤ γpa(T ) − 2 = 3n−2l−s+2

5 − 2. We have n = n′ + 2 + |Lu1 |. If u4 is a support

vertex then s = s′ + 1 and l = l′ − 1 + |Lu1 |. Thus, γpa(T ′) ≤ 3n′−2l′−s′+2
5 + |Lu1 |−3

5 . By Claim 3.4, |Lu1 | ≤ 2
then γpa(T ′) ≤ 3n′−2l′−s′+2

5 − 1
5 < 3n′−2l′−s′+2

5 which contradicts Theorem 2.4. Suppose now that u4 is not

a support vertex, so s = s′ and l = l′ − 1 + |Lu1 |. It follows that γpa(T ′) ≤ 3n′−2l′−s′+2
5 + |Lu1 |−2

5 . Since
|Lu1 | ≤ 2, if |Lu1 | = 1, we get γpa(T ′) < 3n′−2l′−s′+2

5 which contradicts Theorem 2.4. So |Lu1 | = 2 and then
γpa(T ′) ≤ 3n′−2l′−s′+2

5 . We get the equality by Theorem 2.4 and using the induction hypothesis, we deduce that
T ′ ∈ F. So, by Observation 3.1, every non-leaf vertex of T ′ is a strong support vertex. Thus, u4 is a support
vertex in T which contradicts our assumption. �

Claim 3.9. |N [u3] ∩D| = |N [u3]−D|.

Proof. By Claim 3.8, dT (u3) ≥ 3. Each child of u3 is either a leaf or a support vertex or a non-leaf neighbor
of a support vertex. Assume that |N [u3] ∩D| > |N [u3]−D|. Let us consider T ′ = T − Tu2 (see (b) in Fig. 7).
We can easily check that T ′ 6= Sp, 2 ≤ p ≤ 3 and T ′ 6= P4 otherwise γpa(T ) > 3n−2l−s+2

5 which contradicts the
assumption on T . So n′ ≥ 5. Clearly, D∩V (T ′) is a gpa of T ′ implying that γpa(T ′) ≤ γpa(T )−2 = 3n−2l−s+2

5 −2.

Since n = n′+ 2 + |Lu1 |, l = l′+ |Lu1 | and s = s′+ 1, we obtain γpa(T ′) ≤ 3n′−2l′−s′+2
5 + |Lu1 |−5

5 . By Claim 3.4,
|Lu1 | ≤ 2 then γpa(T ′) ≤ 3n′−2l′−s′+2

5 − 3
5 <

3n′−2l′−s′+2
5 which contradicts Theorem 2.4. �

Claim 3.10. u3 is a support vertex.

Proof. Assume that u3 is not a support vertex. So, by the minimality of D and Observation 2.3, every child of
u3 is in D as it is either a support vertex or a non-leaf neighbor of a support vertex. Consequently, if u3 ∈ D
then |N [u3] ∩D| > |N [u3] −D| (see (b) in Fig. 7) which contradicts Claim 3.9. So, u3 6∈ D and according to
Claim 3.9, dT (u3) = 3 and u4 6∈ D (see (a) in Fig. 8). Then u4 is different from a support vertex, otherwise, by
the minimality of D and Observation 2.3, u4 will be in D. Let v, u be the children of u3 and v, respectively in
Tu3 . If v is a support vertex then |Lv| = 1 otherwise u3 will be in D as it may replace any leaf of v in D. But the
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Figure 7. In (b), u3 may be a support. In both cases (a) and (b), T ′ = T − Tu2 .

Figure 8. In (a): u3, u4 6∈ D,T ′ = T − Tu3 . In (b), u3 is a strong support vertex and T ′ =
T − Tu2 − {w0}.

weakness of v contradicts our remark given above about the non-pendant support vertices which must be strong.
So, v is not a support vertex. Let us consider T ′ = T −Tu3 . Since u4 6∈ D, then u4 has at least two neighbors in
D ∩ V (T ′). The vertex ut cannot be the parent of u4, otherwise u4 ∈ D as it may replace ut in D. Further, u4

cannot be adjacent to a leaf or a support vertex, otherwise u4 is in D as it is a support or it can replace any leaf
in D of its support neighbor. It follows that diam(T ′) ≥ 4 and n′ ≥ 5. The set D∩V (T ′) is a gpa of T ′ implying
that γpa(T ′) ≤ γpa(T )− 4 = 3n−2l−s+2

5 − 4. Since n = n′ + 5 + |Lu1 |+ |Lu|, l = l′ + |Lu1 |+ |Lu| and s = s′ + 2,

we obtain γpa(T ′) ≤ 3n′−2l′−s′+2
5 + |Lu1 |+|Lu|−7

5 . By Claim 3.4, |Lu1 |+ |Lu| ≤ 4, we get γpa(T ′) < 3n′−2l′−s′+2
5

which contradicts Theorem 2.4. �

It follows from the previous Claims and the remark given above that u3 is a strong support vertex verifying
|N [u3] ∩ D| = |N [u3] − D|. Let w0 be a leaf of u3 not in D. Let us consider T ′ = T − (Tu2 ∪ {w0}) (see (b)
in Fig. 8). It is easy to check that ut cannot be the parent of u3 otherwise T ′ = S3 and then γpa(T ) = 4.
So γpa(T ) > 3n−2l−s+2

5 which is a contradiction. So, n′ ≥ 5. Clearly, D ∩ V (T ′) is a gpa of T ′ implying that
γpa(T ′) ≤ γpa(T ) − 2 = 3n−2l−s+2

5 − 2. Since n = n′ + 3 + |Lu1 |, l = l′ + 1 + |Lu1 | and s = s′ + 1 we get

γpa(T ′) ≤ 3n′−2l′−s′+2
5 + |Lu1 |−4

5 . By Claim 3.4, |Lu1 | ≤ 2 and then γpa(T ′) ≤ 3n′−2l′−s′+2
5 − 2

5 <
3n′−2l′−s′+2

5
which contradicts Theorem 2.4 and the proof is complete. �

4. Conclusion

We give in this paper a lower bound on the global powerful alliance number of any tree in terms of its
order and its numbers of leaves and support vertices. Moreover, we characterize all extremal trees attaining this
bound. Bouzefrane [1] shows that any tree T different from a star Sp with order n ≥ 4, l leaves and s support
vertices verifies γpa(T ) ≤ 4n−l+s

6 . The first author of this paper characterizes all extremal trees achieving this
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bound in [9]. Thus, we obtain a framing of the global powerful alliance number in the class of trees. Among the
open problems raised by our results, the following are of particular interest.

– Explore the bounds on the global powerful alliance number in particular classes of graphs like the unicycle
graphs, bipartite ones and the cactus.

– Characterize trees with a unique minimum global powerful alliance.
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