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COORDINATING A FRESH-PRODUCT SUPPLY CHAIN WITH DEMAND
INFORMATION UPDATING: HEMA FRESH O2O PLATFORM

Honglin Yang and Jiawu Peng∗

Abstract. Motivated by Hema Fresh’s new-retail case, we study the coordination of a two-echelon
fresh-product supply chain consisting of a single supplier and a single retailer. Due to a long production
lead time, the supplier has to make production decision in advance based on early demand information.
The market demand can be updated during the supplier’s production lead time. Hence, the retailer
would make order decision according to the latest demand information. Incorporating risk-sharing
mechanism of overproduction and overstock, we propose a novel bi-directional risk-sharing contract
to coordinate such a supply chain with demand information updating. We construct a two-stage opti-
mization model in which the supplier first decides production quantity, and then the retailer decides
final order quantity not exceeding the supplier’s initial production. In both the centralized and decen-
tralized systems, we analytically derive the unique equilibrium of production and order decisions in a
Stackelberg supplier-led game. We prove that the proposed contract can realize supply chain perfect
coordination and explore how the proposed contract affects the members’ decisions. The theoretical
results show that, by turning the risk-sharing proportions, the supply chain profit can be arbitrarily
split between the members, which is a desired property for supply chain coordination. Compared with
the single risk-sharing contract, the proposed contract results in a greater supply chain profit and
achieves Pareto improvement for both members. Furthermore, we also explore how the risk preference
and negotiating power affect the contract selection and the additional profit allocation of the supply
chain. Numerical examples are presented to verify our theoretical results.
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1. Introduction

In real-world business, the mismatch of supply and demand leads to the occurrence of overproduction and over-
stock and further seriously hurts supply chain performance. Many high-tech manufacturers declared bankruptcy
due to sharp demand shortfall [50]. Hence, how to utilize market information to effectively match supply and
demand has drawn widespread attention in the academics and practitioners. Currently, numerous enterprises
are actively collecting and employing market information to improve their decision-makings. For example, the
web logs of Amazon gather more than 30 GB data every day [17]. Walmart’s commercial data warehouse records
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Figure 1. Fresh product’s production and order in Hema Fresh’s O2O platform.

more than 100 TB data for 65 weeks of historical transactions [26]. The supply chain enterprises also are focusing
on demand information updating to cut down the cost of inventory. For instance, many fashion companies such
as Uniqlo, Zara and Topshop, have adopted the quick response system to reduce market demand uncertainty
[23,28]. As a result, the production capacity of the upstream supplier and the sales quantity of the downstream
retailer are closer to real market demand [12,31].

Although demand information updating may benefit the supply chain, the supply chain enterprises often act
as self-interested members to maximize their own profit and minimize individual risk. Specifically, the retailer
always prefers to postpone order before sales season until the demand information is improved. Doing that, the
retailer may flexibly deal with market volatility to avoid the potential cost of overstock. However, the supplier
tends to the situations that the retailer’s order can be placed as early as possible so that it can hedge against
the costs of over- and under-production [49]. At the same time, the supply chain member’s risk preference and
negotiating power also affect the supply chain decision-makings. For example, a fresh product supplier often
suffers the risk of surplus due to high demand uncertainty, long supply lead time and short product-life cycle.
Lack of the compensation, the risk-averse supplier would act conservatively to shed the potential overproduction
risk [9]. Many scholars have noticed that demand information updating always benefits the retailer being close
to a market while may hurt the supplier in certain cases [42, 47]. To occupy more supply chain profit, the self-
interested supplier with strong negotiating power would prevent the retailer from modifying order plans after
demand information updating. Therefore, how to mitigate the double marginal effects to create greater supply
chain profit still is a big challenge in the current supply chain management.

These conflicts among channel members result in an inefficient supply chain, which cannot be avoided by
demand information updating [2,3]. Take the fresh product supply chain in the Hema Fresh new-retail platform
for example. Such as Yangcheng Lake hairy crabs, a specialty in Suzhou, Jiangsu Province of China, have
a production lead time of more than 9 months but a sales season less than 3 months. As production lead
time is long, crab farmers have to produce in advance. However, huge capacity investment cost, high demand
uncertainty and short-lifecycle in crab industry increase the risk of surplus capacity for crab farmers. To reduce
the overproduction risk, local crab farmers establish an agriculture agency as their representative to make a
unified production plan. Meanwhile, to quickly respond to market changes and avoid overstock, Hema fresh
builds an UMS system to collect and analyze market information during the long production season. Before the
sales season, the UMC system updates market information and sends a procurement plan to Hema. Then, Hema
negotiates with agriculture agency to sign an order contract. Due to complex breeding environment, the annual
output of Yangcheng Lake hairy crabs is about 20 tons. Hence, Hema Fresh only can place an order of crabs
to the agriculture agency no more than 20 tons, which severely limits Hema’s order decision-making. Figure 1
illustrates fresh products’ production and order in Hema Fresh.

These characteristics of fresh product and personalized needs of consumers expose both the supplier and
retailer to a high level of inventory risk. Therefore, how to efficiently update demand information to satisfy
customers’ demand and further create greater supply chain profit is becoming a big challenge that Hema Fresh
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faces. Motivated by Hema Fresh new-retail platform, we consider a two-echelon fresh-product supply chain in
which the supplier needs a long lead time to produces in advance relaying on early demand information and
the retailer makes final order upon updating demand information. We design a new bi-directional risk-sharing
contract to investigate how to coordinate such a supply chain with demand information updating.

We formulate a two-stage dynamic optimization decision-making model to depict Hema Fresh’s new-retail
case in which the supplier prepares fresh products in advance according to early demand information in the first
stage, and the retailer makes final order upon observing later demand information in the second stage. The fresh
products need a long production lead time to produce, so there will be no replenishment opportunity in the
sales season. The retailer’s final order quantity does not exceed the supplier’s initial production quantity. The
uncertain demand likely results in the retailer’s overstock and the supplier’s overproduction. The supply chain
members would reduce production quantity or order quantity to avoid the potential loss risk. To mitigate the
double marginal effects, we propose a new bi-directional risk-sharing contract to coordinate such a fresh-product
supply chain with demand information updating. The proposed contract possesses two desirable features. First,
it’s superior to the conventional single risk-sharing contracts (i.e., overproduction risk-sharing contract or over-
stock risk-sharing contract). It not only allows the retailer to place a more accurate order according to the
latest demand information but also can effectively mitigate the double marginal effects. Second, the proposed
contract form is flexible, i.e., the supply chain profit can be arbitrarily split between members by turning the
proportions of risk-sharing, which is a desired property for the supply chain coordination. We have also studied
the effects of supply chain members’ risk preferences and negotiating powers on the issue of the selection for
the coordination contract.

This paper contributes to the existing literatures on risk-sharing contract and demand information updating
in following three main aspects: first, to the best of our knowledge, this paper is the first to propose a bi-
directional risk-sharing contract involving risks of overproduction and overstock to coordinate a two-echelon
supply chain with demand information updating. Comparatively, most existing literatures only focus on single
risk-sharing contracts for over-/under production risk (e.g., [20, 36]) or overstock risk (e.g., [24]). Through
redesigning the contract parameters, those papers explore the sufficient condition in which the supply chain
achieves coordination. Second, we relax the related assumptions in the existing literatures of inventory model
with demand information updating to consider a more general coordination contract from the risk-sharing
perspective in a supplier-lead supply chain with a long production-lead time and “make-to-order” policy. Thus,
the settings in this paper is more in line with the real business situation of fresh product. Third, with a bi-
directional risk-sharing contract, we analytically derive the supply chain Pareto improvement region in which
the supply chain not only achieves the system-optimal profit but also makes both members better off than the
single risk-sharing contract. In addition, we also investigate how the supply chain members’ risk preferences and
negotiating powers affect the selection for the coordination contract.

The remainder of this paper is organized as follows. Section 2 reviews the related literature. Section 3 presents
the model. Section 4 analyzes quantity decisions in the centralized and decentralized system, respectively.
Section 5 investigates the design of coordination mechanism for the proposed contract. Section 6 explores the
influences of the risk preference and negotiating power. Section 7 discusses numerical examples and sensitivity
analysis. Section 8 concludes and presents main management insights.

2. Literature review

This paper mainly contributes to two streams of related literatures in the supply chain management: supply
chain contract coordination with demand information updating and supply chain inventory model with risk-
sharing. In what follows, we present a concise review and add more discussion to highlight the differences and
similarities of our research compared with the reviewed literatures.
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2.1. Supply chain contract coordination with demand information updating

In the past decades, the design of supply chain contracts has brought a broad appreciation for the inventory
model in the context of demand information updating [33]. To encourage both the supplier and the retailer
to act in the manner that reaches system-optimal level, many classic supply chain contracts (e.g., wholesale-
price, return, revenue-sharing, commitment and quantity flexibility, etc.) have been developed and improved to
achieve channel coordination. Prior researches have focus on how the demand information updating affects the
realization of supply chain coordination. There are two main research streams in these literatures. In the first
stream, demand information updating occurs in the sales season in a two-period modeling framework. Under
this stream, the retailer can use the realized demand in the first period to update the demand forecast in the
second period (see [4,6,7,34,50,51]). For example, Barnes-Schuster et al. [4] investigate the role of commitment-
option in a retailer-supplier system using a two-period model with correlated demand. They prove that the
supply chain coordination can be achieved only if the exercise price to be piecewise linear. Zhou and Wang [51]
study supply chain coordination for newsvendor-type products with two ordering opportunities and demand
information updating. They find out that revenue-sharing contract fails to coordinate such a supply chain. To
realize the perfect coordination of the supply chain, they propose an improved revenue-sharing contract in that
the supplier not only shares the retailer’s revenue but also bears a portion of the retailer’s operating costs.

In the second stream, demand information updating occurs in the production season for fashion products
with short lifecycles and long lead time. Under this stream, the market signals during the production season can
be collected to improve the demand forecast in the sales season (see [5,8–15,29,32,37,42]). For example, Chen
et al. [9] investigate the coordination of a supply chain with demand information updating. They demonstrate
that the conventional return contract should be modified to achieve supply chain coordination. Wu [42] considers
a two-echelon supply chain consisting of a single supplier and a single retailer with Bayesian update. Under
a quantity flexibility contract, the results show that the retailer always benefits from flexibility, whereas the
supplier only benefits when the level of flexibility is small. Choi [11] studies the influence of the inventory service
target on quick response fashion retail supply chain. The analysis results show that the wholesale price contract
achieves win–win in a fashion retail supply chain after implementing quick response only when the inventory
service target is higher than 0.5.

To quick response the market change, above researches build on that the upstream supplier can fulfill all the
downstream retailer’s instant orders immediately. There exist two main assumptions to ensure the supplier acts
in that manner. First, they assume that the supplier adopts “make-to-order” production policy in a retailer-
lead supply chain. Under this setting, the demand information updating benefits the retailer but hurt the
supplier due to overproduction. To achieve coordination, all of above researches added a transfer payment from
the retailer to the supplier into the conventional contracts to sharing the overproduction risk. This means that
the improved coordination contracts may not be individually rational for the supplier. Second, they assume that
the supplier has a full production capacity. However, for fresh product such as vegetables, fruits and seafood, the
supplier’s capacity is often limited due to a long production lead time and random yield. In addition, in a two-
echelon supply consisting of a single supplier and a single retailer, there is no replenishment opportunity for the
sales season. Therefore, the retailer’s order quantity cannot exceed the supplier’s initial production quantity.
By relaxing the above assumptions, we consider a more general coordination contract from the risk-sharing
perspective in a supplier-lead supply chain with a long production-lead time and demand information updating.

2.2. Supply chain inventory model with risk-sharing

Due to the rapid development of technology, demand information can be easily collected and updated for
improving supply chain performance. However, no matter how good the employed forecasting technique is, it
is almost impossible to provide accurate forecast subject to demand uncertainty [24]. Considering that the
uncertain demand always results in a situation where both the supplier and retailer face the risk of over- or
out-inventory, risk-sharing contract is one of the means of risk mitigation [16, 25, 39]. Two classes of supply
chain risk-sharing models exist. In the first class, only the order risk is sharing between the supplier and the
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Table 1. Comparisons between this paper and the related literatures.

Literature Model Stackelberg game Risk-sharing Demand
information
updating

He and Zhang
[20]

Make-to-order Retailer-lead Over or under-production No-updating

Kim [24] Make-to-order Retailer-lead Overstock Updating
Tang and
Kouvelis [36]

Make-to-order Retailer-lead Overproduction No-updating

This paper
(2013)

Make-to-stock Supplier-lead Overproduction or overstock Updating

retailer, while the production risk is fully carried by the supplier (see [1, 24, 27, 40, 44, 46]). For example, Li
and Kouvelis [27] develop a risk-sharing sourcing contract with time, quantity, and supply flexibility. They find
that contractual flexibility in sourcing arrangements can effectively reduce the sourcing cost in environments
of price uncertainty. Wang and Liu [40] present an option contract model to analyze the coordination and risk
sharing problems in a retailer-led supply chain in which the powerful retailer takes the initiative to coordinate
the manufacturer’s production quantity. Kim [24] studies a bilateral contract with order quantity flexibility as a
risk-sharing mechanism for demand forecasting in a supply chain, in which the retailer places orders in advance
for the predetermined horizons and makes minimum purchase commitments. The supplier provides the retailer
with the flexibility to adjust the order quantities later according to the most updated demand information. The
numerical examples show that demand fluctuation can be effectively absorbed by the contract scheme, which
enables better inventory management and customer service. Adhikari et al. [1] represent the textile supply chain
using a five-level supply chain structure under simultaneous demand and supply uncertainty. They show how a
risk-sharing contract improves the profitability of the cotton firm in a highly loss-making scenario.

Furthermore, in the second class, only the production risk is sharing between the supplier and the retailer,
while the order risk is fully carried by the retailer (see [19, 20, 22, 36, 43, 48]). For example, He and Zhang [20]
consider the production and order decisions in a two-echelon supply chain with random yield and uncertain
demand. They proposed several risk-sharing contracts that distribute the over- or under-production risk among
the supply chain members. Inderfurth and Clemens [22] study how a risk-sharing mechanism affects the retailer’s
order decision and the supplier’s production decision with random yield and deterministic demand. They prove
that the wholesale price contract will guarantee supply chain coordination if the supplier has an emergency
procurement source that is more costly but reliable. Zare et al. [48] consider a supply chain in which a supplier
faces random yield and multiple retailers deal with random demands. In a Stackelberg game structure, the
effects of demand uncertainty, production costs’ sharing and wholesale price reduction approaches are explored.
They find that risk-sharing contract may significantly reduce supplier’s holding costs, which benefits both the
supplier and the retailers in comparison with no-risk-sharing contract.

However, to the best of our knowledge, most of the reviewed literatures only focus on the production risk
or the order risk, and there are few literatures considering both the production and order risks. Therefore, our
work contributes to the literatures by considering a bi-directional risk-sharing contract for both overproduction
risk and overstock risk in a two-echelon supply chain. In particular, we study the supplier’s production decision
and the retailer’s order decision in the context of demand information updating.

Our work is close in spirt and structure to that of He and Zhang [20], Kim [24] and Tang and Kouvelis
[36]. However, there exists following noticeable difference between their work and our study (see Tab. 1). First,
we distribute both the overproduction risk and overstock risk among the supply chain members using a bi-
directional risk-sharing contract. Specifically, in our model, the supplier’s production quantity is inconsistent
with the retailer’s order quantity due to demand information updating. To eliminate the double marginal
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effects, we introduce a novel bi-directional risk-sharing contract in which the retailer would share a part of the
overproduction risk with the supplier at the end of production season and the supplier would share a part of
the overstock risk with the retailer at the end of sales season. Second, in our model, the supplier need produce
in advance due to a long production lead time, while the retailer can delay order until a more accurate demand
information is available. Hence, we consider a Stackelberg game problem in which the supplier can be viewed
as a leader while the retailer is viewed as a follower. Third, from the risk-sharing’s perspective, we address the
coordination issue in a two-echelon supply chain with demand information updating. We find that the single
risk-sharing contract may be non-individually rational for the supplier, while the bi-directional risk-sharing
contract can make both the supplier and the retailer better off than non-risk-sharing contract. In addition, we
further study the effects of supply chain members’ risk preferences and negotiating powers on the issue of the
selection for the coordination contract.

3. Model description

We consider a two-echelon supply chain in which the retailer orders fresh product from the supplier and then
sells it to end-customers. For convenience, the supplier is referred as “he” and the retailer as “she”. The supply
chain members face a stochastic market demand, which can be updated using market signals or observations.
Following Gurnani and Tang [18], the process of demand information updating is expressed as follows. At the
beginning of production season, the retailer estimates that early demand information, denoted by x, has a
prior probability distribution F (x) and a density function f(x). The retailer can utilize the market signal I
observed during the production season to update the probability distribution of x, where G(I) and g(I) denote
the marginal distribution and density of I. At the end of production season, the latest market signal is realized
as I = i, and the latest demand information, denoted by x|i, has a posterior distribution F (x|i) and density
function f(x|i). Assume that the distribution F (x|i) is strictly increasing in x for given i and all distributions are
continuous, differentiable, and invertible. Many conjugate distributions can satisfy the above assumptions, such
as uniform-uniform, uniform-Pareto, beta-negative binomial, gamma-Poisson and normal-normal distributions.
To illustrate, suppose that market demand follows the Uniform-Uniform distribution [9, 21, 41]. Then, the new
demand signal I and posterior demand x|i with I = i are given as follows:

g(I) =
1
α

and G(i) =
1
α

(
I − γ +

α

2

)
,where I ∈

[
γ − α

2
, γ +

α

2

]
;

f(x|i) =
1
β

and F (x|i) =
1
β

(
x− i+

β

2

)
,where x ∈

[
i− β

2
, i+

β

2

]
·

In the above demand setting, the supply chain’s problem is described as a two-stage optimization problem:
(1) At the beginning of Stage 1 (i.e., production season), the supplier decides production quantity Qjs at a
unit cost c based on early demand information f(x). After observing new market signal at the end of Stage 1,
the retailer decides the order quantity Qjr according to the latest demand information f(x|i) and pays a unit
wholesale price w to the supplier. The unit salvage value of leftovers that has not been ordered by the retailer
is vs. If Qr < Qs, the supplier has a loss of (c− vs)(Qjs −Qjr) due to overproduction risk. (2) At the beginning
of Stage 2 (i.e., sales season), the retailer sells fresh product to customers at a fixed retail price p. The unit
salvage value of leftovers that has not been purchased by end-customers is vr. At the end of Stage 2, the retailer
may face a loss of (w − vr)(Qr − x)+ due to overstock risk. To avoid trivial or non-realistic cases, we assume
that p > w > c > vs > vr. Besides, we further assume that the retailer’s demand information and the supplier’s
production quantity are shared between two channel members.

Moreover, a novel bi-directional risk-sharing contract is introduced to coordinate a two-echelon fresh-product
supply chain in the context of demand information updating. To be more specific, at the end of production
season, the retailer commits a fixed proportion ρ ∈ [0, 1] to share the supplier’s loss due to overproduction risk,
i.e., ρ(c− vs)(Qjs−Qjr). Then, at the end of sales season, the supplier also commits a fixed proportion φ ∈ [0, 1]
to share the retailer’s loss due to overstock risk, i.e., φ(w − vr)(Qjr − x)+. In the above commit setting, the
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Figure 2. The time line of the events.

Table 2. Notations and explanations.

Notation Explanation

x Market demand
I Market signal
i Realize value of market signal
w Wholesale price
p Retail price
c Production cost
vs Salvage value per unit overproduction
vr Salvage value per unit overstock
ρ Sharing proportion of overproduction
φ Sharing proportion of overstock
Qjs Production quantity of the supplier (decision variable)
f(x), F (x) Prior probability density and distribution functions of x
g(I), G(I) Salvage value of leftover inventory
f(·), F (·) Probability density and distribution functions of I
f(x|i) Posterior probability density function of x given I = i
F (x|i) Posterior probability distribution function of x given I = i
Πj Profit function
πj Expected function

proposed contract, denoted by {w, ρ, φ}, permits any agreed-upon division of the overproduction and overstock
risks between the supplier and the retailer. Figure 2 illustrates the sequence of events in such a supply chain.

In what follows, we study the supplier’s production decision and the retailer’s ordering decision with the above
bi-directional risk-sharing mechanism. In particular, we construct four game-theoretic decision-making models
to analysis the effects of risk-sharing proportion on the supply chain members’ behaviors, which are denoted
as: (1) NRS model (i.e., No risk-sharing model); (2) ORS-1 model (i.e., Overproduction risk-sharing model);
(3) ORS-2 model (i.e., Overstock risk-sharing model); (4) BRS model (Bi-directional risk-sharing model). It
is worth mentioning that the NRS model, ORS-1 model and ORS-2 model are special cases of BRS model.
Furthermore, the subscripts j = SC, N , S1, S2, B denote the centralized model, NRS model, ORS-1 model,
ORS-2 model and BRS model respectively.

For easy interpretation, the key notations are listed in Table 2.
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4. Quantity decisions analysis

4.1. Benchmark: centralized model

In the centralized model, the supplier and the retailer belong to the same company. The supply chain first
determines production quantity QSC

s based on early demand information at the beginning of Stage 1. Then, the
supply chain determines order quantity QSC

r utilizing the latest demand information at the beginning of Stage 2
(this ordering quantity can be thought of the amount of fresh product that actually ship to the market). Using
the backward induction method, we solve this two-stage optimization model with demand information updating
as follows.

First, at the beginning of Stage 2, given QSC
s and I = i, the supply chain’s optimal ordering quantity QSC∗

r

is obtained by solving the optimization problem (P1).

maximize
QSC
r

ΠSC
(
QSC
s , i;QSC

r

)
subject to QSC

r ≤ QSC
s , (P1)

where ΠSC
(
QSC
s , i;QSC

r

)
= E{x|i}{pmin(x,QSC

r ) + vr(QSC
r − x)+ + vs(QSC

s −QSC
r )}.

Let QSC
r |i = F−1

(
p−vs
p−vr

)
, where F−1(·) is the inverse function of F (·). Note that QSC

r ≤ QSC
s , the following

proposition establishes the optimal order quantity in the centralized model.

Proposition 4.1. Given QSC
s and I = i in Stage 2, ΠSC

(
QSC
s , i;QSC

r

)
is concave in QSC

r , and

QSC∗

r =
{
QSC
r |i, if i ≤ iQSC

s
,

QSC
s , if i > iQSC

s
,

where iQSC
s

satisfies QSC
r |iQSC

s
= QSC

s .

When market demand follows the uniform-uniform distribution, an equivalent form of Proposition 4.1 is given
as follows.

Corollary 4.2. Given QSC
s and I = i in Stage 2, there is a positive threshold iQSC

s
= QSC

s + β
2 −

p−vs
p−vr β such

that

QSC∗

r =
{
QSC
r |i = i− β

2 + p−vs
p−vr β, if γ − α

2 ≤ i ≤ iQSC
s
,

QSC
s , if iQSC

s
< i ≤ γ + α

2 .

From Proposition 4.1, the supply chain’s optimal order quantity QSC∗

r depends on the production quantity
and updated demand information. To be more specific, if i ≤ iQSC

s
, then QSC∗

r = QSC
r |i ≤ QSC

s , which indicates
that the supply chain’s production is sufficient and some fresh product are not shipped to market. If i > iQSC

s
,

then QSC∗

r = QSC
s ≤ QSC

r |i, which indicates that the supply chain’s production is insufficient and there is no
fresh product surplus. Based on above discussion, the supply chain’s optimal expected profit during Stage 2 is

ΠSC
(
QSC
s , i;QSC∗

r

)
=

{
ΠSC

(
QSC
s , i;QSC

r |i
)
, if i ≤ iQSC

s
,

ΠSC
(
QSC
s , i;QSC

s

)
, if i > iQSC

s
,

(4.1)

where

ΠSC
(
QSC
s , i;QSC

r |i
)

= (p− vs)QSC
r |i− (p− vr)

∫ QSC
r |i

0

F (x|i)dx+ vsQ
SC
s , (4.2)

and

ΠSC
(
QSC
s , i;QSC

s

)
= pQSC

s − (p− vr)
∫ QSC

s

0

F (x|i)dx. (4.3)
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Then, at the beginning of Stage 1, takes the results of the above two scenarios into consideration, we can
obtain the supply chain’s optimal production quantity QSC∗

s by solving the optimization problem (P2).

maximize
QSC
s

ΠSC
(
QSC
s

)
subject to QSC

s > 0, (P2)

where ΠSC
(
QSC
s

)
=
∫ iQSC

s
0 ΠSC(QSC

s , i;QSC
r |i)dG(I) +

∫ +∞
iQSC
s

ΠSC
(
QSC
s , i;QSC

s

)
dG(I)− cQSC

s . Then, the supply

chain’s optimal production quantity QSC∗

s is presented in following proposition.

Proposition 4.3. In stage 1, ΠSC
(
QSC
s

)
is concave in QSC

s , and QSC∗

s is the unique solution of the following
equation: ∫ +∞

iQSC
s

[
F
(
QSC
r |i

)
− F

(
QSC
s |i

)]
dG(I) =

c− vs
p− vr

· (4.4)

In addition, when the market demand follows the uniform-uniform distribution, QSC∗

s = γ + α−β
2 + p−vs

p−vr β −√
2(c−vs)αβ
p−vr .

Proposition 4.3 characterizes the sufficient condition of the optimal production quantity in centralized supply
chain. From the right-hand side of (4.4), the optimal production quantity QSC∗

s decreases in the general cost-
profit ratio (i.e., c−vs

p−vr ). A smaller ratio means a lower production cost or larger marginal profit, which reduces
the risk of overproduction and further induces the supplier to produce more. Unlike the classic supply chain
inventory model with stochastic demand, we consider the supply chain members’ quantity decisions model in the
context of demand information updating, which are influenced by both overproduction risk and overstock risk in
our model. This scenario is used as the benchmark for evaluating the performance of subsequent decentralized
models.

4.2. Decentralized model

In the decentralized model, the supply chain members only act in their best interests, which results in a
decentralized model extracting less profit than a centralized model. Furthermore, in this paper, there exists
both overproduction risk and overstock risk due to demand information updating, which leads a more serious
“double marginalization”. To explore supply chain coordination mechanism from the risk-sharing perspective,
we introduce four risk-sharing models in decentralized supply chain that consider both overproduction and
overstock risks.

4.2.1. No risk-sharing model (NRS)

In the NRS model, the supplier does not share the overstock risk with the retailer and faces only the overpro-
duction risk from demand information updating. Similarly, the retailer does not share the overproduction risk
with the supplier and faces only the overstock risk from stochastic demand. In this setting, the supplier first
decides his production quantity QNs at the beginning of Stage 1. Then, the retailer decides her order quantity
QNr at the beginning of Stage 2. Utilizing a backward induction method, we analytically derive the equilibrium
of a Stackelberg game.

Given QNs and I = i, the retailer’s optimal ordering quantity QN
∗

r at the beginning of Stage 2 is obtained by
solving the optimization problem (P3).

maximize
QNr

ΠN
r

(
QNs , i;Q

N
r

)
subject to QNr ≤ QNs , (P3)
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where ΠN
r (QNs , i;Q

N
r ) = E{x|i}{pmin(x,QNr )− wQNr + vr(QNr − x)+}.

Note that QNr ≤ QNs , let QNr |i = F−1
(
p−w
p−vr

)
, we obtain the retailer’s optimal order quantity QN

∗

r of the
NRS model in the following proposition.

Proposition 4.4. Given QNs and I = i in Stage 2, ΠN
r (QNs , i;Q

N
r ) is concave in QNr , and

QN
∗

r =
{
QNr |i, if i ≤ iQNs ,
QNs , if i > iQNs ,

where iQNs satisfies QNr |iQNs = QNs .

Similarly, if market demand follows the uniform-uniform distribution, Proposition 4.4 is rewritten as follows.

Corollary 4.5. Given QNs and I = i in Stage 2, there is a positive threshold iQNs = QNs + β
2 −

p−w
p−vr β such that

QN
∗

r =

{
QNr |i = i− β

2 + p−w
p−vr β, if γ − α

2 ≤ i ≤ iQNs ,
QNs , if iQNs < i ≤ γ + α

2 .

Proposition 4.4 shows that the retailer’s optimal ordering quantity and its relation to the supplier’s production
quantity and updated demand information. Incorporating the two possible scenarios of the retailer’s optimal
ordering quantity, the supplier’s optimal expected profit of NRS model in Stage 2 is

ΠN
s

(
QNs , i;Q

N∗

r

)
=

{
ΠN
s

(
QNs , i;Q

N
r |i
)
, if i ≤ iQNs ,

ΠN
s

(
QNs , i;Q

N
s

)
, if i > iQNs ,

with ΠN
s

(
QNs , i;Q

N
r |i
)

= wQNr |i+ vs
(
QNs −QNr |i

)
and ΠN

s

(
QNs , i;Q

N
s

)
= wQNs .

Then, the supplier’s optimal ordering quantity QN
∗

s at the beginning of Stage 1 is obtained by solving the
optimization problem (P4).

maximize
QNs

ΠN
s (QNs )

subject to QNs > 0, (P4)

where ΠN
s (QNs ) =

∫ iQNs
0 ΠN

s

(
QNs , i;Q

N
r |i
)

dG(I) +
∫ +∞
iQNs

ΠN
s

(
QNs , i;Q

N
s

)
dG(I)− cQNs .

The following proposition establishes the supplier’s optimal production quantity.

Proposition 4.6. In stage 1, ΠN
s (QNs ) is concave in QNs , and QN

∗

s satisfies G
(
iQN∗s

)
= w−c

w−vs . In addition,

when market demand follows the uniform-uniform distribution, QN
∗

s = γ + α−β
2 + p−w

p−vr β −
c−vs
w−vsα.

4.2.2. Overproduction risk-sharing model (ORS-1)

In the ORS-1 model, the overproduction risk is shared between the supplier and the retailer, while the
overstock risk is carried only by the retailer. In this setting, at the beginning of Stage 1, the supplier first
decides his production quantity QS1

s . At the beginning of Stage 2, the retailer decides her order quantity QS1
r

when the latest demand information is available. If QS1
r < QS1

s , the retailer would pay ρ(c − vs)
(
QS1
s −QS1

r

)
to the supplier to share part of the overproduction risk. This problem is again a two-stage Stackelberg game
decision problem.

Here, given QS1
s and I = i, the retailer’s optimal ordering quantity QS1∗

r at the beginning of Stage 2 is
obtained by solving the optimization problem (P5).

maximize
QS1
r

ΠS1
r

(
QS1
s , i;QS1

r

)
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subject to QS1
r ≤ QS1

s , (P5)

where ΠS1
r (QS1

s , i;QS1
r ) = E{x|i}{pmin(x,QS1

r )− wQS1
r − ρ(c− vs)(QS1

s −QS1
r ) + vr(QS1

r − x)+}.
Since QS1

r ≤ QS1
s , let QS1

r |i = F−1
(
p−w+ρ(c−vs)

p−vr

)
, then the following proposition presents the retailer’s

optimal order quantity QS1∗

r of the ORS-1 model.

Proposition 4.7. Given QS1
s and I = i in Stage 2, ΠS1

r (QS1
s , i;QS1

r ) is concave in QS1
r , and

QS1∗

r =
{
QS1
r |i, if i ≤ iQS1

s
,

QS1
s , if i > iQS1

s
,

where iQS1
s

satisfies QS1
r |iQS1

s
= QS1

s .

If market demand is the uniform-uniform distributed, Proposition 4.7 becomes following corollary.

Corollary 4.8. Given QS1
s and I = i in Stage 2, there is a positive threshold iQS1

s
= QS1

s + β
2 −

p−w+ρ(c−vs)
p−vr β

such that

QS1∗

r =

{
QS1
r |i = i− β

2 + p−w+ρ(c−vs)
p−vr β, if γ − α

2 ≤ i ≤ iQS1
s
,

QS1
s , if iQS1

s
< i ≤ γ + α

2 .

Proposition 4.7 shows that the retailer’s optimal ordering quantity in the ORS-1 model is influenced by
the supplier’s production quantity, updated demand information and sharing proportion of overproduction.
Specially, QS1∗

r increases in ρ. It indicates that, the higher sharing proportion of overproduction is, the more
the retailer would order. That can be explained as follows: Given QS1

s and I = i, the amount that the retailer
pays to the supplier to share overproduction loss is ρ(c−vs)(QS1

s −QS1
r ), which increases with ρ while decreases

with QS1
r . Hence, when making ordering decision, the retailer compares the possible losses from overproduction

risk-sharing with overstock. As ρ increases, it’s beneficial for the retailer to order more to reduce the amount of
ρ(c− vs)

(
QS1
s −QS1

r

)
.

Knowing the retailer’s optimal response, the supplier’s optimal expected profit of ORS-1 model in Stage 2 is

ΠS1
s

(
QS1
s , i;QS1∗

r

)
=

{
ΠS1
s

(
QS1
s , i;QS1

r |i
)
, if i ≤ iQS1

s
,

ΠS1
s

(
QS1
s , i;QS1

s

)
, if i > iQS1

s
,

with ΠS1
s (QS1

s , i;QS1
r |i) = wQS1

r |i+ [vs + ρ(c− vs)](QS1
s −QS1

r |i) and ΠS1
s (QS1

s , i;QS1
s ) = wQS1

s .
Then, at the beginning of Stage 1, the supplier’s optimal ordering quantity QS1∗

s of ORS-1 is obtained by
solving the optimization problem (P6).

maximize
QS1
s

ΠS1
s

(
QS1
s

)
subject to QS1

s > 0, (P6)

where ΠS1
s

(
QS1
s

)
=
∫ iQS1

s
0 ΠS1

s

(
QS1
s , i;QS1

r |i
)

dG(I)+
∫ +∞
iQS1
s

ΠS1
s

(
QS1
s , i;QS1

s

)
dG(I)−cQS1

s . Similarly, we obtain

the supplier’s optimal production quantity QS1∗

s of ORS-1 model in following proposition.

Proposition 4.9. In stage 1, ΠS1
s

(
QS1
s

)
is concave in QS1

s , and QS1∗

s satisfies G(iQS1∗
s

) = w−c
w−vs−ρ(c−vs) . In

addition, when market demand follows the uniform-uniform distribution, QS1∗

s = γ + α−β
2 + p−w+ρ(c−vs)

p−vr β −
(1−rho)(c−vs)
w−vs−ρ(c−vs)α.

Proposition 4.9 describes the supplier’s optimal ordering quantity in the ORS-1 model. Clearly, QS1∗

r increases
in ρ. The higher sharing proportion of overproduction is, the more the supplier produces. It is because that part
of the risk of overproduction for the supplier is carried by the retailer, which gives the supplier an incentive to
produce more products. The overproduction-risk sharing mechanism can be view as a transfer payment from the
retailer to the supplier. It is worth mentioning that the ORS-1 model is applied when the supplier has dominant
power in the supply chain.



296 H. YANG AND J. PENG

4.2.3. Overstock risk-sharing model (ORS-2)

In the ORS-2 model, the overstock risk is shared between the supplier and the retailer, while the overpro-
duction risk is carried only by the supplier. In this setting, at the beginning of Stage 1, the supplier produces
QS2
s . At the beginning of Stage 2, the retailer orders QS2

r with a more accurate latest demand information. If
there is any leftover at the end of Stage 2, then the supplier would pay φ(w − vr)(QS2

r − x)+ to the retailer to
share part of the overstock risk. Under ORS-2 model, the retailer’s problem in Stage 2 is following optimization
problem.

Similarly, given QS2
s and I = i at the beginning of Stage 2, the retailer’s optimal ordering quantity QS2∗

r is
obtained by solving the optimization problem (P7).

maximize
QS2
r

ΠS2
r

(
QS2
s , i;QS2

r

)
subject to QS2

r ≤ QS2
s , (P7)

where ΠS2
r

(
QS2
s , i;QS2

r

)
= E{x|i}{pmin

(
x,QS2

r

)
−wQS2

r +[vr+φ(w−vr)]
(
QS2
r − x

)+}. Considering QS2
r ≤ QS2

s ,

let QS2
r |i = F−1

(
p−w

p−vr−φ(w−vr)

)
, then the following proposition gives the retailer’s optimal order quantity QS2∗

r

of the ORS-2 model.

Proposition 4.10. Given QS2
s and I = i in Stage 2, ΠS2

r (QS2
s , i;QS2

r ) is concave in QS2
r , and

QS2∗

r =

{
QS2
r |i, if i ≤ iQS2

s
,

QS2
s , if i > iQS2

s
,

where iQS2
s

satisfies QS2
r |iQS2

s
= QS2

s .

If market demand is the uniform-uniform distributed, Proposition 4.10 becomes as follows.

Corollary 4.11. Given QS2
s and I = i in Stage 2, there is a positive threshold iQS2

s
= QS2

s + β
2 −

p−w
p−vr−φ(w−vr)β

such that

QS2∗

r =

{
QS2
r |i = i− β

2 + p−w
p−vr−φ(w−vr)β, if γ − α

2 ≤ i ≤ iQS2
s
,

QS2
s , if iQS2

s
< i ≤ γ + α

2 .

Proposition 4.10 shows that the retailer’s optimal ordering quantity in the ORS-2 model is influenced by
the supplier’s production quantity, updated demand information and sharing proportion of overstock. Specially,
QS2∗

r increases in φ. That is, the bigger the sharing proportion of overstock is, the more the retailer would order.
Since part of the risk of overstock for the retailer is carried by the supplier, which gives the retailer an incentive
to order more products. From Proposition 4.10, the supplier’s optimal expected profit of ORS-2 model in Stage
2 is

ΠS2
s

(
QS2
s , i;QS2∗

r

)
=
{

ΠS2
s

(
QS2
s , i;QS2

r |i
)
, if i ≤ iQS2

s
,

ΠS2
s

(
QS2
s , i;QS2

s

)
, if i > iQS2

s
,

with ΠS2
s

(
QS2
s , i;QS2

r |i
)

= wQS2
r |i + vs

(
QS2
s −QS2

r |i
)
− φ(w − vr)

(
QS2
s |i−QS2

r

)
and ΠS2

s

(
QS2
s , i;QS2

s

)
=

wQS2
s − φ(w − vr)(QS2

s − x)+.
Then, at the beginning of Stage 1, the supplier’s optimal ordering quantity QS2∗

s of ORS-2 model is obtained
by solving the optimization problem (P8).

maximize
QS2
s

ΠS2
s

(
QS2
s

)
subject to QS2

s > 0, (P8)

where ΠS2
s

(
QS2
s

)
=
∫ iQS2

s
0 ΠS2

s

(
QS2
s , i;QS2

r |i
)

dG(I)+
∫ +∞
iQS2
s

ΠS2
s

(
QS2
s , i;QS2

s

)
dG(I)−cQS2

s . The supplier’s opti-

mal production quantity QS2∗

s of ORS-2 model is given in following proposition.
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Proposition 4.12. In stage 1, ΠS2
s (QS2

s ) is concave in QS2
s , and QS2∗

s is the unique solution of the following
equation: ∫ +∞

iQS2
s

[
w − vs

φ(w − vr)
− F

(
QS2
s |i

)]
dG(I) =

c− vs
φ(w − vr)

·

In addition, when market demand follows the uniform-uniform distribution, QS2∗

s = γ + α−β
2 + w−vs

φ(w−vr)β −√[
w−vs

φ(w−vr)β −
p−w

p−vr−φ(w−vr)β
]2

+ 2(c−vs)αβ
φ(w−vr) .

Proposition 4.12 characterizes the sufficient condition of the optimal production quantity in the ORS-2 model.
The overstock-risk sharing mechanism is view as a transfer payment from the supplier to the retailer. To make
production plan in this model, the supplier has to evaluate the trade-off between a possible higher ordering at
the beginning of Stage 2 and a potentially higher extra cost burden at the end of Stage 2. It is worth mentioning
that the ORS-2 model is applied when the retailer has dominant power in the supply chain.

4.2.4. Bi-directional risk-sharing model (BRS)

In the BRS model, both the overproduction risk and the overstock risk are shared between the supplier
and the retailer. In this setting, at the beginning of Stage 1, the supplier’s production quantity is QBs . At the
beginning of Stage 2, the retailer’s order quantity is QBr . In the case of QBr < QBs , the retailer would pay
ρ(c − vs)(QBs − QBr ) to the supplier at the end of Stage 1. In the case of QBr > x, the supplier would pay
φ(w − r)(QBr − x)+ to the retailer at the end of Stage 2. Next, we further solve this two-stage optimization
problem by using a backward induction method.

Given QBs and I = i at the beginning of Stage 2, we obtain the retailer’s optimal ordering quantity QB
∗

r of
BRS model by solving the optimization problem (P9).

maximize
QBr

ΠB
r

(
QBs , i;Q

B
r

)
subject to QBr ≤ QBs , (P9)

where ΠB
r

(
QBs , i;Q

B
r

)
= E{x|i}

{
pminx,QBr − wQBr + [φ(w − vr) + vr]

(
QBr − x

)+ − ρ(c− vs)
(
QBs −QBr

)}
.

The retailer’s goal is to order a feasible quantity to maximize ΠB
r

(
QBs , i;Q

B
r

)
subjected to QBr ≤ QBs . Let

QBr |i = F−1
(
p−w+ρ(c−vs)
p−vr−φ(w−vr) |i

)
, we have following proposition.

Proposition 4.13. Given QBs and I = i in Stage 2, ΠB
r (QBs , i;Q

B
r ) is concave in QBr , and

QB
∗

r =
{
QBr |i, if i ≤ iQBs ,
QBs , if i > iQBs ,

where iQBs satisfies QBr |iQBs = QBs .

When market demand is the uniform-uniform distributed, Proposition 4.13 becomes following corollary.

Corollary 4.14. Given QBs and I = i in Stage 2, there is a positive threshold iQBs = QBs + β
2 −

p−w+ρ(c−vs)
p−vr−φ(w−vr)β

such that

QB
∗

r =

{
QBr |i = i− β

2 + p−w+ρ(c−vs)
p−vr−φ(w−vr)β, if γ − α

2 ≤ i ≤ iQBs ,
QBs , if iQBs < i ≤ γ + α

2 .

Proposition 4.13 shows that, for any given the supplier’s production quantity and updated demand informa-
tion in Stage 2, the retailer’s optimal ordering quantity of BRS model is influenced by both sharing proportions
of overproduction and overstock. Specifically, given w and ρ, QBr |i is increasing in φ. It indicates that the retailer
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orders more if the supplier shares greater overstock risk. Given w and φ, QBr |i is also increasing in ρ. For any
a given QBs , the amount that the retailer shares the supplier’s overproduction risk is ρ(c − vs)

(
QBs −QBr |i

)
,

which increases with ρ. Comparatively, the amount that the retailer obtains the supplier’s compensation for
overstock risk is φ(w−vr)

(
QBr |i− x

)
, which increases with QBr |i. It means that ordering more makes the retailer

obtain greater compensation. As ρ increases, the retailer would order more quantity so that she enjoys greater
compensation to balance payment. Furthermore, from Proposition 4.13, the supplier’s optimal expected profit
of BRS model in Stage 2 is

ΠB
(
QBs , i;Q

B∗

r

)
=

{
ΠB

(
QBs , i;Q

B
r |i
)
, if i ≤ iQBs ,

ΠB
(
QBs , i;Q

B
s

)
, if i > iQBs ,

where

ΠB
(
QBs , i;Q

B
r |i
)

= wQBr |i+ [vs + ρ(c− vs)]
(
QBs −QBr |i

)
− φ(w − vr)

(
QBr |i− x

)+
, (4.5)

and

ΠB
(
QBs , i;Q

B
s

)
= wQBs − φ(w − vr)

(
QBs − x

)+
. (4.6)

Finally, at the beginning of Stage 1, the supplier’s optimal ordering quantity QB
∗

s of BRS model is given in
following the optimization problem (P10).

maximize
QBs

ΠB
s

(
QBs
)

subject to QBs > 0, (P10)

where ΠB
s

(
QBs
)

=
∫ iQBs

0 ΠB
s

(
QBs , i;Q

B
r |i
)

dG(I) +
∫ +∞
iQBs

ΠB
s

(
QBs , i;Q

B
s

)
dG(I) − cQBs . We have the following

proposition to describe the optimal production quantity of the supplier QB
∗

s in the BRS model.

Proposition 4.15. In stage 1, ΠB
s (QBs ) is concave in QBs , and QB

∗

s is the unique solution of the following
equation: ∫ +∞

iQBs

[
w − vs − ρ(c− vs)

φ(w − vr)
− F

(
QBs |i

)]
dG(I) =

(1− ρ)(c− vs)
φ(w − vr)

· (4.7)

In addition, when market demand follows the uniform-uniform distribution, QB
∗

s = γ+ α−β
2 + w−vs−ρ(c−vs)

φ(w−vr) β−√[
w−vs−ρ(c−vs)
p−vr−φ(w−vr)β −

p−w+ρ(c−vs)
p−vr−φ(w−vr)β

]2
+ 2(1−ρ)(c−vs)αβ

φ(w−vr) .

Proposition 4.15 characterizes the sufficient condition of the supplier’s optimal production quantity in the
BRS model. From the right-hand side of equation (4.7), it can be observed that the optimal production quantity
QB

∗

s is influenced by the product of the cost-wholesale price ratio (i.e., c−vs
w−vr and the sharing proportions ratio

(i.e., 1−ρ
φ ). In practice, there are many various factors which influence the parameter settings. For example, in

Section 6, we will discuss how to set contract terms {w, ρ, φ} according to supply chain members’ risk preferences
and negotiating powers.

4.3. Model comparison and analysis

In this subsection, we further compare the supplier’s optimal production decision and the retailer’s optimal
ordering decision in different models, and analysis how the various risk-sharing mechanisms affect the supply
chain members’ quantity decisions.
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Lemma 4.16. QS1∗

s > QN
∗

s .

Lemma 4.16 shows that the supplier would produce more in the ORS-1 model than the NRS model. This
makes sense because the supplier has to carry all overproduction risk in the NRS model. However, in the ORS-1
model, the supplier carries less pressure and has an incentive to produce more. Next, we study the difference
of the retailer’s optimal order quantity Qj

∗

r in these models. Note that Qj
∗

r has two possible scenarios, which
depends on the values of i

Qj
∗
s

. We first consider the case of i < i
Qj

∗
s

, i.e., Qj
∗

r = Qj
∗

r |i, then we have the following
lemma.

Lemma 4.17. (1) Q
B∗|i
r > QS1∗

r |i > QN
∗

r |i; (2) QB
∗

r |i > QS2∗

r |i > QN
∗

r |i.

From Lemma 4.17, when i < i
Qj

∗
s

, we can see that: (1) the retailer orders more from the supplier in the
models of ORS-1, ORS-2 and BRS than in the model of NRS. It indicates that three risk-sharing mechanisms
can give the retailer an incentive to order more. (2) Compared to a single risk-sharing mechanism (e.g., ORS-1
and ORS-2), a bi-directional risk-sharing mechanism provides more incentive for the retailer to order. Next, we
consider the case of i ≥ i

Qj
∗
s

, and give the following lemma which directly from Lemmas 4.16 and 4.17.

Lemma 4.18. QS1∗

r > QN
∗

r .

Lemma 4.18 shows that the retailer always orders more in the ORS-1 model than in the NRS model. It is
quite surprising that sharing the risk of overproduction for the supplier would incent the retailer to order more.
However, the relationship between QS1∗

s and QS2∗

s is not clear. Parameters in the four risk-sharing models are
very complicated and it’s difficult to acquire clear analytical results. Therefore, we will use some numerical
examples in Section 7.

5. Supply chain coordination and performance evaluation

In this section, we study the contract of supply chain coordination with demand information updating from
risk-sharing perspective. For convenience, we summarize the optimal quantity decisions of centralized and decen-
tralized systems in Table 3.

Table 3 shows that Qcr|i > Qjr|i since w > c > vS > vr with j = N,S1, S2, B. It shows that that the
supply chain members’ quantity decisions in the decentralized system are difficult to reach the centralized
system optimal level. Spengler [35] attributes this to “double marginalization”, which would lead a poor supply
chain performance. It can be noted from Table 3 that both the supplier’s wholesale price and the sharing
proportions of overproduction and overstock have a direct impact on the supplier’s production decision and
the retailer’s ordering decision. Therefore, the supply chain members can negotiate to adjust the contract
parameters {w, ρ, φ} in different models so that the both members are willing to adopt the quantity policy
that optimizes the system. To achieve such coordination, we first let QSC∗

r = Qj
∗

r , i.e., the retailer’s optimal
order decision in the decentralized system equals to its counterpart in the centralized system. According to
the discussion in Section 4.2, there exists two possible situations for the retailer’s ordering decision. When the
supplier’s production quantity in the decentralized system is enough to satisfy the optimal order quantity in
the centralized system (i.e., QSC∗

s ≥ Qj
∗

r ), then the sufficient condition to coordinate the supply chain can be
derived from F (QSC∗

r |i) = F (Qj
∗

r |i). When the production quantity is not enough to satisfy the optimal order
quantity in the centralized system (i.e., QSC∗

s < Qj
∗

r ), the retailer can only order the fresh product up to the
initial production quantity, i.e., Qj

∗

s = QSC∗

r .
In what follows, taking the BRS model as an example, we derive the sufficient conditions whereby the bi-

directional risk-sharing contract coordinates the supply chain with demand information updating. To be more
specific, let F

(
QSC∗

r |i
)

= F
(
QB

∗

r |i
)
, i.e., the retailer’s optimal order quantity in the decentralized system equals

the to its counterpart in the centralized system. Then, we obtain

w = p+ ρ(c− vs)−
p− vs
p− vr

[p− vr − φ(w − vr)].
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Table 3. Optimal quantity decisions with demand information updating.

Model Ordering quantity in Stage 2 Production quantity in Stage 1

Centralized QSC∗
r = QSC

r |i, if i ≤ iQSC∗
s

,
∫ +∞
i
QSC∗
s

[
F
(
QSC
s |i

)
− F

(
QSC∗
s |i

)]
dG(I) = p−vs

p−vr ;

QSC∗
s = QSC

s , if i > iQSC∗
s

,

where F
(
QSC∗
r |i

)
= p−vs

p−vr ;

NRS QN
∗

r = QNr |i, if i ≤ iQN∗s , G
(
iQN∗s

)
= w−c

w−vs ;

QN
∗

s = QNs , if i > iQN∗s ,

where F
(
QN

∗
r |i

)
= p−w

p−vr ;

ORS-1 QS1∗
r = QS1

r |i, if i ≤ iQS1∗
s

, G
(
iQS1∗
s

)
= w−c

w−vs−ρ(c−vs) ;

QS1∗
s = QS1

s , if i > iQS1∗
s

,

where F
(
QS1∗
r |i

)
= p−w+ρ(c−vs)

p−vr ;

ORS-2 QS2∗
r = QSC

r |i, if i ≤ iQS2∗
s

,
∫ +∞
i
QS2∗
s

[
w−vs

φ(w−vr) − F
(
QS2∗
s |i

)]
dG(I) = c−vs

φ(w−vr ;

QS2∗
s = QS2

s , if i > iQS2∗
s

,

where F
(
QS2∗
r |i

)
= p−w

p−vr−φ(w−vr) ;

BRS QB
∗

r = QBr |i, if i ≤ iQB∗s ,
∫ +∞
i
QB

∗
s

[
w−vs−ρ(c−vs)

φ(w−vr) − F
(
QB

∗
s |i

)]
dG(I) = (1−ρ)(c−vs)

φ(w−vr .

QB
∗

s = QBs , if i > iQB∗s ,

where F (QB
∗

r |i) = p−w+ρ(c−vs)
p−vr−φ(w−vr) ;

Inserting this w into F
(
QB

∗

r |i
)

= p−w+ρ(c−vs)
p−vr−φ(w−vr) and (4.7), then we have F

(
QB

∗

r |i
)

= p−vs
p−vr = F

(
QSC∗

r |i
)

and∫ +∞

i
QB

∗
s

[
F
(
QSC∗

r |i
)
− F

(
QB

∗

s |i
)]

dG(i) =
1− ρ(c− vs)
φ(w − vr)

·

Compared above equation with (4.4), as long as

(1− ρ)(c− vs)
φ(w − vr)

=
c− vs
p− vr

,

i.e.,

ρ = 1− w − vr
p− vr

φ,

then, equations (4.4) and (4.7) are equivalent, which indicates that the supplier’s optimal production quantity
in the decentralized system equals its counterpart in the centralized system. Similar operations are performed
in other risk-sharing models. Thus, we characterize the sufficient conditions of the supply chain coordination
under different risk-sharing contracts in the following proposition.

Proposition 5.1. The supply chain can be coordinate only when

(1) w = c in the NRS model;
(2) w = c = vs in the ORS-1 model;
(3) w = c = vs = vr in the ORS-2 model;
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(4) w = p− ρ(p− c), (1− ρ)(p− vr) = φ(w − vr) in the BRS model.

In addition, when the supply chain coordination is achieved in the models of NRS, ORS-1 and ORS-2, the
supplier makes zero profits.

From Proposition 5.1(1)–(3), we see that w = c is a necessary condition for supply chain coordination in
the models of NRS, ORS-1 and ORS-2. It indicates that the supply chain in the models of NRS, ORS-1 and
ORS-2 can be coordinated only if the supplier earns a zero profit. This means that the supply chain of NRS,
ORS-1 and ORS-2 models can achieve coordination may not be individually rational for the supplier. That is,
he may be unwilling to participate to achieve coordination. We further verify whether the parameter setting in
Proposition 5.1(4) can induce the supplier to participate voluntarily in coordinating supply chain in the BRS
model. We first check the supplier’s production decision at the beginning of Stage 2. Substituting the parameter
setting of Proposition 5.1(4) into equations (4.5) and (4.6) yields the supplier’s optimal expected profit of BRS
model in Stage 2:

ΠB
s

(
QBs , i;Q

B
r |i
)

= (1− ρ)
[
(p− vs)QBr |i− (p− vr)

(
QBr |i− x

)+
+ vsQ

B
s

]
+ ρcQBs , (5.1)

and

ΠB
s

(
QBs , i;Q

B
s

)
= (1− ρ)

[
pQBs − (p− vr)

(
QBs − x

)+]
+ ρcQBs . (5.2)

Comparing equations (5.1), (5.2) with equations (4.2), (4.3), it becomes clear that the supplier’s expected
profit in Stage 2 coincides with that in the centralized case. In Stage 1, only the supplier makes the production
quantity decision. Combining equations (5.1), (5.2) and taking expectation over I = i, it is easy to see that the
supplier’s profit function coincides with ΠSC

(
QSC
s , i;QSC

r

)
. Therefore, in the BRS model, the supply chain is

coordinated with parameter setting of Proposition 5.1(4). In particular, we establish following proposition to
demonstrate that the bi-directional risk-sharing contract {w, ρ, φ} permits an arbitrary allocation of the supply
chain profit between the supplier and the retailer.

Proposition 5.2. With {w, ρ, φ} ∈M , the optimal expected profit of the centralized SC with demand informa-
tion updating can be reached, where

M = {{w, ρ, φ} : w = p− ρ(p− c), (1− ρ)(p− vr) = φ(w − vr), ρ ∈ [0, 1]} .

Furthermore, ΠB
r (QBs ) = ρΠSC

(
QSC
s

)
and ΠB

r (QBs ) = (1− ρ)ΠSC
(
QSC
s

)
.

From Proposition 5.2, through setting a feasible wholesale price to realize QBr |i = QSC
r |i with {w, ρ, φ} ∈M ,

the optimal expected profit of the centralized system is reached. Note that w has a negative correlation with
ρ. The supplier is willing to charge a lower wholesale price if the retailer commits a higher sharing proportion
of overproduction. Meanwhile, increasing ρ leads to φ decreasing. That is, even if the retailer shares a higher
overproduction proportion, the supplier cannot increase overstock sharing proportion. Hence, the parameter of
ρ plays a key role in splitting the supply-chain profit between the supplier and the retailer. The higher the risk
that the retailer faces, the more profit she is expected to acquire, and likewise for the supplier. The negotiation
between the supply chain members can then focus on the risk that each member is able and willing to take.
Therefore, the bi-directional risk-sharing contract can be accepted voluntarily by supply chain members.

Furthermore, from Proposition 5.2, one can derive that as ρ increases the retailer’s expected profit increases
while the supplier’s expected profit decreases. Hence, the parameter ρ plays a key role in splitting the supply
chain’s profit between the two members. Following Zhao et al. [49], to evaluate the performance of the bi-
directional risk-sharing contract comparing with single risk-sharing contract (i.e., NRS, ORS-1 and ORS-2
models), we define the profit gaps between {w, ρ, φ} ∈M and {w}, {w, ρ}, {w, φ} as

Gapks =
ΠB
s

(
QB

∗

s

)
−Πk

s

(
Qk∗s

)
ΠB
s (QB∗s )

and Gapkr =
ΠB
r

(
QB

∗

r

)
−Πk

r

(
Qk∗r

)
ΠB
r (QB∗r )

, with k = N,S1, S2,
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where Gapks and Gapkr represent the supplier’s and the retailer’s profit advantage with {w, ρ, φ} ∈M over {w},
{w, ρ} and {w, φ}, respectively.

Both supply chain members would accept {w, ρ, φ} ∈M only when Gapks ≥ 0 and Gapkr ≥ 0. Then, compared
with {w}, {w, ρ} and {w, φ}, the following proposition establishes the conditions in which the supply chain
coordination is achieved under {w, ρ, φ} ∈M .

Proposition 5.3. Compared with {w}, {w, ρ} and {w, φ}, the coordination of the supply chain is achieved
under {w, ρ, φ} ∈ N ∈M , where N = {{w, ρ, φ} : w = p−ρ(p−c), (1−ρ)(p−vr) = φ(w−vr), ρ ∈ [ρkmin, ρ

k
max]},

where ρkmin = Πkr (Qk∗r )

ΠSC(QSC∗
s )

and ρkmax = 1− Πks (Qk∗s )

ΠSC(QSC∗
s )

with k = N,S1, S2.

Proposition 5.3 shows that with {w, ρ, φ} ∈ N ∈ M , both the supplier and retailer are beneficial compared
with {w}, {w, ρ} and {w, φ}. In there, Gapks ≥ 0 and Gapkr ≥ 0 with k = N,S1, S2. To be more specific, when
ρ = ρkmin, we have ∆Πk

r = ΠB
r (QB

∗

r )−Πk
r (Qk∗r ) = 0, and ∆Πk

s = ΠB
s (QB

∗

s )−Πk
s(Qks) = ΠSC(QSC∗

c )−Πk(Qk∗r ) :=
∆Π. The supplier takes all the additional expected profit of the centralized supply chain while the retailer only
reserves the initial expected profit of the decentralized supply chain under other models. Comparatively, when
ρ = ρkmax, then ∆Πk

r = ∆Π and ∆Πk
s = 0. The retailer gains the entire additional expected profit. Through

tuning ρ ∈ [ρkmin, ρ
k
max], the expected profit of the centralized supply chain is arbitrarily allocated between

both members. Compared with {w}, {w, ρ} and {w, φ}, the coordination of the supply chain is achieved under
{w, ρ, φ} ∈ N ∈M .

6. Effects of risk aversion and negotiation power

In this section, we study how the supply chain members’ risk aversion and negotiation power affect the
optimal settings of {w, ρ, φ} ∈ N and the allocation of the additional expected profit of the centralized system.
Assume that both members are risk-averse. Following the vN-M utility function [38] and the linear aggregation
rule [49], the supply-chain utility function u(∆πr,∆πs) is given by u(∆πr,∆πs) = λrur(∆πr) + λsus(∆πs),
where ur(∆πr) and us(∆πs) represent the vN-M utility functions of the supplier and retailer respectively when
obtaining additional expected profits. The parameters λr and λs are used to measure the negotiation powers
of the retailer and supplier respectively, where λr + λs = 1. A larger value of λ denotes a stronger negotiation
power of the supply chain member. The optimal contract selection can be obtained by solving the programming
problem (P11) as follows.

maximize
ρ

u (∆πr,∆πs)

subject to ρ ∈ [ρmin, ρmax] , (P11)

Following Yan and Wang [45], the utility functions of the supplier and retailer are ur(∆πr) = − exp−γr∆πr

and us(∆πs) = − expγs∆πs , respectively, where γs, γr > 0 represent the risk-tolerant coefficients of the supplier
and retailer respectively. Based on the Pratt-Arrow risk aversion function [30], we derive the coefficients of the
absolute risk aversion of the supplier and retailer as follows.

Rs(∆πs) =
−u′′s (∆πs)
u′s(∆πs)

= γs and Rr(∆πr) =
−u′′r (∆πr)
u‘
r(∆πr)

= γr.

Rs(∆πs) and Rr(∆πr) are strictly increasing in γs and γr, respectively. A larger value of γ denotes the supply
chain member is stronger risk-averse. We present three examples to illustrate how the members’ risk aversion
and negotiation power affect the selection of optimal contract and the allocation of the additional supply-chain
profit.

Example 6.1. We consider a two-echelon supply chain consisting of a risk-averse supplier with the exponen-
tial utility function us(∆πs) = − exp−γs∆πs and a risk-averse retailer with the exponential utility function
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ur(∆πr) = − exp−γr∆πr . Following the linear aggregation rule, the supply chain utility function is

u(∆πs,∆πr) = −λr exp−γr∆πr −λs exp−γs∆πs := u1.

Solving the program (P11) with u1, the following lemma establishes the optimal risk-sharing proportion of the
centralized supply chain with both risk-averse members.

Lemma 6.2. When both members are risk-averse,

(i) If λs
λr
≤ γr

γs
exp−γr∆π, then ρ∗ = ρmax, ∆πr = ∆π and ∆πs = 0;

(ii) If γr
γs

exp−γr∆π ≤ λs
λr
≤ γr

γs
expγs∆π, then ρ∗ = γr

γr+γs
ρmin + γs

γr+γs
ρmax−

ln λsγs
λrγr

(γr+γs)π
, ∆πr = γs

γr+γs
∆π− ln λsγs

λrγr

γr+γs

and ∆πs = γr
γr+γs

∆π +
ln λsγs
λrγr

γr+γs
;

(iii) If λs
λr
≥ γr

γs
expγs∆π, then ρ∗ = ρmin, ∆πr = 0 and ∆πs = ∆π.

Lemma 6.2 shows that, given γr and γs, the optimal risk-sharing proportion of the centralized system with
both risk-averse members fully depends on the members’ negotiation powers. If the risk-averse supplier’s nego-
tiation power relative to the risk-averse retailer is weak (i.e., λs

λr
≤ γr

γs
exp−γr∆π), the risk-averse retailer would

occupy the entire additional supply chain profit. If the risk-averse supplier’s negotiation power relative to the
risk-averse retailer’s is moderate (i.e., γr

γs
exp−γr∆π ≤ λs

λr
≤ γr

γs
expγs∆π), there would exist transfer payment

between the supplier and retailer. When λs
λr
≥ γr

γs
, the risk-averse retailer transfers payment of

ln λsγs
λrγr

γr+γs
to the risk-

averse supplier. With λs increasing or λr decreasing, the transfer payment to the risk-averse supplier increases.
Once λs

λr
increases up to γr

γs
expγs∆π, the transfer payment to the risk-averse supplier is γs

γr+γs
∆π. If the risk-

averse supplier’s negotiation power relative to the risk-averse retailer’s is strong (i.e., λs
λr
≥ γr

γs
expγs∆π), the

risk-averse supplier would occupy the entire additional supply chain profit.

Example 6.3. We consider a supply chain consisting of a risk-neutral supplier with the utility function
us(∆πs) = ∆πs and a risk-averse retailer with the exponential utility function ur(∆πr) = − exp−γr∆πr . Follow-
ing the linear aggregation rule, the supply-chain utility function is

u(∆πr,∆πs) = −λr exp−γr∆πr +λs∆πs := u2.

Solving the program (P11) with u2, following lemma establishes the optimal risk-sharing proportion of the
centralized supply chain with a risk-averse retailer.

Lemma 6.4. When only the retailer is risk-averse,

(i) If λr
λs
≤ 1

γr
, then ρ∗ = ρmin, ∆πr = 0 and ∆πs = ∆π;

(ii) If 1
γr
< λr

λs
< expγr∆π

γr
, then ρ∗ = ρmin +

ln λrγr
λs

γr
, ∆πr =

ln λrγr
λs

γr
and ∆πs = ∆π − ln λrγr

λs

γr
;

(iii) If λr
λs
≥ expγr∆π

γr
, then ρ∗ = ρmax,∆πr = ∆π and ∆πs = 0.

Lemma 6.4 shows that, any given γr, if the risk-averse retailer’s negotiation power relative to the risk-neutral
supplier’s is weak (i.e., λr

λs
≤ 1

γr
), the risk-neutral supplier would occupy the entire additional supply-chain

profit. If the risk-averse retailer’s negotiation power relative to the risk-neutral supplier’s is moderate (i.e.,
1
γr
< λr

λs
< expγr∆π

γr
), the risk-neutral supplier would occupy the entire additional supply-chain profit and then

transfer payment of
ln λrγr

λs

γr
to the risk-averse retailer. With λr increasing or λs decreasing, the risk-averse

retailer’s negotiation power relative to the risk-neutral supplier increases. Once λs
λs

increases up to expγr∆π

γr
, the

transfer payment to the risk-averse retailer is ∆π. If the risk-averse retailer’s negotiation power relative to the
risk-neutral supplier is strong (i.e., λr

λs
≥ expγr∆π

γr
), the risk-averse retailer would occupy the entire additional

supply-chain profit.
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Table 4. Optimal quantity decisions with uniform-uniform distribution.

Model Ordering quantity in Stage 2 Production quantity in Stage 1

Centralized QSC∗
r = i− β

2
+ p−vs

p−vr β, if i ≤ iQSC∗
s

, QSC∗
r = γ + α−β

2
+ p−vs

p−vr β −
√

2(c−vs)αβ
p−vr ;

QSC∗
r = QSC∗

s , if iQSC∗
s
≤ i,

NRS QN
∗

r = i− β
2

+ p−w
p−vr β, if i ≤ iQN∗s , QN

∗
r = γ + α−β

2
+ p−w

p−vr β −
c−vs
w−vsα;

QN
∗

r = QN
∗

s , if iQN∗s ≤ i,

ORS-1 QS1∗
r = i− β

2
+ p−w+ρ(c−vs)

p−vr β, if i ≤ iQS1∗
s

, QS1∗
r = γ + α−β

2
+ p−w+ρ(c−vs)

p−vr β

QS1∗
r = QS1∗

s , if iQS1∗
s
≤ i, − (1−ρ)(c−vs)

w−vs−ρ(c−vs)α;

ORS-2 QS2∗
r = i− β

2
+ p−w

p−vr−φ(w−vr)β, if i ≤ iQS2∗
s

, QS2∗
r = γ + α−β

2
+ w−vs

φ(w−vr)β −A1;

QS2∗
r = QS2∗

s , if iQS2∗
s
≤ i,

BRS QB
∗

r = i− β
2

+ p−w+ρ(c−vs)
p−vr−φ(w−vr)β, if i ≤ iQB∗s , QB

∗
r = γ + α−β

2
+ w−vs−ρ(c−vs)

φ(w−vr) β −A2.

QB
∗

r = QB
∗

s , if iQB∗s ≤ i,

Example 6.5. We consider a supply chain consisting of a risk-averse supplier with exponential utility function
us(∆πs) = − exp−γs∆πs and a risk-neutral retailer with the utility function ur(∆πr) = ∆πr. Following the
linear aggregation rule, the supply chain utility function is

u(∆πr,∆πs) = λr∆πr − λs exp−γs∆πs = u3.

Solving the program (P11) with u3, the following lemma establishes the optimal risk-sharing proportion of the
centralized supply chain with a risk-averse supplier.

Lemma 6.6. When only the supplier is risk-averse,

(i) If λs
λr
≤ 1

γs
, then ρ∗ = ρmax, ∆πr = ∆π and ∆πs = 0;

(ii) If 1
γs
≤ λs

λr
≤ 1

γs
expγs∆π, then ρ∗ = ρmax −

ln λsγs
λr

γs
, ∆πr = ∆π − ln λsγs

λr

γs
and ∆πs =

ln λsγs
λr

γs
;

(iii) If λs
λr
≥ 1

γs
expγs∆π, then ρ∗ = ρmin, ∆πr = 0 and ∆πs = ∆π.

Lemma 6.6 shows that, compared with the risk-neutral retailer, the risk-averse supplier with stronger risk
aversion obtains greater additional supply chain profit. The supplier needs a long lead time to prepare produc-
tion. Through updating demand information, the retailer may improve demand forecast to make more precise
final order decision. So, the supplier likely suffers from heavier overproduction loss. To make up the potential
loss, the risk-averse supplier requires greater additional profit.

7. Numerical analysis

Numerical examples are presented to illustrate the main theoretical results. For the sake of sim-
plicity, the optimal quantity decisions with uniform-uniform distribution in Table 4 with A1 =√[

w−vs
φ(w−vr)β −

p−w
p−vr−φ(w−vr)β

]2
+ 2(c−vs)αβ

φ(w−vr) and A2 =

√[
w−vs−ρ(c−vs)

φ(w−vr) β − p−w
p−vr−φ(w−vr)β

]2
+ 2(1−ρ)(c−vs)αβ

φ(w−vr) .

Similar to Huang et al. [21], Chen et al. [9] and Wang and Tsao [41], the main parameters are set as follows:
p = 200, c = 50, vs = 30, vr = 20, α = 1000, β = 800, and γ = 1500.
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Table 5. Optimal quantity decisions and expected profits in the BRS model.

w ρ φ QBs QBr |i πB πBr πBs πBr /π
SC πBs /π

SC

184 0.1 0.98 1933 i+ 355 2.0973 0.2097 1.8876 0.1 0.9
168 0.2 0.97 1933 i+ 355 2.0973 0.4194 1.6779 0.2 0.8
152 0.3 0.95 1933 i+ 355 2.0973 0.6291 1.4682 0.3 0.7
136 0.4 0.93 1933 i+ 355 2.0973 0.8389 1.2584 0.4 0.6
120 0.5 0.90 1933 i+ 355 2.0973 1.0486 1.0487 0.5 0.5
104 0.6 0.85 1933 i+ 355 2.0973 1.2583 0.8380 0.6 0.4
88 0.7 0.79 1933 i+ 355 2.0973 1.4681 0.6292 0.7 0.3
72 0.8 0.69 1933 i+ 355 2.0973 1.6778 0.4195 0.8 0.2
56 0.9 0.50 1933 i+ 355 2.0973 1.8875 0.2098 0.9 0.1

7.1. The supply-chain coordination

In this subsection, we first verify that how the bi-directional risk-sharing contract coordinates the supply
chain with demand information updating. To be more specific, in the centralized model, the supply chain’s
optimal quantity decisions are: at the beginning of Stage 1, the supplier’s optimal production quantity is
QSC∗

s = 1933. The critical demand information threshold is iQSC∗
s

= 1578. At the end of Stage 1, the latest
demand information I is realized as i upon demand information updating. If 1000 ≤ i ≤ 1578, the optimal
ordering quantity is QSC∗

r = i+ 355; and if 1578 < i ≤ 2000, QSC∗

r = 1933. The supply chain expected profit is
πSC = 2.0973× 105 (see Props. 4.1, 4.3 and Cor. 4.2 in Sect. 4.1).

In the BRS model with {w, ρ, φ}, given the values of ρ range from 0.1 to 0.9, then the values of w and φ
can be obtained from Proposition 5.2. Then, the feasible intervals of w, ρ and φ are (50, 200), (0, 1) and (0, 1),
respectively. Table 5 presents the optimal quantity decisions and the expected profits with the bi-directional
risk-sharing contract {w, ρ, φ}. For example, if ρ = 0.3, then w = 152 and φ = 0.95. The supplier charges a
wholesale price of 152, and bears 70% of overproduction risk and shares 5% of overstock risk with the retailer.
Correspondingly, the retailer shares 30% of overproduction risk with the supplier and bears 95% of overstock
risk. Under such settings, QSC∗

s = QB
∗

s and QSC∗

r = QB
∗

r . So that the supply chain members’ quantity decisions
reach system-optimal level. The optimal expected profits of the supplier and retailer are πBs = 1.4681 × 105

and πBr = 0.6292 × 105, respectively. Note that πB = πBr + πBs = πSC = 2.0973 × 105, which means that the
coordination of the supply chain is achieved. In addition, πBr = 0.3πSC and πBs = 0.7πSC. It indicates that
ρ and 1 − ρ are the proportions of the retailer’s and the supplier’s profit to allocate the supply-chain profit,
respectively. According to the Table 5, by tuning ρ, the supply-chain profit can be arbitrary allocated between
both members. Therefore, a bi-directional contract {w, ρ, φ} ∈ M can achieve the supply chain coordination
with demand information updating (Props. 4.13, 4.15, Cor. 4.14 in Sect. 4.2.4 and Prop. 5.2 in Sect. 5).

7.2. Performance comparison among four models

In this subsection, by comparing the supply chain’s optimal expected profit in the coordinating contract (i.e.,
BRS contract) with non-coordinating contracts (i.e., NRS, ORS-1 and ORS-2 contracts), we further evaluate
the performance of the proposed contract. Specific as follows:

(1) In the NRS model with {w}, the supplier’s production quantity and the retailer’s ordering quantity depend
on wholesale price w, which is given and kept the same as {w, ρ, φ}. Table 6 shows the supply chain optimal
quantity decisions and expected profit under {w}. For example, given w = 152 in Table 6, the supplier’s
optimal production quantity of Stage 1 is QNs = 1640. The critical information threshold is iQNs = 1840.
Upon observing i, the retailer’s optimal ordering quantity QNr of Stage 2 is: if 1000 ≤ i ≤ 1840, then
QNr = i − 200, and if 1840 ≤ i ≤ 2000, then QNr = 1640. The optimal expected profits of the supply
chain and members are πN = 0.6200 × 105, πNs = 0.0820 × 105 and πNr = 0.5380 × 105, respectively. In



306 H. YANG AND J. PENG

Table 6. Optimal quantity decisions and expected profits in the ORS model.

w QNs QNr |i πN ∆π πNs GapNs πNr GapNr

184 1537 i− 334 0.3340 1.7633 0.165 0.210 0.169 0.191
168 1590 i− 267 0.4720 1.6253 0.124 0.704 0.348 0.169
152 1640 i− 200 0.6200 1.4773 0.082 0.869 0.538 0.145
136 1684 i− 134 0.7700 1.3273 0.033 0.961 0.737 0.121
120 1722 i− 67 0.9290 1.1683 −0.017 1.016 0.946 0.097
104 1750 i 1.0930 1.0043 −0.071 1.056 1.164 0.074
88 1759 i+67 1.2630 0.8343 −0.126 1.085 1.389 0.053
72 1733 i+133 1.4330 0.6643 −0.183 1.109 1.616 0.036
56 1628 i+200 1.5850 0.5123 −0.235 1.124 1.820 0.035

Table 7. Optimal quantity decisions and expected profits in the ORS-1 model.

w ρ QS1
s QS1

r |i πS1 ∆π πS1
s GapS1

s πS1
r GapS1

r

184 0.1 1558 i− 324 1.6693 0.4280 1.5076 0.201 0.1617 0.226
168 0.2 1633 i− 248 1.7645 0.3328 1.4307 0.147 0.3338 0.203
152 0.3 1709 i− 173 1.8468 0.2505 1.3312 0.093 0.5156 0.180
136 0.4 1784 i− 97.8 1.9164 0.1809 1.2091 0.039 0.7073 0.156
120 0.5 1860 i− 22.2 1.9731 0.1242 1.0642 −0.015 0.9089 0.132
104 0.6 1935 i+ 53.3 2.0170 0.0803 0.8967 −0.070 1.1203 0.109
88 0.7 2011 i+ 128 2.0480 0.493 0.7065 −0.123 1.3415 0.086
72 0.8 2086 i+ 204 2.0662 0.0311 0.4936 −0.178 1.5726 0.062
56 0.9 2162 i+ 280 2.0715 0.0258 0.2582 −0.235 1.8133 0.039

particular, GapNs > 0 and GapNr > 0, which suggests that the BRS contract is always superior than the
NRS contract for any ρ ∈ [0, 1]. The NRS contract cannot coordinate the supply chain unless w = c. The
retailer, however, would occupy all profit (see Props. 4.4, 4.6 and Cor. 4.5 in Sect. 4.2.1).

(2) In the ORS-1 model with {w, ρ}, the supply chain’s optimal quantity decisions and expected profits depend
on the wholesale price w and sharing proportion of overproduction ρ, which is given and kept the same as
{w, ρ, φ} in Table 7. Take w = 152 with ρ = 0.3 as an example, at the beginning of Stage 1, the supplier’s
optimal production quantity is QS1

s = 1709. The critical information threshold is iQS1
s

= 1882. When the
latest demand information I = i is observed, the retailer’s optimal ordering quantity at the beginning of
Stage 2 is given as follows: if 1000 ≤ i ≤ 1882, then QS1

r = i−173, and if 1882 ≤ i ≤ 2000, then QS1
r = 1709.

The optimal expected profits of the supply chain and members are πS1 = 1.8468× 105, πS1
s = 1.3312× 105

and πS1
r = 0.5156 × 105, respectively. Since ∆π = πSC − πS1 = 0.2505 × 105 > 0, the expected profit in

the ORS-1 model cannot reach the system-optimal level. In addition, GapS1
r > 0 suggests that the retailer

always benefits from the BRS contract than the ORS-1 contract for any ρ ∈ [0, 1]. However, GapS1
s > 0 only

when ρ ∈ [0, ρS1
min], the supplier benefits from the BRS contract than the ORS-1 contract. (see Props. 4.7, 4.9

and Cor. 4.8 in Sect. 4.2.2).
(3) In the ORS-2 model with {w, π}, the supply chain’s optimal quantity decisions and expected profits are

influenced by both the wholesale price w and sharing proportion of overstock φ, which is given and kept the
same as {w, ρ, φ} in Table 8. Similarly, take w = 152 with φ = 0.95 as an example, at the beginning of Stage
1, the supplier’s optimal production quantity is QS2

s = 1873. The critical information threshold is iQS2
s

=
1607. When the latest demand information I = i is observed, the retailer’s optimal ordering quantity at the
beginning of Stage 2 is given as follows: if 1000 ≤ i ≤ 1607, then QS2

r = i+266, and if 1607 ≤ i ≤ 2000, then
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Table 8. Optimal quantity decisions and expected profits in the ORS-2 model.

w φ QS2
s QS2

r |i πS2 ∆π πS2
s GapS2

s πS2
r GapS2

r

184 0.98 1910 i+ 266 2.0915 0.0058 1.8782 0.004 0.2133 −0.002
168 0.97 1893 i+ 266 2.0912 0.0061 1.6651 0.007 0.4261 −0.004
152 0.95 1873 i+ 266 2.0904 0.0069 1.4522 0.011 0.6382 −0.005
136 0.93 1850 i+ 266 2.0889 0.0084 1.2396 0.014 0.8493 −0.006
120 0.90 1822 i+ 266 2.0861 0.0112 1.0276 0.019 1.0585 −0.005
104 0.85 1786 i+ 266 2.0814 0.0159 0.8164 0.025 1.2650 −0.004
88 0.79 1738 i+ 266 2.0723 0.0250 0.6062 0.036 1.4661 0.001
72 0.69 1668 i+ 266 2.0537 0.0436 0.3978 0.051 1.6559 0.011
56 0.50 1553 i+ 266 2.0056 0.0917 0.1932 0.075 1.8124 0.039

QS2
r = 1873. The optimal expected profits of the supply chain and both members are πS2 = 2.0904× 105,

πS2
s = 1.4522 × 105 and πS2

r = 0.6382 × 105, respectively. Since ∆π = πSC − πS2 = 0.011 × 105 > 0, the
expected profit in the ORS-2 model also cannot reach the system-optimal level. In addition, GapS2

s > 0
shows that the supplier always benefits from the BRS contract than the ORS-2 contract for any ρ ∈ [0, 1].
However, GapS2

r > 0 only when ρ ∈ [ρS2
max, 1], the retailer benefits from the BRS contract than the ORS-2

contract (see Props. 4.10, 4.12 and Cor. 4.11 in Sect. 4.2.3).

7.3. The impacts of the contract parameters

In this subsection, taking the NRS contract as a benchmark, we study the impacts of ρ, φ, p, c, vs, and vr
on the expected profits of the supply chain and members in the BRS contract. The results are illustrated in
Figures 3 and 4. When analyzing the influence of a certain parameter, the values of other parameters maintain
unchanged.

Figure 3 shows the impacts of ρ and φ on the expected profits of the supply chain and members. The values
of ρ and φ both range from 0.1 to 0.9. The wholesale price is w = 100. In Figure 2(1), φ = 0.5 denotes the
supplier shares 50% of overstock risk. In Figure 2(2), ρ = 0.5 denotes the retailer shares 50% overproduction
risk. From Figure 3, the retailer’s expected profit decreases as ρ but increases as φ, in sharp contrast to the
supplier’s tendency. As ρ or φ increases, the supply-chain expected profit first increases and then decreases. To
be more specific, when w = 100 and φ = 0.5, πB increases in ρ ∈ (0.1, 0.6) and decreases in ρ ∈ (0.6, 0.9). Since
there exists double marginal effects, only adjusting ρ or φ cannot achieve optimal supply chain’s expected profit
unless {w, ρ, φ} ∈M .

Figure 4 presents the impacts of the parameters p, c, vs and vr on the expected profits of the supply chain.
When w = 120, ρ = 0.5 and φ = 0.90, we separately adjust p, c, vs and vm from 110, 35, 21, 0 to 200, 80, 48,
27. From Figure 4, the supply-chain expected profits both increase with p and vs and both decrease with c and
vr. The high p, c and vr and the low vs enlarge the gap between the supply chain profit curves of {w, ρ, φ} ∈M
and {w}. That suggests that {w, ρ, φ} ∈ M is more beneficial to the supply chain for the high retail price,
production cost and final salvage value, and the low initial salvage value.

7.4. The impacts of risk aversion and negotiation power

In this subsection, we further study the impacts of risk aversion and negotiation power on the optimal quantity
decisions and the allocation of the additional supply-chain profit with {w, ρ, φ} ∈ M . Take the NRS contract
{w} as the benchmark, when w = 150, the additional supply chain profit ∆π = 1.4279 × 105. Specially, only
when ρ ∈ [0.2879, 1], both the supplier and the retailer accept the proposed contract.

Example 7.1. Figure 5 presents the impacts of the members’ negotiation power on the optimal contract and
the allocation of the additional supply-chain profit when both members are risk-averse. When γr = γs = 1:
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Figure 3. The impacts of ρ and φ on πB , πBs and πBr .

Figure 4. The impacts of p, c, vs and vr on πB and πN .

(1) if 0 ≤ λs ≤ 0.1934, then ρ∗ = 1, ∆πr = 1.4279 and ∆πs = 0; (2) if 0.1934 ≤ λs ≤ 0.8066, then ρ∗ =
0.644− lnλs−ln(1−λs)

4.1946 , ∆πr = 0.7139− lnλs−ln(1−λs)
2 and ∆πs = 0.7139+ lnλs−ln(1−λs)

2 ; and (3) if 0.8066 ≤ λs ≤ 1,
then ρ∗ = 0.2879, ∆πr = 0 and ∆πs = 1.4279. That suggests that if both members have the same absolute
risk aversion, they may gain the equal proportion of ∆π. There exists transfer payment between both members,
depending on the members’ negotiation power. The stronger negotiation power relative to the retailer brings
the supplier greater transfer payment.

Figure 6 shows the impact of the members’ risk aversion on the optimal decisions and the additional supply-
chain profit allocation when both members have the same negotiation power. Without loss of generality, we study
three scenarios of risk aversion: (1) γr < γs; (2) γr = γs; and (3) γr > γs. To be more specific, when λr = λs,
if 2γr = γs and γr ≥ 0.24272, then ρ∗ = 0.7626 − ln 2

6.2919γr
, ∆πr = 0.95193 − ln 2

3γr
and ∆πs = 0.47597 + ln 2

3γr

(see Fig. 6). As γr increase, ρ∗ and ∆πr increases while ∆πs decreases. It suggests that if the supplier has
stronger risk aversion relative to the retailer (e.g., 2γr = γs), the retailer gains the additional supply-chain
profit of 0.95193 while the supplier gains 0.47597. At the same time, the retailer transfers payment of ln 2

3γr
to

the supplier, which decreases as γr increases. The retailer with stronger risk aversion transfers less payment to



COORDINATING A FRESH-PRODUCT SUPPLY CHAIN 309

Figure 5. The optimal allocation of ∆π with λs.

Figure 6. The optimal allocation of ∆π with λr < λs.

the supplier. If γr = γs > 0, then ρ∗ = λmin+λmax
2 = 0.644 and ∆πr = ∆πs = 1

2∆π = 0.7139. It suggests that
both members equally split ∆π when having the same risk aversion and negotiation power.

Figure 7 shows when γr = 2γs and γr ≥ 0.4854, then ρ∗ = 0.5253 + ln 2
6.2919γr

, ∆πr = 0.47597 + ln 2
3γr

and
∆πs = 0.95193 − ln 2

3γr
. As γr increase, ρ∗ and ∆πr decreases while ∆πs increases. The results are contrary to

Figure 6. If the retailer has stronger risk aversion relative to the supplier (e.g., γr = 2γs), she obtains the extra
expected profit of 1

3∆π. Meanwhile, the retailer gets transfer payment of ln 2
3γr

from the supplier, which decreases
as γr. Hence, the retailer with stronger risk aversion may gain more allocation from ∆π. The retailer may not
benefit from risk aversion.

Example 7.2. Figure 8 gives the impact of the retailer’s negotiation power on the optimal decisions and the
additional supply-chain profit allocation when only the retailer is risk-averse. From Figure 8, when γr = 1:
(1) if λr ≤ 0.5, then ρ∗ = 0.2879, ∆πr = 0 and ∆πs = 1.4279; (2) if 0.5 < λr < 0.8066, then ρ∗ = 0.2879 +
ln(λr)−ln(1−λr)

2.0973 , ∆πr = ln λr
1−λr and ∆πs = 1.4279−ln λr

1−λr ; and (3) if 0.8066 ≤ r ≤ 1, then ρ∗ = 1, ∆πr = 1.4279
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Figure 7. The optimal allocation of ∆π with λr > λs.

Figure 8. The optimal allocation of ∆π with λr.

and ∆πs = 0. The supplier occupies the entire ∆π when λr ≤ 0.5. The retailer only obtains transfer payment
of ln λr

1−λr from the supplier when 0.5 < λr < 0.8066. This transfer payment ln λr
1−λr is increasing in λr. When

λr increases up to 0.8066, the payment of the entire ∆π would be transferred to the retailer. That hints that
when the retailer’s negotiation power is strong enough relative to the supplier’s (e.g., λr ≥ 0.8066), the retailer
would occupy the entire ∆π.

Figure 9 shows the impact of the retailer’s risk aversion on the optimal decisions and the additional supply-
chain expected profit allocation when both members have the same negotiation power. From Figure 9, if γr ≥ 1
and λr = λs, then ρ∗ = 0.2879+ ln γr

2.0973γr
, ∆πr = 1.4279− ln γr

γr
and ∆πs = ln γr

γr
. Specifically, if 1γr ≤ 2.7183, then

ρ∗ and ∆πr increase while ∆πs decreases; and if γr ≥ 2.7183, then ρ∗ and ∆πr decrease while ∆πs increases. In
the case that the retailer is risk-averse and the supplier is risk-neutral, the retailer only obtains transfer payment
of ln γr

γr
from the supplier, which is convex in γr. That is the risk aversion is beneficia for the retailer only when

her risk-averse at a lower level (e.g., 1 ≤ γr ≤ 2.7183). If the retailer raises her risk-averse at a higher level
(e.g. γr ≥ 2.7183), she will earn less or even no transfer payment from the supplier. The risk-neutral supplier
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Figure 9. The optimal allocation of ∆π with γr.

Figure 10. The optimal allocation of ∆π with λr.

would not be willing to cooperate with the risk-averse retailer. The retailer always tends to postpone order so
that he can update demand information to reduce his overstock loss while correspondingly raise the supplier’s
overproduction loss. As a result, the risk-neutral supplier would be more resistant to play with the risk-averse
retailer together, especially for the retailer who deliberately increases the degree of risk aversion.

Example 7.3. Figure 10 presents the impacts of the retailer’s negotiation power on the optimal decisions and
the additional supply chain expected profit allocation when only the supplier is risk-averse. From Figure 10,
when γs = 1, there are three cases: (1) if 0.5 ≤ λr ≤ 1, then ρ∗ = 1, ∆πr = 1.4279 and ∆πs = 0; (2)
if 0.1934 ≤ r ≤ 0.5, then ρ∗ = 1 − ln(1−λr)−ln(λr)

2.0973 , ∆πr = 1.4279 − ln(1−λr)
λr

and ∆s = ln(1−λr)
λr

; and (3) if
0 ≤ λr ≤ 0.1934, then ρ∗ = 0.2879, ∆πr = 0 and ∆πs = 1.4279. The risk-averse supplier with low negotiation
power (e.g., 0 ≤ λs ≤ 0.5), would not get additional profit from the centralized SC. As the supplier’s negotiation
power increases (e.g., 0.5 ≤ λs ≤ 0.8066), she would obtain transfer payment of ln λs

1−λs from the retailer, which



312 H. YANG AND J. PENG

Figure 11. Contract selection and profit increment allocation with γs.

is increase with λs. Once the supplier’s negotiation power is strong enough relative to the retailer’s (e.g.,
λs ≥ 0.8066), she would occupy the entire additional supply-chain profit.

Figure 11 shows the impact of the supplier’s risk aversion on the optimal decisions and the additional supply-
chain expected profit allocation when both members have the same negotiation power. From Figure 11, when
λr = λs and if γs ≥ 1, then ρ∗ = 1 − ln γs

2.0973γs
, ∆πr = 1.4279 − ln γs

γs
and ∆πs = ln γs

γs
. In the case that the

supplier is risk-averse and the retailer is risk-neutral, the supplier would not obtain additional expected profit
from the centralized SC while only obtain transfer payment of ln γs

γs
from the retailer, which is concave in γs.

That suggests that the supplier with low risk aversion is beneficial (e.g., 1 ≤ γs ≤ 2.7183). If the supplier raises
risk aversion to a higher level (e.g., γs ≥ 2.7183), he earns less and even not gain any transfer payment since
the risk-neutral retailer may refuse to cooperate with the high risk-averse supplier.

8. Conclusion and management insights

In this paper, we investigate the coordination issue of a two-echelon fresh product supply chain with demand
information updating. By sharing the supply chain risks of both overproduction and overstock between the
supplier and the retailer, we proposed a novel bi-directional risk-sharing contract (i.e., BRS contract) to coor-
dinate such a supply chain. Our study shows that, compared with the single risk-sharing contracts (i.e., NRS,
ORS-1 and ORS-2), any proposed contract in the set of M can coordinate the supplier–retailer supply chain
with Pareto-improvement. By adjusting risk-sharing proportions, the proposed contract can arbitrarily allocate
the supply chain profit between the supplier and retailer. In addition, we further analyze how the supply chain
members select an optimal bi-directional risk-sharing contract according to their risk preferences and negotiat-
ing powers. Our study shows that the extra profit each member could obtain from coordination increases with
their relative power measurements while decreases with their relative risk aversion measurements.

The paper points out two main management insights. First, in the context of demand information updating,
compared with sharing contract (i.e., NRS, ORS-1 and ORS-2 contracts), only the bi-directional risk-sharing
contract can induce more production and ordering quantity, which leads greater supply chain profit. Hence,
bi-directional risk-sharing between the supplier and retailer can be achieved on a voluntary compliance. Second,
the risk aversion in some circumstances can improve supply chain members’ profits and promote cooperation
between the supplier and retailer. Hence, proper risk aversion measurements should be set to make cooperation
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relation a reality. Our finding demonstrates that the supply chain members only benefits from a relative lower
risk aversion measurement.

The paper can be extended in the following two possible directions. First, in our model, we consider a two-
echelon supply chain consisting of a single supplier and a single retailer. The retailer’s final ordering quantity
is constrained by the supplier’s initial production quantity. In practice, the retailer, such as Toyota, would
have multiple suppliers providing the same key components. Considering the supply chain with a retailer and
multiple suppliers will yield interesting and meaningful results. Second, our current model only focuses on how
the member’s risk preferences affect their decision-making. In fact, the risk consideration is complex in the
supply chain management, especially for the risk constraint supply chain members. As a natural extension of
our work, future studies can consider coordination issues in the supply chain with demand information updating
and risk constraint under the mean-variance framework.

Appendix A.

Proof of Proposition 4.1 and Corollary 4.2. At the beginning of Stage 2, given QSC
s and I = i, we get

ΠSC
(
QSC
s , i;QSC

r

)
= E{x|i}{pmin(x,QSC

r ) + vr(QSC
r − x)+ + vs(QSC

s − QSC
r )} = (p − vs)QSC

r − (p −

vr)
∫ QSC

r

0
F (x|i)dx+ vsQ

SC
s . Since

∂ΠSC(QSC
s ,i;QSC

r )
∂QSC

r
= (p− vs)− (p− vr)F (QSC

r |i) and
∂2ΠSC(QSC

s ,i;QSC
r )

∂(QSC
r )2 = −(p−

vr)f(QSC
r |i) < 0, ΠSC

(
QSC
s , i;QSC

r

)
is concave in QSC

r . Solving for first order condition, QSC
r |i = F−1

(
p−vs
p−vr

)
.

Due to QSC
r ≤ QSC

s , the optimal order quantity in centralized model is QSC∗

r = min{QSC
r |i, QSC

s }. Since x|i is
stochastically increasing in i, there is a positive threshold iQSC

s
that satisfies QSC

r |iQSC
s

= QSC
s . Then, if i ≤ iQSC

s
,

QSC∗

r = QSC
r |i ≤ QSC

s ; if i > iQSC
s

, QSC∗

r = QSC
s < QSC

r |i. When market demand follows the uniform-uniform

distribution, we have F (QSC
r |i) = 1

β

(
QSC
r − i+ β

2

)
= p−vs

p−vr . Then, we obtain QSC
r |i = i − β

2 + p−vs
p−vr β. Let

QSC
r |iQSC

s
= QSC

s , we have iQSC
s

= QSC
s + β

2 −
p−vs
p−vr β. �

Proof of Proposition 4.3. At the beginning of Stage 1, since
∂ΠSC(QSC

s ,i;QSC
r |i)

∂QSC
s

= vs and
∂ΠSC(QSC

s ,i;QSC
s )

∂QSC
s

=[
p− (p− vr)F

(
QSC
s |i

)]
, then

∂SC(QSC
s )

∂QSC
s

=
∫ iQSC

s
0

∂ΠSC(QSC
s ,i;QSC

r |i)
∂QSC

s
dG(I)+

∫ +∞
iQSC
s

∂ΠSC(QSC
s ,i;QSC
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iQSC
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[
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(
QSC
s |i
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∂2ΠSC(QSC
s )

∂(QSC
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iQSC
s

[
(p− vr)f

(
QSC
s |i

)]
dG(I) < 0. Hence,

ΠSC
(
QSC
s

)
is concave in QSC

s . Solving for first order condition, we have
∫ +∞
iQSC
s

[
p−vs
p−vr − F

(
QSC
s |i

)]
dG(I) = c−vs

p−vr .

Note that, F (QSC
r |i) = p−vs

p−vr . Hence, QSC∗

s is the unique solution of
∫ +∞
iQSC
s

[
F (QSC

r |i)− F
(
QSC
s |i

)]
dG(I) =

c−vs
p−vr . In addition, when market demand follows the uniform-uniform distribution, we have

1
α
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2
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s + β

2−
p−vs
p−vr β

[
p−vs
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1
β
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p−vr . Hence, QSC∗
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Proof of Proposition 4.4 and Corollary 4.5. In the NRS model, at the beginning of Stage 2, given QNs and I = i,

we get ΠN
r (QNs , i;Q

N
r ) = E{x|i}{pmin(x,QNr )−wQNr +vr(QNr −x)+} = (p−w)QNr −(p−vr)

∫ QNr
0

F (x|i)dx. Since
∂ΠNr (QNs ,i;Q

N
r )

∂QNr
= (p − w) − (p − vr)F (QNr |i) and ∂2ΠNr (QNs ,i;Q

N
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r (QNs , i;Q

N
r )

is concave in QNr . Solving for first order condition, we have QNr |i = F−1
(
p−w
p−vr

)
. Due to QNr ≤ QNs , the

optimal order quantity in the NRS model is QN
∗

r = min{QNr |i, QNs }. Since x|i is stochastically increasing in
i, there is a positive threshold iQNs that satisfies QNr |iQNs = QNs . Then, if i ≤ iQNs , QN

∗

r = QNr |i ≤ QNs ; if
i > iQNs , Q

N∗

r = QNs < QNr |i. In addition, when market demand follows the uniform-uniform distribution, we
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have F (QNr |i) = 1
β

(
QNr − i+ β

2

)
= p−w

p−vr . Then, we obtain QNr |i = i− β
2 + p−w
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Proof of Proposition 4.6. In the NRS model, since ∂Ns (QNs ,i;Q
N
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Proof of Proposition 4.7 and Corollary 4.8. In the ORS-1 model, at the beginning of Stage 2, given QS1
s and
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r ≤ QS1
s , the optimal order quantity in the ORS

model is QS1∗

r = min{QS1
r |i, QS1

s }. Since x|i is stochastically increasing in i, there is a positive threshold iQS1
s

that satisfies QS1
r |iQS1

s
= QS1

s . Then, if i ≤ iQS1
s
, QS1∗

r = QS1
r |i ≤ QS1

s ; if i > iQS1
s

, QS1∗

r = QS1
s < QS1

r |i.
When market demand is uniform-uniform distributed, F (QS1

r |i) = 1
β

(
QS1
r − i+ β

2

)
= p−w+ρ(c−vs)

p−vr . Then,

QS1
r |i = i− β

2 + p−w+ρ(c−vs)
p−vr β. Let QS1

r |iQS1
s

= QS1
s , where iQS1

s
= QS1

s + β
2 −

p−w+ρ(c−vs)
p−vr β. �

Proof of Proposition 4.9. In the ORS model, at the beginning of Stage 1, since ∂ΠS1
s (QS1

s ,i;QS1
r |i)

∂QS1
s

= vs+ρ(c−vs)

and ∂ΠS1
s (QS1

s ,i;QS1
s )

∂QS1
s

= w, then we have
∂ΠS1

s (QS1
s )

∂QS1
s

=
∫ iQS1

s
0

∂ΠS1
s (QS1

s ,i;QS1
r |i)

∂QS1
s

dG(I)+
∫ +∞
iQS1
s

∂ΠS1
s (QS1

s ,i;QS1
s )

∂QS1
s

dG(I)−

c =
∫ iQS1

s
0 [vs + ρ(c− vs)]dG(I) +

∫ +∞
iQS1
s

wdG(I)− c = (w − c)− (w − vs − ρ(c− vs))G(iQS1
s

) and
∂2ΠS1

s (QS1
s )

∂(QS1
s )2 =

−(w − vs − ρ(c − vs))g(iQS1
s

) < 0. Hence, ΠS1
s

(
QS1
s

)
is concave in QS1

s . Solving for first order condition, we
have G(iQS1

s
) = w−c

w−vs−ρ(c−vs) . In addition, when market demand follows the uniform-uniform distribution,
we have G(iQS1

s
) = 1

α

(
iQS1

s
− γ + α

2

)
= w−c

w−vs−ρ(c−vs) . Thus, iQS1
s

= γ − α
2 + w−c

w−vs−ρ(c−vs)α. Since iQS1
s

=

QS1
s + β

2 −
p−w+ρ(c−vs)

p−vr β, then QS1∗

s = γ + α−β
2 + p−w+ρ(c−vs)

p−vr β − (1−ρ)(c−vs)
w−vs−ρ(c−vs)α. �

Proof of Proposition 4.10 and Corollary 4.11. In the ORS-2 model, at the beginning of Stage 2, given QS2
s

and I = i, ΠS2(QS2
s , i;QS2

r ) = E{x|i}{pmin(x,QS2
r ) − wQS2

r + [vr + φ(w − vr)](QS2
r − x)+} = (p − w)QS2

r −
(p − vr − φ(w − vr))

∫ QS2
r

0
F (x|i)dx. Since ∂ΠS2(QS2

s ,i;QS2
r )

∂QS2
r

= (p − w) − (p − vr − φ(w − vr))F (QS2
r |i) and

∂2S2(QS2
s ,i;QS2

r )
∂(QS2

r )2 = −(p − vr − φ(w − vr))f(QS2
r |i) < 0, then ΠS2(QS2

s , i;QS2
r ) is concave in QS2

r . Solving for

first order condition, we have QS2
r |i = F−1

(
p−w

p−vr−φ(w−vr)

)
. Due to QS2

r ≤ QS2
s , the optimal order quantity

in centralized model is QS2∗

r = min{QS2
r |i, QS2

s }. Since x|i is stochastically increasing in i, there exists a
unique positive threshold iQS2

s
that satisfies QS2

r |iQS2
s

= QS2
s . Then, if i ≤ iQS2

s
, QS2∗

r = QS2
r |i ≤ QS2

s ; if
i > iQS2

s
, QS2∗

r = QS2
s < QS2

r |i. In addition, when market demand follows the uniform-uniform distribution,
we have F (QS2

r |i) = 1
β (QS2

r − i + β
2 ) = p−w

p−vr−φ(w−vr) . Then, we obtain QS2
r |i = i − β

2 + p−w
p−vr−φ(w−vr)β. Let

QS2
r |iQS2

s
= QS2

s , we have iQS2
s

= QS2
s + β

2 −
p−w

p−vr−φ(w−vr)β. �



COORDINATING A FRESH-PRODUCT SUPPLY CHAIN 315

Proof of Proposition 4.12. In the ORS-2 model, at the beginning of Stage 1, since
∂ΠS2

s (QS2
s ,i;QS2

r |i)
∂QS2

s
=

vs and ∂ΠS2
s (QS2

s ,i;QS2
s )

∂QS2
s

= [w − φ(w − vr)F (QS2
s |i)], then ΠS2

s (QS2
s )

∂QS2
s

=
∫ iQS2

s
0

∂ΠS2
s (QS2

s ,i;QS2
r |i)

∂QS2
s

dG(I) +∫ +∞
iQS2
s

∂ΠS2
s (QS2

s ,i;QS2
s )

∂QS2
s

dG(I) − c =
∫ iQS2

s
0 vsdG(I) +

∫ +∞
iQS2
s

[w − φ(w − vr)F (QS2
s |i)]dG(I) − c = vs −

c +
∫ +∞
iQS2
s

[(w − vs) − φ(w − vr)F (QS2
s |i)]dG(I) and ∂2ΠS2

s (QS2
s )

∂(QS2
s )2 = −

∫ +∞
iQS2
s

φ(w − vr)f(QS2
s |i)dG(I) <

0. Hence, ΠS2
s (QS2

s is concave in QS2
s . Solving for first order condition, we have

∫ +∞
iQS2
s

[ w−vs(w−vr) −

F (QS2
s |i)]dG(I) = c−vs

φ(w−vr) . In addition, when market demand follows the uniform-uniform distri-

bution, we have 1
α

∫ γ+α
2

QS2
s + β

2−
p−w

p−vr−φ(w−vr)β

[
w−vs

φ(w−vr) −
1
β

(
QS2
s − i+ β

2

)]
dI = c−vs

φ(w−vr) . Simplify, we have(
QS2
s − γ −

α−β
2 − w−vs

φ(w−vr)β
)2

=
[

w−vs
φ(w−vr)β −

p−w
p−vr−φ(w−vr)β

]2
+ 2(c−vs)αβ

φ(w−vr) . Hence, QS2∗

s = γ + α−β
2 +

w−vs
φ(w−vr)β −

√[
w−vs

φ(w−vr)β −
p−w

p−vr−φ(w−vr)β
]2

+ 2(c−vs)αβ
φ(w−vr) . �

Proof of Proposition 4.13 and Corollary 4.14. In the BRS model, at the beginning of Stage 2, given QBs and
I = i, ΠB

(
QBs , i;Q

B
r

)
= ΠB

r

(
QBs , i;Q

B
r

)
= E{x|i}{pminx,QBr − wQBr + [φ(w − vr) + vr](QBr − x)+ − ρ(c −

vs)(QBs −QBr )} = [(p−w) + ρ(c− vs)]QBr − [p− vr −φ(w− vr)]
∫ QBr

0
F (x|i)dx. Since

∂ΠB(QBs ,i;QBr )
∂QBr

= [(p−w) +

ρ(c− vs)]− [p− vr−φ(w− vr)]F (QBr |i) and
∂2ΠB(QBs ,i;QBr )

∂(QBr )2 = −[p− vr−φ(w− vr)]f(QBr |i) < 0, ΠB
(
QBs , i;Q

B
r

)
is concave in QBr . Solving for first order condition, we have QBr |i = F−1 p−w+ρ(c−vs)

p−vr−φ(w−vr) . Due to QBr ≤ QBs , the
optimal order quantity in centralized model is QB

∗

r = {QBr |i, QBs }. Since x|i is stochastically increasing in i,
there exists a unique positive threshold iQBs that satisfies QBr |iQBs = QBs . Then, if i ≤ iQBs , QB

∗

r = QBr |i ≤ QBs ;
if i > iQBs , Q

B∗

r = QBs < QBr |i. In addition, when market demand follows the uniform-uniform distribution,
we have F (QBr |i) = 1

β (QBr − i + β
2 ) = p−w+ρ(c−vs)

p−vr−φ(w−vr) . Then, we obtain QBr |i = i − β
2 + p−w+ρ(c−vs)

p−vr−φ(w−vr)β. Let

QBr |iQBs = QBs , we have iQBs = QBs + β
2 −

p−w+ρ(c−vs)
p−vr−φ(w−vr)β. �

Proof of Proposition 4.15. In the BRS model, at the beginning of Stage 1, since ∂ΠBs (QBs ,i;Q
B
r |i)

∂QBs
= vs +

ρ(c − vs) and ∂ΠBs (QBs ,i;Q
B
s )

∂QBs
= [w − φ(w − vr)F (QBs |i)], then ∂ΠBs (QBs )

∂QBs
=
∫ iQBs

0
∂ΠBs (QBs ,i;Q

B
r |i)

∂QBs
dG(I) +∫ +∞

iQBs

∂ΠBs (QBs ,i;Q
B
s )

∂QBs
dG(I) − c =

∫ iQBs
0 [vs + ρ(c − vs)]dG(I) +

∫ +∞
iQBs

[w − φ(w − vr)F (QBs |i)]dG(I) − c =

(1 − ρ)(vs − c) +
∫ +∞
iQBs

[[w − vs − ρ(c − vs)] − φ(w − vr)F (QBs |i)]dG(I) and ∂2ΠBs (QBs )
∂(QBs )2 = −

∫ +∞
iQBs

φ(w −

vr)f(QBs |i)dG(I) < 0. Hence, ΠB
s (QBs ) is concave in QBs . Solving for first order condition, we have∫ +∞

iQBs

[
w−vs−ρ(c−vs)

φ(w−vr) − F (QBs i)
]

dG(i) = (1−ρ)(c−vs)
φ(w−vr) . When market demand follows the uniform-uniform

distribution, we have 1
α

∫ γ+α
2

QBs + β
2−

p−w
p−vr−φ(w−vr)β

[
w−vs−ρ(c−vs)

φ(w−vr) β − 1
β

(
QBs − i+ β

2

)]
dI = (1−ρ)(c−vs)

φ(w−vr) , then(
QBs − γ −

α−β
2 − w−vs−ρ(c−vs)

φ(w−vr) β
)2

=
[
w−vs−ρ(c−vs)

φ(w−vr) β − p−w
p−vr−φ(w−vr)β

]2
+ 2(1−ρ)(c−vs)αβ

φ(w−vr) , and QB
∗

s = γ +

α−β
2 + w−vs−ρ(c−vs)

φ(w−vr) β −
√[

w−vs−ρ(c−vs)
φ(w−vr) β − p−w

p−vr−φ(w−vr)β
]2

+ 2(1−ρ)(c−vs)αβ
φ(w−vr) . �

Proof of Propositions 5.1 and 5.2. Let QBr |i = Qcr|i, then w = p+ρ(c−vs)− p−vs
p−vr [p−φ(w−vr)−vr]. Inserting

this w into equation (4.7), an equivalent form of equation (4.7) is
∫ +∞
iQBs

[F (QBr i)− F (QSC
r |i)]dG(i) = (1−)(c−vs)

φ(w−vr) .

Compared with equation (4.4), as long as 1− ρ = w−vr
p−vr φ, equations (4.4) and (4.7) are equivalent, i.e., QSC∗

s =
QB

∗

s . Hence, when w = p − ρ(p − c), (1 − ρ)(p − vr) = φ(w − vr), the optimal decisions in the decentralized
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system will consist with its counterpart in the centralized system, i.e., the supply chain coordination can be
achieved. �

Proof of Lemma 6.2. Since u1 = −λr exp−γr[ρπ−πNr ]−λs exp−γs[(1−ρ)π−π
N
s ], then we have ∂u1

∂ρ =

λrγrπ exp−γr[ρπ−πN ]−λsγsπ exp−γs[(1−ρ)π−π
N ], and ∂2u1

∂ρ2 = −λr(γrπ)2 exp−γr[ρπ−πN ]

−λs(γsπ)2 exp−γs[(1−ρ)π−π
N ] < 0, thus u1 is concave in ρ. Let ∂u1

∂ρ = 0, we have optimal ρ̄1 = γr
γr+γs

ρmin +
γs

γr+γs
ρmax −

ln λsγs
λrγr

γr+γs)π
. Since ρ ∈ [ρmin, ρmax], if ρ̄1 ≥ ρmax, i.e., λs

λr
≤ γr

γs
exp−γrπ, then ρ∗ = ρmax, ∆πr = ∆π

and Λπs = 0; If ρ̄1 ∈ [ρmin, ρmax], i.e., γr
γs

exp−γr∆π ≤ λs
λr
≤ γr

γs
expγs∆π, then ρ∗ = γr

γr+γs
ρmin + γs

γr+γs
ρmax −

lnλsγsλrγr
(γr+γs)π

, ∆πr = γs
γr+γs

∆π − ln λsγs
λrγr

γr+γs
and ∆πs = γr

γr+γs
∆π +

ln λsγs
λrγr

γr+γs
. If ρ̄1 ≤ ρmin, i.e., λs

λr
≥ γr

γs
expγs∆π, then

ρ∗ = ρmin,∆πr = 0 and ∆πs = ∆π. �

Proof of Lemma 6.4. Since u2 = −λr exp−γr∆πr +λs∆πs = −λr exp−γr[ρπ−πNr ] +λs[(1 − ρ)π − πs], then ∂u2

∂ρ =

λrγrπ exp−γr[ρπ−πNr ]−λsπ, ∂2u2

∂ρ2 = −λr(γrπ)2 exp−γr[ρπ−πNr ] < 0, hence u2 is concave in ρ. Let ∂u2

∂ρ = 0, we

have optimal ρ̄2 = ρmin +
ln λrγr

λs

γrπ
. Since ρ ∈ [ρmin, ρmax], if ρ̄2 ≥ ρmax, i.e., λr

λs
≥ expγr∆π γr, then ρ∗ = ρmax,

∆πr = ∆π and ∆πs = 0; If ρ̄2 ∈ [ρmin, ρmax], i.e., 1
γr
< λr

λs
< expγr∆π γr, then ρ∗ = ρmin +

ln λrγr
λs

γrπ
, ∆πr =

ln λrγr
λs

γr

and ∆πs = ∆π − ln λrγr
λs

γr
; If ρ̄2 ≤ ρmin, i.e., λr

λs
≤ 1

γr
, then ρ∗ = ρmin,∆πr = 0 and ∆πs = ∆π. �

Proof of Lemma 6.6. Since u3 = λr[ρπ − πNr ] − λsγsπ exp−γs[(1−ρ)π−π
N
s ], then ∂u3

∂ρ = λrπ −
λsγsπ exp−γs[(1−ρ)π−π

N
s ], and ∂2u3

∂ρ2 = −λs(γsπ)2 exp−γs[(1−ρ)π−π
N
s ] < 0, hence u3 is concave in ρ. Let ∂u3

∂ρ = 0, we

have optimal ρ̄3 = ρmax−
ln λsγs

λr

γsπ
. Since ρ ∈ [ρmin, ρmax], if ρ̄3 ≥ ρmax, i.e., λsλr ≤

1
γs

, then ρ∗ = ρmax, ∆πBr = ∆π

and ∆πBs = 0; If ρ̄3 ∈ [ρmin, ρmax], i.e., 1
γs
≤ λs

λr
≤ 1

γs
expγs∆π, then ρ∗ = ρmax −

ln λsγs
λr

γsπ
, ∆πr = ∆π − ln λsγs

λr

γs

and ∆πs =
ln λsγs

λr

γs
; If ρ̄3 ≤ ρmin, i.e., λs

λr
≥ 1

γs
exp γs∆π, then ρ∗ = ρmin,∆πr = 0 and ∆πs = ∆π. �
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