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ON THE MINIMUM-NORM SOLUTION OF CONVEX QUADRATIC
PROGRAMMING

Saeed Ketabchi1, Hossein Moosaei2,∗ and Milan Hlad́ık3

Abstract. We discuss some basic concepts and present a numerical procedure for finding the minimum-
norm solution of convex quadratic programs (QPs) subject to linear equality and inequality constraints.
Our approach is based on a theorem of alternatives and on a convenient characterization of the solution
set of convex QPs. We show that this problem can be reduced to a simple constrained minimization
problem with a once-differentiable convex objective function. We use finite termination of an appro-
priate Newton’s method to solve this problem. Numerical results show that the proposed method is
efficient.
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1. Introduction

Linearly constrained quadratic programs (QPs) arise from numerous areas of application, such as manufac-
turing, economics, and social, and public planning. A QP can have a unique optimal solution, multiple solutions,
or no solution. When such a problem has multiple optimal solutions, one can be interested in computation all
of them or computation of the most favourable one (in some point of view). For the former approach, interval
methods [10, 12, 23] are suitable for determining a tight approximation of the set of all optimal solutions. Our
focus is on the second approach. The choice of a particular solution can be important, and a natural choice is a
solution with the minimum norm [21]. In fact, computation of the minimum-norm solution, which is the solution
with the smallest norm among the infinite possible solutions, is a research line in various fields, including linear
systems, absolute value equations or variational inequalities [4, 20,25].

Motivated by [13, 15, 19], the aim of this paper is finding the minimum norm solution of QPs that have
multiple solutions. In other words, we want to solve the following problem:

min
1
2
‖x‖2 s.t. x ∈ X∗,

where X∗ is the optimal solution set of QP.
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Here, we suggest a novel method for finding the minimum norm solution of the QPs based on alternative
theorems. According to this issue, instead of solving a complicated constrained quadratic programming like the
above problem, we deal with a simple constrained minimization problem which objective function is convex and
only once diffrentiable (not twice). We suggest a type of Newton’s method to solve it. We also compare our
method to the Tikhonov regularization approach [22], which is a standard approach for finding the minimum
norm solution of QPs, and with another standard method that will be described in this paper. The numerical
results show that the proposed method performs better than the other two methods, and also our methodology
applies on a practical example arising in finance.

As for our notations, a few points need to be made. We denote the n-dimensional real space by Rn, and
AT , ‖ · ‖ mean the transpose of matrix A and Euclidean norm, respectively. The subplus function a+ replaces
negative components of the vector a by zeros; in fact it represents the positive part of vector a.

The paper is organized as follows. A characterization of the solution set and the minimum-norm solution of
a convex QPs subject to linear equality and inequality constraints are described in Section 2. In Section 3, we
describe our numerical algorithm. In Section 4, numerical experiments are reported to illustrate the efficiency
of the proposed method and finally Section 5 concludes the paper.

2. Minimum-norm solution of convex QPs

In this section, we first characterize the solution set of the following convex QPs subject to linear equality
and inequality constraints. Then, we introduce a method for finding its minimum-norm solution.

min
x1,x2

f(x) =
1
2
xT

1 Q1x1 +
1
2
xT

2 Q2x2 + dT
1 x1 + dT

2 x2,

s.t. A11x1 +A12x2 ≥ b1, A21x1 +A22x2 = b2, (2.1)
x1 ∈ Rn1 , x2 ∈ Rn2 , x1 ≥ 0n1 .

Herein, Q1 and Q2 are n1×n1 and n2×n2 positive semidefinite matrices, respectively, and d = [dT
1 , d

T
2 ]T ∈ Rn,

b = [bT1 , b
T
2 ]T ∈ Rm are given vectors such that n = n1 + n2, m = m1 + m2 (d1 ∈ Rn1 , d2 ∈ Rn2 , b1 ∈ Rm1

and b2 ∈ Rm2). Furthermore, let A11, A12, A21, and A22 be m1 × n1, m1 × n2, m2 × n1 and m2 × n2 matrices,
respectively. Here, we considered the problem in the general case. That’s why the variables in problem (2.1) are
split to free variables and nonnegative variables.

Problem (2.1) might have multiple optimal solutions, and its the minimum norm solution problem can be
written as follows

min
1
2
‖x‖2 s.t. x ∈ X∗, (2.2)

where X∗ is the solution set of problem (2.1). The first approach for solving problem (2.2) is using the problem
min 1

2‖x‖
2 such that x is a KKT point for problem (2.1). In this case, we need to solve a nonlinear optimization

problem in which there are m+ n variables, so this method is expensive and we avoid doing it.
We note that the standard approach for finding the minimum norm solution of a convex program is the

Tikhonov regularization, see [13,22]. More precisely, for linearly constrained quadratic programs, the Tikhonov
regularization generates a sequence of iterates {xk} with xk being the unique solution of the following regularized
program called Tikhonov regularized problem [22]:

min
x1,x2

f(x) + µk‖x‖2

s.t. A11x1 +A12x2 ≥ b1, A21x1 +A22x2 = b2, (2.3)
x1 ∈ Rn1 , x2 ∈ Rn2 , x1 ≥ 0n1 ,

where µk > 0 is a positive parameter and the sequence {µk} tends to zero.
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From the computational point of view, although the solution of problem (2.3) with respect to a sufficiently
small and positive µk is considered as an approximation of the minimum norm solution of (2.2), the Tikhonov
regularization is rather costly. This is because solving a sequence of quadratic programs is a tough problem, and
it is also sometimes not clear how to choose an appropriate sequence of regularization parameters {µk} → 0+.
To be more precise, choosing the regularization parameter in Tikhonov regularization is still an open research
line [8, 16].

The main contribution of this paper is to suggest an alternative approach for finding the minimum norm
solution of linearly constrained quadratic programs based on Gale’s theorem of alternatives. First, we briefly
characterize the solution set of convex QPs. Let S ⊆ Rn be an open convex subset, f : S → R a convex
differentiable function, and X ⊆ S any convex subset. The following theorem gives a precise characterization of
solution sets of convex programs with twice continuously differentiable convex objective functions (see Thm. 1
in [17]). It was adapted for once differentiable functions in Theorem 2.1 of [14].

Theorem 2.1. Let S ⊆ Rn be an open convex subset and X ⊆ S any convex subset and also f be a convex
differentiable function. Consider the following convex problem:

min
x∈X

f(x), (2.4)

and suppose that its solution set X∗ is nonempty. Then,

X∗ =
{
x ∈ X : ∇f(x∗)Tx∗ = ∇f(x∗)Tx, ∇f(x∗) = ∇f(x)

}
, (2.5)

where x∗ ∈ X∗ is arbitrarily chosen.

This theorem provides a precise characterization of solution sets of convex programs. For an extensive dis-
cussion of this theorem, see [17]. The formulation adapted for our problem is as follows.

Lemma 2.2. Let X∗ be the solution set for the problem (2.1) and assume x∗ = [x∗1
T , x∗2

T ]T ∈ X∗. Then
x = [xT

1 , x
T
2 ]T ∈ X∗ if and only if x satisfies the following system

A11x1 +A12x2 ≥ b1,
A21x1 +A22x2 = b2,

Q1x1 = Q1x
∗
1,

Q2x2 = Q2x
∗
2, (2.6)

dT
1 x1 + dT

2 x2 = dT
1 x
∗
1 + dT

2 x
∗
2,

x1 ≥ 0, x1 ∈ Rn1 , x2 ∈ Rn2 .

Proof. By Theorem 2.1, we have x ∈ X∗ if and only if x is feasible and ∇f(x∗)Tx∗ = ∇f(x∗)Tx, ∇f(x∗) =
∇f(x). This yields dTx = dTx∗ and Qx = Qx∗, where

Q =
[

Q1 0n1×n2

0n2×n1 Q2

]
.

Hence, Q1x1 = Q1x1
∗, Q2x2 = Q2x2

∗ and d1
Tx1 + d2

Tx2 = d1
Tx1

∗ + d2
Tx2

∗. This means that x ∈ X∗ if and
only if x satisfies in (2.6). �

To solve problem (2.2), we consider an alternative system to (2.6), and a constrained minimization problem
for its residual vector. The next theorem may be found in Theorem 2.7 from [7], and for more details see also
Theorem 1 from [5].
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Theorem 2.3 (Gale’s Theorem of Alternatives). Let matrix A ∈ Rm×n and vector b ∈ Rm be given. Let x ∈ Rn

and u ∈ Rm. Exactly one of the following systems (I), (II) is feasible. In other words, the systems (I), (II) are
alternative, which means that exactly one of them is consistent.

Ax ≥ b, (I) and ATu = 0n, bTu = 1, u ≥ 0m. (II)

Now, consider the following system

AT
11u1 +AT

21u2 +Q1u3 + d1u5 ≤ 0n1 ,

AT
12u1 +AT

22u2 +Q2u4 + d2u5 = 0n2 ,

bT1 u1 + bT2 u2 + x∗1
TQ1u3 + x∗2

TQ2u4 + dT
1 x
∗
1u5 + dT

2 x
∗
2u5 = ρ, (2.7)
u1 ≥ 0m1 ,

where u1 ∈ Rm1 , u2 ∈ Rm2 , u3 ∈ Rn1 , u4 ∈ Rn2 , and u5 ∈ R. This implies that the linear systems (2.6) and
(2.7) are alternative for any positive value of ρ (where ρ > 0 as in the Farkas lemma or ρ = 1 as in the Gale’s
theorem), which means that exactly one of them is consistent.

Now, we introduce the constrained minimization problem as follows:

min
u1≥0m1 , u∈Rm2+n+1

1
2

∥∥∥(AT
11u1 +AT

21u2 +Q1u3 + d1u5

)
+

∥∥∥2

+
1
2

∥∥AT
12u1 +AT

22u2 +Q2u4 + d2u5

∥∥2

+
1
2

∣∣∣ρ− bT1 u1 − bT2 u2 − x∗1
TQ1u3 − x∗2

TQ2u4 (2.8)

− dT
1 x
∗
1u5 − dT

2 x
∗
2u5

∣∣∣2,
where u = [uT

2 , u
T
3 , u

T
4 , u5]T and the objective function is the residual vector of the system (2.7) (notice that

the residual vector to the inequality Ax ≤ b is (Ax− b)+, and it is obvious that x ∈ {x : Ax ≤ b} if and only if
(Ax− b)+ = 0m. For more details about residual vector see [9]).

Remark 2.4. In order to be more precise about the problem (2.8), this problem is not an unconstrained
minimization problem due to involving a positive variable u1 ≥ 0m1 as a constraint. However, the unconstrained
optimization methods can easily be modified for this type of problems, then we keep this term for the problem
(2.8).

Remark 2.5. The problem (2.8) is always solvable because of the quadratic objective function defined on
nonempty feasible set u1 ≥ 0m1 . Also if the optimal value of problem (2.8) is zero, then the system (2.7) is
solvable, and if it is non-zero, then it means that the system (2.7) is unsolvable.

Suppose that X∗ is the same as in Theorem 2.1 and let x̃∗ = [x̃∗1
T , x̃∗2

T ]T denote the minimum-norm solution
to the problem (2.1). Then we have the following theorem, which shows existence of the minimum norm solution
x̃∗ and it also proposes a method for finding it. This is a modification of Theorem 3 from [6] and Theorem 3
from [9], adapted to the QP case.

Theorem 2.6. Let u∗ = [u∗1
T , u∗2

T , u∗3
T , u∗4

T , u∗5]T be the solution of problem (2.8). Then there exists a vector
[w∗1

T , w∗2
T , w∗3 ]T , w∗1 ≥ 0n1 , w

∗
2 ∈ Rn2 , and w∗3 > 0 for which

x̃∗1 = w∗1/w
∗
3 , x̃∗2 = w∗2/w

∗
3 . (2.9)
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Proof. Since the linear systems (2.6) and (2.7) are alternative and the system (2.6) is consistent, so the system
(2.7) is inconsistent, and we deduce that the optimal value of the problem (2.8) must be nonzero. Also, note
that problem (2.8) is convex with a nonnegative variable as a constraint. Thus, KKT conditions are satisfied at
the minimum point. Therefore, u∗ = [u∗1

T , u∗2
T , u∗3

T , u∗4
T , u∗5]T minimizes this problem if and only if

A11w
∗
1 +A12w

∗
2 − b1w∗3 ≥ 0m1 ,

u∗1
T (A11w

∗
1 +A12w

∗
2 − b1w∗3) = 0,

A21w
∗
1 +A22w

∗
2 − b2w∗3 = 0m2 ,

Q1w
∗
1 −Q1x

∗
1w
∗
3 = 0n1 , (2.10)

Q2w
∗
2 −Q2x

∗
2w
∗
3 = 0n2 ,

d1
Tw∗1 + dT

2 w
∗
2 −

(
dT
1 x
∗
1 + dT

2 x
∗
2

)
w∗3 = 0,

where,

w∗1 =
(
AT

11u
∗
1 +AT

21u
∗
2 +Q1u

∗
3 + d1u

∗
5

)
+
,

w∗2 = AT
12u
∗
1 +A22

Tu∗2 +Q2u
∗
4 + d2u

∗
5,

w∗3 = ρ− bT1 u∗1 − bT2 u∗2 − x∗1
TQ1u

∗
3 − x∗2

TQ2u
∗
4 − dT

1 x
∗
1u
∗
5 − dT

2 x
∗
2u
∗
5. (2.11)

The vector w∗ = [w∗1
T , w∗2

T , w∗3 ]T determined from (2.11) satisfies the condition w∗ = [w∗1
T , w∗2

T , w∗3 ]T 6= 0 and
w∗3 > 0 by Theorem 2 in [9]. From (2.10) we obtain

A11(w∗1/w
∗
3) +A12(w∗2/w

∗
3) ≥ b1,

A21(w∗1/w
∗
3) +A22(w∗2/w

∗
3) = b2,

Q1(w∗1/w
∗
3) = Q1x

∗
1, (2.12)

Q2(w∗2/w
∗
3) = Q2x

∗
2,

dT
1 (w∗1/w

∗
3) + dT

2 (w∗2/w
∗
3) = dT

1 x
∗
1 + dT

2 x
∗
2,

therefore, w∗1/w
∗
3 , and w∗2/w

∗
3 satisfy in (2.6) and, we have [w∗1

T /w∗3 , w
∗
2

T /w∗3 ]T ∈ X∗ (see [6]).
Consider the following constrained quadratic problem

min
w1,w2,w3

1
2
(
‖w1‖2 + ‖w2‖2 + |w3|2 − ρw3

)
s.t. A11w1 +A12w2 − b1w3 ≥ 0m1 , (2.13)

A21w1 +A22w2 − b2w3 = 0m2 ,

Q1w1 −Q1x1
∗w3 = 0n1 ,

Q2w2 −Q2x2
∗w3 = 0n2 ,

d1
Tw1 + dT

2 w2 −
(
dT
1 x
∗
1 + dT

2 x
∗
2

)
w3 = 0.

w1 ≥ 0n1 , w2 ∈ Rn2 , w3 ≥ 0.

Applying part 3 of Theorem 3 from [9] and considering (2.12), we conclude that w∗ = [w∗1
T , w∗2

T , w∗3 ]T is the
solution to the problem (2.13) and x̃∗1 = w∗1

T /w∗3 , x̃∗2 = w∗2
T /w∗3 is the minimum-norm solution of problem (2.1),

completing the proof. �

3. Numerical algorithm

In this section, we introduce a method for solving problem (2.8); the method briefly is described in Algo-
rithm 2. It is based on a modified Newton’s method, described in detail in Algorithm 1. The modified
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Newton’s method employs a generalized Hessian matrix since since the objective function of (2.8) is only
once-differentiable. The modification of the Newton method also means a certain kind of regularization, which
is justified by the fact that the generalized Hessian matrix can be singular.

For a fixed positive ρ consider the system (2.7). This system can be written as follows:{
u ∈ Rm+n+1 : ST

1 u ≤ 0, ST
2 u = 0, ST

3 u = ρ
}
, (3.1)

where

ST
1 =

[
AT

11 AT
21 Q1 0n1×n2 d1

−11×m1 01×m2 01×n1 01×n2 0

]
,

ST
2 =

[
AT

12 A
T
22 0m1×n1 Q2 d2

]
,

ST
3 =

[
bT1 bT2 x∗1

TQ1 x
∗
2
TQ2 d

T
1 x
∗
1 + dT

2 x
∗
2

]
.

Considering (3.1), we can therefore rewrite (2.8) as:

min
u∈Rm+n+1

g(u) =
1
2

[
‖
(
ST

1 u
)
+
‖2 + ‖ST

2 u‖2 + |ρ− ST
3 u|2

]
,

where U∗ = {u ∈ Rm+n+1 : g(u) = mint∈Rm+n+1 g(t)} 6= ∅, g(u) is convex, piecewise quadratic, and differen-
tiable, but it does not have a conventional Hessian matrix. Indeed, the gradient

∇g(u) = S1

(
ST

1 u
)
+

+ S2

(
ST

2 u
)
− S3

(
ρ− ST

3 u
)

of g(u) is not differentiable since the term S1(ST
1 u)+ is not differentiable. However, for the term 1

2‖
(
ST

1 u
)
+
‖2,

we can define the generalized Hessian matrix [11], an (m+n+ 1)× (m+n+ 1) symmetric positive semidefinite
matrix of the form S1D

∗(z)ST
1 . Here, D∗(z) denotes the (n1 + 1)× (n1 + 1) diagonal matrix whose ith diagonal

entry zi is equal to one, if (ST
1 u)i > 0, and to zero if (ST

1 u)i ≤ 0 (i = 1, 2, . . . , n1). Therefore, the generalized
Hessian matrix for g(u) can be defined as follows:

∂2g(u) = S1D
∗(z)ST

1 + S2S
T
2 + S3S

T
3 .

Since the generalized Hessian matrix can be singular, the following modified Newton’s direction is used [2].

−(∂2g(u) + δIm+n+1)−1∇g(u),

where δ is a small positive number (in our numerical experiments we used δ = 10−4), and Im+n+1 is the identity
matrix of order m+ n+ 1. In this case, the modified Newton’s method has the form

un+1 = un −
(
∂2g(un) + δIm+n+1

)−1∇g(un).

In addition, our stopping criterion for this method is as follows: ‖un+1−un‖ ≤ tol (in our numerical experiments
we used tol = 10−9).

By employing the stepsize Armijo rule [1], we can derive the global finite-step convergence of the modified
Newton’s method starting from any point. By combining the generalized Newton’s method with a line-search
based on the Armijo rule, we arrive at Algorithm 1. We can guarantee a global finite termination of this method
by using the following theorem which comes from [18], Theorem 2 on page 925.

Theorem 3.1. The sequence {un} of Algorithm 1 terminates at the global minimum solution of the problem
(2.8).

The proposed method is summarized in Algorithm 2.
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Algorithm 1. Modified Newton’s method with the Armijo rule.
Input: Choose any u0 as a starting point, let tol > 0 be an error tolerance and δ be a small positive number.
n := 0,
U :=∞,
while ‖U‖ ≥ tol or ‖∇g(un)‖∞ ≥ tol do
dn := −(∂2g(un) + δIm+n+1)−1∇g(un),
λn = max{1, 1

2 ,
1
4 , . . .} such that: g(un)− g(un + λndn) ≥ −γλn∇g(un)T dn

for some γ ∈ (0, 1
2 ),

U := un+1 − un,
un+1 := un + λndn,
n := n+ 1.

end while

Algorithm 2. Minimum norm solution.
Input: A11, A12, A21, A22, Q1, Q2, d1, d2 , b1, and b2.

Solve the problem (2.8) by using modified Newton’s method (Algorithm 1) and obtain u∗.
Compute w∗1 , w∗2 , w∗3 by using the equations (2.11).
Set

x̃∗1 = w∗1/w
∗
3 , x̃∗2 = w∗2/w

∗
3 .

return Minimum norm solution x̃∗ = [x̃∗1
T , x̃∗2

T ]T of the problem (2.1).

Remark 3.2. The modified Newton’s method is related to the the quasi-Newton methods. If evaluation and
use of the Hessian matrix is impractical or costly, the quasi-Newton methods is to use an approximation to the
inverse Hessian. Consider the following steepest descent iteration

xn+1 = xn − anTn∇f(xn),

where Tn as an approximation to the inverse of the Hessian. In this paper, we define Tn = S1D
∗(z)ST

1 , where
D∗(z) denotes the (n1 + 1)× (n1 + 1) diagonal matrix whose ith diagonal entry zi is equal to one if (ST

1 u)i > 0,
and to zero if (ST

1 u)i ≤ 0 (i = 1, 2, . . . , n1).

Remark 3.3. We note that the objective function

g(u) =
1
2

[
‖
(
ST

1 u
)
+
‖2 + ‖ST

2 u‖2 + |ρ− ST
3 u|2

]
is a piecewise quadratic function and its generalized Hessian matrix ∂2g(u) = S1D

∗(z)ST
1 + S2S

T
2 + S3S

T
3 is

positive definite. Also, our method is a quasi-Newton methods. Furthermore, for a convex quadratic program
a single Newton step captures its solution. Perhaps these points can be an intuitive justification of the finite
termination converge to the global solution of problem

min
u∈Rm+n+1

g(u).

4. Numerical testing

In this section, we first give a small numerical example to illustrate the feasibility and effectiveness of the
theory of the previous sections. We then present numerical results on various randomly generated convex QPs
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subject to linear equality and inequality constraints. To further analyse our suggested method, we compare the
suggested method with the Tikhonov regularization method and a standard method which will describe more
in Section 4.3. Finally, we illustrate the application of the proposed method on a practical problem arising from
finance. We have tested the algorithm using MATLAB 7.11.0 on a Core i7 2.59 GHz with main memory 16 GB.
Besides our algorithm, we implemented the MS method, too.

4.1. A simple example

In this subsection, a simple example is discussed to illustrate the correctness of our proposed method and
the process of the suggested method. This problem can be found in [24] with x∗ = [2, 1,−6]T as its solution.

min
x∈R3

f(x) = 11x2
1 + x2

2 + x2
3 − 2x1x2 + 6x1x3 − 4x1

s.t. 2x1 + 2x2 + x3 = 0, (4.1)
− x1 + x2 ≤ −1,
3x1 + x3 ≤ 4,
− 6 ≤ x1, x2, x3 ≤ 6.

If we substitute y1 = x1 + 6, y2 = x2 + 6, y3 = x3 + 6, then the above problem takes the following form:

min
y∈R3

f(y) = 11y12 + y2
2 + y3

2 − 2y1y2 + 6y1y3 − 152y1 − 48y3 + 636

s.t. 2y1 + 2y2 + y3 = 30, (4.2)
− y1 + y2 ≤ −1,
3y1 + y3 ≤ 28,
y1, y2, y3 ≤ 12,
y1, y2, y3 ≥ 0.

If we put

Q =

 22 −2 6
−2 2 0
6 0 2

 , d =

−152
0
−48

 , A1 =


1 −1 0
−3 0 −1
−1 0 0
0 −1 0
0 0 −1

 ,

A2 =
[

2 2 1
]
, b1 =


1
−28
−12
−12
−12

 , b2 =
[

30
]
,

then we have:

min
y∈Rn

f(y) =
1
2
yTQy + dT y + c

s.t. A1y ≥ b1, (4.3)
A2y = b2,

y ≥ 0,

where y = (y1, y2, y3)T , c = 636, and its solution is y∗ = [8, 7, 0]T . Since Q is positive definite, the above
problem has a unique optimal solution, and we must show that ỹ∗ = y∗, where ỹ∗ denotes the minimum-norm
solution to problem (4.3).



ON THE MINIMUM-NORM SOLUTION 255

Figure 1. Code generation for the first data set.

Considering (2.8), it yields the following constrained minimization problem:

min
u1≥05, u∈R5

∥∥∥(AT
1 u1 +AT

2 u2 +QTu3 + du4

)
+

∥∥∥2

(4.4)

+
∣∣ρ− bT1 u1 − bT2 u2 − y∗TQu3 − dT y∗u4

∣∣2,
where u = [uT

2 , u
T
3 , u

T
4 ]T . Solving problem (4.4), we obtain

u∗ =



1.075733763299230
−0.000000038596423
−0.000000038596423
−0.000000048245529
−0.000000115789270

0.283499418477488
0.560392759269804
0.848532068598588
1.269502139420115
0.130356113891751


, w∗1 =

0.077192846352968
0.067543740558844

0

 ,

w∗3 = 0.009649105794074, (4.5)

and from (2.9) we have

ỹ∗ = w∗1/w
∗
3 =

8.000000000039028
7.000000000033827

0

 ,
which means that ỹ∗ ≈ y∗. To solve this problem, we use the numerical algorithm based on a new fast Newton
method analyzed in Section 3. The presented example illustrates the effectiveness and correctness of our proposed
method

(
‖ỹ∗ − y∗‖ < 10−10

)
.

4.2. Random artificial problems

In this subsection, to show that the proposed method is efficient and reasonable, some random problems are
generated. The code in Figure 1 generates problems for which the norm of the minimum norm solution is 0.

Table 1 reports the following information for each test problem:
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Table 1. The norm of the minimum norm solutions for x1, x2 are zero (Sect. 4.2).

m, n norm(df) ‖x̃1
∗‖ ‖x̃2

∗‖ cpus

10, 50 2.5358e-07 2.4790e-07 2.7077e-20 0.18
20, 100 4.3384e-12 2.9334e-11 3.5458e-66 0.24
30, 200 1.0493e-06 3.7596e-07 1.0559e-09 0.57
40, 500 7.0839e-06 2.6414e-06 4.8391e-46 2.86
50, 600 3.6662e-06 7.2360e-07 1.3595e-37 3.51
70, 700 5.1892e-08 1.4043e-08 3.9409e-09 21.63
80, 800 7.0751e-06 1.1848e-06 2.0022e-57 28.92
90, 900 5.8725e-07 7.2566e-08 4.6829e-09 35.30
100, 1000 1.1376e-06 1.8327e-06 4.1234e-19 41.66
150, 1500 3.1558e-05 4.0659e-06 1.6654e-16 62.32
200, 2000 3.8155e-05 2.3090e-06 2.4007-09 333.60

Figure 2. Code generation for the second data set.

– m,n: the size of data A11, A12, A21, A22, Q1, Q2, d1, d2

– norm(df): the norm of the gradient of problem (2.8)
– ‖x̃∗1‖, ‖x̃∗2‖: the minimum norm solution.
– cpus: CPU time in seconds.

Table 1 shows that the norm of the minimum norm solutions of all test problems are close to 0 and norm(df)
are near to zero as well. It is shown that our proposed method obtains good results in a reasonable time.

4.3. More experiments and comparing with two approaches

In this subsection, more experiments are conducted to compare the performance of the proposed method with
Tikhonov regularization (TR) and a standard method which describe as follows. The Tikhonov regularization
method has been popular for finding the minimum norm solution of an optimization problem. In this paper, we
characterized the solution set of problem (2.1) as a system (2.6), then for finding the minimum norm solution of
the problem (2.1), the following convex quadratic programming problem must be solved; this method is denoted
by MS.

min
1
2
‖x‖2 s.t. x satisfies (2.6). (4.6)

In order to compare the presented method with the TR and MS, and also in order to determine the compu-
tational behavior of our method, a program was written to randomly generate sets of problems to be solved.
The code in Figure 2 generates random problems for which the norm of the minimum norm solution is 0.

Table 2 reports the following information for each test problem:
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Table 2. Comparison of the numerical results of the AN, TR, and MS (Sect. 4.3).

n Algorithms KKT ‖x̃∗‖ cpus

1000
AN 1.5534e-022 7.1524e-019 4.12
TR 4.6531e-032 9.3567e-023 2.94
MS 3.7778e-09 3.7778e-09 1.14

2000
AN 1.1567e-025 3.3091e-023 4.92
TR 4.4326e-028 7.6481e-023 4.51

MS 3.7778e-09 3.7778e-09 2.73

4000
AN 3.0225e-024 3.2351e-024 6.11
TR 2.3562e-030 2.0452e-026 8.56
MS 3.7778e-09 3.7778e-09 10.28

5000
AN 8.4027e-024 6.6401e-022 7.31
TR 4.4326e-028 7.6481e-023 10.12
MS 3.7778e-09 3.7778e-09 16.60

10000
AN 4.0306e-025 3.6383e-021 8.89
TR 5.0396e-031 7.6481e-029 12.34
MS 3.7778e-09 3.7778e-09 107.82

12000
AN 4.1126e-023 4.5093e-023 9.91
TR 9.4112e-032 4.1780e-020 14.57
MS 3.7778e-09 3.7778e-09 178.07

15000
AN 4.4326e-022 7.6481e-019 14.55
TR 4.9032e-030 8.6488e-020 15.84
MS 3.7778e-09 3.7778e-09 346.03

18000
AN 4.4006e-021 7.6481e-020 16.09
TR 5.5727e-031 3.4088e-022 18.01
MS 3.7778e-09 3.7778e-09 642.88

25000
AN 2.0320e-014 7.7086e-012 29.43
TR Out of memory – –
MS Out of memory – –

30000
AN 1.1006e-013 3.2071e-011 92.71
TR Out of memory – –
MS Out of memory – –

– AN stands for our approach based on theorem of alternatives method and Newton’s method;
– TR stands for the Tikhonov regularization method;
– MS stands for solving the problem (4.6) by the interior point method for convex problem, which is a standard

method for solving this type of problems;
– n: the size of data A11, A12, A21, A22, Q1, Q2, d1, d2.
– KKT: the norm of homogeneous system related to first-order optimally conditions;
– ‖x̃∗‖: the norm of the minimum norm solution of x;
– cpus: CPU time in seconds.

Table 2 shows that the norm of the minimum norm solution of all test problems is close to zero. Also the
first-order optimally measure must be zero at a minimum; here for all problems it is near to zero. This indicates
that we have successfully obtained the minimum norm solution for all test problems.

In order to more analyse these results, we note that AN, TR and MS work well for small- and medium-scale
problems, and when the size of problems increases, we see that AN is faster than two other methods and also
TR is faster than MS. Another advantage of the proposed method is finding minimum norm of larger-scale
problems in an appropriate time while the other two methods are not able to find the minimum norm because
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the memory cannot support the requirements for the algorithms in larger-scale problems (we stands “Out of
memory” in Table 2).

4.4. Markowitz’ Mean-Variance portfolio optimization model

In this section, we apply our theory on a practical problem arising in finance. The standard portfolio optimiza-
tion problem model known as the Markowitz’ Mean-Variance portfolio optimization model can be formulated
as follows:

min
x

xT Σx

s.t. eTx = 1, (4.7)

µTx ≥ r,
x ≥ 0.

Herein, e is a vector of ones and a vector of expected returns µ and the covariance matrix of the returns of the
asset Σ are known.

When the covariance matrix is positive semidefinite and rank deficient, the problem (4.7) has multiple optimal
solutions, and in this case a natural choice is finding the minimum norm solution. This situation, i.e., the
covariance matrix is rank deficient, can be acquired in many times because the covariance matrix is estimated
from the past trading price data and when the number of sampled periods is smaller than the number of assets,
the covariance matrix is rank deficient. The data for the problem (4.7) can be found at https://vanderbei.
princeton.edu/ampl/nlmodels/markowitz/ and we have used the data between the years 1987 and 1990.
Thus we have:

Σ =



0.0001 0.0012 0.0008 0.0008 0.0005 0.0005 −0.0015 −0.0012
0.0012 0.0139 0.0136 0.0141 0.0135 0.0057 −0.0041 −0.0132
0.0008 0.0136 0.0227 0.0236 0.0251 0.0051 0.0167 −0.0052
0.0008 0.0141 0.0236 0.0250 0.0272 0.0052 0.0194 −0.0072
0.0005 0.0135 0.0251 0.0272 0.0311 0.0046 0.0273 −0.0082
0.0005 0.0057 0.0051 0.0052 0.0046 0.0024 −0.0032 −0.0050
−0.0015 −0.0041 0.0167 0.0194 0.0273 −0.0032 0.0555 0.0120
−0.0012 −0.0132 −0.0052 −0.0072 −0.0082 −0.0050 0.0120 0.0285


,

µ =
[

1 1 1 1 1 1 1 1
]T
, r = 1.05.

The covariance matrix Σ can be computed by the following known formula:

Σ :=
1

N − 1
R

(
I − 1

N
11T

)
RT ,

where N is the number of periods (here T = 4), 11T is a square matrix of ones, and R is the 8 × 4 matrix
containing the assets’ returns for each of the 4 years [3].

The portfolio optimization problem (4.7) has multiple optimal solutions because the rank of matrix Σ is
at most 4 and so it is rank deficient. We solved the problem (4.7) by using “quadprog.m” in MATLAB. The
norm of optimal solution is ‖x‖ = 0.8888 and the optimal value of the objective function is 2.7692× 10−4. The
minimum norm solution through our proposed method is ‖x‖ = 0.7978 in 0.07 s with the same value of the
objective function. We computed a similar result for the norm of the optimal solution and the optimal value by
the MS method, but in 0.53 s. So we can conclude that although both methods work well, our method is faster.

https://vanderbei.princeton.edu/ampl/nlmodels/markowitz/
https://vanderbei.princeton.edu/ampl/nlmodels/markowitz/
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5. Conclusion

In this paper, based on theorems of alternative, we introduced a new way to find the minimum norm solution
of convex quadratic programs. In fact, in contrast to the classical Tikhonov regularization method and convex
interior point methods, which have to solve a quadratic programming problem, we introduced a reduced simple
constrained minimization problem to find the minimum norm solution. Since the objective function of the
reduced problem is once-differentiable and convex, to obtain the solution of it, we proposed an extension of
Newton’s method.

We presented an example to illustrate the effectiveness and correctness of our proposed method, and we also
examined different types of problems including a practical problem arising in finance. The numerical results
show that, compared to the Tikhonov regularization method and to a standard convex interior point method,
our method behaves more efficiently than the two other methods for randomly generated problems, in particular
when the dimension grows.

As pointed out by one reviewer, quadratic programs can be reduced to the linear complementarity problem
(LCP). Therefore, approaching the minimum norm solution via LCP might be an interesting research problem.

Acknowledgements. H. Moosaei and M. Hlad́ık were supported by the Czech Science Foundation Grant P403-18-04735S.

References

[1] L. Armijo, Minimization of functions having lipschitz continuous first partial derivatives. Pac. J. Math. 16 (1966) 1–3.

[2] M.S. Bazaraa, H.D. Sherali and C.M. Shetty, Nonlinear Programming: Theory and Algorithms. John Wiley & Sons, New York
(2013).

[3] A. Beck and S. Sabach, A first order method for finding minimal norm-like solutions of convex optimization problems. Math.
Program. 147 (2014) 25–46.
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