
RAIRO-Oper. Res. 55 (2021) 545–559 RAIRO Operations Research
https://doi.org/10.1051/ro/2021009 www.rairo-ro.org

DESIGN, ANALYSIS AND PERFORMANCE EVALUATION OF PARALLEL
ALGORITHMS FOR SOLVING TRIANGULAR LINEAR SYSTEMS ON

MULTICORE PLATFORMS ∗

Mounira Belmabrouk1 and Mounir Marrakchi2,∗∗

Abstract. In this paper, we focus on the schedulings of 2-steps graph with constant task cost ob-
tained when parallelizing algorithm solving a triangular linear system. We present three scheduling
approaches having the same least theoretical execution time. The first is designed through solving a
0-1 integer problem by Mixed Integer Programming (MIP), the second is based on the Critical Path
Algorithm (CPA) and the third is a particular Column-Oriented Scheduling (COS). The MIP approach
experiments were carried out and confirmed that the makespan values of the MIP scheduling coincide
with those of the corresponding lower bound already reached. Experimental results of the last two
approaches detailing both makespans and efficiencies are presented and show that their practical per-
formances differ though they are theoretically identical. We compare also these results to those of the
appropriate procedure into so-called PLASMA library (Parallel Linear Algebra for Scalable Multi-core
Architectures).

Mathematics Subject Classification. 90C10, 68M20, 65F05.

Received May 13, 2019. Accepted January 18, 2021.

1. Introduction

Solving a triangular linear system (STLS) AX = B has been well studied theoretically and experimentally.
Here, A is a non-singular N ×N lower triangular matrix, X and B are two vectors of size N . In the literature,
several parallel algorithms [6, 10, 12, 16, 18] have been designed to improve the performance of STLS which is a
basic operation in numerical linear algebra [23]. These previous studies have not yet so far reached the optimum
for two mains reasons: the processor activity has not been maximized yet and the communication costs still
predominate the computing cost due to fine granularity, especially for point-wise methods. In this paper, our
goal consists to study the behaviour of both point-wise and block-wise parallel algorithms for STLS assuming
that the corresponding precedence graph is 2-steps structured and involve constant task cost. Our work deals
with the efficient use of multicore systems in order to schedule such parallel algorithms based on the so-called
task graph formalism approach [7]. The main contributions of the paper are the following. We propose a Mixed

Keywords. 0-1 integer problem, task scheduling, parallel algorithm, PLASMA library, triangular linear system.

∗ This paper is an extension of a previous work presented at Codit’17 [4].

1 Faculty of Letters and Humanities, University of Sousse, Sousse, Tunisia.
2 Department of Computer Sciences and Communication, Faculty of Sciences, University of Sfax, Sfax, Tunisia.
∗∗Corresponding author: marrakchimounir@yahoo.fr, mounir.marrakchi@fss.usf.tn

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2021

https://doi.org/10.1051/ro/2021009
https://www.rairo-ro.org
mailto:marrakchimounir@yahoo.fr
mailto:mounir.marrakchi@fss.usf.tn
https://www.edpsciences.org


546 M. BELMABROUK AND M. MARRAKCHI

Integer Programming (MIP) formulation for the problem consisting in scheduling, with minimum execution, the
resolution of N -sized triangular system using p processors 2 ≤ p ≤ N . We also present two other schedulings for
solving the same triangular system which has theoretically the same optimal execution time, namely the Critical
Path Algorithm (CPA) [4, 17] and Column Oriented Scheduling (COS) [3]. CPA is designed by sorting at each
step the independent tasks, i.e., whose predecessors have been executed, using the lengths of their critical paths.
As to COS, the tasks of each column belonging to the 2-steps graph are both executed by only one processor.
In order to validate our work, the practical results of MIP problem describing the scheduling of 2-steps graph
have been analyzed and compared to those of previous works. CPA and COS have been implemented on a
target parallel computer reserved in Grid’5000 and their performances are compared. We also compare our
experimental results with those obtained by the corresponding procedure of the PLASMA library [1, 2, 8, 25].
It has to be noticed that the experimental CPU time of COS is minimum compared to others, especially when
the size of the blocks is large enough. The reason is that the total processor idle time is minimum. Moreover,
in the block-wise method, the need to go to global memory access is reduced since only one processor executes
all the tasks of the same column of the precedence graph. Therefore the number of access to the global memory
decreases when the block size increases thus reducing the total communication time [5, 15]. It should also be
underlined that preemption is not allowed, i.e., each task is executed by the same processor sequentially without
interruption. Remark that henceforth we use in the same way the term processor or the term core to indicate
one computing resource.

The remainder paper is organized as follows. We begin by presenting, in Section 2 a brief state-of-the-art on
related works. In Section 3, the task decomposition and the precedence graph of the sequential algorithm are
described. Section 4, is devoted to describing the three parallel schedulings, i.e., the MIP-based, CPA and COS.
In Section 5, before concluding we introduce the PLASMA (Parallel Linear Algebra for Scalable Multi-core
Architectures) library and we present the programming environment used for our experimentations, expose
some experimental results and compare them through makespans and efficiencies of CPA and COS schedulings
with those of the corresponding routine named PLASMA-dtrsm() and included in PLASMA library.

2. Related works and motivation

STLS is the main step in numerous methods solving dense linear systems. Several authors have developed
scalable algorithms adapted to current architectures such as distributed memory machine, shared memory
machine, hybrid machine CPU/GPU, and many more. The work of Gonzalez-Domininiguez et al. [10] targeted
multicore clusters using unified parallel C language of which they exploited its particularities to design efficient
parallel implementations of dense triangular solvers, both in terms of execution time and required memory.
Belmabrouk et al. [3] studied this problem on a distributed memory machine and introduced a parallel algorithm
called Column Oriented Scheduling (COS) as well as compared their performances with that of the corresponding
subroutine belonging to the PBLAS2 library. Wicky et al. [24] presented theoretically parallel algorithms to solve
triangular systems with multiple right-hand sides. In this study, they have used a specific model to evaluate
execution time and they have presented and analyzed algorithms to reduce communication overhead. The
CPLEX tool [14] which solves some mathematical problems, provides a parallel subroutine for STLS on a
distributed memory machine. This designed subroutine was offered in accordance with the proposed PBLAS
library level 2. It should be noticed that the matrix is distributed in square block-cyclic fashion. This allows
minimizing the overhead communication by exchanging large blocks of data. Other theoretical and experimental
results have been presented on such problem, among these works, we mention those of Charara et al. [6] who
proposed to adopt a recursive formulation implemented on GPUs that reduced the memory traffic in global
memory. Mikkelsen et al. [16] presented parallel robust triangular solvers with floating-point arithmetic which
use a task-based run-time system. In their parallel method, the matrix and the right-hand sides of the triangular
system to be solved are split into blocks. In order to obtain a solution close to the exact one, they introduced
an algorithm for updating the right-hand sides thus increasing the total execution time. As to our paper, we
use Mixed Integer Programming that permits to design optimal scheduling for solving a triangular system.



DESIGN, ANALYSIS AND PERFORMANCE EVALUATION OF PARALLEL ALGORITHMS 547

Subsequently, we present two parallel algorithms COS [3] and CPA [17] to solve this problem having the same
theoretical parallel execution times with that obtained by MIP for small values of matrix size. This is due to the
significant complexity of MIP scheduling problem. Finally, we implemented in shared memory architecture CPA
and COS and compare their experimental results with previous works like PLASMA. We show experimentally
that COS is better than the others because its cost of communication is reduced [5, 8, 15].

3. Precedence graph

Consider AX = B a triangular linear system, where A = (ai,m) is a non-singular N × N lower triangular
matrix, X = (xm) and B = (bm) are two vectors of size N . The decomposition into tasks of STLS sequential
algorithm is shown in Algorithm 1. It should be recalled that it is possible to have a point wise or block wise
decomposition where the size of each block is r × r. Consequently we assume that N = n × r. As in [23],
we split the matrix A (resp. X,B) into r × r (resp. r × 1) sub-matrices Ak,j (resp. subvectors Xj , Bj) where
1 ≤ k ≤ n and 1 ≤ j ≤ n. We have Ak,j = (ai,m) (resp. Xj = (xm), Bj = (bm)) where (j − 1)r + 1 ≤ i ≤ jr,
(k − 1)r + 1 ≤ m ≤ kr and Ak,k (1 ≤ k ≤ n) is a lower triangular sub-matrice. Algorithm 1, where we assume
that the elements of B are initially stored in X, describes the sequential block resolution of a lower triangular
system segmented into tasks where the task T r

k,k (1 ≤ k ≤ n) corresponds to the resolution of a triangular
system of size r and the task T r

k,j (k + 1 ≤ j ≤ n) corresponds to the elimination of r (already determined),
unknowns in the r associated equations. In fact, with task T r

1,1, i.e., k = 1, Algorithm 1 solves firstly the
triangular system A1,1X1 = B1 by forward substitution scheme and then with tasks T r

1,j (2 ≤ j ≤ n), the
determinated values of X1 are removed. For k = 2, it solves triangular system with task T r

2,2 to have values of
X2 which are subsequently eliminated with tasks T r

2,j (3 ≤ j ≤ n) and so on until k = n. Here we have two
precedence constraints:

T r
k,j � T r

k+1,j where 1 ≤ k ≤ n− 1 and k + 1 ≤ j ≤ n.

T r
k,k � T r

k,j where 1 ≤ k ≤ n− 1 and k + 1 ≤ j ≤ n.

T � T ′ means that the execution of task T must be completed before T ′ begins. We assume in the remainder
that a combined multiplication-substraction or a division costs one time unit. Hence, the execution time of each
task T r

k,j , 1 ≤ k < j ≤ n, (resp. T r
k,k, 1 ≤ k ≤ n) is constant and equal to r2 (resp. r2+r

2 ). Since the number

of tasks T r
k,j , 1 ≤ k < j ≤ n, (resp. T r

k,k, 1 ≤ k ≤ n) is n(n−1)
2 (resp. n), we assume that the execution time

of each task is constant and equal to r2 time units in general and one time unit if r = 1. For simplicity and
clearness, the tasks T r

k,k and T r
k,j are written in the following by Tkk and Tkj respectively. The precedence graph

of size n called 2-steps graph [19] and illustrated for n = 6 in Figure 1, is constituted by n(n+1)
2 tasks Tij , where

1 ≤ i ≤ j ≤ n. It involves n columns denoted C1, . . . , Cn, where each Ci (1 ≤ i ≤ n) is constituted by tasks T1i,
T2i, . . ., Tii. The critical path of a given task Ti,j is is the longest path between Ti,j and Tn,n. It is the path which
begins by Ti,j and ends by the terminal task Tn,n belonging to the precedence graph. This is the path defined
by Ti,j ; Ti+1,j ; . . .; Tj,j ; Tj+1,j ; . . .; Tn,n. Its length is equal to cp(Ti,j) = 2n− i−j +1 which is the number of its
tasks. The length of the longest path of the precedence graph, i.e., {Ti,i; Ti,i+1, 1 ≤ i ≤ n− 1}∪{Tn,n}, is equal
to 2n − 1. Let us mention that the 2-steps graph is also the precedence graph of several other algorithms of
some linear algebra algorithms, such as LU factorization. In the following, we assume that p processors, denoted
1, . . . , p, are available unless otherwise stated.

4. Parallel schedulings

In this section, we describe three schedulings to solve a triangular system in optimal time. Proposed
approaches are based respectively on critical path heuristic, MIP tool and column-oriented method.



548 M. BELMABROUK AND M. MARRAKCHI

Algorithm 1. Decomposition into tasks.
for k = 1 to n do

for i = (k − 1)r + 1 to kr do
for m = (k − 1)r + 1 to i− 1 do

xi ← xi − ai,m ∗ xm






Task T r
k,k

end for
xi ← xi/ai,i

end for

for j = k + 1 to n do

for i = (j − 1)r + 1 to jr do
for m = (k − 1)r + 1 to kr do

xi ← xi − ai,m ∗ xm






Task T r
k,j

end for
end for

end for
end for

Figure 1. The 2-steps graph for n = 6.



DESIGN, ANALYSIS AND PERFORMANCE EVALUATION OF PARALLEL ALGORITHMS 549

4.1. Critical Path Algorithm (CPA)

The CPA is described as follows [17]. At each step, it executes among the independent tasks, i.e., tasks whose
predecessors have been executed thus tasks freed of precedence constraints, those having the longest critical
path. Indeed, if at time t there is a free processor, CPA chooses, among the independent tasks, a task that has
the longest critical path. If there are two or more independent tasks with the same critical path length, the
choice becomes arbitrary between them. In other words, if T and T ′ are two independent tasks at time t: if
cp(T ) > cp(T ′) then the execution of T begins no later than at the same time that T ′ and if cp(T ) = cp(T ′)
then the order of execution is arbitrary. Algorithm 2 describes the assignment of processors to the tasks. The
makespan of CPA is equal to

Tp =

{⌈
(n−1)(n+2)

2p

⌉
+ p, if 2 ≤ p < popt

2n− 1, if popt ≤ p ≤ n− 1

where popt =
⌈

2n−1−
√

2n2−6n+5
2

⌉
is the minimum number of processors for which the execution of the 2-steps

graph may be achieved in the optimal time, i.e., equal to 2n− 1 length of the longest path of precedence graph
of size n [17].

Algorithm 2. Critical Path Algorithm (CPA).
Assign one processor to execute T1,1

/* S: set of independent tasks not yet executed and having longest critical path*/
S ← ø
L←{T1,i, 2 ≤ i ≤ n} /* Set of independent tasks*/
while (L 6= ø) do

q ← 0
while (L 6= ø) and (q < p) do

/* Selection, in current time, q (q ≤ p) independent tasks to execute*/
T ← argmax{cp(T ′), T ′ ∈ L}
L← L\{T}
S ← S ∪ {T}
q ← q + 1

end while
Assign q processors to execute q tasks of S
S ← ø
L← L ∪ F /* F : set of tasks becoming independent in current time*/

end while

4.2. MIP scheduling

In the approach using MIP and like described in [9, 22], we formulate the scheduling as an optimization
problem with binary variables under constraints defined by priority of the tasks and parallel environment used.
The solution of the problem provides scheduling executing the 2-steps graph in minimum theoretical execution
time. In the following, we detail the formulation based on 0− 1 variables yk,q

i,j and defined by:

yk,q
i,j≥i =

{
1 if processor q starts the execution of task Ti,j at time k − 1
0 otherwise.

Our goal is to find both the values of the binary variables and the minimum of the following objective function:

tn,p =
K∑

k=1

 max
1≤q≤p

 n∑
i=1,j=i

yk,q
i,j





550 M. BELMABROUK AND M. MARRAKCHI

where tn,p (resp. K = Max(d (n−1)(n+2)
2p e + p, 2n − 1)) is the makespan of scheduling described by the binary

variables yk,q
i,j≥i (resp. of CPA) to execute 2-steps graph of size n with constant task cost equal to one unit time

where p processors are available (2 ≤ p ≤ n − 1). Let us precise that the execution of the precedence graph
begins at time t = 0 by processing the task T1,1. Then, the optimization problem, named MIP algorithm, may
be formulated as follows:

Minimize (tn,p)
Subject to

(i)
∑

k

∑
q

yk,q
i,j = 1 ∀i = 1, . . . , n, ∀j = i, . . . , n

(ii)
∑
i,j≥i

yk,q
i,j ≤ 1 ∀k = 1, . . . ,K, ∀q = 1, . . . , p

(iii)
∑

q

l−1∑
k=1

yk,q
i,j ≥

∑
q

yl,q
i+1,j ∀l = 2, . . . ,K, ∀i = 1, . . . , n− 1, ∀j = i + 1, . . . , n

(iv)
∑

q

l−1∑
k=1

yk,q
i,i ≥

∑
q

yl,q
i,j ∀l = 2, . . . ,K, ∀i = 1, . . . , n− 1, ∀j = i + 1, . . . , n

(v) y1,1
1,1 = 1, y1,q

i,j = 0 ∀i = 2, . . . , n, ∀j = i, . . . , n, ∀q = 1, . . . , p

(vi) y1,q
1,j = 0 ∀j = 2, . . . , n, ∀q = 1, . . . , p

(vii) yk,q
i,j ∈ {0, 1} ∀i = 1, . . . , n, ∀j = i, . . . , n, ∀k = 1, . . . ,K, ∀q = 1, . . . , p.

Constraint (i) means that each task is executed by one processor within a time step. Constraint (ii) guarantees
that each processor executes one task at most on each time step. Constraints (iii) and (iv) correspond to the
inter-tasks precedence constraints. Constraints (v) and (vi) mean that initially, i.e., at time k = 1, the only task
processed is T1,1. Constraint (vii) specifies that all variables are binary. We may see that the problem involves
Kpn(n+1)

2 (resp. at least n(n+1)
2 +n(n−1)(K−1)+pK) binary variables (resp. constraints). Both numbers grow

on the order of O(n4). For the implementation and evaluation of the above binary integer program with different
values of n and p, we used the Cplex Mixed Integer Programming (MIP) version 12.10 [13]. The experiments
were carried out on an Intel Core 2 Quad Q8300, 4 cores, 2.50 GHz, 4 GB of RAM, setting a time limit of
three hours. The obtained values are summarized in Table 1 which is split into four columns as follows: the
first one indicates the instances defined by the size of 2-steps graph n and number of available processors p. In
the second column gives MIP and CPA makespan’s values are given, as well as the execution times of the MIP
algorithm are mentioned in the third column. The last column contains popt [17] lower bound of the number of
processors to execute 2-steps graph in minimum time. The experimental results of the MIP algorithm confirm
those obtained by CPA. Note that the complexity of the problem is rather high for Cplex tool and that its
running requires a large amount of time even for small values of n. Indeed, for some values of n as 18, 20, 22, 24
and p = 2, MIP algorithm lasts more than three hours without giving any results. This is justified by the large
number of binary variables and constraints and also by the continuous activity of processors which slows down
obtaining optimal scheduling. Furthermore, if the number of available processors is sufficient so that processors
can be inactive for a certain time during execution, i.e., the processors are not always busy during execution,
then the assignment of processors to tasks becomes easy and MIP algorithm provides the MIP scheduling and
exact theoretical makespan in a short time even if the number of binary variables and constraints is quite high.
In this context, we cite the cases in Table 1 where p ≥ popt like n = 22 or 24 and p = 8.



DESIGN, ANALYSIS AND PERFORMANCE EVALUATION OF PARALLEL ALGORITHMS 551

Table 1. MIP and CPA results.

Instance Makespan
CPU poptn p MIP CPA [17]

10

2 29 29 18.81

4
4 19 19 1.60
6 19 19 1.38
8 19 19 1.79

12

2 41 41 58.64

5
4 24 24 10.95
6 23 23 2.34
8 23 23 2.80

14

2 54 54 405.2

5
4 30 30 47.11
6 27 27 4.22
8 27 27 5.19

16

2 70 70 5080.56

6
4 38 38 78.31
6 31 31 8.02
8 31 31 10.32

18

2 – 87 10 800

6
4 47 47 1088
6 35 35 13.5
8 35 35 22.10

20

2 – 107 10 800

7
4 57 57 5954
6 41 41 196.38
8 39 39 22.39

22

2 – 128 10 800

7
4 – 67 10 800
6 – 42 10 800
8 43 43 66.1

24

2 – 152 10 800

8
4 – 79 10 800
6 – 56 10 800
8 47 47 129.85

4.3. Column Oriented Scheduling (COS)

In the following, we will present a Column Oriented Scheduling COS for the 2-steps graph when p processors
are available [3]. Such algorithm assumes that the precedence graph has a particular size n equal to 2qp + 1,
where q is an integer greater or equal to 2. Such expression of n for the precedence graph size except its first task
T1,1 allows appropriate assignment of its columns to processors. We obtain q blocks denoted B0, B1, . . . , Bq−1.
Each block contains exactly 2q columns where C2kp+j+1 and C2(k+1)p−j+2 belonging to block Bk (0 ≤ k ≤ q−2),
are assigned to processor j (1 ≤ j ≤ p). In the last block Bq−1, processor j executes tasks of C2(q−1)p+j+1 and
C(2q−1)p+j+1. In the next, we define the order of execution for the tasks assigned to processor j. Note that
after execution the first task T11 by one processor at time t = 0, each processor is active on two successively
assigned columns of block Bk(0 ≤ k ≤ q− 1), i.e., each processor j alternately executes a task from the current
column and a task from the following assigned to j. Assume that Cu, Cv and Cw are three successive columns
executed by the same processor j and belonging on two successive blocks Bk and Bk+1 for any k (0 ≤ k ≤ q−2).
Processor j executes one task from Cu and one task from Cv until Cu−1 will be finished whereas the remaining



552 M. BELMABROUK AND M. MARRAKCHI

tasks of the column Cu are sequentially executed by processor j without interruption. Afterwards, the same
work is achieved by processor j alternately between Cv and Cw as long as the execution Cv−1 is not yet finished.
Such process continues until processor 1 finishes the execution of the task Tuu where u = 2(q− 1)p + 1, i.e., the
last task of Bq−2. At that time, each processor continues the execution of the tasks not yet executed of its first
column belonging to Bq−1. Then, it executes the other tasks not yet executed from its second column assigned
in the same block. In fact, the processor does not, alternately, execute its tasks i.e., the placement order of
each task place in its column gives the order of its execution by its assigned processor. Algorithm 3 details the
procedure (Pj) which describes the operation of any processor j (1 ≤ j ≤ p) by executing the tasks assigned to
it belonging to Bk(0 ≤ k ≤ q − 1) from the time 1 until the execution of Tuu (u = 2(q − 1)p + 1) finishes. The
example depicted in Table 2 provides the processor that executes each task as well as the time of its execution
start, when r = 1, p = 3 and q = 3, hence N = n = 19. Here, each processor k denoted Pk, where 1 ≤ k ≤ 3,
executes tasks of six columns:

P1 executes tasks of columns C2, C7, C8, C13, C14, C17.
P2 executes tasks of columns C3, C6, C9, C12, C15, C18.
P3 executes tasks of columns C4, C5, C10, C11, C16, C19.

In Table 2, i, j (resp. t) in column Pk (resp. Time) means processor k starts execution of Ti,j at time t. To
understand Algorithm 3, we give an overview of how procedure (P2) works. Firstly, the variables k, u and v
are respectively initialized to 0, 3 and 6. Then P2 executes in order, as indicated in Table 2 and from t = 1
to t = 4, tasks T1,3, T1,6, T2,3 and T3,3. Since the execution of C3 is achevied, the variables k, u and v are
updated and become equal to 1, 6 and 9 respectively. P2 treates then from t = 5, the tasks T2,6, T1,9, T3,6, T2,9

belonging to C6 and C9 as mentioned below. This lasts until time 9 where P2 continues the execution of tasks
belonging to C6. At time 12, it finishes the execution of C6 and u (resp. v) gets the value 9 (resp. 12). Thus,
P2 starts execution of C12 at time 13. This process continues until time 39 where P1 finishes the execution of
the tasks of column C13 belonging to B1 (since 13 = 2(q − 1)p + 1, where q = p = 3). At this time Procedure
(P2) is terminated. Algorithm 4 describes COS by specifying how the p processors operate in parallel, how
each processor j (1 ≤ j ≤ p) works to execute the procedure (Pj) and complete the execution of columns
C2(q−1)p+j+1 and C(2q−1)p+j+1. In the continuation of the description of our example cited above for P2, we

Algorithm 3. Procedure (Pj).
k ← 0;
u← j + 1;
v ← 2p− j + 2;
while (u ≤ 2(q − 1)p + 1) do

while (execution of Cu−1 not yet terminated) do
Pj executes one task of Cu and then one task of Cv

end while
Pj terminates the execution of Cu

u← v
if u = 2(k + 1)p− j + 2 then

k ← k + 1;
v ← 2kp + j + 1

else
if k 6= q − 1 then

v ← 2(k + 1)p− j + 2
else

v ← (2q − 1)p + j + 1
end if

end if
end while



DESIGN, ANALYSIS AND PERFORMANCE EVALUATION OF PARALLEL ALGORITHMS 553

Algorithm 4. Column Oriented Scheduling (COS).
Execution of task T11

for j = 1 to p do /* in parallel*/
Procedure (Pj)
Processor Pj terminates execution of C2(q−1)p+j+1 and after execution
of C(2q−1)p+j+1

end for

Table 2. COS for r = 1, p = 3 and q = 3.

Time P1 P2 P3 Time P1 P2 P3 Time P1 P2 P3

0 1, 1 22 3, 13 4, 12 7, 10 44 14, 14 12, 15 10, 16
1 1, 2 1, 3 1, 4 23 3, 14 1, 15 8, 10 45 1, 17 13, 15 11, 16
2 2, 2 1, 6 1, 5 24 4, 13 5, 12 9, 10 46 2, 17 14, 15 12, 16
3 1, 7 2, 3 2, 4 25 4, 14 2, 15 10, 10 47 3, 17 15, 15 13, 16
4 1, 8 3, 3 2, 5 26 5, 13 6, 12 7, 11 48 4, 17 3, 18 14, 16
5 2, 7 2, 6 3, 4 27 5, 14 3, 15 8, 11 49 5, 17 4, 18 15, 16
6 2, 8 1, 9 4, 4 28 6, 13 7, 12 9, 11 50 6, 17 5, 18 16, 16
7 3, 7 3, 6 3, 5 29 6, 14 4, 15 10, 11 51 7, 17 6, 18 5, 19
8 3, 8 2, 9 4, 5 30 7, 13 8, 12 11, 11 52 8, 17 7, 18 6, 19
9 4, 7 4, 6 5, 5 31 7, 14 9, 12 1, 16 53 9, 17 8, 18 7, 19
10 4, 8 5, 6 1, 10 32 8, 13 10, 12 1, 19 54 10, 17 9, 18 8, 19
11 5, 7 6, 6 1, 11 33 8, 14 11, 12 2, 16 55 11, 17 10, 18 9, 19
12 6, 7 3, 9 2, 10 34 9, 13 12, 12 2, 19 56 12, 17 11, 18 10, 19
13 7, 7 1, 12 2, 11 35 10, 13 5, 15 3, 16 57 13, 17 12, 18 11, 19
14 5, 8 4, 9 3, 10 36 11, 13 1, 18 3, 19 58 14, 17 13, 18 12, 19
15 6, 8 2, 12 3, 11 37 12, 13 6, 15 4, 16 59 15, 17 14, 18 13, 19
16 7, 8 5, 9 4, 10 38 13, 13 2, 18 4, 19 60 16, 17 15, 18 14, 19
17 8, 8 3, 12 4, 11 39 9, 14 7, 15 5, 16 61 17, 17 16, 18 15, 19
18 1, 13 6, 9 5, 10 40 10, 14 8, 15 6, 16 62 17, 18 16, 19
19 1, 14 7, 9 5, 11 41 11, 14 9, 15 7, 16 63 18, 18 17, 19
20 2, 13 8, 9 6, 10 42 12, 14 10, 15 8, 16 64 18, 19
21 2, 14 9, 9 6, 11 43 13, 14 11, 15 9, 16 65 19, 19

say that from time 39, it finishes the execution of the tasks not yet executed of C15 then of C18 sequentially.
It should be noted that processors 1 and 3 work in a similar way as that of processor 2. In [3], we show that
execution is done according to the precedence constraints and COS keeps all available processors active without
interruption as long as possible. Each processor executes exactly q(2qp + 3) + 2j − p − 1 tasks in all from the
2-steps graph except its first task T1,1. The latest task Tn,n of precedence graph will be executed by processor
p, thereafter, the makespan of COS is equal to q(2qp + 3) + p− 1. As a function of n, such makespan coincides
with the optimal theoretical value Tp = d (n−1)(n+2)

2p e+ p for executing the 2-steps graph with the constant task
cost where n is the size of the precedence graph and 2 ≤ p ≤ popt [17].

5. Experimental results

In this section, we give some details of the PLASMA library, describe parallel programming environment
used and present some experimental results.



554 M. BELMABROUK AND M. MARRAKCHI

Figure 2. Experimental makespans for N = 14 401 and r = 1.

Figure 3. Experimental efficiencies for p = 4 and r = 1.

5.1. PLASMA library and programming environment

The Parallel Linear Algebra Software for Multicore Architectures (PLASMA) is a software library designed
to be efficient on homogeneous multicore processors. PLASMA is a redesign of LAPACK and ScaLAPACK
for shared memory architectures based on multi-core processor architectures [1, 5, 8]. This library is designed
to deliver the goal of high performance that is reached by combining state of the art solutions in parallel
algorithms, scheduling, and software engineering. In particular, PLASMA is built around the following three
concepts. The first is the Tile Matrix Layout where the matrices are subdivided into square blocks, called tiles.
A tile fits into the cache memory of one core. This method minimizes the number of cache misses and improves
performance. Tile Algorithms is the second concept: PLASMA is in fact based on redesigned algorithms to work
on tiles. This strategy maximizes data reuse and thus benefits from a better cache effect. The third concept is
Dynamic Scheduling where the task assignment to the cores is done at run time, i.e., the scheduling is based



DESIGN, ANALYSIS AND PERFORMANCE EVALUATION OF PARALLEL ALGORITHMS 555

Figure 4. Experimental efficiencies for N = 24 004 and r = 4.

Figure 5. Experimental efficiencies for N = 24 020 and r = 20.

on the idea of assigning work to cores based on the availability of data for processing at any given point in
time. Thus is also sometimes called data-driven scheduling [8]. To validate the performances of the presented
algorithms, we used the procedure named PLASMA-dtrsm() of PLASMA which solves a triangular system
[21]. We prefer this choice firstly because PLASMA experimental results constantly surpass those of certain
other libraries [1]. Secondly, because we are targeting to test the performance of such algorithms on multi-
core platforms and the working environment that we use is the same as that of PLASMA: subdivision of the
matrix into blocks and use the shared memory architecture. To compare experimental performances, the choice
of CPA and COS schedulings is based on the fact that they have theoretically the same optimal makespan.
Besides, the implementation of MIP scheduling is non-interesting because this approach deals with fairly small



556 M. BELMABROUK AND M. MARRAKCHI

Figure 6. Experimental makespans for N = 24 020 and r = 20.

Figure 7. Experimental makespans for r = 2 and p = 8.

sizes due to the MIP algorithm complexity. We have to add that we implemented the COS and CPA parallel
algorithms by using an application programming interface (API) that supports the programming of shared
memory multiprocessing platforms. Thus, we chose OpenMP (Open Multi-Processing) [20]. In C/C++, OpenMP
uses #pragma to specify the parallel sections. The communication inter-core and/or processors in the shared
memory are implicit. The architecture of system we targeted is a node having two AMD Opteron 6164 HE
CPUs, each has 12 cores, 1.7 GHz, 12 MB (RAM), 85 W (GRID’5000) [11]. The processed triangular matrices
chosen randomly. Experimentally, the makespan is measured in seconds (s). It is the mean of many values (one
hundred) of the execution time of the same parallel algorithm with the same parameters.



DESIGN, ANALYSIS AND PERFORMANCE EVALUATION OF PARALLEL ALGORITHMS 557

Figure 8. Experimental makespans for r = 20 and p = 8.

5.2. Test results and discussion

In this subsection, we compare the experimental results of the COS, CPA and the subroutine of PLASMA
library. Figure 2 illustrates the variation of the makespan in seconds according to the number of cores, that
ranges from 4 to 20. We can remark that for the different number of cores, the execution time of the PLASMA
subroutine is the best when the block size r is equal to 1. If the number of cores increases, the execution time
of COS becomes near to that of the PLASMA subroutine. Also, the experimental execution time of the CPA
is larger than that of the COS. This is due to PLASMA subroutine which ignores the point-wise method and
always works with the block-wise method. On the contrary in Figure 3, where the x-axis represents the matrix
size n varying between 4801 and 14 401 and the y-axis represents the efficiency from 0.2 to 1, it is clear in the
point-wise version and for a constant number of cores equal to 4, efficiencies, i.e., core activity rate in COS
exceed 0.8 and are better than those of the others. Efficiencies of CPA and PLASMA subroutine are pretty
small. Efficiencies increase with the matrix size because processors idle times are independent of the problem
size and remain constant when the number of the core is constant. Given p the number of cores belonging to {4,
8, 12, 16, 20}, Figures 4 (resp. 5) illustrates the efficiency values for N = 24 004 and r = 4 (resp. N = 24 020
and r = 20). The efficiencies of COS (resp. CPA) is better than that of CPA (resp. PLASMA subroutine). This
shows that the core activity rate in COS is better than that of the others. It is obvious from Figure 6 depicting
the makespan (in s.) in terms of the number of cores in the interval [4, 20], that the COS scheduling is better
than that of the CPA (resp. PLASMA subroutine) for a matrix size N = 24 020 and a block size r = 20 although
theoretically CPA and COS have the same execution time without communication cost. This may be explained
by the fact that in COS, the execution of each column of the 2-steps graph is assigned to only one core, which
minimizes communication cost. The same results described above are illustrated in Figures 7 and 8 where the
block size is equal respectively to 2 and 20. These figures present the variations of the makespan according to
the size of matrix when the number of cores is constant equal to 8. In fact, in COS scheduling each core reuses
the information, which has just been calculated. The latter is still present in its cache and does not need to
re-access the global memory. Furthermore, COS and CPA are faster than PLASMA subroutine, because cores
in COS and CPA are active as long as possible, i.e., the idle time of cores is minimum and the block method
allows reduce memory traffic in a global memory [15].



558 M. BELMABROUK AND M. MARRAKCHI

6. Conclusion

In this paper, we have tried to select the most efficient parallel algorithm to solve a triangular linear system
on a multicore shared-memory machine. For this, we have presented three scheduling approaches: MIP, COS,
CPA. MIP scheduling is designed by the Cplex tool which formulates the task assignment to processors as an
optimization problem with constraints. The solutions, found by MIP, of this problem, confirmed the existing
results. COS, CPA are implemented and compared. They theoretically have the same makespan, but their
experimental makespans differ, although a shared memory is used. This is due to communication overhead.
Also, the practical complexities of COS and CPA are compared to those of PLASMA subroutine. COS has
the least experimental execution time and highest efficiency because processor idle time is minimum and the
tasks of each column of the 2-steps graph are executed by one processor. This allows the minimization of the
communication overhead. The block-wise method reduces the number of accesses to global memory. It is possible
to extend this experimental study to other parallel algorithms either on a shared or distributed memory system.
In particular, we can implement other parallel algorithms on a distributed memory machine and compare their
performances with the corresponding parallel BLAS subroutines.

Acknowledgements. We thank prof. Nahid EMAD for her reception in PRISM laboratory, University of Versailles and
provision an account of GRID’5000 to make experimentations.

References

[1] A. Abdelfattah, H. Anzt, J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, I. Yamazaki and A. YarKhan,
Linear algebra software for large-scale accelerated multicore computing. Acta Numer. 25 (2016) 1–160.

[2] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief, P. Luszczek and S. Tomov, Numerical linear
algebra on emerging architectures: the plasma and magma projects. In: Vol. 180 of Journal of Physics: Conference Series. IOP
Publishing, Bristol, UK (2009) 012037.

[3] M. Belmabrouk and M. Marrakchi, Optimal parallel scheduling for resolution a triangular system with availability constraints.
In: 2015 IEEE/ACS 12th International Conference of Computer Systems and Applications (AICCSA). IEEE, Piscataway,
NJ, USA (2015) 1–7.

[4] M. Belmabrouk and M. Marrakchi, Comparison of parallel scheduling for triangular system resolution on multi-core processors.
In: 2017 4th International Conference on Control, Decision and Information Technologies (CoDIT). IEEE, Piscataway, NJ,
USA (2017) 0651–0656.

[5] A. Buttari, J. Langou, J. Kurzak and J. Dongarra, A class of parallel tiled linear algebra algorithms for multicore architectures.
Parallel Comput. 35 (2009) 38–53.

[6] A. Charara, D. Keyes and H. Ltaief, A framework for dense triangular matrix kernels on various manycore architectures.
Concurrency Comput. Pract. Experience 29 (2017) e4187.

[7] E.G. Coffman and P.J. Denning, Operating Systems Theory. Prentice-Hall Englewood Cliffs, NJ, USA (1973).

[8] J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, P. Wu, I. Yamazaki, A. YarKhan, M. Abalenkovs, N. Bagherpour
and S. Hammarling, Plasma: Parallel linear algebra software for multicore using openmp. ACM Trans. Math. Softw. (TOMS)
45 (2019) 1–35.

[9] C.A. Floudas and X. Lin, Mixed integer linear programming in process scheduling: modeling, algorithms, and applications.
Ann. Oper. Res. 139 (2005) 131–162.

[10] J. González-Domı́nguez, M.J. Mart́ın, G.L. Taboada and J. Tourino, Dense triangular solvers on multicore clusters using upc.
Proc. Comput. Sci. 4 (2011) 231–240.

[11] Grid’5000, [online] https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home (2007).

[12] R. Iakymchuk, D. Defour, S. Collange and S. Graillat, Reproducible triangular solvers for high-performance computing. In:
2015 12th International Conference on Information Technology-New Generations. IEEE, Piscataway, NJ, USA (2015) 353–358.

[13] IBM ILOG CPLEX Optimization Studio CPLEX Users Manual (1999).

[14] IBM Knowlege Center, Solution of triangular system of equations with a single right-hand side. [online] https://www.ibm.com/
support/knowledgecenter/.

[15] X. Jin, T. Yang and X. Tang, A comparison of cache blocking methods for fast execution of ensemble-based score computation.
In: Proceedings of the 39th International ACM SIGIR Conference On Research and Development in Information Retrieval
(2016) 629–638.

[16] C.C. Kjelgaard Mikkelsen, A.B. Schwarz and L. Karlsson, Parallel robust solution of triangular linear systems. Concurrency
Comput. Pract. Experience 31 (2019) e5064.

[17] M. Marrakchi, Optimal parallel scheduling for the 2-steps graph with constant task cost. Parallel Comput. 18 (1992) 169–176.

[18] P.D. Michailidis and K.G. Margaritis, Parallel direct methods for solving the system of linear equations with pipelining on a
multicore using openmp. J. Comput. Appl. Math. 236 (2011) 326–341.

https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home
https://www.ibm.com/support/knowledgecenter/
https://www.ibm.com/support/knowledgecenter/


DESIGN, ANALYSIS AND PERFORMANCE EVALUATION OF PARALLEL ALGORITHMS 559

[19] N.M. Missirlis and F. Tjaferis, Parallel matrix factorizations on a shared memory mimd computer. In: International Conference
on Supercomputing. Vol. 297 of : Lecture Notes in Computer Science. Springer, Berlin-Heidelberg (1987) 926–938.

[20] OpenMP, The OpenMP API specification for parallel programming. [online] http://openmp.org (1997).

[21] PLASMA, [online] http://icl.cs.utk.edu/projectsfiles/plasma/html/htmlbrowsing/dtrsm.c.html (2009).

[22] H. Shioda, K. Konishi and S. Shin, Optimal task scheduling algorithm for parallel processing. In: Proceedings of the 2011 2nd
International Congress on Computer Applications and Computational Science. Vol. 145 of: Advances in Intelligent and Soft
Computing. Springer, Berlin-Heidelberg (2012) 79–87.

[23] C.F. Van Loan and G.H. Golub, Matrix Computations. Johns Hopkins University Press, Baltimore, MD, USA (1983).

[24] T. Wicky, E. Solomonik and T. Hoefler, Communication-avoiding parallel algorithms for solving triangular systems of linear
equations. In: 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, Piscataway, NJ, USA
(2017) 678–687.

[25] A. YarKhan, J. Kurzak, P. Luszczek and J. Dongarra, Porting the plasma numerical library to the openmp standard. Int. J.
Parallel Program. 45 (2017) 612–633.

http://openmp.org
http://icl.cs.utk.edu/projectsfiles/plasma/html/htmlbrowsing/dtrsm.c.html

	Introduction
	Related works and motivation
	Precedence graph
	Parallel schedulings
	Critical Path Algorithm (CPA)
	MIP scheduling
	Column Oriented Scheduling (COS)

	Experimental results
	PLASMA library and programming environment
	Test results and discussion

	Conclusion
	References

