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EXACT AND APPROXIMATE ALGORITHMS FOR THE LONGEST INDUCED
PATH PROBLEM

Ruslán G. Marzo and Celso C. Ribeiro∗

Abstract. The longest induced path problem consists in finding a maximum subset of vertices of
a graph such that it induces a simple path. We propose a new exact enumerative algorithm that
solves problems with up to 138 vertices and 493 edges and a heuristic for larger problems. Detailed
computational experiments compare the results obtained by the new algorithms with other approaches
in the literature and investigate the characteristics of the optimal solutions.
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1. Introduction

Let G = (V,E) be an undirected graph defined by its set of n vertices V = {1, · · · , n} and its edge set
E ⊆ V ×V . For any subset of vertices S ⊆ V , let G[S] = (S,E′) denote the subgraph induced by S in G, where
E′ contains all edges from E that have both of their endpoints in S. The longest induced path problem (LIPP)
is defined as that of finding the subset S ⊆ V of largest cardinality such that the resulting induced subgraph,
G[S], is a simple path [13].

The longest induced path problem has applications in various network analysis and design contexts. The
graph diameter, which is defined as the length of the longest shortest path in a graph, is often used to quantify
graph communication properties. In particular, the graph diameter provides an intuitive measure of the worst-
case pairwise distance, e.g., the longest of the shortest communication paths in a communication network or
the longest of the shortest routes in a transportation network. The longest induced path can also be considered
as a measure of the worst-case pairwise distance in other practical scenarios, where vertices can either fail,
be overloaded or be destroyed by an adversary (depending on the application context) and thus cannot be
used in any communication or transportation path. In these cases, some subset of vertices cannot transmit a
message in a communication network or cannot serve as a transshipment point in a transportation network and,
consequently, detours or alternative shortest paths must be used. In other words, the objective of the longest
induced path problem is to identify the worst possible case for the shortest distance between any two vertices in
the graph, given that these vertices remain connected by some path while the rest of the vertices may fail [13].

The longest induced path problem is also known in the literature as the maximum induced path problem
(see e.g. [2, 7]). The maximum weighted induced path problem has applications in large communication and
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neural networks when the worst case communication time needs to be evaluated [7]. Furthermore, LIPP is
related to the snake-in-the-box problem, which was described by Kautz [11] and has applications in the theory
of error-correcting codes. It consists in finding the longest possible induced path along the edges of a hypercube
graph.

Another interesting interpretation of LIPP appears in social networks with information cascades. Matsypura
et al. [13] observed that an optimal solution of the longest induced path problem in this context provides the
longest possible path of information transmission, where one end vertex of the path corresponds to the seed of
the information cascade and the other end vertex is the last to learn this piece of information.

Even though the graph diameter is computable in polynomial time [1], the decision version of the longest
induced path problem is NP-complete ([6], p. 196). The problem remains NP-complete even for bipartite graphs.
Finding the longest simple path (not necessarily induced) is also NP-complete. Polynomially solvable classes of
the problem for specific graph families are discussed e.g. in [7–10, 12]. Bergougnoux and Kanté [4] designed a
framework to obtain efficient algorithms for several problems with a global constraint (acyclicity or connectivity),
including the longest induced path.

Although the longest induced path problem belongs to an interesting class of network optimization problems
with practical applications in various network contexts, the literature on solution approaches for this problem
is rather limited, possibly due to its inherent computational complexity. Matsypura et al. [13] were the first
to develop exact solution approaches for the longest induced path problem for general graphs, based on inte-
ger programming (IP) techniques. They proposed four IP formulations based on three conceptually different
interpretations of the problem. In addition, they provided an exact iterative algorithm that solves a sequence
of smaller MIPs and developed a randomized heuristic to find induced paths in large networks. Bökler et al. [5]
proposed stronger integer linear programming formulations using cut (or generalized subtour elimination) con-
straints and clique inequalities.

In this work, we focus on solving the longest induced path problem for different classes of general graphs. We
propose an exact enumerative algorithm and a heuristic for the problem. We review in Section 2 the existing
solutions approaches proposed by Matsypura et al. [13] and Bökler et al. [5], from where we take the same
test instances that will be used in our computational experiments. Section 3 describes the proposed exact
enumerative algorithm and a new heuristic. In Section 4 we present computational experiments to assess the
performance of the proposed solution methods. Section 5 investigates the correlation of the running times of
the proposed exact algorithm and the sizes of the longest induced paths with some characteristics of the test
instances. We also analyze the eccentricity and the degree of the extreme vertices of the optimal solutions
obtained with this exact algorithm. Concluding remarks are drawn in Section 6.

2. Existing approaches

In this section, we first summarize two integer programming formulations for the longest induced path problem
(LIPP) developed by Matsypura et al. [13], referred to as IP3 and IP3c. The key idea behind these formulations
is first to model a walk in the underlying graph and then force it to be an induced path by using additional
constraints.

We assume that a walk in a graph starts at some vertex at time t = 0. Then, at time t = 1, it visits one of
its neighbors. The walk continues visiting other vertices until time t = T or no further moves are possible. The
value of T can be set to |V |− 1 unless a better upper bound on the size of the longest induced path is available.

Both models IP3 and IP3c make use of the same binary variable xti associated to each vertex i ∈ V of the
graph and each time t ∈ {0, · · · , T}:

xti =

{
1, if and only if vertex i is visited at time t,
0, otherwise.

A new vertex is visited at each time period whenever possible. If the walk cannot be continued at time t = τ ,
then xti = 0 for all i ∈ V , t ≥ τ . To ensure that the walk is an induced path, it is necessary to verify that there
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are no shortcuts to the previously visited vertices and that no vertex that is not a neighbor of the current vertex
can be visited at the next step. Based on these considerations, formulation IP3 is:

(IP3): max
T∑
t=0

∑
i∈V

xti (2.1)

subject to: ∑
i∈V

xti ≤ 1, ∀t ∈ {0, · · · , T}, (2.2)

T∑
t=0

xti ≤ 1, ∀i ∈ V, (2.3)

xti + xt+1
j ≤ 1, ∀(i, j) /∈ E,∀t ∈ {0, · · · , T − 1}, (2.4)

xti + xτj ≤ 1, ∀(i, j) ∈ E,∀t ∈ {0, · · · , T − 2},∀τ ∈ {t+ 2, · · · , T}, (2.5)∑
i∈V

xti ≤
∑
i∈V

xt−1
i , ∀t ∈ {1, · · · , T}, (2.6)

xti ∈ {0, 1}, ∀i ∈ V,∀t ∈ {0, · · · , T}. (2.7)

The objective function (2.1) maximizes the number of vertices in the resulting walk. Constraints (2.2) enforce
that only one vertex can be visited at any time. Constraints (2.3) ensure that the walk cannot visit any vertex
twice. Constraints (2.4) state that the walk can traverse only existing edges in E. Constraints (2.5) ensure
that there are no shortcuts in a walk, i.e., the walk is, in fact, an induced path. Constraints (2.6) enforce that
the walk cannot be interrupted, i.e., if the walk stops at time t − 2 and no vertices are visited at time t − 1,
then it cannot start again from another vertex at time t. Finally, constraints (2.7) represent the integrality
requirements.

Formulation IP3 has O(T |V |) variables and O(T |V |2 +T 2|E|) constraints. The number of constraints can be
reduced by aggregating constraints (2.4) and (2.5), resulting in a more compact formulation denoted by IP3c
with the same LP bound; see ([13], Sect. 3). Specifically, constraints (2.4) can be aggregated as:∑

j∈V :(i,j)/∈E

xt+1
j ≤ 1− xti, ∀i ∈ V, ∀t ∈ {0, · · · , T − 1}, (2.8)

meaning that if vertex i is visited at time t, i.e., xti = 1, then all vertices non-adjacent to i, i.e., those in
{j ∈ V | (i, j) /∈ E}, cannot be visited at time t+ 1. On the other hand, if xti = 0, then the above constraint is
enforced due to constraint (2.2). Constraints (2.5) can be aggregated in a similar fashion:

T∑
τ=t+2

xτj ≤ 1− xti, ∀(i, j) ∈ E, ∀t ∈ {0, · · · , T − 2}, (2.9)

by observing that if a vertex i is visited at time t, then its neighbors cannot be visited at any time later than
t+ 1. On the other hand, if xti = 0, then the constraint is valid due to constraints (2.3).

The exact iterative algorithm of [13] solves a sequence of smaller IPs to obtain an optimal solution for the
original problem. To ensure that formulations IP3 and IP3c are valid, we must set T = |V | − 1, unless a better
upper bound for the longest induced path is known. If the length L∗ of the induced path returned for some
value of T is strictly smaller than T , then L∗ is the optimal value for the original problem and the corresponding
induced path is the longest one. Since there always exists an induced path whose length is equal to diam(G),
the iterative search for the longest induced path may start from T = diam(G) + 1. If L∗ � |V |, then each IP is
expected to be solved much faster than the original formulation with the full upper bound.



336 R.G. MARZO AND C.C. RIBEIRO

Matsypura et al. [13] also developed a randomized heuristic based on random walks. Its key idea consists
in generating random walks that are also induced paths starting from each vertex s ∈ S ⊆ V , where S is
some predefined subset of vertices. The incumbent is initialized with an empty path. For each vertex s ∈ S
the heuristic builds k random walks from s, where k is a parameter. The longest among the k random walks is
returned, the incumbent is updated, and a new vertex s ∈ S is explored. At the end, after all vertices in S have
been visited, the incumbent contain the longest path found by the heuristic. We observe that the heuristic is
not efficient for small instances because, as the parameter k grows, many repeated paths are generated starting
at the same vertex.

Bökler et al. [5] proposed new integer linear programming formulations for the longest induced path problem,
based on cut or subtour elimination constraints, exact separation routines, relaxation of variables and clique
constraints. They obtain strictly stronger relaxations than those proposed in [13]. The core of their formulations
is based on an extended graph G∗ = (V ∗, E∗) by adding to G a new (universal) vertex s adjacent to all vertices
of V , with V ∗ = V ∪ {s} and E∗ = E ∪ {(s, v) : v ∈ V }. It seeks for a longest induced cycle through s in G∗,
ignoring induced chords incident to s. Searching for a cycle instead of a path, allows to require that each edge
in the solution has exactly two adjacent edges that are also selected. Let δ∗(e) ⊂ E∗ denote the edges adjacent
to edge e in G∗. The partial formulation ILPBase makes use of the binary variable ye associated to each edge
e ∈ E∗ of the graph:

ye = yi,j =

{
1, if and only if edge e = (i, j) is selected,
0, otherwise.

ILPBase: max
∑
e∈E

ye (2.10)

subject to: ∑
v∈V

ys,v = 2, (2.11)

2ye ≤
∑

f∈δ∗(e)

yf ≤ 2, ∀e ∈ E, (2.12)

ye ∈ {0, 1}, ∀e ∈ E∗. (2.13)

The objective function (2.10) maximizes the number of edges in the resulting path. Constraint (2.11) enforces
that exactly two edges incident to vertex s are selected. To prevent the existence of chords, constraints (2.12)
guarantee that any original edge e ∈ E is adjacent to at most two selected edges. Furthermore, if edge e ∈ E
is selected, then precisely two of its adjacent edges must to be selected as well. Finally, constraints (2.13)
correspond to the integrality requirements.

However, this formulation is not enough, because it still allows solutions formed by multiple disjoint cycles,
only one of them containing vertex s. In order to obtain a longest single cycle through s yielding the longest
induced path, one has to enforce that the graph induced by the optimal y-variables be connected. Bökler
et al. [5] explored two strategies to achieve connectivity, by augmenting ILPBase with cut or (generalized)
subtour elimination constraints. Let δ∗(W ) = {(w, w̄) ∈ E∗ : w ∈W, w̄ ∈ V ∗ \W} be the set of edges in the cut
induced by W ⊆ V ∗. The cut constraints can be formulated as:∑

e∈δ∗(v)

ye ≤
∑

e∈δ∗(W )

ye ∀W ⊆ V, ∀v ∈W. (2.14)

They guarantee that if a vertex v is incident to a selected edge, then any cut separating v from s contains at
least two selected edges. Thus, there are (at least) two edge-disjoint paths selected between v and s. Considering
the cycle properties of ILPBase, we may conclude that all selected edges form a common cycle through s. The
enhanced formulation obtained by adding the cut constraints is named ILPCut.
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The above formulations can be further strengthened by introducing a set of additional clique inequalities.
This, because if the subgraph G[Q] = (Q,E[Q]) induced in G by some vertex subset Q ⊆ V is a clique, then
any induced path may contain at most one edge of E[Q]:∑

e∈E[Q]

ye ≤ 1, ∀Q ⊆ V : G[Q] is a clique. (2.15)

3. Exact enumerative algorithm and a new heuristic

In this section, we propose an exact algorithm and a new heuristic, both of them based on the enumeration
of all induced paths of the graph, exploring an approach similar to that in [13].

3.1. Exact enumerative algorithm

Algorithm 1 explores all vertices of the graph G = (V,E) to be considered as the source vertex s of an induced
path. A recursive algorithm with backtracking is used to generate and explore all induced paths emanating from
s. Procedure EXACT-ENUM takes as input the graph G. In lines 1 and 2, the longest induced path and the
current path are initialized, respectively. The loop in lines 3–5 explores all vertices of the graph. For each
vertex s ∈ V , line 4 makes a call to the recursive procedure INDUCED-PATHS-FROM-VERTEX outlined in
Algorithm 2 to compute all induced paths in G emanating from the source s. Finally, line 6 returns the first
longest induced path found during the exhaustive search.

Algorithm 1. EXACT-ENUM(G).
1: Pmax ← ∅
2: Ptemp ← ∅
3: for each s ∈ V do
4: INDUCED-PATHS-FROM-VERTEX(G, s, Pmax, Ptemp)
5: end for
6: return Pmax

Algorithm 2. INDUCED-PATHS-FROM-VERTEX(G, s, Pmax, Ptemp).
1: Ptemp ← Ptemp ⊕ 〈s〉
2: N(s)← {t : (s, t) ∈ E, t ∈ V }
3: if N(s) 6= ∅ then
4: for each t ∈ N(s) do
5: Vtemp ← V \ ({s} ∪N(s) \ {t})
6: Etemp ← {(i, j) ∈ E : i ∈ Vtemp, j ∈ Vtemp}
7: Gtemp ← (Vtemp, Etemp)
8: INDUCED-PATHS-FROM-VERTEX(Gtemp, t, Pmax, Ptemp)
9: end for

10: else
11: if |Ptemp| > |Pmax| then
12: Pmax ← Ptemp

13: end if
14: end if
15: Ptemp ← Ptemp 	 〈s〉

Procedure INDUCED-PATHS-FROM-VERTEX takes as inputs the graph G, the source vertex s, the longest
found induced path Pmax and the current path Ptemp. In line 1, the input vertex s is appended to the end of the



338 R.G. MARZO AND C.C. RIBEIRO

current path Ptemp under construction. Next, we obtain in line 2 the set of vertices N(s) adjacent to vertex s. If
N(s) is not empty, then the loop in lines 4–9 visits every vertex t adjacent to s. For each vertex t, lines 5–7 create
the subgraph Gtemp = (Vtemp, Etemp) induced in G by V \ ({s}∪N(s) \ {t}), since the vertices in N(s) \ {t} can
not belong to any induced path containing s and t. Vertex eliminations can be considered as cuts in the search
space, because they discard the examination of paths that can not be induced paths. Finally, line 8 invokes
recursively the procedure INDUCED-PATHS-FROM-VERTEX in the new induced graph Gtemp from the new
source vertex t that will be appended to the new, current path Ptemp obtained in line 1. Otherwise, in case
vertex s has no neighbors, then it is a leaf of the search tree and the current path Ptemp can not be further
extended. Then, line 11 checks if the size of path Ptemp is greater than that of path Pmax. If this is true, then
we update Pmax in line 12. At the end of procedure INDUCED-PATHS-FROM-VERTEX, in line 15, we remove
from path Ptemp the vertex s previously added in line 1.

3.2. Heuristic

The new heuristic also explores all vertices of the graph G = (V,E) as possible source vertices of induced
paths. Procedure HLIPP whose pseudo-code appears in Algorithm 3 is very similar to Algorithm 1. However,
it also takes as input an additional parameter maxpaths that limits the number of induced paths that are
explored from each source vertex s. In lines 1 and 2, the longest induced path and the current path are
initialized, respectively. The loop in lines 3–8 explores all vertices of the graph. Variable #paths is reset to 0
in line 4 at each iteration of the loop to count the number of induced paths explored from each source vertex
s ∈ V . Variable last improv is reset to 0 in line 5 before vertex s is explored. Variable truncated is set to False
in line 6. Line 7 performs the call to the recursive procedure FIRST-INDUCED-PATHS. Line 9 returns the
longest induced path Pmax found.

Algorithm 3. HLIPP(G,maxpaths).
1: Pmax ← ∅
2: Ptemp ← ∅
3: for each s ∈ V do
4: #paths← 0
5: last improv ← 0
6: truncated← False

7: FIRST-INDUCED-PATHS(G, s, Pmax, Ptemp, maxpaths, #paths, last improv, truncated)
8: end for
9: return Pmax

Procedure FIRST-INDUCED-PATHS outlined in Algorithm 4 takes as inputs the graph G, the source vertex
s, the longest found induced path Pmax, the current path Ptemp, the parameter maxpaths that is used as the
stopping criterion to interrupt the search of the current vertex s, the counter #paths of maximal induced paths
generated from vertex s, the parameter last improv that keeps track of the last time an improving solution
was found, and a flag truncated that is used to indicate that the stopping criterion was reached for the vertex
being explored. In line 1 we append the input vertex s to the end of the current path Ptemp under construction.
Next, we obtain in line 2 the set of vertices N(s) adjacent to vertex s. If N(s) is not empty, then the loop in
lines 4–12 visits every vertex t adjacent to s, unless a stopping criterion is met. For each vertex t, lines 5–7
create de subgraph Gtemp = (Vtemp, Etemp) induced in G by V \({s}∪N(s)\{t}), since the vertices in N(s)\{t}
can not belong to any induced path containing s and t. Next, line 8 invokes recursively the procedure FIRST-
INDUCED-PATHS in the new induced graph Gtemp, from the new source vertex t that will be appended to the
new, current path Ptemp obtained in line 1. If the stopping criterion for the exploration of vertex s is reached
during this call, then the value of the flag truncated is returned as True and propagated backwards in lines 9–11.
Otherwise, in case vertex s has no neighbors, then it is a leaf of the search tree and the current path Ptemp can
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not be further extended. Then, line 14 increases by one the number of maximal induced path generated. Next,
line 15 checks if the size of path Ptemp is greater than the size of path Pmax. If this is true, then Pmax is updated
in line 16 and the variable last improv , which accounts for the last time an improving solution was found, is
updated in line 17. Line 19 implements the stopping criterion for the vertex under exploration. If it determines
that more than maxpaths paths have been generated since the last improvement of the incumbent, then the
search will be truncated in line 22, after emptying out Ptemp in line 20 and resetting the flag truncated to True
in line 21. Finally, in line 25 at the end of procedure, vertex s previously added in line 1 is removed from path
Ptemp.

Algorithm 4. FIRST-INDUCED-PATHS(G, s, Pmax, Ptemp,maxpaths,#paths, last improv, truncated).
1: Ptemp ← Ptemp ⊕ 〈s〉
2: N(s)← {t : (s, t) ∈ E, t ∈ V }
3: if N(s) 6= ∅ then
4: for each t ∈ N(s) do
5: Vtemp ← V \ ({s} ∪N(s) \ {t})
6: Etemp ← {(i, j) ∈ E : i ∈ Vtemp, j ∈ Vtemp}
7: Gtemp ← (Vtemp, Etemp)
8: FIRST-INDUCED-PATHS(Gtemp, t, Pmax, Ptemp, maxpaths, #paths, last improv, truncated)
9: if truncated = True then

10: return
11: end if
12: end for
13: else
14: #paths← #paths + 1
15: if |Ptemp| > |Pmax| then
16: Pmax ← Ptemp

17: last improv ← #paths
18: end if
19: if #paths− last improv > maxpaths then
20: Ptemp ← ∅
21: truncated← True

22: return
23: end if
24: end if
25: Ptemp ← Ptemp 	 〈s〉

4. Computational experiments

In this section, we present computational experiments with the exact algorithm and the new heuristic proposed
in Section 3 and the algorithms of Matsypura et al. [13] and Bökler et al. [5].

4.1. Test instances

Matsypura et al. [13] considered two sets of real-life graphs used in their computational experiments. The
first set consists of network instances that are commonly used in the literature. They sought the longest induced
path in the largest connected component of each instance. The second set is formed by networks representing
the social connectivity of character interactions in different films and series [14]. They also generated synthetic
instances with 20, 30 and 40 vertices and different edge densities, using the Barabsi-Albert graph generating
model [3].

Bökler et al. [5] considered new instances, in addition to those proposed by Matsypura et al. [13]. Their
instances are grouped into four sets: RWC, MG, BAS and BAL. The first set (RWC) is a collection of 22
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Table 1. CPU performance comparison, data extracted from [17]: Higher values represent
better performance. Second to last columns present the hardware used in this paper, in [13],
and in [5], respectively.

Benchmarks
Intel Core
i5-4460S

Intel Xeon
E5-1650 v2

Intel Xeon
Gold 6134

Clock speed (GHz) 2.9 3.5 3.2
Turbo speed (GHz) Up to 3.4 Up to 3.9 Up to 3.7
CPU single thread rating 1822 1929 2247
CPU mark rating 4383 8977 16 687

real-world networks, including communication and social networks of companies and of characters in books,
as well as transportation, biological, and technical networks. The second set (MG) consists of 773 graphs
representing social networks of movie characters, of which Matsypura et al. [13] considered only 17 of them.
The instances in the other two sets were generated with the Barabsi-Albert probabilistic model for scale-free
networks. The third set (BAS) has four groups of 30 graphs created with the same parameter values considered
by Matsypura et al. [13], each group with (|V |, d) ∈ {(20, 3), (30, 3), (40, 3), (40, 2)}, where d = (|E|+ 1)/|V | as
defined by the authors. They also considered a fourth set (BAL) of graphs with 100 vertices and for each value
of d ∈ {2, 3, 10, 30, 50} they generated 30 instances.

4.2. Computational environment

We implemented the exact enumerative algorithm and the new heuristic proposed in Section 3 in C++ with
the GNU GCC compiler version 5.4.0. All experiments on these algorithms were performed on a computer with
a four-processor 2.90 GHz Intel Core i5-4460S CPU with 8 GB of RAM running the operating system Linux
Ubuntu 16.04 LTS of 64 bits.

All experiments executed in [13] were conducted on a MacPro (late 2013) with a 3.5 GHz 6-Core Intel Xeon
E5 and 32 GB of RAM running macOS the operating system High Sierra using a single thread. Their models
were implemented in Anaconda Python 2.7 and Gurobi 8.1 was used as the IP solver. All Gurobi parameters
were set to their default values, with each run limited to one single thread and a time limit of eight hours.

Bökler et al. [5] run all their computational tests on an Intel Xeon Gold 6134 machine with 3.2 GHz and
256 GB of RAM running the operating system Debian 9. The authors used C++ (GCC 8.3.0) and limited each
run to one single thread with a time limit of 20 min and a memory limit of 8 GB of RAM.

Table 1 based on the benchmarks in [17] addresses the performance of the computers involved in the three
experiments. Although the computers used by Matsypura et al. [13] and Bökler et al. [5] are faster than ours,
we will compare the execution times of the algorithms on their own, independently of the machines on where
the experiments had been executed. In other words, we will not take into account the differences in performance
of the three different processors. For a more detailed evaluation, the interested reader may use the information
in this table.

4.3. Exact algorithms

In this section, we compare our exact enumerative algorithm with the state-of-the-art integer programming
approaches proposed by Matsypura et al. [13] and Bökler et al. [5], with a time limit of 20 min and one single
thread for each run.

Bökler et al. [5] denoted by “W” their implementation of the exact algorithm in [13]. The authors considered
various parameter settings in their implementation of model ILPCut, with all resulting algorithms denoted by
a “C” with subscripts and superscripts defining the parameters: subscript “frac” denotes the use of fractional
separation in addition to integral separation; superscript “n” shows that vertex variables are the unique integer
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Table 2. Running times in seconds of the exact algorithms on the RWC instances.

Instance OPT |V | |E| EXACT-ENUM W Tmin Cmin Tmax Cmax

high-tech 13 33 91 0.15 15.40 0.41 Cn,c
int 3.15 Cc

frac

karate 9 34 78 0.04 2.98 0.66 Cn,c
int 3.71 Cn

frac

mexican 16 35 117 0.81 73.30 0.87 Cn,c
int 3.59 Cc

frac

sawmill 18 36 62 0.06 70.00 0.43 Cfrac 3.34 Cn,c
frac

tailorS1 13 39 158 1.05 83.80 1.51 Cn
int 7.92 Cfrac

chesapeake 16 39 170 0.78 106.00 1.84 Cint 13.11 Cfrac

tailorS2 15 39 223 2.13 445.00 2.89 Cn,c
int 21.78 Cfrac

attiro 31 59 128 71.35 � 0.89 Cn,c
int 2.57 Cfrac

krebs 17 62 153 0.80 522.00 2.33 Cn,c
frac 28.21 Cfrac

dolphins 24 62 159 91.77 � 2.99 Cn
frac 27.59 Cfrac

prison 36 67 142 64.15 � 1.02 Cn,c
int 13.36 Cint

huck 9 69 297 0.30 41.70 5.96 Cn,c
int � Cint

sanjuansur 38 75 144 645.81 � 3.65 Cn
frac 30.67 Cint

jean 11 77 254 1.18 121.00 3.88 Cn,c
int 464.89 Cint

david 19 87 406 23.35 � 6.93 Cn,c
int 719.46 Cfrac

ieeebus 47 118 179 322.40 � 3.13 Cn
frac 39.82 Cc

int

sfi 13 118 200 0.32 44.40 2.44 Cn,c
frac 47.41 Cint

anna 20 138 493 17.17 � 7.09 Cn,c
int 439.23 Cn

int

usair 46 332 2126 � � 922.94 Cn,c
int � all but Cn,c

int

494bus 142 494 586 � � 170.74 Cn,c
frac � Cint, Cc

int, Cn
int, Cn,c

int

variables. The superscript “c” indicates the use of clique constraints. The authors considered thereby all possible
combinations of parameters of ILPCut, corresponding to eight different implementations.

Table 2 displays the computational experiments on the RWC instances (as named by Bökler et al. [5]). The
second column gives the optimal value. The third and fourth columns show the number of vertices and edges
in each instance, respectively. The fifth column displays the time in seconds taken by our exact enumerative
algorithm. The sixth column shows the time in seconds obtained by the exact algorithm of [13], as implemented
in [5]. The next two columns, indicated respectively by Tmin and Cmin, present the minimum running time
over all eight implementations of ILPCut and the fastest variant. The last two columns, indicated respectively by
Tmax and Cmax, present the maximum running time over all eight implementations of ILPCut and the slowest
variant (or those that timed out). Timeouts are denoted by � and the minimum times were marked in boldface.
Instances yeast and 622bus (not presented in the table) could not be solved by any of the algorithms within
the maximum time limit.

The table shows that, for the RWC instances, the new enumerative algorithm performed better in terms of
running times and the number of instances solved to optimality than the exact algorithm in [13]. However, the
comparison with respect to the implementations of ILPCut is less straightforward. It is noticeable to observe
that the fastest and the slowest variants of ILPCut change from instance to instance. Variant Cn,cint was the

Figure 1. Legend with the identifications of the algorithms and ILPCut implementations.
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Figure 2. Running times in seconds of the exact algorithms and the ILP implementations on
the MG instances.

Figure 3. Running times in seconds of the exact algorithms and the ILP implementations on
the BAS and BAL instances.
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Figure 4. Running times vs. optimal values for all instances: whiskers mark the 20% and 80%
percentiles. The gray area on top of the plot marks timeouts. Each run was limited to 20 min.

fastest for 11 out of 22 instances and the only to solve usair, but did not solve instance 494bus within the time
limit. Variants Ccint and Ccfrac never were the fastest. The new enumerative algorithm was faster than the fastest
variant of ILPCut for 11 out of 22 instances. For two instances, the new algorithm was slower than the fastest,
but faster than the slowest variant of ILPCut. The new enumerative algorithm was slower than the worst variant
of ILPCut for five out of the 22 RWC instances. Still, for two instances the new enumerative algorithm did not
find the optimal solution, but the fastest variant of ILPCut did. Overall, we may say that the new enumerative
algorithm is competitive with the integer programming formulations ILPCut in [5], in particular if one considers
the differences in performance of the processors involved in the computational experiments and the fact that
the best variant of ILPCut for each instance can not be predicted beforehand and choosing the best among the
eight ILPCut implementations is way far from being a clear decision.

Figure 1 shows the legend with the identification of the algorithms and the ILPCut implementations whose
results are displayed in Figures 2 and 3. Figure 2 displays comparative results for the MG instances, with the
horizontal axis indicating the minimum and the maximum number of edges in the instances in each category
(same abscissa). Figure 3 shows the results for the instances in sets BAS and BAL, with the horizontal axis
indicating the number of vertices, the number of edges, and the parameter d for the instances in each category
(same abscissa). Vertical bars in light blue in the background give the number of instances in each category.
For each exact algorithm (W , the eight variants of ILPCut, and the new enumerative algorithm), we represent
the median of the running times over all instances in the same category. Points represented by gray encircled
markers connected by dotted lines show the number of solved instances (when not all in the same category have
been solved to optimality).

We observe in Figure 2 that the new exact enumerative algorithm solved all 773 MG instances using the
smallest running times, with respect to all other algorithms. Figure 3 shows that the new exact enumerative
algorithm remains competitive and globally the fastest on average also for the BAS instances. However, both
the enumerative algorithm and that in [13] do not perform well for the BAL instances, where the latter failed
for virtually all instances, while some implementations of ILPCut were faster and solved more instances than
the new exact enumerative algorithm.
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Table 3. Comparative numerical results between the randomized heuristic [13] and heuristic
HLIPP on large graphs.

Randomized heuristic HLIPP

Name |V | |E| OPT H100 H1000 H10000 LH100 LH1000 LH10000

Time (s) Obj. Time (s) Obj. Time (s) Obj. Time (s) Obj. Time (s) Obj. Time (s) Obj.

abyss 28 108 6 0.21 6 2.1 6 21 6 0.01 6 0.01 6 0.01 6

hi-tech 33 91 13 0.39 13 3.8 13 37 13 0.03 13 0.15 13 0.15 13

karate 34 78 9 0.31 9 2.9 9 30 9 0.02 9 0.04 9 0.04 9

mexican 35 117 16 0.53 15 5.3 15 53 16 0.04 16 0.36 16 0.76 16

sawmill 36 62 18 0.41 18 4.1 18 41 18 0.04 18 0.06 18 0.05 18

pulp fiction 38 102 7 0.27 7 2.6 7 26 7 0.02 7 0.02 7 0.02 7

chesapeake 39 170 16 0.56 16 5.5 16 55 16 0.05 16 0.42 16 0.73 16

tailorS1 39 158 13 0.58 12 5.7 13 58 13 0.05 13 0.38 13 1.00 13

tailorS2 39 223 15 0.64 13 6.4 14 64 15 0.06 12 0.49 13 1.97 15

romeo and juliet 41 120 9 0.35 8 3.5 9 35 9 0.03 9 0.07 9 0.06 9

oceans 12 42 147 8 0.40 8 3.9 8 39 8 0.04 8 0.07 8 0.07 8

die hard 47 237 10 0.50 9 5.0 10 49 10 0.05 10 0.11 10 0.11 10

star wars II 47 148 8 0.41 8 4.1 8 41 8 0.04 8 0.06 8 0.05 8

oceans 11 50 145 9 0.51 9 5.0 9 48 9 0.05 8 0.08 9 0.07 9

the departed 51 117 8 0.45 8 4.5 8 45 8 0.04 8 0.05 8 0.05 8

krebs 62 153 17 0.78 13 7.7 16 77 17 0.09 15 0.59 17 0.75 17

philadelphia 65 258 10 0.68 8 6.8 9 67 9 0.09 9 0.31 10 0.30 10

2012 66 211 12 0.86 10 8.4 11 84 12 0.09 11 0.62 12 0.70 12

braveheart 67 310 11 0.82 9 8.1 9 81 10 0.09 11 0.60 11 0.64 11

huck 69 297 9 0.75 8 7.4 9 74 9 0.11 9 0.30 9 0.28 9

gandhi 76 200 10 0.89 9 8.8 10 88 10 0.11 9 0.16 10 0.15 10

watchmen 76 201 9 0.79 9 7.8 9 80 9 0.10 9 0.26 9 0.24 9

jean 77 254 11 0.97 10 9.6 11 96 11 0.12 11 0.80 11 1.10 11

godfather II 78 219 18 1.03 13 10.2 14 103 15 0.12 16 0.90 18 1.23 18

catch me if you can 82 162 8 0.94 8 9.3 8 93 8 0.11 8 0.17 8 0.15 8

david 87 406 19 1.48 14 14.8 15 149 17 0.23 18 1.87 19 14.40 19

doors 95 567 12 1.65 9 16.3 11 163 12 0.30 12 2.17 12 2.75 12

public enemies 99 317 20 1.55 12 15.5 15 154 15 0.20 17 1.57 20 3.58 20

santafe 118 200 13 1.39 9 13.9 10 138 10 0.19 13 0.30 13 0.29 13

anna 138 493 20 3.02 13 30.0 15 303 16 0.42 16 3.36 20 16.01 20

attiro 59 128 31 1.53 27 15 28 142 29 0.11 28 0.92 29 8.77 30

dolphins 62 159 24 1.38 21 14 22 137 24 0.11 20 0.98 22 9.11 23

prison 67 142 36 1.52 27 15 30 152 32 0.13 28 1.23 31 11.66 36

sanjuansur 75 144 38 2.09 30 21 33 213 36 0.16 35 1.42 35 14.26 37

ieeebus 118 179 47 3.29 29 33 31 329 38 0.37 44 3.20 44 30.95 47

USAir97 332 2126 46 21.07 22 206 27 2044 30 3.50 29 37.88 33 347.12 38

494 bus 494 586 142 41.56 45 413 49 3901 61 7.99 101 70.25 107 738.86 114

662 bus 662 906 ? 141.00 90 1402 92 13 819 110 26.33 242 172.08 242 1608.83 242

S.Cerevisae 1458 1948 ? 290.62 35 2855 38 28 221 43 76.60 144 451.74 149 4139.20 155

# of optimal values 37 12 18 24 20 29 32

Bökler et al. [5] observed that the running time of the exact algorithm in [13] heavily depends on the optimal
value of each instance, while their new implementations (e.g. Cn,cint ) are less dependent on the solution size. This
is illustrated in Figure 4, which correlates the median running times of three exact algorithms with the size of
the longest induced path (OPT), considering all the test instances solved by at least one of the exact methods.
The horizontal axis of the figure indicates the minimum and the maximum optimal values for the instances
represented in the same category with the same abscissa. The running time of the new exact enumerative
algorithm is naturally expected to depend on the optimal value, as illustrated by the figure.

4.4. Heuristics

In this set of experiments, we compare the performance of the HLIPP heuristic described in Algorithm 3
with the randomized heuristic of Matsypura et al. [13] on the same instances considered by its authors.
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Table 4. Comparative numerical results between the exact algorithm EXACT-ENUM and the
heuristic HLIPP (LH10000 corresponds to Algorithm 3 with 10 000 as the stopping criterion).

EXACT-ENUM HLIPP (LH10000)
Name OPT Time (s) Time (s) Obj.

abyss 6 0.01 0.01 6
hi-tech 13 0.15 0.15 13
karate 9 0.04 0.04 9
mexican 16 0.81 0.76 16
sawmill 18 0.06 0.05 18
pulp fiction 7 0.02 0.02 7
chesapeake 16 0.78 0.73 16
tailorS1 13 1.05 1.00 13
tailorS2 15 2.13 1.97 15
romeo and juliet 9 0.06 0.06 9
oceans 12 8 0.07 0.07 8
die hard 10 0.12 0.11 10
star wars II 8 0.06 0.05 8
oceans 11 9 0.07 0.07 9
the departed 8 0.05 0.05 8
krebs 17 0.80 0.75 17
philadelphia 10 0.31 0.30 10
2012 12 0.71 0.70 12
braveheart 11 0.66 0.64 11
huck 9 0.30 0.28 9
gandhi 10 0.16 0.15 10
watchmen 9 0.25 0.24 9
jean 11 1.18 1.10 11
godfather II 18 1.26 1.23 18
catch me if you can 8 0.17 0.15 8
david 19 23.35 14.40 19
doors 12 2.77 2.75 12
public enemies 20 3.60 3.58 20
santafe 13 0.32 0.29 13
anna 20 17.17 16.01 20
attiro 31 71.35 8.77 30
dolphins 24 91.77 9.11 23
prison 36 64.15 11.66 36
sanjuansur 38 645.81 14.26 37
ieeebus 47 322.40 30.95 47
USAir97 46 � 347.12 38
494 bus 142 � 738.86 114
662 bus ? � 1608.83 242
S.Cerevisae ? � 4139.20 155
# of optimal values 37 32

Comparative computational results are presented in Table 3. The four first columns present the name of the
instance, the number of vertices, the number of edges, and the size of the longest induced path (OPT) for each
graph (unknown for the two last instances). Next, each pair of columns give the time in seconds and the best
solution value obtained by one run of the randomized heuristic [13] with 100, 1000 and 10 000 restarts (columns
H100, H1000, and H10000, respectively). Columns LH100, LH1000 and LH10000 give the same information for
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Algorithm 3, with 100, 1000 and 10 000 as the limit on the number of paths (maxpaths) that are explored from
each source vertex, respectively.

The randomized heuristic stops after generating a given number of random induced paths (named “restarts”
by the authors) starting from each vertex of some given subset S ⊆ V . Therefore, it implements diversification
by randomization. The proposed HLIPP deterministic heuristic stops after generating a sequence of maxpaths
induced paths from each vertex of the graph that do not improve the incumbent solution. Our approach explores
more induced paths, leading to a potentially better solution. In addition, it generates the induced paths more
efficiently, which makes HLIPP faster for all test instances in the computational experiments.

In fact, Table 3 shows that the running times of the proposed HLIPP heuristic are consistently smaller than
those reported for the randomized heuristic in [13]. HLIPP is also more robust, since it found significantly
more optimal values (or the best known solution values). The quality of heuristic HLIPP and the difference in
performance of the two heuristics in terms of solution quality and running times are particularly clear for the
two last instances with unknown optimal value in the bottom of the table.

Table 4 compares the exact algorithm EXACT-ENUM (Algorithm 1) with heuristic HLIPP (Algorithm 3) on
all 39 instances in Table 3. Heuristic HLIPP (running with maxpaths = 10 000) found the optimal value for 32
instances (out of 37 whose optimal values are known) in time not greater than that taken by our exact algorithm.

5. Analysis of the optimal solutions

In this section, we investigate the correlation of the running times and sizes of the longest induced paths
with some characteristics of the solved instances of the four test sets (RWC, MG, BAS, BAL) described in
Section 4.1. We also analyze the eccentricity and the degree of the extreme vertices of the optimal solutions
obtained with our exact algorithm.

Figure 5 shows the Pearson correlation coefficient [18] between the running times of the instances solved by our
exact enumeration algorithm and some graph characteristics: average vertex degree, average vertex eccentricity,
average pairwise distance, global clustering coefficient, and average vertex (local) clustering coefficient. The
global clustering coefficient is the ratio between three times the number of triangles and the number of pairs of
adjacent edges in a graph [19]. This measure is also called the transitivity and represents the probability that
two vertices that are adjacent to a third vertex will be adjacent themselves [16]. The (local) clustering coefficient

Figure 5. Pearson correlation coefficient [18] between the running times of the instances solved
by our exact enumeration algorithm EXACT-ENUM and some graph characteristics.
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Figure 6. Pearson correlation coefficient between the optimal size OPT and some graph char-
acteristics on the instances solved by at least one exact algorithm.

Table 5. Main quantitative information for each set of test instances exactly solved by algo-
rithm EXACT-ENUM. Optimal solutions correspond to the number of distinct undirected
longest induced paths. Distinct extremities account for the number of different extremities
calculated over all optimal solutions.

RWC MG BAS BAL Total

Solved instances 18 773 120 60 971
Optimal solutions 504 20 859 1025 59 292 81 680
Distinct extremities 119 5523 619 732 6993

Figure 7. Number of extremities in the optimal paths vs. their eccentricities.
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Figure 8. Number of extremities in the optimal paths vs. their degrees.

C measures the cliquishness of a typical neighbourhood and is defined as follows. Suppose that a vertex v has
kv neighbours. Then, at most kv(kv − 1)/2 edges can exist between them. Let Cv denote the fraction of these
possible edges that actually exist. Define C as the average of Cv over all vertices v of the graph. For friendship
networks, this statistic has an intuitive meaning: Cv reflects the extent to which friends of v are also friends of
each other and, consequently, C measures the cliquishness of a typical friendship circle [20]. NetworkX [15] was
used to compute all graph characteristics. Each set is represented as a category.

Figure 5 shows a high positive correlation between the running times and the size OPT of the longest induced
paths (as already illustrated in Fig. 4), as well as between the running times and the number |V | of vertices
in the graph. Some characteristics, such as the number of edges |E|, are highly correlated with the running
times for some sets of test instances but not for others, while others, such as the graph density, have a negative
correlation with the running times for all test sets, with a value very close to zero for the MG instances.
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Figure 9. Frequency histogram of the degree differences of the extremities of the optimal solutions.

Figure 6 shows the Pearson correlation coefficient between the size OPT of the longest induced paths and
some graph characteristics. It shows a high positive correlation between the size OPT of the longest induced
paths and the number |V | of vertices in the graph.

We also investigate the eccentricity and the degree of the extremities of the optimal paths obtained by our
exact algorithm.

Table 5 summarizes the main quantitative information for each set of test instances exactly solved by algo-
rithm EXACT-ENUM. We observe that although the 60 BAL instances represent only 6.2% of the total, they
contribute with 72.6% of the optimal solutions found. On the other hand, the 773 MG instances represent 79.6%
of the total, but contribute with only 25.5% of the optimal solutions.

Figure 7 relates the number of extremities of the optimal paths with a diameter-based measure of their
eccentricity. We provide the global information (considering all test instances exactly solved to optimality by
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Figure 10. Number of extremities of optimal solutions with specific eccentricity and degree
(over all instances solved by algorithm EXACT-ENUM).

Figure 11. Number of extremities of optimal solutions with specific eccentricity and interval
of degree difference (over all instances solved by algorithm EXACT-ENUM).

algorithm EXACT-ENUM), as well as the information corresponding to each set of instances. We observe that
66.5% of the distinct extremities of the optimal paths have their eccentricities equal to the graph diameter,
while 98.2% have their eccentricities greater than or equal to the diameter less one.

Figure 8 relates the number of extremities of the optimal solutions with their degrees. We provide the
global information (considering all test instances exactly solved by algorithm EXACT-ENUM), as well as the
information corresponding to each set of instances. We observe that 78.3% of the distinct extremities of the
optimal paths have their degrees between 1 and 5, with 90.2% with degree less than or equal to 10. Extremities
with degree greater than 15 (8.4% of the total) appear only for instances in the BAL test set, which are those
with the largest average degree.

We also evaluated the difference Ddeg between the degree of the extremities and the average degree. Figure 9
presents the frequency histogram of the degree difference (calculated as the extremity degree minus the average
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Table 6. Comparative time-to-target results between the greedy version G-HLIPP and heuris-
tic HLIPP on large graphs.

LH100 LH1000 LH10000

Name HLIPP G-HLIPP HLIPP G-HLIPP HLIPP G-HLIPP

Target Time (s) Time (s) Ratio Target Time (s) Time (s) Ratio Target Time (s) Time (s) Ratio

abyss 6 0.0003 0.0002 0.715 6 0.0003 0.0002 0.878 6 0.0003 0.0002 0.763

hi-tech 13 0.0062 0.0019 0.309 13 0.0355 0.0079 0.221 13 0.0345 0.0071 0.206

karate 9 0.0118 0.0019 0.162 9 0.0132 0.0026 0.197 9 0.0131 0.0026 0.201

mexican 16 0.0059 0.0029 0.488 16 0.0585 0.0107 0.183 16 0.1501 0.0109 0.072

sawmill 18 0.0200 0.0087 0.437 18 0.0026 0.0026 0.995 18 0.0026 0.0022 0.865

pulp fiction 7 0.0130 0.0014 0.109 7 0.0119 0.0014 0.118 7 0.0116 0.0013 0.114

chesapeake 16 0.0231 0.0208 0.901 16 0.2175 0.1389 0.639 16 0.1154 0.0694 0.602

tailorS1 13 0.0011 0.0040 3.719 13 0.0011 0.0026 2.315 13 0.0010 0.0024 2.394

tailorS2 12 0.0030 0.0050 1.657 13 0.0179 0.0384 2.152 15 0.1668 0.1431 0.858

romeo and juliet 9 0.0127 0.0083 0.653 9 0.0099 0.0027 0.275 9 0.0100 0.0032 0.319

oceans 12 8 0.0038 0.0053 1.400 8 0.0089 0.0069 0.771 8 0.0092 0.0070 0.761

die hard 10 0.0046 0.0117 2.549 10 0.0061 0.0114 1.875 10 0.0064 0.0123 1.929

star wars II 8 0.0086 0.0001 0.009 8 0.0143 0.0001 0.005 8 0.0152 0.0001 0.005

oceans 11 8 0.0061 0.0002 0.033 9 0.0338 0.0130 0.386 9 0.0349 0.0127 0.364

the departed 8 0.0059 0.0014 0.245 8 0.0072 0.0016 0.220 8 0.0076 0.0016 0.206

krebs 15 0.0171 0.0422 2.462 17 0.2056 0.3427 1.667 17 0.2374 0.4654 1.960

philadelphia 9 0.0029 0.0073 2.478 10 0.0205 0.0837 4.079 10 0.0210 0.0812 3.871

2012 11 0.0674 0.0550 0.817 12 0.0991 0.0161 0.163 12 0.1091 0.0165 0.151

braveheart 11 0.0003 0.0077 28.657 11 0.0003 0.0365 135.056 11 0.0003 0.0362 121.688

huck 9 0.0766 0.0175 0.229 9 0.0106 0.0119 1.122 9 0.0099 0.0122 1.232

gandhi 9 0.0605 0.0026 0.042 10 0.0356 0.0468 1.314 10 0.0371 0.0439 1.182

watchmen 9 0.0218 0.0002 0.008 9 0.0483 0.0002 0.004 9 0.0465 0.0002 0.004

jean 11 0.0734 0.0047 0.063 11 0.2862 0.0064 0.022 11 0.3983 0.0062 0.016

godfather II 16 0.1159 0.0014 0.012 18 0.0194 – – 18 0.0188 0.5736 30.586

catch me if you can 8 0.0014 0.0139 10.186 8 0.0013 0.0225 16.874 8 0.0011 0.0225 19.719

david 18 0.0037 0.1002 27.039 19 0.8180 0.2282 0.279 19 1.3102 0.5103 0.390

doors 12 0.2704 0.0078 0.029 12 0.0367 0.0363 0.989 12 0.0361 0.0356 0.984

public enemies 17 0.0254 0.0150 0.589 20 0.1028 0.1097 1.067 20 0.1581 0.2191 1.386

santafe 13 0.0268 0.0003 0.010 13 0.0318 0.0003 0.009 13 0.0321 0.0003 0.009

anna 16 0.3898 0.0916 0.235 20 2.1087 0.1930 0.092 20 5.0350 0.4931 0.098

attiro 28 0.0827 0.0699 0.846 29 0.2321 0.0166 0.072 30 1.8867 2.9333 1.555

dolphins 20 0.0106 0.0013 0.124 22 0.8837 0.2206 0.250 23 0.0866 0.7646 8.827

prison 28 0.0795 0.0161 0.202 31 0.7005 0.0834 0.119 36 1.9405 0.0460 0.024

sanjuansur 35 0.0832 0.0179 0.216 35 0.6871 0.1091 0.159 37 11.7761 4.0833 0.347

ieeebus 44 0.2010 0.2563 1.275 44 1.6414 2.2618 1.378 47 4.4927 1.8234 0.406

USAir97 29 0.1148 0.0393 0.343 33 4.3122 2.4855 0.576 38 110.4310 169.3410 1.533

494 bus 101 1.3763 – – 107 12.2402 6.2169 0.508 114 332.5640 7.3518 0.022

662 bus 242 15.3271 21.9074 1.429 242 94.1874 141.2080 1.499 242 887.9110 1332.9700 1.501

S.Cerevisae 144 0.6410 30.0306 46.849 149 152.3800 30.9581 0.203 155 1806.8500 2133.2800 1.181

Number of times G-HLIPP was faster than HLIPP: 26/39 26/39 24/39

degree), for each set of test instances and for all solved instances. Comparing Figures 8 and 9 for the complete
set of instances, we notice that in the second there is a reduction in the range of values represented in the
horizontal axis with a frequency greater than zero. This might be useful in a heuristic to cut the subset of
vertices that will be explored as extreme vertices for optimal solutions. We observe that 73.6% of the distinct
extremities of optimal solutions have Ddeg ∈ [−5, 0), with 88.4% of them with Ddeg ∈ [−8f, 2). Furthermore,
89.9% of the extremities have their degrees smaller than the average degree.

Considering all test instances solved by algorithm EXACT-ENUM, Figure 10 shows a heatmap representing
the number of extremities of optimal solutions with specific eccentricity and degree. We notice that 51.8% of
the distinct extremities of optimal solutions have their eccentricity equal to the graph diameter and degree less
than or equal to five, with 88.6% with their eccentricity greater than or equal to the diameter less one and
degree less than or equal to ten.

Similarly, for the same test instances solved by algorithm EXACT-ENUM, Figure 11 shows a heatmap
representing the number of extremities of optimal solutions with specific eccentricity and interval of degree
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difference. The degree difference was calculated as the vertex degree less the average degree of the graph. In
this case, we observe that 46.8% of the distinct extremities of optimal solutions have their eccentricity equal to
the graph diameter and Ddeg ∈ [−5, 0), with 86.8% with their eccentricity greater than or equal to the diameter
less one and Ddeg ∈ [−8, 2).

These two heatmaps clearly indicate that both the eccentricity and the degree play an important role to
characterize the extremities of optimal solutions to the longest induced path problem.

These results and investigations are useful to guide the search for optimal solutions and better algorithms.
An improved greedy version G-HLIPP of Algorithm 3 was developed in which vertices are selected in the
non-increasing order of their eccentricities. Ties are broken in favor of the vertex with smaller degree.

Table 6 compares the two heuristics HLIPP and G-HLIPP in terms of the time they take to find a target
solution value. The targets are the best values obtained by heuristic HLIPP in Table 3. For each stopping
criterion (i.e., LH100, LH1000, and LH10000), we indicate the ratio between the times taken by G-HLIPP and
HLIPP. Ratios smaller (resp. greater) than one correspond to instances where the greedy heuristic G-HLIPP
was faster (resp. slower) than HLIPP. We observe that this simple improvement reduced the times to target
values for 65% of the runs (76 out of 117). The average time-to-target reduction between G-HLIPP and HLIPP
for these runs was 0.315. On the other hand, for the remaining runs where HLIPP was still faster, the average
time-to-target reduction between HLIPP and G-HLIPP was 0.459. We observe that for two runs G-HLIPP did
not find the target before the stopping criterion.

6. Concluding remarks

In this article, we first proposed an exact enumerative algorithm based on backtracking for the problem of
finding the longest induced path in a graph. The new algorithm is faster than that of Matsypura et al. [13] and
competitive with the best ILPCut implementations of Bökler et al. [5].

We also developed a new heuristic for the problem, which explores all vertices of the graph as possible source
vertices of induced paths. Computational results showed that the newly proposed heuristic was consistently
faster and more robust than the randomized heuristic of Matsypura et al. [13] on the same test problems.

The computational experiments also presented a numerical study correlating the eccentricity and the degree
of the vertices with the frequency in which they appear as extremities of optimal solutions, i.e., longest induced
paths. These results lead to the implementation of an improved version of the heuristic, in which the vertices
are explored in the non-increasing order of their eccentricities.
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