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A NEW TENSOR APPROACH OF COMPUTING PURE AND MIXED
UNILATERAL SUPPORT EQUILIBRIA

Elias Safatly∗ and Joanna E. Abdou

Abstract. In this paper, pure unilateral support equilibrium (USE) is located among pure Nash and
pure Berge equilibrium using tensors. The differences between these equilibria are shown using tensor
form of a game and are illustrated with numerical examples. Tensors will help specify the location
of each equilibrium using a system of coordinates that brings a solid mathematical foundation of all
equilibria and provides the possibility to solve high dimensional problems. A numerical example with
a 15-player game is studied to demonstrate the efficiency. Besides, we extend the notion of pure USE
to mixed USE when the sets of strategies of all players are finite. We prove a lemma dedicated to
inaugurate a method of computing mixed USE profiles. We write corresponding formulas using tensors
and their operations, and then we illustrate the new method and lemma method by a numerical example
of a 7-player game.
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1. Introduction

Game theory provides a model for scientifically addressing strategic decision-making issues that are common
in business, and often very complex. It helps understand the logic of the situations in which the consequences
of players’ actions depend on a set of actions taken by others, each trying to influence or guess the behavior
of others, or adapt to it. To give solutions for players interactions, game theory is based on various notions
of equilibrium; everyone reflects the way of coordination between rational players and their actions on a state
with certain stability. However, every notion of equilibrium is postulated overhang the game by a state of
equilibrium being subjected to the necessary condition that, if the players are there, they perceive no interest to
deviate from their current strategy choices. One of the most used equilibria in the applications of game theory
to many scientific fields, in particular to economics, is the Nash equilibrium; see [24]. When the concept of
Nash equilibrium started to appear, the economists, then, preferred the work of Von Neumann, see [27], who
proposed a theory of formal games, showing that in zero-sum games with two players, there would always be
an equilibrium. They, first, neglected the Nash proposed work. Nevertheless, since 1980, the number of papers
citing the Nash equilibrium have dramatically increased, and the concept has been used to solve several real-
world problems in many fields. Nash equilibrium is a set of strategies where no one has any interest in deviating
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from his equilibrium strategy when he expects others to conform to it. Such as what is the best strategy for
each depends on what is the best for others. In Nash equilibrium, the optimal strategy of each will be the best
response to the strategies of others. The equilibrium will be reached if no player has an interest in unilaterally
changing his decision. A Nash equilibrium is based on the idea that players are rational. Players choose the
strategy that maximizes their payoffs, given all constraints.

Nash equilibrium is studied in a huge number of papers, and covered in many disciplines. In addition, it gives
solutions for many social-economics problems. However, it shows some weak points. For example, consider a
game that has more than one Nash equilibrium. A player i will risk, when choosing a strategy relative to one
of these equilibria, to lose his optimal payoff when other players choose a strategy relative to another Nash
equilibrium. This choice can destruct the player i’s optimal gain and preserve the optimal gains of other players.
Another weak point is the selfish behavior of players that could arise when mutual support behavior is available.
In all the history of Nash equilibrium problems, selfish behavior of players and their attempt to maximize their
own payoffs against other players were the main factor in the gain that the concept of Nash equilibrium offers for
players. Unfortunately, in some cases, selfish behavior can not lead to receiving higher payoffs. Mutual support
and reciprocal altruism, see [32], are concepts found for an equilibrium having the role to be the complementary
of Nash equilibrium in many games where Nash equilibrium shows his weak point. This equilibrium is called
Berge equilibrium and is based on altruistic mutual support behavior, see [8]. French mathematician Claude
Berge introduced this equilibrium in [5]. Similar to John Nash, economists rejected the use of this book’s ideas at
the beginning. In 1961, the economist Shubik, who pointed Berge out, confirmed it in his famous statement “the
argument is presented in a highly abstract manner and no consideration is given to applications to economics”.
In 1985, the first reference to [5] finally appeared with the Russian mathematician Zhukovskii, who reformulated
the Berge coalitional equilibrium and restricted coalitions to individualistic players, see [33]. Then, since 2004,
Berge equilibrium has led to a revolution in its properties, existences, utilities, and advantages as studied in
[1, 2, 7–13,21,25,26] and many other papers.

Recently, a new equilibrium concept is proposed in [30] and in [14]. It is called unilateral support equilibrium.
This new equilibrium generalizes the idea of Berge equilibrium, since every Berge equilibrium is also a unilateral
support equilibrium as shown in [14,30]. In a game of n players, a Berge equilibrium is based on the idea of group
mutual support where a player i is supported by the group of n − 1 remaining players. However, in unilateral
support equilibrium, every player i is supported by every other player j 6= i individually, for all j = 1, . . . , n.
However, Berge equilibrium can be criticized for involving a non-realistic strong coordination between players,
see [15,30]. The concept of unilateral support equilibrium retains supportive behavior, although coordination is
not assumed. For this reason, generalizing the Berge equilibrium is interesting while eliminating coordination
issues. In [14], a real life example on unilateral support equilibrium is given. It considers big charities’ sectors to
show the importance of this equilibrium where Berge equilibrium can not be a choice because of huge number
of donators. The level of cooperation, in this case, can be unfeasible.

In this paper, we help locate pure unilateral support equilibrium with a mathematical object provided by the
multi-linear algebra called tensor. Authors in [18] worked in this field and reformulated the multi-linear game
as a tensor complementarity problem and showed the correspondence between finding a Nash equilibrium point
of this multi-linear game and finding a solution to the resulted tensor complementarity problem. Introducing
tensors will facilitate the procedure to find pure equilibrium and will give a formalized mathematical aspect for
the game using its tensor form introduced for the first time [3]. In [30], the authors proposed Trimatrix games
and used cubical representation for these games in order to highlight their unilateral support equilibrium.
These cubical representations and Trimatrix games can be generalized mathematically using tensors. Tensors
are multi-linear forms that give the solid mathematical foundations and generalize Trimatrix games and their
representations. Also, as a consequence of tensor forms is the validation of the relation between USE and
Berge equilibrium as raised in [30]. Using just this tensor procedure, we can clearly confirm that every Berge
equilibrium is a unilateral support equilibrium. In addition, a big advantage of tensor form is the capability
to deal with high dimensional problems, especially when the number of players is greater than 3, which has
not been studied in USE literature. In this paper, the implementation of USE algorithm is presented based
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on tensors as main variables. We extend as well the notion of pure unilateral support equilibrium to mixed
unilateral support equilibrium when the set of strategies of each player is discrete and finite in non-cooperative
games. A method to calculate the mixed unilateral support equilibrium in this case is also shown, based on
[28]. We prove a lemma demonstrating this method, where we show that for each player i, every strategy in
the support of an equilibrium mixed strategy of each player j 6= i, individually, yields that player i the same
payoff. Moreover, we use tensors form and operations to facilitate the computation of mixed unilateral support
equilibrium.

In Section 2, we write tensors definitions, useful properties and operations used to define tensor form of a
game giving a mathematical formalized aspect to game theory by helping locate mathematically pure and mixed
equilibrium as seen in [3, 29].

In Section 3, we recall pure Nash and pure Berge equilibria definitions before writing the pure unilateral
support equilibrium definition using tensor form, in order to clarify the difference between these concepts.
Numerical examples are solved to show tensor form’s utility. Moreover, we show using the tensor form, that
each Berge equilibrium, is a USE and the interpretations of all these types of equilibria on tensors can be
visualized geometrically, presenting all these concepts together on a tensor node. All the mathematical relations
and the deviations of these equilibria can be assessed and deduced much more easily than the handling of their
formulas.

Efficiency of tensor form is demonstrated in Section 4 by solving a high dimensional problem displayed by a
15-player game where we implement an algorithm based on tensors as main variables to localize a pure unilateral
support equilibrium when it exists.

Finally, Section 5 provides the extension of pure unilateral support to mixed unilateral support equilibrium
when the sets of strategies of each player are discrete and finite. We define a new set called Best Individualistic
Support, in order to inaugurate a method dedicated to calculate mixed unilateral support equilibrium profiles.
This method is generated by a lemma that will be introduced and proved. Then, it will be implemented (using
a tensor multiplication with vectors) and applied to a 7-player game.

2. Tensor form of a game

Tensors came from the world of multi-linear algebra and pure mathematics, see [6, 31]. It is used in game
theory in order to give mathematical organization to all game theory problems and deal with high dimensional
mixed and pure equilibrium problems. In this section, we define the tensor form of a game initially introduced
for the first time in [3] where we found that tensor form of a game gives a mathematical definition for all games
Γn =< I, (Zi)i∈I , (pi)i∈I >, ∀n ≥ 3, where the set of pure strategies (Zi)i∈I is considered finite. Tensor form
updates the normal form which is limited in the representation of games, and doesn’t have proper tools to use
in many game theory problems, such as equilibrium problems. Moreover, its representation of games is not clear
enough for n > 3 players, mostly if the number of strategies is too large. Therefore, the introduced form based on
tensors, that are mathematically defined using multi-linear algebra solves all these problems, rearrange games’
characteristics (players, strategies, payoffs) and give mathematical access to games data. Tensor form provides
also efficient methods to search for multiple equilibria, mostly in high games dimensions when the number of
players is big. This problematic is rarely found in the literature of game theory but is solved using tensor form.
All these advantages will be demonstrated below using definitions and examples. First, we start by defining
tensors and giving some tensors’ properties and operations.

2.1. Tensors’ properties

In order to give the definitions and properties of the tensors, we adopt the definitions in [19, 20]. In these
papers, all technical properties of tensors are presented. In this paper, we tailor these properties to the game
theory field. In [19, 20], tensors are defined respectively as arrays with different sizes and as multidimensional
arrays. An order of a tensor is the number of its dimensions or also the number of its modes. For example,
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Figure 1. A third order tensor, where d1 = 2, d2 = 2, d3 = 3.

the matrix A ∈ M2,3(R) is a 2nd-order tensor. We write A ∈ R2×3, it contains 2 × 3 = 6 elements. A 3rd-
order tensor is denoted by T ∈ R2×3×2 and is shown in Figure 1. A nth-order tensor T is a multidimensional
array in Rd1×d2×...×dn , which can be written as T := (Ti1i2...in

), where each element Ti1i2...in
∈ R, for any

ik ∈ {1, . . . , dk}, with k ∈ {1, . . . , n}. The number of its elements is then d1 × d2 × . . .× dn.

2.1.1. Subarrays

Subarrays of a nth-order tensor T are obtained by fixing a subset of indices of T . When fixing all indices but
varying just one we obtain a subarray called fiber. For example, a Mode − 1 fiber can be obtained by varying
the first index of T and fixing all others. It is denoted T:i2...in

. When all indices are fixed, but just two are
varied, we obtain a subarray called slice. For example, a slice of T can be obtained by fixing all indices but by
varying the first two indices of T . We note this slice T::i3i4...in . In the following, using Figure 1, we give examples
of sketched fibers and slices of T for n = 3, see Figures 2 and 3.

2.2. Tensor form of a game Γn
Definition 2.1. Let Γn = 〈I, (Zi)i∈I , (pi)i∈I〉 be a game. The tensor form of Γn is given by n tensors,
denoted T (i), where i ∈ {1, . . . , n}, for n players. The elements of each tensor T (i) are defined by: T

(i)
j1j2...jn

=
pi(z

j1
1 , zj2

2 , . . . , zji

i , . . . , zjn
n ), ∀i ∈ {1, . . . , n}, for ji ∈ {1, 2, . . . , card(Zi)}, where we note that |Zi| = card(Zi)

and T (i) ∈ R|Z|, such that |Z| = card(Z1)× card(Z2)× . . .× card(Zi)× . . .× card(Zn).

In this definition, j1, j2 . . . , jn represent at the same time a node coordinate and the profile of strategies
(zj1

1 , zj2
2 , . . . , zji

i , . . . , zjn
n ) chosen by the n players. Therefore, in tensor form, each profile of strategies corresponds

to a node coordinate. Indeed, these n tensors can be merged in a multi-tensor T ∈ R|Z| by writing at each node
of T the whole utility function p = (p1, p2, . . . , pn) instead, of a simple payoff pi. This concept is used in bi-
matrices of normal form in a 2-player game. In the following, we separate between the node coordinates yielding
the profile of strategies and the components of the node value containing the payoff of each player. For instance,
in a 3-player game, T111 = (−1, 5, 9) represents a node (element) having the coordinates (1, 1, 1). However, the
components of its node value are the payoffs −1, 5 and 9 for the three players respectively. Consequently, we
see that tensor form rearrange all characteristics of game Γn in the multi-tensor T .
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Figure 2. Mode – 1, Mode – 2 and Mode – 3 fibers of T . (a) Column (Mode − 1) fibers.
(b) Row (Mode − 2) fibers. (c) Tube (Mode − 3). fibers.
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Figure 3. Horizontal, Lateral and Frontal slices of T . (a) Horizontal slices. (b) Lateral slices.
(c) Frontal slices.
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Figure 4. Tensor form of Γ3.

2.2.1. Numerical example for a tensor form

We consider a game Γ3 = 〈I = {1, 2, 3}, (Z1, Z2, Z3), (p1, p2, p3)〉, where, Z1 = {z1
1 , z2

1}, Z2 = {z1
2 , z2

2} and
Z3 = {z1

3 , z2
3 , z3

3}. According to Definition 2.1, the tensor form of Γ3 is given by three tensors T (i) ∈ R2×2×3,
where T (i) = pi(z1, z2, z3) for i ∈ {1, 2, 3}. Indeed, these tensors can be merged in a tensor T ∈ R2×2×3

represented geometrically in the Figure 4. Here, each node in T represents a utility function composed of three
payoffs. For example, if “the first player chooses the strategy z1

1 , the second player chooses the strategy z1
2 and

the third player chooses the strategy z3
3 ”. This particular strategies profile is then represented by the node T113.

Here, T113 = (p1(z1
1 , z1

2 , z3
3), p2(z1

1 , z1
2 , z3

3), p3(z1
1 , z1

2 , z3
3)) = (5, 6, 4).

3. Tensor form of games and equilibria

Let Γn = 〈I, (Zi)i∈I , (pi)i∈I〉 be a non-cooperative game with n players. This game is parametrized by the
set of players I = {1, . . . , i, . . . n} ⊂ N, a set of pure strategies Zi and the Von-Neumann-Morgenstern utility
function pi for every player i ∈ I. In addition, we note z = (z1, . . . , zi, . . . , zn) a profile of pure strategies, where

z ∈ Z =
n
×

i=1
Zi with z−i = (z1, . . . , zi−1, zi+1, . . . , zn) is an incomplete profile of pure strategies from players

other than i, where z−i ∈ Z−i = ×
j 6=i

Zj . In general, equilibrium types are attached to players’ behavior, see [8].

In this section, we write the definition of three equilibrium types. We start by defining pure Nash equilibrium
and pure Berge equilibrium. We briefly recall as well their formulas using tensor form, shown respectively in
[3,29], a prior to defining pure unilateral support equilibrium and its tensor form. The objective is to situate the
idea of the unilateral support equilibrium within Nash and Berge concepts, know the relations between them,
locate them on the tensor, and highlight the differences in the equilibrium search procedures of these three
equilibria. We use the same example 2.2.1 for illustrations. The study focuses on the field of non-cooperative
games. Moreover, we propose a novel method to search for pure USE using tensors tools called fibers for any
number of players n ∈ N. These fibers have the advantage of geometrical representation for n = 3.

3.1. Tensor form applied to Nash equilibrium

At first hand, we begin with Nash equilibrium, which is provided by an individualistic orientation of the
players. Each player only is supported by himself.
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Definition 3.1. A pure strategy profile z? ∈ Z is a pure Nash equilibrium of game Γn if,

∀i ∈ I, pi

(
z?
−i, z

?
i

)
≥ pi(z?

−i, zi);∀zi ∈ Zi. (3.1)

It is clear that each player i plays individualistically a strategy among his own strategies zi ∈ Zi in order to
maximize his own payoff pi. He supports, and is as well, supported, only by himself.

This definition is also written using tensor form in [3] as follows: a pure strategy profile z? =
(zk∗1

1 , . . . , z
k∗i
i , . . . , z

k∗n
n ) ∈ Z is a pure Nash equilibrium of game Γn if,

∀i ∈ {1, 2, . . . , n} T
(i)
k∗1k∗2 ...k∗i ...k∗n

≥ T
(i)
k∗1k∗2 ...ki...k∗n

. (3.2)

Interpretation: in the second member T
(i)
k∗1k∗2 ·ki...k∗n

, all indices of the tensor are fixed, except ki. Thus, when
we search for all ki it means that we are going along the Mode – i fiber passing by the Nash equilibrium
candidate node. In fact, each player i, is searching for a strategy that maximizes his own payoff. Therefore, we
can understand inequality (3.2) as follows: for each node candidate to be a Nash equilibrium, we fix a player i
(the node value component number i in the multi-tensor T ).

Then, we search for all Mode – i fibers passing by this candidate node. We compare then in each Mode –
i fiber the nodes values components number i in the multi-tensor T . If the node value component number i
in the node candidate to Nash equilibrium, is greater than all other nodes values components number i in the
multi-tensor T , on the Mode – i fiber, then we can pass to another player i. These inequalities must hold for
all i and then for all the coordinates of the candidate node. Therefore, inequality (3.2) will be transformed
to comparison inside fibers instead of writing all inequalities holding Definition 3.1. Hereinafter, this tensor
searching method for Nash equilibrium will be used in the following numerical example.
Example: We search here for pure Nash equilibrium in the same example 2.2.1. Let’s start by searching for a
profile of strategies verifying the concept of Nash equilibrium. Instead of writing all inequalities verifying the
Nash equilibrium in Definition 3.1, we can proceed by using tensor form. For example, we handle the node
having the coordinates (1,1,3) on T , corresponding to the profile (z1

1 , z1
2 , z3

3). Its utility is (5, 6, 4). The first step
consists of extracting the node with its intersected fibers, see Figure 8. Then, by applying the concept of tensor
inequalities defined in inequality (3.2), and the previous tensor searching method we can see that the following
comparisons through fibers are true: see Figure 5a for player i = 1, here the proposition 5 > 4 is true.

See Figure 5b for player i = 2, here the proposition 6 > −3 is true.
See Figure 5c for player i = 3, here the proposition (4 > 1) and (4 > 1) is true.
Therefore, since all comparisons through fibers are true, we conclude that the node T113 corresponding to

the profile (z1
1 , z1

2 , z3
3) is a pure Nash equilibrium. As already explained, every set of inequalities corresponding

to a player i in the classic definition of Nash equilibrium in Definition 3.1 is transformed to a comparison in a
tensor’s mathematical tool called fiber. And then, comparison through fibers can replace writing all inequalities
to find a Nash equilibrium.

This game contains also a second Nash equilibrium. By extracting node T223, see Figure 10, and following
the same procedure as above we can also verify that the profile of strategies (z2

1 , z2
2 , z3

3) corresponding to this
node is a pure Nash equilibrium. The figures corresponding to the procedure of finding pure Nash equilibrium
for this node are shown in 6a–6c.

3.2. Tensor form applied to Berge equilibrium

Berge equilibrium is provided by mutual support between players motivated by the altruistic social value
orientation. Each player is supported by the group of all other players in the game, see [26,33]. This equilibrium
is also called Berge-Zhukovskii equilibrium (see [11] for several definitions and refinements of Berge equilibrium).

Definition 3.2. A pure strategy profile z? ∈ Z is a pure Berge equilibrium of game Γn if,

∀i ∈ I, pi

(
z?
−i, z

?
i

)
≥ pi (z−i, z

?
i ) ; ∀z−i ∈ Z−i. (3.3)
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(5,6,4)

(4,-3,1)

(5,6,4) (3,-3,-1)

(-1,-1,1)

(-1,-1,1)

(5,6,4)

Figure 5. Fibers of Node T113. (a) Mode − 1 fiber of node T113. (b) Mode − 2 fiber of node
T113. (c) Mode − 3 fiber of the node T113.

It is clear that the group of n−1 players of the game, without player i, choose among their incomplete profile
z−i ∈ Z−i an incomplete profile that maximizes pi the payoff of player i. Here, the n − 1 players, without i,
support all together player i, and this behavior is mutual for all players. It is called altruistic.

In [29], we can find this definition written using tensor form as follows: a pure strategy profile z? =(
z

k∗1
1 , . . . , z

k∗i
i , . . . , z

k∗n
n

)
∈ Z is a pure Berge equilibrium of game Γn if,

T
(i)
k∗1k∗2 ...k∗i ...k∗n

> T
(i)
k1k2...k∗i ...kn

, ∀i ∈ {1, 2, . . . , n}. (3.4)

Interpretation: in the second member T
(i)
k1k2...k∗i ...kn

, all indices of the tensor are varying except k∗i , only k∗i is
fixed. Thus, we search here for all incomplete profiles (k1k2 . . . ki−1ki+1 . . . kn), which maximize player i’s payoff.
It means that we are going along all subarrays T : ... :k?

i : ... : intersecting the candidate node, for all i = 1, . . . , n.
In each subarray, the ith node value component of the candidate node must be greater than the ith node value
component of all nodes in the subarray T : ... :k?

i : ... : and that is true for all i = 1, . . . , n. Therefore, inequality
(3.4) will be transformed to comparison inside subarrays instead of writing all inequalities holding Definition 3.2.
This tensor searching method for Berge equilibrium will be used in the following numerical example.
Example: We will search now for Berge equilibrium in the same example 2.2.1. When we apply the tensor
procedure to search for such a profile, we can find that we only have one Berge equilibrium which is in the
node T223. It corresponds to the profile (z2

1 , z2
2 , z3

3) of utility (5, 7, 7). The first step consists of considering the
three subarrays intersected in the candidate node. They are T2::, T:2:, T::3, see Figures 7a–7c respectively. Then,
by applying the concept of tensor inequalities defined in inequality (3.4), and the previous tensor searching
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(3,-3,-1)

(5,7,7)

(5,7,7)(4,-3,1)

(5,7,7)

(-3,-4,4)

(-3,-3,3)

Figure 6. Fibers of Node T223. (a) Mode − 1 fiber of node T223. (b) Mode − 2 fiber of node
T223. (c) Mode − 3 fiber of node T223.

method, we can see that the following comparisons through fibers are true: see Figure 7a for player i = 1, here
the proposition (5 > −3)&(5 > 0)&(5 > 4) is true.

See Figure 7b for player i = 2, here the proposition (7 > −4)&(7 > −3)&(7 > −1) is true.
See Figure 7c for player i = 3, here the proposition (7 > −1)&(7 > 1)&(7 > 4) is true.
Therefore, since all comparisons through subarrays are true, we conclude that the node T223 corresponding

to the profile (z2
1 , z2

2 , z3
3) is a pure Berge equilibrium. As demonstrated in this tensor procedure, every set of

inequalities corresponding to a player i in the classic definition of Berge equilibrium in Definition 3.2 is changed
to a comparison in a tensor’s mathematical tool called subarray. Subsequently, comparison through subarrays
can replace writing all inequalities to find a Berge equilibrium.

3.3. Unilateral support equilibria and tensor form

Unilateral support equilibrium is provided when every player is supported by every other player individually;
see [30].

Definition 3.3. A pure strategy profile z? ∈ Z is a pure unilateral support equilibrium of game Γn if,

∀i ∈ I, ∀j ∈ I \ {i}, pi(z?
−j , z

?
j ) ≥ pi(z?

−j , zj);∀zj ∈ Zj . (3.5)

We note that each player i is supported by a player j individually for each j 6= i. Player j chooses among his
pure strategies zj ∈ Zj a strategy maximizing the payoff pi of player i. In the following, we will abbreviate the
unilateral support equilibrium by (USE).

To clarify these definitions we consider a game Γ3 = 〈I = {1, 2, 3}, (Z1, Z2, Z3), (p1, p2, p3)〉, where, Z1 =
{z1

1 , z2
1}, Z2 = {z1

2 , z2
2} and Z3 = {z1

3 , z2
3}, illustrated in the following Table 1 in classic normal form:
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(4,-3,1)

(5,7,7)

(-3,-4,4)

(-3,-3,3)(0,-4,4)

(-3,-1,-1)

(3,-3,-1)

(-1,-3,3)

(-4,-1,1)

(5,7,7)

(-3,-4,4)

(-3,-3,3)

(5,6,4) (3,-3,-1)

(4,-3,1) (5,7,7)

Figure 7. Subarrays (slices) intersected in node T223. (a) Subarray T2:: of node T223.
(b) Subarray T:2: of node T223. (c) Subarray T::3 of node T223.

Table 1. 3-player game with two strategies each one.

z1
3 z1

2 z2
2 z2

3 z1
2 z2

2

z1
1 (1, 1, 0) (0, 0, 0) z1

1 (0, 0, 0) (0, 0, 0)
z2
1 (0, 0, 0) (0, 0, 1) z2

1 (0, 0, 0) (1, 1, 0)

By using Definitions 3.1–3.3, it is shown that the profile (z1
1 , z1

2 , z1
3) is a USE (and also a Nash equilibrium)

but not a Berge equilibrium. This simple example gives an preliminary illustration of the difference between
USE and Berge equilibria in the sense that every Berge equilibrium is necessary an USE but the inverse is not
always true.

Let us recall two useful notions for finding Nash and Berge equilibrium. First of all, the set of Best-Response of
a player i to a fixed incomplete profile strategies z−i is BRi(z−i) = {zi ∈ Zi, pi(z−i, zi) ≥ pi(z−i, z

′
i), ∀z′i ∈ Zi},

see [28]. Using this set, we can write Definition 3.1 as:

A pure strategy profile z? ∈ Z is a pure Nash equilibrium of game Γn if, and only if, ∀i ∈ I, z?
i ∈ BRi(z?

−i).

Secondly, the set of Best Support from co-players −i to a strategy zi of player i , introduced in [23] is
BSi(zi) = {z−i ∈ Z−i, pi(z−i, zi) ≥ pi(z′−i, zi), ∀z′−i ∈ Z−i}. Using this set, we can write Definition 3.2 as:

A pure strategy profile z? ∈ Z is a pure Berge equilibrium of game Γn if, and only if, ∀i ∈ I, z?
−i ∈ BSi(z?

i ).

Similarly, we introduce a new set dedicated to unilateral support equilibrium.
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Definition 3.4. The set of Best Individualistic Support to player i, offered by player j, given a fixed incomplete
profile of pure strategies z−j is defined by:

BISi,j(z−j) =
{
zj ∈ Zj ; pi(z−j , zj) ≥ pi(z−j , z

′
j),∀z′j ∈ Zj

}
.

Using this set, we can write Definition 3.3 as:

A pure strategy profile z? ∈ Z is a pure USE of game Γn if, and only if, ∀i ∈ I, ∀j ∈ I \ {i}, z?
j ∈

BISi,j(z?
−j).

In this section, we use tensor form to write the USE inequalities using tensors. The tensor form of USE gives
a mathematical aspect to USE and will provides a method to search for pure USE using some tools of tensors
called fibers for any number of players n ∈ N. These fibers have the advantage of geometrical representation for
n = 3. Let’s start by the game Γn = 〈I, (Zi)i∈I , (pi)i∈I〉. In Definition 3.3, we said that a pure strategy profile
z? ∈ Z is a pure USE of game Γn if,

∀i ∈ I, ∀j ∈ I \ {i}, pi(z?
−j , z

?
j ) ≥ pi(z?

−j , zj);∀zj ∈ Zj .

This definition can be written using tensors which will provide us to take some advantages to find the USE
using tensors’ tools and operations as follows: a profile z∗ =

(
z

k∗1
1 , . . . , z

k∗i
i , . . . , z

k∗n
n

)
, corresponding to the node

having the coordinates k∗1 , . . . k∗i , . . . , k∗n in the multi-tensor T (gathering all tensors T (i)), is a pure USE if,

∀i ∈ I, ∀j ∈ I \ {i}, T
(i)
k∗1 ...k∗i ...k∗j ...k∗n

≥ T
(i)
k∗1 ...k∗i ...kj ...k∗n

, ∀kj ∈ {1, . . . , card(Zj)} . (3.6)

In the second member T
(i)
k∗1 ...k∗i ...kj ...k∗n

, all indices of the tensor are fixed except kj . Thus, when we search for
all kj it means that we are going along the Mode – j fiber passing by the USE candidate node. Therefore,
inequality (3.6) is explained as follows: for each node candidate to be USE, we fix a player i (the coordinate
number i in the multi-tensor T ). Then, we search in all Mode – j fibers passing by this node without Mode –
i fiber. We compare then in each Mode – j fiber the nodes values components number i in the multi-tensor T .
If the node value component number i in the node candidate to be USE, is greater than all other nodes values
components number i in the multi-tensor T , on the Mode – j fibers, we can then pass to another player i. These
inequalities must hold for all i and then for all the coordinates of the candidate node. Therefore, inequality (3.6)
will be transformed to comparison inside fibers instead of writing all inequalities holding Definition 3.3. This
principle will give a big advantage to programmers to search for USE using their proper algorithms, knowing
that tensor class is given by [20] in [4]. This idea is demonstrated by the following 3-player game in order to
present it geometrically. In the following, this tensor searching method for USE will be used in all our numerical
examples.

3.4. Numerical Example for a pure USE with tensors

We consider the same game Γ3 = 〈I = {1, 2, 3}, (Z1, Z2, Z3), (p1, p2, p3)〉 in Section 2.2.1, where, Z1 = {z1
1 , z2

1},
Z2 = {z1

2 , z2
2} and Z3 = {z1

3 , z2
3 , z3

3}. Tensor form is given in Figure 4. Now, we have to search for a profile of
strategies verifying a USE. Instead of writing all inequalities of USE in Definition 3.3 and searching for all i
and j, we can proceed by using tensor form. For example, we handle the node T113, corresponding to the profile
(z1

1 , z1
2 , z3

3). Its utility is (5, 6, 4). The first step consists of extracting the node with its intersected fibers, see
Figure 8.

Then, by applying the concept of tensor’s inequalities defined in inequality (3.6), and the previous tensor
searching method we can see that the following comparisons through fibers are true:

see Figure 9a for player i = 1, here the proposition (5 > −1) and (5 > −1) and (5 > 3) is true,
see Figure 9b for player i = 2, here the proposition (6 > −1) and (6 > −1) and (6 > −3) is true,
see Figure 9c for player i = 3, here the proposition (4 > −1) and (4 > 1) is true.
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(-1,-1,1)

(-1,-1,1)

(5,6,4) (3,-3,-1)

(4,-3,1)

Figure 8. Extraction of node T113 with its fibers.

(-1,-1,1)

(-1,-1,1)

(5,6,4)
(3,-3,-1)

(-1,-1,1)

(-1,-1,1)

(5,6,4)

(4,-3,1)

(5,6,4)

(4,-3,1)

(3,-3,-1)

Figure 9. Intersecting fibers in node T113 without player i fibers, respectively for i = 1, 2, 3.
(a) Intersecting fibers in node T113 without Mode − 1 fiber. (b) Intersecting fibers in node T113
without Mode − 2 fiber. (c) Intersecting fibers in node T113 without Mode − 3 fiber.

We conclude that the node T113 corresponding to the profile (z1
1 , z1

2 , z3
3) is a pure USE. According to this tensor

procedure, every set of inequalities corresponding to a player i in the classic definition of USE in Definition 3.3
is changed by a comparison in a tensor’s mathematical tool called fiber. Afterward, comparison through fibers
can replace writing all inequalities to find a USE.

Moreover, we handle the node, having the coordinates (2, 2, 3). By extracting this node, see Figure 10, and
following the same procedure as above, we can verify that the profile of strategies (z2

1 , z2
2 , z3

3) corresponding to
this node is a pure USE. The figures corresponding to the procedure of finding USE for this node are shown
in 11a–11c. However, we can also prove using the same procedure that this example possesses only these two
computed pure USE.

3.5. Relations between equilibria

(1) In [30], the authors prove that each Berge equilibrium is a USE. This result appears clearly when taking the
tensor form of Berge equilibrium and more precisely when we search on the candidate node through slices.
If Berge equilibrium is reached on these slices then the fibers corresponding to USE same node candidate
are covered. This is illustrated on the node T223 corresponding slices and fibers. Moreover, the reciprocal is
false as seen on tensors, for n > 2. In other words, a USE is not necessary a Berge equilibrium.
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(3,-3,-1)

(5,7,7)

(-3,-4,4)

(-3,-3,3)

(4,-3,1)

Figure 10. Extraction of node T223 with its fibers.

(5,7,7)

(-3,-4,4)

(-3,-3,3)

(4,-3,1)

(3,-3,-1)

(5,7,7)

(-3,-4,4)

(-3,-3,3)

(3,-3,-1)

(5,7,7)
(4,-3,1)

Figure 11. Extraction of Node T223 with its fibers, except those of player i, respectively for
i = 1, 2, 3. (a) Intersecting fibers in node T223 without Mode − 1 fiber. (b) Intersecting fibers
in node T223 without Mode − 2 fiber. (c) Intersecting fibers in node T223 without Mode − 3
fiber.

(2) In Definition 3.1, we explained the selfish behavior of players. In Definition 3.2, we talked about altruistic
mutual support between players that took many years to be elaborated from the initial definition. In
Definition 3.3, we explained that each player i is supported by a player j individually, for each j 6= i. All
these interpretations are seen on tensors without any difficulties by individualistic fibers for Nash, other
players slices for Berge, and other players fibers’ for USE.
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4. Algorithm to find pure USE using tensor form

We present in this section an algorithm based on tensors as main variables, using tensor form of a game
in order to compute USE problems for games where n ≥ 3 players. In these games, we lose the advantage of
visualizing tensors geometrically. Despite this lost, all advantages of tensors are well preserved. In fact, the
concept of searching for fibers and using tensor inequality (3.6) will solve the problem. The efficiency is shown
when computing a pure USE with high dimensional problems. We show here, in an example, a direct application
by solving a game of 15 players. The complexity of this algorithm is I1 × I2 × . . . In, see Algorithm 1.

Algorithm 1. Pure USE Algorithm.
1: V ariables :

n, i, ik, j : integers; // n is the number of players.

T (i) : tensor; // we define n tensors T (i) ∈ Rd1×d2×...×dn . A tensor for each player.

2: for (i = 1 to n), Read(T (i)); // Set n tensors T (i), i ∈ {1, 2, . . . , n}, using payoffs.

3: loop : for ik = 1 : dk// We have here n nested loops.

4:

for (i = 1 to n)

node = T (i)(i1, ..., i15)

j = 1;

while(j ≤ n) if j 6= i we loop here on all fibers other than i.

if node = max((extractfiber(T (i), j)))//“extractfiber” extracts a fiber from a tensor

then j = j + 1;

else break

end

else j = j + 1;

end

end loop “while”.

if(j <= n)

break

end

end loop “for”.

if j == length(X) + 1

write : (i1, i2, . . . , in) is a pure USE profile.

end

5: end nested loops “for”
6: end loop “for”

4.1. Application to a High dimensional USE problem

We consider a game Γ15 = 〈I = {1, 2, . . . , 15}, (Z1, Z2, . . . , Z15), (p1, p2, . . . , p15)〉, where, Zi = {z1
i , z2

i }, for all
i = 1, . . . , 15. The tensor form of Γ15 is given by 15 tensors T (i) ∈ R2×2×...×2, where T (i) = pi(z1, z2, . . . , z15) for
i ∈ {1, 2, . . . , 15}. These tensors are merged in a multi-tensor T ∈ R2×2×...×2. Each node in T represents a utility
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function composed of 15 payoffs given by Ti1i2...i15 = −i1−2i2−3i3−4i4−5i5+6i6+7i7+8i8+9i9−10i10+i11+i12+
i13−i14−i15+e where e is the number of tensor element going from 1 to 15×215. Using Algorithm 1, we can find
that there are two pure USE. The first one in the node T2,2,2,2,2,2,2,2,2,2,2,2,2,2,1 = (32780, 65548, 98316, 131084 ,
163852, 196620, 229388, 262156, 294924 , 327692, 360460, 393228 , 425996, 458764, 491532) corresponding to the
profile (

z2
1 , z2

2 , z2
3 , z2

4 , z2
5 , z2

6 , z2
7 , z2

8 , z2
9 , z2

10, z
2
11, z

2
12, z

2
13, z

2
14, z

1
15

)
and the second one in the node T2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 = (32 780, 65 548, 98 316, 131 084, 163 852,
196 620, 229 388, 262 156, 294 924, 327 692, 360 460, 393 228, 425 996, 458 764, 491 532) having the same utility as
the first one due to the formula when we add +k − i15. It corresponds to the profile(

z2
1 , z2

2 , z2
3 , z2

4 , z2
5 , z2

6 , z2
7 , z2

8 , z2
9 , z2

10, z
2
11, z

2
12, z

2
13, z

2
14, z

2
15

)
.

5. Mixed unilateral support equilibria

In this section, we present a lemma dedicated to calculate mixed USE profiles when the set of pure strategies
is finite. Let Γn = 〈I, (Zi)i∈I , (Zi)i∈I , (pi)i∈I〉 be a non-cooperative game with n players, where Zi is a set of

mixed strategies. In addition, we note z = (z1, . . . , zi, . . . , zn) a profile of mixed strategies, where z ∈ Z =
n
×

i=1
Zi

with z−i = (z1, . . . , zi−1, zi+1, . . . , zn) is an incomplete profile of mixed strategies from players other than i,
where z−i ∈ Z−i = ×

j 6=i
Zj . We start by giving some properties of mixed strategies.

(1) For any player i ∈ I, a mixed strategy, denoted by zi ∈ Zi, is a probability distribution over this player pure
strategies. Indeed, zi(z

j
i ) is the probability that player i plays the pure strategy zj

i ∈ Zi and
∑di

j=1zi(z
j
i ) = 1,

where di = card(Zi).
(2) A pure strategy zi is a degenerate mixed strategy that assigns probability 1 to zi and probability 0 to all

other pure strategies of player i.
(3) For any player i ∈ I, and any mixed strategy zi ∈ Zi, we define the support of zi, denoted supp(zi), by

supp(zi) =
{

zj
i ∈ Zi; zi

(
zj
i

)
> 0
}

. It means that the support of zi is the set of pure strategies zj
i for which

correspond strictly positive components in vector zi.

Definition 5.1. A mixed strategy profile z? ∈ Z is a mixed unilateral support equilibrium of game Γn if,

∀i ∈ I, ∀j ∈ I \ {i}, pi

(
z?
−j , z?

j

)
≥ pi

(
z?
−j , zj

)
;∀zj ∈ Zj . (5.1)

Definition 5.2. The set of Best Individualistic Support to player i, offered by player j, given a fixed incomplete
profile of mixed strategies z−j is defined by:

BISi,j(z−j) =
{

zj ∈ Zj ; pi(z−j , zj) ≥ pi(z−j , z′j),∀z′j ∈ Zj

}
.

Using this set, we write Definition 5.1 as:

Theorem 5.3. A profile of mixed strategies z? = (z?
−i, z?

i ) is a mixed profile USE of Γn if, and only if, ∀i ∈ I,
∀j ∈ I \ {i}, we have z?

j ∈ BISi,j(z?
−j).

Proof. The proof of this theorem is evident from the definition of the set BISi,j . �

Lemma 5.4. Let Γn be a finite strategic game. Then, z? is a mixed profile USE of Γn if, and only if, for every
player i ∈ I, for every player j ∈ I \ {i} , every pure strategy in the support of z?

j is a Best Individualistic
Support to player i, offered by player j, given a fixed incomplete profile of mixed strategies z?

−j.
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Proof. We use in this proof the “reductio ad absurdum” method. For that, we consider z? a mixed profile USE
of Γn and we suppose that ∃ a player i, ∃ a player j 6= i such that z? = (z?

−i, z?
i ) = (z1, . . . , z?

j , . . . , z?
i . . . , z?

n), for
which ∃zj ∈ supp(z?

j ) a pure strategy such that zj /∈ BISi,j(z?
−j). Then, by linearity and by the expansion of pi,

player j will seek for another pure strategy, denoted by z′j where pi(z?
−j , z

′
j) > pi(z?

−j , zj), this z′j exists since z? is
a mixed USE. Therefore, if we expand pi(z?

−j , z?
j ) which depends on the term z?

j (zj)pi(z?
−j , zj)+z?

j (z′j)pi(z?
−j , z

′
j),

the player j has to increase rationally the probability of playing the pure strategy z′j instead of zj since all players
have individualistic support behavior. Thus, by transfer of probability, player i can increase the coefficient of
his payoff pi(z′j , z?

−j) by adding z?
j (zj) to z?

j (z′j) and obtaining the term 0 + (z?
j (zj) + z?

j (z′j))pi(z?
−j , z

′
j) holding

a payoff greater than the old term [z?
j (zj)pi(z?

−j , zj) + z?
j (z′j)pi(z?

−j , z
′
j)]. Let zTransfer

j = (z?
j (zj) + z?

j (z′j)). Then,
pi(z?

−j , zTransfer
j ) > pi(z?

−j , z?
j ). It yields that z?

j /∈ BISi,j(z?
−j) and then z? is not a mixed USE. Contradiction.

We continue by proving the second implication. We will use here the contrapositive method. We start by
supposing that “z? = (z?

−i, z?
i ) = (z1, . . . , z?

j , . . . , z?
i . . . , z?

n) is not a mixed profile USE of Γn”. It means that
∃i and ∃j 6= i such that z?

j /∈ BISi,j(z?
j ). Thus, ∃ a mixed strategy z′j ∈ BISi,j(z?

j ), where pi(z?
−j , z′j) >

pi(z?
−j , z?

j ). Therefore, we can conclude that at least one pure strategy zj ∈ supp(z?
j ) holds a payoff less than

an other pure strategy z′j ∈ supp(z′j) i.e. pi(z−j , zj) < pi(z−j , z
′
j) since pi is linear (see [28]). Consequently,

zj /∈ BISi,j(z?
j ). �

This lemma provides us with an efficient method used to calculate probability distributions relative to mixed
USE. The lemma result is as follows: for each player i, every strategy in the support of an equilibrium mixed
strategy of each player j 6= i, individually, yields that player i the same payoff.
Example: We consider the game Γ3 = 〈{1, 2, 3}, (Zi)3i=1, (Zi)3i=1, (pi)3i=1〉, where Zi is a finite set; ∀i = 1, 2, 3.

– We consider that the pure strategies of player i are : z1
i and z2

i , ∀i = 1, 2, 3.
– The mixed strategies of player i are : z1

i and z2
i , ∀i = 1, 2, 3.

The only case that will be developed in the following and in example 5.1.1, is under the assumption that the
mixed unilateral support equilibrium support is equal to Zi, for all i. Then, according to Lemma 5.4, we find
the mixed unilateral support equilibrium by writing the following system:

– p1(z1, z
1
2 , z3) = p1(z1, z

2
2 , z3) and p1(z1, z2, z

1
3) = p1(z1, z2, z

2
3).

– p2(z1
1 , z2, z3) = p2(z2

1 , z2, z3) and p2(z1, z2, z
1
3) = p2(z1, z2, z

2
3).

– p3(z1
1 , z2, z3) = p3(z2

1 , z2, z3) and p3(z1, z
1
2 , z3) = p3(z1, z

2
2 , z3).

5.1. Tensor representation of mixed Unilateral Support Equilibrium

We proved a theorem dedicated to calculate mixed USE profiles. Similar theorems existed for Nash mixed
equilibrium in [28] and for Berge mixed equilibrium in [29]. However, the classic formula to calculate expected
payoffs in game theory seems complicated when dealing with more than 3 players in a game. The method to
deal with these types of games and to calculate the expected payoffs, more easily, is presented in the game’s
tensor form. Especially, the Mode − i vector product manages the multiplication between tensors and vectors
and allows dealing with high dimensional USE equilibrium problems. We recall the definition of this operation,
which can be found in [18,20], as follows:

Definition 5.5. The Mode – i (vector) product of a tensor T = (Ti1i2...in) ∈ Rd1×d2×...×di×...×dn with a vector
V ∈ Rdi is denoted by U = T ×̄iV , which is a real (n−1)th order d1×d2× . . .×di−1×di+1× . . .×dn-dimensional
tensor with

Ui1×i2×...×ii−1×ii+1×...×in
=

dk∑
ik=1

Ti1i2...in
Vik

for any ij ∈ {1, 2, . . . , dj} with j ∈ {1, 2, . . . , n} \ {k}.
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This tensor tool gives tensor form the legitimacy to deal with all kind of high dimensional equilibrium
problems, and then strengthen the reason to use tensor form for n greater than 3 players. We start by exploiting
the method to calculate expected payoffs using tensors and then to find USE mixed equilibrium in a 7-player
game under the result of Lemma 5.4. Let Γn = 〈I, (Zi)i∈I , (Zi)i∈I , (pi)i∈I〉 be a game. A tensor form of Γn

is given by n tensors T (i), where i ∈ {1, . . . , n}, respectively for each one of the n players, and merged in a

multi-tensor T . Then, the expected payoff function pi(z) for z ∈ Z =
n
×

i=1
Zi is defined as follows:

pi(z) = T (i)×̄n zn×̄n−1 zn−1×̄n−2 . . . ×̄2 z2×̄1 z1 for i = 1, 2, . . . , n. (5.2)

Note that starting by Mode – i vector product for i = n and continuing in a descending order until i = 1 is
necessary because it assures a well-posed multiplication between tensors and Mode – k fibers for k = 1, 2, . . . , n.
Now, after defining the expected payoffs using tensors, we use it in a numerical example to clarify the consequence
of Lemma 5.4.

5.1.1. Numerical example: a 7-player game

We consider a game Γ7 = 〈I = {1, 2, 3, 4, 5, 6, 7}, (Z1, Z2, Z3, Z4, Z5, Z6, Z7), (Z1,Z2,Z3,Z4,Z5,Z6,Z7),
(p1, p2, p3, p4, p5, p6, p7)〉, where Zi = {z1

i , z2
i , z3

i }. We recall that zi = (z1
i , z2

i , . . . , z7
i ) is a probability dis-

tribution. In addition, the tensor form of Γ7 is given by seven tensors T (i) ∈ R3×3×3×3×3×3×3, where
T (i) = pi(z1, z2, z3, z4, z5, z6, z7) for i ∈ {1, 2, 3, 4, 5, 6, 7}. These tensors can be merged in a multi-tensor
T ∈ R3×3×3×3×3×3×3. T contains then 7 × 37 payoffs. Each payoff is given by the counter k varying from
1 to the last node (7× 37) in the seventh tensor, using the formula k ≡ pi(z1, z2, z3, z4, z5, z6, z7) (mod2) +1. As
a consequence of Lemma 5.4, USE mixed profiles of Γ7, when they exist, are solutions to the following system:

∀i ∈ I, pi

(
z1, . . . , z

1
j , . . . , zi, . . . , z7

)
=

pi(z1, . . . , z
2
j , . . . , zi, . . . , z7) =

pi(z1, . . . , z
3
j , . . . , zi, . . . , z7), ∀j ∈ I \ {i}.

(5.3)

This system (5.3) must hold for all players i. In other words, in each member of the equation, a player j 6= i
holds one of his three pure strategies, and that for all j 6= i, when all other players keep playing their fixed
mixed strategies. However, because expected payoffs are difficult to expand using the classical way as in [16,17],
tensors used with system (5.3) addresses equation (5.2) in a systematic way as follows:

∀i ∈ I,
(((((

T (i)×̄7 z7

)
. . . ×̄i zi

)
. . . ×̄jz

1
j

)
. . . ×̄1z1

))
=(((((

T (i)×̄7 z7

)
. . . ×̄i zi

)
. . . ×̄jz

2
j

)
. . . ×̄1z1

))
=(((((

T (i)×̄7 z7

)
. . . ×̄i zi

)
. . . ×̄jz

3
j

)
. . . ×̄1z1

))
, ∀j ∈ I \ i.

(5.4)

We can expand this system using tensor class on Matlab, see [4], and using “symbolic” variables. We obtain a
system of 126 equations to be solved, with 21 unknowns. Using the fact that zi is a probability distribution, for
each i, the number of unknowns decreases then to 14 by involving in the system the equations z3

i = 1−z2
i −z1

i , ∀i ∈
I = {1, 2, . . . , 7}2. The resulted non-linear system (5.4) is solved using the algorithm “trust-region-reflective”,

2The equations of this system can be provided upon the readers’ request.
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see [22]. The solution of this system reveals the following mixed unilateral support equilibrium:

z1 = (0.5, 0.5, 0)
z2 = (0.5, 0.5, 0)
z3 = (0.5, 0.5, 0)
z4 = (0.5, 0.5, 0)
z5 = (0.5, 0.5, 0)
z6 = (0.5, 0.5, 0)
z7 = (0.5, 0.5, 0).

6. Conclusion

In this paper, we have localized pure unilateral support equilibrium within pure Nash and pure Berge equilibria
by introducing the tensor form. We have also implemented an algorithm based on tensors as main variables to
solve USE high dimensional problems. Our definition of a new set called Best Individualistic Support, dedicated
to unilateral support equilibrium, provides an extension of pure USE to mixed USE, when the set of pure
strategies of each player is finite. We have also proposed and proved a lemma yielding a method to calculate
mixed unilateral support equilibrium profiles. Our results complete those on math computation of pure USE,
prepare the field of mixed USE, and introduce to the literature an efficient method based on tensors for USE
future research.

For further research, a new equilibrium seems to be well defined as a consequence of tensor form structure
applied to Nash, Berge and Unilateral Support equilibria. We showed in Nash equilibrium tensor form that the
procedure is based on Mode – i fiber for each player i, see the interpretation of (3.2). Moreover, USE tensor
procedure is based on all Mode – j fibers without Mode – i fiber (for j 6= i), see the interpretation of (3.6).
However, the tensor procedure to compute Berge equilibrium is based on all subarrays depending on player
i, see the interpretation of (3.4). Then, a new equilibrium tensor procedure would be based on all subarrays
depending on the group of players-j without player j. As we showed for USE that each player i is supported by
a player j individually for each j 6= i, then the new equilibrium can have an interpretation as follows: for each
player i, and for each player j 6= i, player i is supported by the group of players-j.
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[10] P. Courtois, R. Nessah and T. Tazdäıt, How to play games? Nash versus berge behaviour rules. Econ. Philos. 31 (2015)
123–139.



A NEW USE TENSOR APPROACH 413
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