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ECONOMIC PRICING OF COMPLEX PRODUCTS IN A COMPETITIVE
CLOSED-LOOP SUPPLY CHAIN NETWORK UNDER UNCERTAINTY: A CASE

STUDY OF COPS INDUSTRY

Omid Solgi1,∗, Alireza Taromi2, Jafar Gheidar-Kheljani3

and Ehsan Dehghani1,4

Abstract. The development of technology, globalization of the economy and the unpredictable behav-
ior of customers have eventuated in a dynamic and competitive environment in the complex product
systems (CoPS) market. Besides, CoPS economic pricing is one of the key factors that dramatically
reduces production costs and increases competitiveness. In this regard, this paper unveils a hybrid data
envelopment analysis (DEA)-fuzzy mathematical model for economic pricing of CoPS in a competitive
closed-loop supply chain network under uncertainty. In the first stage, different CoPS suppliers are
evaluated exploiting a DEA model based on a set of economic, technical, and geographical criteria.
The advantage of this evaluation is choosing appropriate suppliers, and reducing the complexity of
the original model. Next, using a robust optimization model, the strategic and tactical decisions are
simultaneously determined, providing a fully optimal solution to the model. In the concerned model,
the costs and capacities of facilities are considered to be hemmed in by uncertainty. Eventually, to
evaluate the proposed approach, a case study is conducted to derive the important managerial results.
The numerical results corroborate that the presented robust model is capable of providing a stable
structure under different realizations.
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1. Introduction

COPS mainly contributes to industrial development, economic growth, and national wealth generation in
developed and developing countries. CoPS also demonstrates several specific features as a distinct category of
industrial products compared to mass-produced consumer goods. These aspects have recently attracted much
attention. In the reverse supply chain competition models, decisions in the reverse channel such as pricing (e.g.,
[27,53,65,69]) collection mode (e.g., [16,69]), collection rate, and reproduction method (e.g., [11,33]). It should
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be noted that, over the last 30 years, about 15% of world trade has been related to CoPS [31]. Moreover, among
the various parts of CoPS, one of the requirements that can lead to the development of new technologies and
cost savings is the economic pricing of CoPS, reducing costs and enhancing competitiveness [20]. It is worth
noting that there are various definitions of CoPS that distinguish this domain from others. CoPS, for example,
as the main complex consumer goods, plays a key role in the distribution of modern technology through the
economy and facilitating financial, industrial, and technological processes in developed and developing countries
[57]. There are also important strategic products in the CoPS area, which are essential for infrastructure,
competition, technology, scientific advancement, new technologies, and value-added in any country. Examples
of applications of complex products include the aerospace industry (e.g., [2, 14, 15]), the transportation (e.g.,
[2,15,48]), electronics industry (e.g., [14,15,28,50]), energy (e.g., [14,15,32]), sea drilling rigs, chemical plants,
communications networks, racing cars, and smart buildings (e.g., [2, 15, 28]). Therefore, given the difference
between this area and others, it is much more important to address this area. Also, according to the literature,
most of the papers focusing on CoPS from 1995 to 2018 are based on qualitative methods and just a few
studies have dealt with quantitative methods and mathematical modeling [57]. In this regard, Du and Guo [19]
proposed the CoPS supplier selection life cycle to reduce purchase costs and operational risk. Liu et al. [43]
presented a hierarchical model for optimal quality control strategies in the supply chain of supplier selection for
CoPS production such as aircraft, warships, or satellites. Hongzhuan et al. [34] developed an optimal Nash cost-
sharing model with the Stackelberg equilibrium for collaboration between the manufacturer and the supplier
of CoPS equipment. Applied CoPS-related changes to copper production, Du and Guo [19] presented a multi-
objective model to prevent and detect conflicts between CoPS products. Safdari Ranjbar et al. [57] discuss
what has happened to CoPS in the past two decades, as well as the forward-looking developments that will
occur in the future as governments enter. On top of that, Solgi et al. [59] considered a robust two-objective
mathematical model for the resilience of supplier selection and order allocation of CoPS and its subsystems under
uncertainty and risk disorder in their study. They also aimed to minimize the costs of supply chain selection
in the first objective; and in the second objective, resilience strategies are considered for suppliers. Lastly, they
conducted a case study on the supply of satellite components to evaluate the effectiveness and applicability
of their model, by which important managerial results have derived. Moreover, it is worth noting that the
development of technology, the globalization of the economy, and the unpredictable behavior of customers has
led to a competitive and dynamic market environment [55, 67]. These factors, with advanced infrastructure
for e-commerce, change the form of competition in companies from individual competition to compete in the
supply chain (e.g., [3, 8, 55, 67]). For example, Microsoft (software supplier) and HTC (hardware supplier)
are competing in a supply chain with other supply chains including Symbian (software provider) and Nokia
(hardware supplier) [67]. In such cases, the following questions arise: Who will be the winner in this competition?
What is the best network for the supply chain? How much does the winner get from the market? The motivation
for this article is to find a way to address these questions. Besides, the closed-loop supply chain combines
forward/reverse decisions, covering the entire life cycle. The supply chain also encompasses forward-looking
logistics activities, ranging from raw materials to customers. The reverse supply chain also includes collection,
reproduction, recycling and access activities [44, 49, 68]. Many manufacturers such as Xerox, Hewlett Packard,
IBM, Ford, Caterpillar, and Timberland used reverse production and supply chain networks (e.g., [4,11,12,24,
36]). Ford saved $180 000 in costs by preventing cartridge disposal, in 1996 [65]. Also, Ford saved $1.2 million
in the period 1991–1997 by collecting and reproducing more than 332 000 pounds of cartridges [65]. According
to Gutowski et al. [26], the amount of recycling in the United States per year and each industry with 480 000
direct employees is $50 billion. Given the importance of reverse supply chain and economic attractions in this
area, researchers have focused on designing a reverse supply chain network to maximize the value gained from
integrating the forward/reverse supply chain [53]. On the other hand, competition as an important factor should
be considered in designing the reverse supply chain network. Also, physical network design has a significant
impact on overall supply chain performance. In addition, as a strategic decision, it has a limiting role in tactical
and operational decisions. There is also a great deal of literature on the topic of closed-loop supply chains (e.g.,
[9,46]). It should be noted that despite the importance of competition in today’s markets that force the supply
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chain to have a proper design, most studies in the literature do not consider competing factors in the network
design phase. Rezapour and Farahani [55] and Farahani et al. [22] made a classification of models and solutions
techniques based on the concept of competition in the supply chain design. Three types of competitions can
be considered for reviewing the relevant literature [22, 55]. (1) Static Competition: this type of competition
involves mathematical model optimization in which new inputs make decisions about strategic factors such as
facility’s location (e.g., [1,7,22,54–56]). (2) Competition aggregated with a prediction: this type of competition
is formulated with the Stackelberg game with a bi- or multilevel model. (3) Dynamic Competition: in this
type of competition, existing competitiveness changes following the entry of new competitors. While supply
chain strategy decisions (e.g., location or number of facilities) cannot be changed due to the high need for
investment, competing for characteristics influence tactical level decisions such as price and service level. As
can be seen, only a small proportion of the literature was devoted to competition between chains and most of
the focuses were on competition between two components of a chain. Therefore, a method should be adopted
to compete between chains McGuire and Staelin [45] were one of the first who focused on the competition
between two chains. Wu and Chen [66] presented a model for competition between the two chains, considering
inventory and return policies. Boyaci and Gallego [8] modeled the competition between two chains with a
wholesaler and a retailer. They concluded that to maximize profits, both supply chain coordination require
a strategy. Zhang [68] provided a general framework for the competitive supply chain; he also introduced an
unsteady inequality model for the supply chain economic model, in which the supply chain was heterogeneous for
different markets. Xiao and Yang [67] presented a game theory model of cost and service competition between
two chains with demand uncertainty. Anderson and Bao [3] considered the price competition between two
chains with linear demand function and distinct structure in integrated and decentralized vertical cases. They
analyzed the effect of different price levels on market players’ profits. It is worth noting that most competing
models do not consider strategic decisions for rival chains and assume that the chain structure is fixed and
predetermined. Most of the articles presented in the literature have focused on the forward chain under certain
conditions, including return management in supply chain models that add further decision variables to the
model. These variables are related to reverse flow, quantities of recycled materials, number of recycling centers,
prices of recycled products, increasing the complexity of the model. On the other hand, integrating the forward
and backward decisions avoids the suboptimal resulting from separate decision-making [42, 64]. However, the
dynamic nature and complexity of the supply chain imposes many uncertainties, thereby severely affecting the
overall function of those supply chains [62]. Ho [30] divided the uncertainty affecting real phenomena into two
groups: (1) environmental uncertainty and (2) systemic uncertainty. Environmental uncertainty in the supply-
chain concept relates to demand and supply uncertainties that depends on supplier performance and customer
behavior. Though, system uncertainty is related to uncertainties in production, distribution, collection, and
recycling which can be attributed to uncertainty in delivery time, production costs, and the actual capacity of
different processes. Also, it is believed that the strategic horizon of supply chain network design dramatically
increases the impact of uncertainties. Besides, Dekker et al. [18] argued that the issue of backward supply
chain uncertainty is more important given the more difficult estimation and quality control of the quantity of
returned products. Therefore, the importance of this kind of uncertainty has led researchers to consider this
kind of uncertainty in the reverse supply chain [38]. The implication is that, according to Liu and Iwamura [40]
, uncertainty can be found in both probability and possibility. For probability, the distribution function can be
found through experiments and probabilistic planning approaches are used to deal with uncertaint. Possibility
theory is used to evaluate mental analyses, where we are confronted with some unknown parameters. When
the possibility of distribution is used, the model will have imprecise parameters. Liu and Lwamura [40] also
asserts that, in these cases, possibility planning and fuzzy mathematical planning can be applied to optimize
decisions as an efficient tool. However, there are two major problems with the probability approach. First, in
many cases, there is insufficient data for historical parameters in the deterministic parameters. Therefore, we
can rarely obtain a real and accurate distribution of certain parameters. Second, the use of probability planning
dramatically increases the computational complexity of the problem. After all, to secure the optimal response
against existing uncertainties and to establish a robust structure for the supply chain, it is incumbent upon to
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consider changes in parameters in the long-term horizon [41]. All of this leads to a robust solution that considers
both the feasibility and optimality robustness simultaneously. The robust optimization approach provides a risk-
averse and responsive approach that is not too sensitive to parameter changes. Lastly, since market demand for
each chain is price dependent, the fuzzy theory is used to deal with uncertainty. Given the above-mentioned
discussions, the motivation of this paper is to consider an economical pricing model for complex products and
its subsystems in a competitive closed-loop supply chain network under uncertainty. Summary of innovations
that distinguish this research from other studies and can enrich the literature in this field is as follows:

– Due to the DEA methods, the approach presented in this paper can increase the distinction and difference
between CoPS decision options by applying efficient and inefficient frontier information. Using the applied
DEA technique, CoPS suppliers are evaluated based on a set of economic, technical, and geographical
criteria, which has two advantages. First, appropriate CoPS suppliers are selected; and second, by eliminating
inappropriate suppliers, complexity, which is one of the fundamental problems of mathematical models, is
reduced.

– A robust fuzzy model is applied to deal with the inherent uncertainty in the parameters.
– Unlike articles presented in the literature, this article uses a quantitative model to formualte the concerned

problem.
– The concerned model is capable of taking into account the pricing decisions.
– The proposed model is one of the first papers in CoPS field, considering the competition in the supply chain

network.
– The model is able to simultaneously take forward and reverse decisions in the CoPS supply chain network,

providing a fully optimal solution to the model.
– Eventually, to evaluate the effectiveness and usefulness of the proposed method, a case study is conducted

via which useful managerial results were obtained.

The structure of this study is as follows. The next section will discuss the methodology used in this paper.
In Section 3, the DEA model is explained. In Section 4, the mathematical model is developed and the robust
optimization approach is delineated in Section 5. Section 6 describes the used linearization method. In Section 7,
a case study is conducted and finally, in Section 8, the conclusions and directions for future research are provided.

2. Methodology

As shown in Figure 1, the CoPS supply chain network design process is performed in two steps. In the first
phase, the most suitable suppliers are identified and evaluated using a DEA model based on a set of technical,
economic and geographical criteria (i.e., financial capability, network development capability, manpower capac-
ity, delivery time and cost of delivery). Secondly, using a robust optimization model, the strategic and tactical
decisions simultaneously are determined. The advantage of this step is the integrated decision-making process,
providing a fully optimal solution to the model.

3. Data envelopment analysis method

DEA can be used to evaluate efficiency levels within a group of organizations, where the performance of each
unit is calculated against the number of units with the highest performance. This technique is based on a linear
programming approach with the main purpose of comparing and evaluating the performance of some similar
decision-making units (DMUs) with a different number of inputs and outputs. Farrell [23] began to measure the
efficiency of a manufacturing unit by using a method such as measuring efficiency in engineering. What Farrell
[23] used to measure efficiency was input and output. Farrell’s study involved measuring technical efficiency, and
an efficient production function’s derivative. Later, Charnes et al. [10] developed Farrell’s view and introduced
a model called CCR. Next, Banker [5] considered a model with the variable return to scale that was called the
BCC model.
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Figure 1. The general process of CoPS.

Reviewing several methods used in this field, the method of comparing good and bad DMUs simultaneously
was chosen (e.g., [58, 61]). In this study, the method presented by Shen et al. [58] is used to appraise different
prices for COPS suppliers. Unlike other groups, the methods of this group are not restricted to a particular group
and can be applied to different issues. Shen et al. [58] used an index that measures the distance between efficient
and inefficient frontiers to enhance the power of DEA differentiation. In the proposed method, standard and
reverse DEA are applied simultaneously to provide more information on frontiers. This enhances the strength of
differentiation as well as leads to a better ranking. A description of employed approach is presented as follows:

Suppose there are n DMUs so that their index is represented by c(c = 1, . . . , n). Also, the inputs and outputs
of the DEA model for the DMUs are respectively xdc(d = 1, . . . , g) and yec(e = 1, . . . , q). The following model
shows the standard DEA model:

Min h∗bl = θl (3.1)
n∑

c=1

xdcλc ≤ θlxdl, d = 1, . . . , g (3.2)

n∑
c=1

yecλc ≥ yel, e = 1, . . . , q (3.3)
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Figure 2. Graphical representation of efficient and inefficient frontiers.

λc ≥ 0, c = 1, . . . , n
θl unconstrained. (3.4)

Also the reverse DEA is as follows:

Max h∗wl = θl (3.5)
n∑

c=1

xdcλc ≥ θlxdl, d = 1, . . . , g (3.6)

n∑
c=1

yecλc ≤ yel, e = 1, . . . , q (3.7)

λc ≥ 0, c = 1, . . . , n
θl unconstrained. (3.8)

Thus, θl is the return value of the DMU l; xdl and yel are the inputs and outputs of the decision unit (the DMU
l) and λc is the weight of the dual attributed to all inputs and outputs of the DMU c.

Both the above-mentioned models are solved for the decision-making unit l to obtain h∗wl and h∗bl efficiency
scores. In other words, these two models are solved n times to determine the frontiers. Specifically, the standard
and reverse DEA models create efficient and inefficient frontiers, respectively. Figure 2 shows the efficient and
inefficient frontiers geometrically.

As can be seen, the standard model of DEA employs the best decision-making unit of D, E, F , and A to
build an efficient frontier; and the inverse model of DEA uses the worst-case of DMUs A, B, C, and D to form
an inefficient frontier. The following index is calculated for each decision-making unit to use both frontier’s
information efficiently and aggregate the efficiency scores of the efficient and inefficient DEA models.

hi∗l =

[
h∗bl +

(
1− 1

h∗wl

)]
2

· (3.9)

Note that if the decision-making unit l is on the inefficient frontier (e.g., the DMUs B and C), then h∗wl = 1
and hi∗l = h∗bl

2 ≤
1
2 ; and if it is on both frontiers (e.g., DMUs A and D), then we will have, h∗wl = 1, and h∗bl = 1

then hi∗l = 1
2 . By the way, if the decision-making unit is only on the efficient frontier (i.e., the decision unit
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F and E), then hi∗l will be greater than 0.5, making this decision unit more efficient than the other DMUs on
both frontiers.

3.1. Criteria used in data envelopment analysis

Based on different expert opinion, a set of technical, geographical, and social criteria was used to evaluate
suppliers. In this study, the criteria that were more desirable to rise were considered as output, and on the
other hand, the criteria that are desirable to diminish are considered as input. Ultimately, the options that give
higher scores are better rated and rank first. Considering a minimum threshold value, each option that has a
higher value than threshold value will be selected.

– Financial ability

This criterion is important in this respect, the better the financial ability of the supplier, because it can provide
better performance in financing for different uses, the better conditions it can provide. This parameter will be
considered as an output parameter because it is more desirable to increase it.

– Network development capability

A supplier which has the power to develop new products and is capable of gaining more knowledge in this area
can develop the network and lowering the costs. Therefore, since the rise in this criterion is appropriate, then
this criterion is considered as the output.

– Manpower capacity

In this criterion, the expertise, skills, experience and level of literacy of the employees are considered. The
greater the capacity of the manpower, the better the supplier will be able to supply in various fields. Higher
values of this criterion are more desirable. Hence, this criterion is an output criterion.

– Delivery time

This criterion is important in terms of planning. With more precise planning, we will have less delivery time
that means a reduction in the supply chain deficiencies and a higher flow rate in the network. Smaller values of
this criterion are more desirable, therefore, this criterion is considered as an input.

– Cost of supplying the pieces

Any supplier who can provide the parts at a lower cost will have greater utility. Therefore, this criterion can
also be considered as an input.

4. Problem statement

In this paper, competition between two closed-loop supply chains is investigated under uncertainty. There are
several manufacturers, retailers, and recyclers in the supply chain, where retailers buy products from customers
and transfer them to recyclers. Demands and returns in the supply chain, are price dependent and behave
according to the Stackelberg game in a competitive environment. Price values are also determined by the use
of Nash equations. For further explanation of the problem, consider two closed-loop supply chain networks
with similar and highly stable products. Each supply chain is made up of manufacturers who sell the product
at wholesale prices and retailers that sell the product to customers. In the backward supply chain, retailers
buy used goods from customers and send them to recycling centers. After the products are separated at the
recycling center, the recyclables are returned to the manufacturers. This supply chain system is a closed-loop the
economic and environmental aspects, where the producer has two ways to meet the demand: first, production
of new products and second the production of return products. Reproduced products are not very different
from new products and can be sold in a single market at a shared price. That is, in addition to the forward
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supply chain, the reverse supply chain is also considered, which makes decisions more optimal. In other words,
given the backward supply chain, the economic and environmental aspects are improved. Some supply chain
models do not include pricing in the model, where the price is specified in the model and depends on two
parameters of demand and profit. Furthermore, factors influencing pricing and pricing strategies as the model’s
constraints can be considered. In this study, price is a decision variable that will be determined by the model. In
a competitive market, each agent’s demand depends on his/her price and the competitor’s price. Hence, a linear
demand function will be used because of the following reasons: (1) a linear function is tractable; (2) a linear
function is usually appropriate for a data set as proposed by Green [25] and Kurata et al. [39]; and (3) in the
economics and marketing literature, the commonplace use of a linear form of demand that have an ascending
function of the firm’s given price and a descending function of competing prices (e.g., [16,63,65,69]). The used
linear function is as follows:

Di (pi, pt) = d̃i − β̃1ipi + β̃2ipt; i = 1, 2; t = 3− i. (4.1)

The above relation pi is the retail unit price in the supply chain i and d̃i is the potential product demand in
supply chain i (mathematically: the supply chain demand when both chains offer zero price). The relative value
of d̃i describes comparative superiority in terms of customer access, price control, and service effectiveness. β̃1i

and β̃2i are the elastic coefficients of the firm’s price and the competitor’s price, respectively.
β̃1i shows the impact of supply chain prices on customer purchasing and demand; β̃2i shows the impact of

competing for supply chain goods on supply chain demand. Missing information and lack of sufficient knowledge
make us use the stochastic distribution function to generate uncertain parameter values. Demand for each chain
is more sensitive to the price of the chain itself than to competitors. The volume of second-hand goods collected
depends on the number of retail sales paid to the customer over second-hand goods. The following linear function
indicates that the number of retail transactions that give more money to second-hand goods will be greater.

Ri (rpi, rpt) = r̃i + β̃′1irpi − β̃′2i rpt; i = 1, 2; t = 3− i. (4.2)

Therefore, the issue of closed-loop supply chain design is a competition in which the volume of demand and the
return on goods depend on competitive factors such as retail prices and prices of second-hand goods. Also, the
assumptions of the problem are as follows:

– The cost of production in both chains is equal.
– Recycling centers buy second-hand goods from retailers at the same price.
– All customer’s demands must be met and all second-hand goods must be recycled.
– The problem is modeled for a single-product period.

Before presenting the optimization model, the conceptual mathematical model is as follows:

Maximizing Profit

Production centers revenue + Retailer income – Fixed cost of construction
– Variable cost of transportation – Recycling costs

Constraints

– Meeting the demands.

– Determining the forward flow in the supply chain.

– Determining the backward flow in the supply chain.

– Meeting capacity constraints.

– Fulfilling nonnegative and correct variables constraints.



ECONOMIC PRICING OF COMPLEX PRODUCTS 929

4.1. Formulation

In this sub-section, the optimization model of the concerned problem is given. In doing so, the indices,
parameters and decision variables used in the proposed model are first defined.

Indices
i Index of supply chain index.
n Index of potential locations of production centers.
j Index of suitable centers for retailers.
k Index of potential places for recycling centers.

Parameters
V Vnj Product sales revenue from production center n to retailer center j.
wwjk Sale revenue of recycled products from retailer center j to the recycling center k.
f̃n Fixed cost of building production center n.
c̃k Fixed cost of recycling center k.
b̃j Fixed cost of retail construction j.
tp̃nj Shipping cost per unit from manufacturing center n to retailer center j.
tr̃jk Shipping cost per unit from retailer center j to recycling center k.
tm̃jk Shipping cost per unit of recycled goods from retailer center j to recycling center k.
ϕ̃k The cost of recycling per unit of product at the recycling center k.
cp̃n The cost of recycling per unit of product at production center n.
c̃rj Capacity of retailer center j.
c̃mk The capacity of the recycling center k.

Decision variables
xnj The volume of goods flow between production center n and retailer center j.
ujk The volume of second-hand goods flows between retailer center j and recycling center k.
mkn The volume of recycled goods from recycling center k and production center n.
pi Retail price in supply chain i.
rpi The unit price of supply chain i.

zn =
{

1 if production center n is built
0 otherwise.

yk =
{

1 if recycling center k is built
0 otherwise.

wj =
{

1 if the retail center j is built
0 otherwise.

Now, the proposed optimization model is presented as follows:

Max Z2 =
∑

n

∑
j

V Vnjxnj+
∑

j

∑
k

wwjkujk (4.3)

−
∑

n

f̃nzn−
∑

k

c̃kyk −
∑

j

b̃jwj−
∑

n

∑
j

tp̃njxnj (4.4)

−
∑

j

∑
k

tr̃jkujk−
∑

k

∑
n

tm̃jkmkn−
∑

k

∑
j

ϕ̃jkujk (4.5)

s.t. ∑
n

∑
j

xnj = d2 − β12P2 + β22P1 (4.6)

∑
j

∑
k

ujk = r2 + β12rp2 − β22rp1 (4.7)
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k

ujk ≤
∑

n

xnj ∀j (4.8)∑
j

ujk =
∑

n

mkn ∀k (4.9)

∑
k

mkn ≤
∑

j

xnj ∀n (4.10)

∑
k

mkn ≤ cp̃nzn ∀n (4.11)∑
j

ujk ≤ c̃mkyk ∀k (4.12)

∑
n

xnj ≤ c̃rjwj ∀j (4.13)

xnj , unj ,mnj ≥ 0 ∀n, j, k (4.14)
zn, yk, wj ∈ {0, 1} ∀n, k, j. (4.15)

Constraints (4.3)–(4.5) maximize the objective function of the supply chain profit. The first and second parts
of the objective function represent the revenue of the production centers and the retailer revenue, respectively.
Product centers sell products at retail prices and other parts of the objective function have fixed costs for
construction, variable transportation, and recycling. Constraint (4.6) ensures that customer demand is met.
Constraint (4.7) indicates the need to transfer recycled products from retailers to recycling centers. Constraint
(4.8) refers to the limit on the maximum amount of the products shipped back to retailers, and the necessity to
lower the amount of shipped back products than the production. Constraint (4.9) guarantees the equilibrium
current flow for returned and recycled products. The maximum allowable amount of recycled products is shown
by constraint (4.10). It should be noted that the products recycled from recycling centers must be at least equal
to the quantities produced. Constraints (4.11)–(4.13) indicate capacity constraints in manufacturing centers,
recycling centers and retailers and constraints (4.14) and (4.15) relate to the type of variables.

5. Robust-fuzzy optimization

In some real situations, especially for strategic decisions, there is not enough historical data or it is difficult to
obtain the distribution of the parameters. In these situations, the parameters will face some kind of uncertainty
called epistemic uncertainty, where fuzzy mathematical programming can be used to deal with such uncertainties.

Generally, fuzzy programming methods are divided into two classes, including flexible programming and
possibilistic programming. In the flexible programming the flexibility in the target values of the objective
function and the constraints will be controlled. On the other hand, in possibilistic programming imprecision in
the parameters of the objective and constraint function are considered, being usually modeled based on decision-
making subjective data with possibilistic distributions. Since our model only contains imprecise parameters,
possibilistic programming can be used here.

In order to provide a stable structure for the supply chain and to make decisions that are less sensitive to
changes, it seems necessary to consider changes in parameters over a long period [6, 41, 47]. This leads us to
look for a robust answer that is feasible under various conditions (i.e., feasible robustness) and also makes the
objective function close to the optimal answer (i.e., optimality robustness).

To achieve the benefits of both fuzzy and robust programming, Pishvaei et al. [51] proposed robust possibilistic
planning. This method is based on the robust possibilistic chance-constrained programming and the trapezoidal
possibility distribution, which is a more general form of the triangular form [13, 37, 51], is considered for the
indeterministic parameters. Figure 3 shows this distribution.

It should be noted that in the proposed method, the feasibility and optimality robustness are optimized in
addition to the average value of the possibility objective function.
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Figure 3. Trapezoidal possiblistic distribution for fuzzy parameter of ξ.

In the following, this robust optimization method will be explained. To make it easier to work, consider the
following compact model:

Min w = f̃ z + c̃x (5.1)

Ax ≤ Ũz (5.2)
Bx ≤ 0 (5.3)
Nz = 1 (5.4)
z ∈ {0, 1} , x ≥ 0 & Integer. (5.5)

In the above model, f̃ is the objective function coefficient and corresponds to the binary variable. c̃ is related to
continuous variables and Ũ corresponds to the right coefficients in an uncertain constraint. By the way, matrices
A, B, and N are matrix coefficients. The z and x vectors are binary and continuous variables, respectively. The
above-mentioned model assumes that the vectors f̃ , c̃, and Ũ have epistemic uncertainty. Note that the measure
of necessity, as a conservative fuzzy measure that is very close to certain conditions [51], is used to formulate the
chance constraints of the imprecise parameters. The fuzzy mean value operator (i.e., E[·]) is exploited to write
the possibilistic function’s co-objective. Given the description provided, the Possibilistic chance-constrained
programming (PCCP) is formulated as follows:

Min E[w] = E[f̃ ]z + E[c̃]x (5.6)
Bx ≤ 0 (5.7)

Nec
{
Ax ≤ Ũz

}
≥ α (5.8)

Nz = 1 (5.9)
z ∈ {0, 1} , x ≥ 0 & Integer. (5.10)

Thus, α is the least confidence level of chance constraint. The robust companion of the model is as follows
[21,29,35]:

Min E[w] =
f1 + f2 + f3 + f4

4
z +

c1 + c2 + c3 + c4
4

x (5.11)

Bx ≤ 0 (5.12)
Ax ≤ [αU1 + (1− α)U2]z (5.13)
Nz = 1 (5.14)
z ∈ {0, 1} , x ≥ 0 & Integer. (5.15)
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Based on the above model, the robust possibilistic chance-constrained programming can be formulated as follows:

Min obj = E[w] + γ(wmax − wmin) + δ[αU1 + (1− α)U2 − U1]z (5.16)
Bx ≤ 0 (5.17)
Ax ≤ [αU1 + (1− α)U2]z (5.18)
Nz = 1 (5.19)
z ∈ {0, 1} , x ≥ 0 & Integer 0.5 < α ≤ 1. (5.20)

Similar to the robust possibilistic chance-constrained programming model, the first part of the mean objective
function shows w, which measures the average value of the overall system performance. The second part of the
objective function, i.e., is γ(wmax − wmin), shows the difference between two limit values of w. In other words,
wmax and wmin are obtained as follows:

wmax = f4z + c4x (5.21)
wmin = f1z + c1x. (5.22)

Furthermore, γ denotes the importance of this term compared to other terms of the objective function. In
fact, it is intended to measure the optimality of the answer. The third term of the objective function, i.e.,
δ[αU1 +(1− α)U2−U1], denotes the feasible penalty function that is used to penalize a violation in constraints.
In other words, [αU1+(1− α)U2−U1] represents the difference between the value used in the chance-constrained
and the worst value of the parameter, where δ is the weight of the term in the objective function. Unlike the
possibilistic chance constrained programming model, the confidence interval of chance constraint (i.e., α) is
a decision variable, whose value must be determined by the optimization model. Therefore, this new model
avoids subjective judgment about the value of α and determines its overall optimal value. According to the
given explanation, the objective function of the robust model considers three parts: (1) average performance,
(2) optimality robustness, and (3) feasible consistency. Given the description, the proposed robust model is as
follows:

Max Z2 =
∑

n

∑
j

V Vnjxnj+
∑

j

∑
k

wwjkujk (5.23)

−
∑

n

(
fn1 + fn2 + fn3 + fn4

4

)
zn−

∑
n

(fn4 − fn1) zn (5.24)

−
∑

k

(
ck1 + ck2 + ck3 + ck4

4

)
yk −

∑
k

(ck4 − ck1) yk (5.25)

−
∑

j

(
bj1 + bj2 + bj3 + bj4

4

)
wj−

∑
j

(bj4 − bj1)wj (5.26)

−
∑

n

∑
j

(
tpnj1 + tpnj2 + tpnj3 + tpnj4

4

)
xnj−

∑
j

∑
k

(tpnj4 − tpnj1)xnj (5.27)

−
∑

j

∑
k

(
trjk1 + trjk2 + trjk3 + trjk4

4

)
ujk−

∑
j

∑
k

(trjk4 − trjk1)ujk (5.28)

−
∑

k

∑
n

(
tmjk1 + tmjk2 + tmjk3 + tmjk4

4

)
mkn −

∑
k

∑
n

(tmjk4 − tmjk1)mkn (5.29)

−
∑

k

∑
j

(
ϕjk1 + ϕjk2 + ϕjk3 + ϕjk4

4

)
ujk −

∑
k

∑
j

(ϕjk4 − ϕjk1)ujk (5.30)

− [(ααk) cm1k + (1− ααk) cm2k − cm1k] yk − [(ϕφj) cr1j + (1− ϕϕj) cr2j − cr1j ]wj (5.31)
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− [(ββn) cp1n + (1− ββn) cp2n − cp1n] zn (5.32)
s.t. ∑

n

∑
j

xnj = d2 − β12P2 + β22P1 (5.33)

∑
j

∑
k

ujk = r2 + β12rp2 − β22rp1 (5.34)

∑
k

ujk ≤
∑

n

xnj ∀j (5.35)∑
j

ujk =
∑

n

mkn ∀k (5.36)

∑
k

mkn ≤
∑

j

xnj ∀n (5.37)

∑
k

mkn ≤ [(ββn) cp1n + (1− ββn) cp2n] zn ∀n (5.38)∑
j

ujk ≤ [(ααk) cm1k + (1− ααk) cm2k] yk ∀k (5.39)

∑
n

xnj ≤ [(ϕφj) cr1j + (1− ϕϕj) cr2j ]wj ∀j (5.40)

xnj , unj ,mnj ≥ 0 ∀n, j, k (5.41)
zn, yk, wj ∈ {0, 1} ∀n, k, j. (5.42)

6. Linearization

The model (5.23)–(5.42) is in a nonlinear form. To avoid the computational complexity of the resulting model,
nonlinear expressions are converted to linear form. Any nonlinear expression can be converted to a linear form
by introducing a new variable and adding some constraints. For example, the non-linear expression ααk × yk is
replaced by the new variable αyk, and the following constraints are added to limit its value:

0 ≤ αyk ≤ ααk (6.1)
ααk −MMk(1− yk) ≤ αyk ≤MMkyk (6.2)

where, MMk is a predetermined large number. If yk = 1, the value on the left of equation (6.1) is ααk and
the value on the right will be a large positive number. Now given the upper limit value of the variable αyk

in equation (6.1), it is obvious that we will have αyk = ααk. On the other hand, if yk = 0, the value on the
left of the constraint (6.2) will be equal to a large negative number and the value of the right becomes zero.
Hence, considering the lower limit value of equation (5.34), the value of αyk is zero. Similarly, other nonlinear
components are converted to their linear form as follows:

ϕφjwj = ϕwj (6.3)
0 ≤ ϕwj ≤ ϕφj (6.4)

ϕφj −MMj(1− wj) ≤ ϕwj ≤MMjwj (6.5)
ββnzn = βzn (6.6)

0 ≤ βzn ≤ ββn (6.7)
ββn −MMn (1− zn) ≤ βzn ≤MMnzn. (6.8)
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It should be noted that choosing a very large value for MM increases the computational complexity. The
appropriate value for this parameter goes back to the sample studied and the properties of the problem. In our
case, as the capacities are set between two predefined values, this upper limit is considered as the value of MM.

According to the description given, the linear form of model (5.23)–(5.42) will be as follows:

Max Z2 =
∑

n

∑
j

V Vnjxnj+
∑

j

∑
k

wwjkujk (6.9)

−
∑

n

(
fn1 + fn2 + fn3 + fn4

4

)
zn−

∑
n

(fn4 − fn1) zn (6.10)

−
∑

k

(
ck1 + ck2 + ck3 + ck4

4

)
yk −

∑
k

(ck4 − ck1) yk (6.11)

−
∑

j

(
bj1 + bj2 + bj3 + bj4

4

)
wj−

∑
j

(bj4 − bj1)wj (6.12)

−
∑

n

∑
j

(
tpnj1 + tpnj2 + tpnj3 + tpnj4

4

)
xnj−

∑
j

∑
k

(tpnj4 − tpnj1)xnj (6.13)

−
∑

j

∑
k

(
trjk1 + trjk2 + trjk3 + trjk4

4

)
ujk−

∑
j

∑
k

(trjk4 − trjk1)ujk (6.14)

−
∑

k

∑
n

(
tmjk1 + tmjk2 + tmjk3 + tmjk4

4

)
mkn −

∑
k

∑
n

(tmjk4 − tmjk1)mkn (6.15)

−
∑

k

∑
j

(
ϕjk1 + ϕjk2 + ϕjk3 + ϕjk4

4

)
ujk −

∑
k

∑
j

(ϕjk4 − ϕjk1)ujk (6.16)

− [αykcm1k + cm2kyk − αykcm2k − cm1kyk]− [ϕwjcr1j + cr2jwj − ϕwjcr2j − cr1jwj ] (6.17)
− [βzncp1n + cp2nzn − βzncp2n − cp1nzn] (6.18)

s.t. ∑
n

∑
j

xnj = d2 − β12P2 + β22P1 (6.19)

∑
j

∑
k

ujk = r2 + β12rp2 − β22rp1 (6.20)

∑
k

ujk ≤
∑

n

xnj ∀j (6.21)∑
j

ujk =
∑

n

mkn ∀k (6.22)

∑
k

mkn ≤
∑

j

xnj ∀n (6.23)

∑
k

mkn ≤ βzncp1n − cp2nβzn + zncp2n ∀n (6.24)∑
j

ujk ≤ αykcm1k − cm2kαyk + ykcm2k ∀k (6.25)

∑
n

xnj ≤ ϕwjcr1j − cr2jϕwj + wjcr2j ∀j (6.26)

0 ≤ αyk ≤ ααk (6.27)
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ααk −MMk(1− yk) ≤ αyk ≤MMkyk (6.28)
0 ≤ ϕwj ≤ ϕφj (6.29)
ϕφj −MMj(1− wj) ≤ ϕwj ≤MMjwj (6.30)
xnj , unj ,mnj ≥ 0 ∀n, j, k (6.31)
zn, yk, wj ∈ {0, 1} ∀n, k, j. (6.32)

7. Results of solving models

7.1. Gathering and estimating data

Reliable practical reports and historical data are used to collect and estimate economic and technical data.
The input parameter values of the DEA model, i.e., the inputs and outputs considered in the model are taken
from the organizations and sources, i.e., https://www.saftbatteries.com; https://www.sst-us.com/shop;
https://www.azurspace.com; https://www.surrey.ac.uk and Sharif University of Technology, Amir-Kabir
University, Khajeh-Nasir University, Iran University of Science and Technology, and experts in this field, which
are presented in the Tables 1 and 2 for inputs and outputs of the DEA model.

Table 1. Value of the input criteria for DEA.

DMU Delivery
time

Pieces supply
cost

DMU Delivery
time

Pieces supply
cost

DMU 1 6 4 DMU 16 4 3
DMU 2 1 9 DMU 17 9 5
DMU 3 2 4 DMU 18 7 9
DMU 4 5 3 DMU 19 5 7
DMU 5 9 1 DMU 20 6 1
DMU 6 4 3 DMU 21 4 7
DMU 7 7 8 DMU 22 4 4
DMU 8 2 5 DMU 23 4 5
DMU 9 7 6 DMU 24 5 9
DMU 10 7 1 DMU 25 7 4
DMU 11 1 8 DMU 26 5 5
DMU 12 6 7 DMU 27 4 7
DMU 13 5 1 DMU 28 8 2
DMU 14 6 9 DMU 29 9 1
DMU 15 4 5 DMU 30 8 5

7.2. Applying data envelopment analysis

In this section, we aim to evaluate 30 suppliers. In doing so, based on the criteria considered in Section 3, the
presented standard DEA will be used to evaluate suppliers. Suppliers that earn a minimum score based on the
management perspective are taken into account to be the candidate locations for the optimization model. DEA
models include standard and inverse models that are coded using GAMS software-version 24.1 and a Cplex
solver is used to solve them. The flowchart of the algorithm used to obtain each decision unit’s score is given in
Figure 4. As can be seen, the DEA for decision unit i is first solved and the hb value for that unit is extracted.
Then, the reverse DEA model is also solved for the decision unit i and the value of hw is acquired. Lastly, the
value of hl is also achieved based on the values of hb and hw. These steps are carried out for all DMUs and then
are ranked as suppliers of CoPS.

Table 3 shows the efficiency and inefficiency scores for DMUs (i.e., suppliers) as well as their ranking.

https://www.saftbatteries.com
https://www.sst-us.com/shop
https://www.azurspace.com
https://www.surrey.ac.uk
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Table 2. Output metrics of data analysis criteria.

DMU Financial
ability

Network
development
ability

Labor
force
capacity

DMU Delivery
time

Pieces
supply
cost

Labor
force
capacity

DMU 1 5 6 2 DMU 16 5 1 2
DMU 2 8 9 9 DMU 17 1 3 7
DMU 3 3 8 4 DMU 18 6 2 5
DMU 4 3 2 8 DMU 19 3 8 7
DMU 5 3 9 6 DMU 20 2 2 7
DMU 6 4 7 9 DMU 21 6 4 3
DMU 7 1 5 4 DMU 22 7 4 1
DMU 8 4 5 9 DMU 23 8 6 3
DMU 9 7 4 8 DMU 24 5 2 9
DMU 10 9 5 8 DMU 25 1 6 3
DMU 11 4 2 3 DMU 26 5 3 6
DMU 12 9 4 5 DMU 27 7 3 7
DMU 13 6 7 1 DMU 28 8 6 6
DMU 14 5 1 3 DMU 29 1 9 1
DMU 15 8 2 1 DMU 30 8 5 7

Table 3. Results of DEA for rankings supplier.

DMU h∗bl h∗wl h∗l Rank DMU h∗bl h∗wl h∗l Rank

DMU 1 0.54 1.39 0.41 22 DMU 16 0.71 1.1 0.40 23
DMU 2 1 2.45 0.79 3 DMU 17 0.41 1 0.20 28
DMU 3 1 2.35 0.78 4 DMU 18 0.39 1.29 0.31 25
DMU 4 0.81 1.50 0.57 12 DMU 19 0.59 2.12 0.56 13
DMU 5 1 1.58 0.68 7 DMU 20 0.98 1.14 0.55 14
DMU 6 1 3.83 0.87 1 DMU 21 0.59 1.33 0.42 21
DMU 7 0.28 1 0.142 30 DMU 22 0.90 1.12 0.50 18
DMU 8 1 2.52 0.80 2 DMU 23 0.94 1.94 0.71 6
DMU 9 0.59 1.97 0.54 15 DMU 24 0.531 1.144 0.328 24
DMU 10 1 2.24 0.77 5 DMU 25 0.46 1.09 0.27 27
DMU 11 0.55 1.03 0.29 26 DMU 26 0.56 2.04 0.54 16
DMU 12 0.72 1.99 0.61 9 DMU 27 0.69 2.09 0.61 10
DMU 13 1 1.51 0.67 8 DMU 28 0.75 1.79 0.6 11
DMU 14 0.36 1 0.18 29 DMU 29 1 1 0.5 19
DMU 15 0.94 1 0.47 20 DMU 30 0.60 1.79 0.52 17

According to Table 3, when more informations are available about frontiers, the distinction between DMUs is
increased. The minimum score for the index is considered to be 0.6. More precisely, suppliers with a score above
0.6 are presumed to be as candidate locations. Accordingly, 10 suppliers are selected as candidate locations in
the optimization model. This leads to the selection of more practical locations for suppliers, improving the model
performance. On top of that, the decrease in the number of suppliers will contribute to a sharp reduction in the
computational complexity of the optimization model that is one of the limitations of these kinds of models.
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Figure 4. The algorithm implemented to obtain the ranking of DMUs.
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Table 4. Impact of capacity change on activated facilities.

Changes in the capacity Activated facilities Number of activated facilities
Supplier Retailer Recycling center

0% 1, 2, 3, 4 1, 2, 3 1, 3, 4, 5, 6, 7, 8 14
10% 1, 2, 3, 4 1, 2 1, 3, 5, 6, 7, 8 12
20% 1, 2, 4 1, 2 1, 3, 5, 6, 7, 8 11
30% 1, 2, 4 1, 2 1, 3, 5, 6, 7, 8 11
40% 1, 2, 4 1, 2 1, 3, 5, 6, 7 10
50% 1, 2, 4 1, 2 3, 5, 6, 7, 8 10
60% 1, 2, 4 1, 2 1, 3, 5, 6, 7 10
70% 1, 2, 4 1, 2 1, 3, 5, 6 9
80% 1, 2 1, 2 1, 3, 5, 6 8
90% 1, 2 1, 2 3, 4, 6, 7 8
100% 1, 2 1, 2 3, 5, 6, 7 8
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Figure 5. Objective function variation due to changes in facilities’ capacity.

7.3. Implementing the mathematical model

In this section, the optimization model will be solved and the relevant results will be extracted and discussed.
The model has 2 supply chains, 8 retailers and 5 recycling centers. In addition, according to the presented DEA
model, 10 suppliers are taken into account. The purpose of the proposed model is to simultaneously determine the
strategic and tactical decisions, providing the optimal solution for the model. Likewise, the robust optimization
model is capable of rendering a stable structure under different uncertainties for the model. The robust model
was implemented in GAMS software and Cplex solver was employed to solve it. The proposed model contains
49 equations, 190 continuous variables, and 17 binary variables. In addition, the CPU time for solving the model
is 2.15 s.

Table 4 shows the number of facilities pertaining to capacity changes. As can be seen, as the facility capacity
increases, the supply chain becomes a decentralized chain of supply. Speaking intuitively, with an increase in
the facilities’ capacity, fewer facilities are needed to meet demand in the supply chain.

In Figure 5, the effect of storage capacity on the objective function changes is examined. It is evident that
as capacity enlarges, the chain’s profits also increase. It is also observed that as capacity gets to be larger, the
rate of increase in profit decreases. For example, increasing capacity from 10% to 20% contributes to increased
profits of about 30%, while as the capacity increases from 80% to 90% the rise is only 4%. In this manner, it
can be concluded that an increase in capacity will result in more profits at low capacity.

Figure 6 shows retail price changes with respect to changes in product sale’s revenue from the manufacturer
to retailer, and sale’s revenue of recycled products from retailer to recycling center. As shown in Figure 6, the
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Figure 6. Changes in price due to the objective function’s average.
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Figure 7. Changes in prices of second-hand goods due to the objective function’s average.

retail price is lessened with an increase in the sale’s factor of the product from manufacturer to retailer. The
reason for this decrease in price is that when the sale’s revenue from the manufacturer to the retailer rises, the
model prefers to increase the volume of goods flow between the production center and the retailer. The retail
price should therefore be reduced to increase demand and thereby increase the volume of goods flow between the
production center and the retailer. Also, it is observed that as the sale’s revenue of recycled products from the
retailer to the recycling center ascents, the retail price descends. The rationale behind this is that by increasing
the sale’s revenue of recycled products from the retailer to the recycling center, the model prefers to escalate
the volume of second-hand goods between the retailer and the recycling center. This necessitates an upward
volume of goods’ flow between the production center and the retailer, in which the retail price will diminish.

Figure 7 shows the changes in the price of second-hand goods relative to changes in product sale’s revenue
from manufacturers to retailers, and recycled products’ sale revenue from retailers to the recycling center.
According to this figure, the price of second-hand goods increases as the product’s sales coefficient increases
from manufacturers to retailers. The reason is that by increasing the coefficient of sale’s revenue from the
manufacturer to the retailer, the model prefers to increase the volume of goods’ flow between the production
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Figure 8. Comparison of robust and deterministic model based on the objective function’s
average.

center and the retailer. Increasing this amount enhances the volume of second-hand goods between the retailers
and the recycling center, which in turn expand the unit price of second-hand goods. It is also observed that
with the increase in the sales’ revenue of recycled products from the retailer to the recycling center, the price
of second-hand goods goes up. The reason is that by escalating the sale’s revenue of recycled products from
the retailer to the recycling center, the model tends to increase the volume of second-hand goods between the
retailer and the recycling center. That’s why the unit price of second-hand goods’ will rise.

To evaluate the effectiveness and desirability of the proposed model, the performance of the model is solved
using a deterministic model. In the deterministic model, the value of the deterministic parameters is set to the
mean value. The proposed method for comparing the two models is shown below. As illustrated in Figure 8, both
models (i.e., deterministic and robust) are solved first, and then the variables’ values are obtained. Also, 100
simulations are performed for uncertain parameters. Then, the obtained variables are placed in the simulation
model, which has the following compact form:

Max obj = frealy
∗ + crealx

∗ − υR (7.1)
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Figure 9. Comparison of robust and deterministic model based on the objective function’s average.

Ax∗ +R ≤ caprealy
∗ (7.2)

Bx∗ = d (7.3)
Ex∗ ≤ 0 (7.4)
Gx∗ = 0 (7.5)
R ≥ 0. (7.6)

So, y∗ and x∗ represent the optimal value of the problem variables, respectively. The freal and creal vectors are
random number vectors generated for the objective function coefficients. The matrices A, B, E, and G are the
constraint coefficients matrix. Also, capreal and d are the numbers generated for the capacity and the right-
hand side numbers, respectively. It should be noted that R is a positive variable, if the constraint limitations is
violated. Meanwhile υ is also a penalty when the capacity limitation is violated.

Note that 100 simulation models are solved for each of the robust and deterministic models. Lastly, the mean
and variance of the simulation models are calculated to compare both models.

As presented in Figure 7, the deterministic model performs better as long as the impossibility penalty is less
than 13 000. When the penalty parameter is equal to 13 000, the two models will have the same performance.
For values that are more than 13 000, the performance of the robust model will be improved. The higher the
penalties eventuates in the better the performance of the robust model and also the received profit. For example,
when the penalty parameter is equal to 20 000, the performance of the robust model is about 27% ((4.39E +
10−3.2E+10)/4.93E+10) better than the deterministic one. In the same manner, when the penalty parameter
is equal to 30 000, the performance of the robust model is about 71% ((4.06E + 10− 1.16E + 10)/4.06E + 10)
better than the deterministic model.

Figures 9 and 10 compares the performance of the two models in terms of variance. As can be seen in this
figure, the robust model performs much better than the deterministic one for different fine values. It should
be noted that by increasing the number of the penalty parameter, the robust model performs better than the
determinant one. The advantage of the robust model in terms of standard deviation over the deterministic
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Figure 10. Comparison of robust and deterministic model based on the objective function’s
variance.

model indicates that the solutions of this model are not sensitive to uncertain parameters. More precisely, the
robust model can provide a stable configuration for the desired supply chain.

8. Conclusions

Different areas of CoPS are the most value-added in the economic development and competitiveness of
various countries. Likewise, one of the key requirements for entering this field is selecting the right supplier for
CoPS pricing. The right supplier in addition to reducing costs increases competition and speeds up progress to
achieve this aim. In this sense, a hybrid DEA-mathematical model for economic pricing of CoPS in a competitive
closed-loop supply chain network under uncertainty is presented. Using the DEA method, the first stage assesses
different CoPS suppliers based on a set of economic, technical, and geographical criteria. The advantage of this
evaluation is choosing appropriate suppliers, and reducing complexity of the original model. In the second phase,
the strategic and tactical decisions simultaneously are determined using a robust optimization model, providing
a fully optimal solution to the model. The presented model is capable of providing a stable structure under
different uncertainties.

A case study is used to evaluate the effectiveness and applicability of the proposed method, in which important
managerial results are extracted. The results corroborates that using the presented DEA method will increase
the distinction between the decision options. The mathematical model also endorses that increasing the capacity
of the facility contributes to a decentralized supply chain. In other words, as capacity increases, fewer facilities
will be needed to meet demand in the supply chain. In addition, in accordance with the model, it is found
that the relationship between capacity increase and profit is linear and upward. Moreover, with the increase in
the product sales coefficient of the manufacturer to the retailer and consequently his revenue, the retail price
decreases. It should also be noted that with the growth of sales revenue of recycled products from retailers to
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the recycling center, the unit price of second-hand goods enhances. On top of that, the results envice that the
robust model on average has a more stable performance than the deterministic one.

This study is one of the first studies in the field of complex product optimization. Accordingly, promising
future research avenues can be recommended as follows:

– Considering disruption to suppliers with the aid of a scenario-based mathematical model.
– Taking into account other decision-making techniques like AHP, TOPSIS, etc. for evaluating the suppliers.
– Providing an exact algorithm to solve the proposed model.

Acknowledgements. For example, the Benders decomposition or Lagrangian relaxation algorithm method can be used.
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[17] O. Dedehayir, T. Nokelainen and S.J. Mäkinen, Disruptive innovations in complex product systems industries: a case study.
J. Eng. Technol. Manage. 33 (2014) 174–192.

[18] R. Dekker, M. Fleischmann, K. Inderfurth, L.N. van Wassenhove, Reverse Logistics: Quantitative Models for Closed-Loop
Supply Chains. Springer Science & Business Media (2013).

[19] B. Du and S. Guo, Production planning conflict resolution of complex product system in group manufacturing: a novel hybrid
approach using ant colony optimization and Shapley value. Comput. Ind. Eng. 94 (2016) 158–169.

[20] B. Du, S. Guo, X. Huang, Y. Li and J. Guo, A Pareto supplier selection algorithm for minimum the life cycle cost of complex
product system. Expert Syst. App. 42 (2015) 4253–4264.

[21] D. Dubois and H. Prade, Possibility theory. In: Computational Complexity. Springer, New York (2012) 2240–2252.

[22] R.Z. Farahani, S. Rezapour, T. Drezner and S. Fallah, Competitive supply chain network design: an overview of classifications,
models, solution techniques and applications. Omega 45 (2014) 92–118.

[23] M.J. Farrell, The measurement of productive efficiency. J. R. Stat. Soc. Ser. A (General) 120 (1957) 253–281.

[24] M. Ferguson and B. Toktay, The effect of external competition on recovery strategies. Georgia Institute of Technology College
of Business Working Paper (2004).

[25] S. Green, Principles of Biopsychology Lawrence Erlbaum Associates Ltd. Hove, England (1994).

[26] T.G. Gutowski, S. Sahni, A. Boustani and S.C. Graves, Reply to Comment on “Remanufacturing and Energy Savings”.
Environ. Sci. Technol. 45 (2011) 7604–7604.



944 O. SOLGI ET AL.

[27] D. Hammond and P. Beullens, Closed-loop supply chain network equilibrium under legislation. Eur. J. Oper. Res. 183 (2007)
895–908.

[28] K.L. Hansen and H. Rush, Hotspots in complex product systems: emerging issues in innovation management. Technovation
18 (1998) 555–590.

[29] S. Heilpern, The expected value of a fuzzy number. Fuzzy Sets Syst. 47 (1992) 81–86.

[30] C.-J. Ho, Evaluating the impact of operating environments on MRP system nervousness. Int. J. Prod. Res. 27 (1989)
1115–1135.

[31] M. Hobday, Editor’s Introduction: The Scope of Martin Bell’s Contribution. (2007).

[32] M. Hobday, The project-based organisation: an ideal form for managing complex products and systems? Res. Policy 29 (2000)
871–893.

[33] I.-H. Hong and J.-S. Yeh, Modeling closed-loop supply chains in the electronics industry: a retailer collection application.
Transp. Res. Part E: Logistics Transp. Rev. 48 (2012) 817–829.

[34] C. Hongzhuan, F. Zhigeng, L. Sifeng and M. Shuai, The optimal cost-sharing incentive model of main manufacturer-suppliers
for complex equipment under grey information. Paper presented at the Proceedings of 2013 IEEE International Conference
on Grey systems and Intelligent Services (GSIS) (2013).

[35] M. Inuiguchi and J. Ramık, Possibilistic linear programming: a brief review of fuzzy mathematical programming and a com-
parison with stochastic programming in portfolio selection problem. Fuzzy Sets Syst. 111 (2000) 3–28.

[36] I. Karakayali, H. Emir-Farinas and E. Akcali, An analysis of decentralized collection and processing of end-of-life products.
J. Oper. Manage. 25 (2007) 1161–1183.

[37] S. Khalilpourazari, A. Mirzazadeh, G.-W. Weber and S.H.R. Pasandideh, A robust fuzzy approach for constrained multi-
product economic production quantity with imperfect items and rework process. Optimization 69 (2019) 63–90.

[38] W. Klibi, A. Martel and A. Guitouni, The design of robust value-creating supply chain networks: a critical review. Eur. J.
Oper. Res. 203 (2010) 283–293.

[39] H. Kurata, D.-Q. Yao and J.J. Liu, Pricing policies under direct vs. indirect channel competition and national vs. store brand
competition. Eur. J. Oper. Res. 180 (2007) 262–281.

[40] B. Liu and K. Iwamura. A note on chance constrained programming with fuzzy coefficients. Fuzzy sets and Syst. 100 (1998)
229–233

[41] S.C.H. Leung, S.O.S. Tsang, W.-L. Ng and Y. Wu, A robust optimization model for multi-site production planning problem
in an uncertain environment. Eur. J. Oper. Res. 181 (2007) 224–238.
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