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A NEW CONJUGATE GRADIENT METHOD BASED ON A MODIFIED SECANT CONDITION
WITH ITS APPLICATIONS IN IMAGE PROCESSING

FAHIMEH ABDOLLAHI AND MASOUD FATEMI*

Abstract. We propose an effective conjugate gradient method belonging to the class of Dai-Liao methods for
solving unconstrained optimization problems. We employ a variant of the modified secant condition and introduce
a new conjugate gradient parameter by solving an optimization problem. The optimization problem combines the
well-known features of the linear conjugate gradient method using some penalty functions. This new parameter
takes advantage of function information as well as the gradient information to provide the iterations. Our proposed
method is globally convergent under mild assumptions. We examine the ability of the method for solving some
real-world problems from image processing field. Numerical results show that the proposed method is efficient in
the sense of the PSNR test. We also compare our proposed method with some well-known existing algorithms using
a collection of CUTETr problems to show its efficiency.
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1. INTRODUCTION

Consider the unconstrained optimization problem

min f(x),

where f: R" — R is a smooth function. Conjugate gradient algorithm is a powerful iterative method for solving this
problem due to its strong local and global convergence properties, and also its low memory requirements. The algorithm
generates an iterative sequence

X1 = X + Ody, (1.1)

where o > 0 is a step length calculated by some (inexact) line search procedure, like the strong (standard) Wolfe condi-
tions as follows:

f O+ agdy) < f(x) +crogdy gi, and (1.2)
| <

|l gii1| < —c2df g (d] g1 > c2dl gi) (1.3)
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where 0 < ¢] < ¢z < 1 are arbitrary constants and g := V f(x). The search direction dy is computed by

diy1 = — kvt + Brdr (do = —go), (1.4)

recursively. The conjugate gradient parameter, denoted by By, is one of the most important parameters in this method. This
parameter should be defined carefully since different choices of B leads to the different conjugate gradient algorithms.

As we know, standard conjugate gradient method for solving strictly convex quadratic problems satisfies both the
conjugacy condition

dis k=0, (1.5)
where y; := gr+1 — &k, and the orthogonality property
dl'gr =0, i=0,1,... k—1. (1.6)

Some famous classical choices of fB; can be found in Hestenes and Stiefel (HS) [29], Fletcher and Reeves (FR) [23], Polak
and Ribiere and Polyak (PRP) [35], Fletcher (CD) [22], Liu and Storey (LS) [32], and Dai and Yuan (DY) [17]. Some
famous of them are

T T
1S _ 8k+1Yk R _ lgrs111? PRP _ 8k+1Yk
b
df i llgell* lgxl*”
T
BCP — lgks111” Ls _ SketYk g BPY — lgr+1]>
- —dlg,’ ko —dT ko dT ’
« 8k k 8k & Yk
where || - || denotes the Euclidean norm.

The outcomes of the numerical and theoretical studies, reported by Andrei [2], show that some methods like HS, PRP,
and LS (that have the term ng L1k in the numerator) have a better practical performance than the methods FR, CD, and DY
(that have the term ||g.1|| in the numerator). In contrast, the second group has stronger convergence properties. Nowa-
days, researchers are interested in designing and improving f so that the corresponding methods have better numerical
performance and good theoretical convergence properties.

Andrei [2] classified conjugate gradient algorithms into 6 groups: classical, hybrid, modified, scaled, parameterized and
accelerated; he also introduced 40 different types of these parameters, and thus, 40 different types of conjugate gradient
algorithms. See, e.g., [2,3,6,20,27,30].

Dai and Liao introduced a class of these parameters in [16] as

T T
8k 1Yk — T8y 15k

Bt = S

yldy
where T > 0 is some constants and sy := x4 — x¢. They showed that search directions generated by the method satisfy a
variant of the conjugacy condition as dkT Yk = —Tg,{Hsk, but the sufficient descent condition
T 2
di 8 < —cllgll”, (1.7)

where ¢ > 0 is a constant, was not necessarily established. It should be noted that an appropriate choices of 7 can lead
to excellent results. Unfortunately, there are not any theoretically optimal values for this parameter working well for any
problem instances. Many efforts have been made to improve this parameter, e.g., Babaie-Kafaki and Ghanbari [9, 10],
Anderei [7], Yabe and Takano [39], and Dong et al. [20].

Y 2 .
One of the most efficient values for T was presented by Hager and Zhang [25] as T = 2”%—"“ leading to
Sk

T T
Hz _ Skt+1Yk yill® gxs 16k
¢ df i dlyi i d
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The search direction generated by ﬁ,flz satisfies the sufficient descent condition (1.7) with ¢ = %, independent of the
line search procedure. Numerical and theoretical results presented in [2,6,25-27] show that it is one of the most efficient
methods.

Optimization problems have appeared in many research fields, such as image processing. Image processing is an emerg-
ing scientific discipline that has made significant advances in recent years because of its important role in various fields
such as photography, medicine, astronomy, industry, and military. Meanwhile, image blur is one of the most common prob-
lems in this field. It is caused by different reasons, such as camera and object motion, long exposure times, atmospheric
distortions motion, optical aberrations, environmental effects, etc. that, in many cases, is unavoidable [14, 15, 36, 38].
Therefore, the image deblurring problem retrieving an image from a blurred/noisy observation is the intention.

The most commonly used model for the damaged images due to blurring and noise is the following linear model:

y=Ax+n xeX, (1.8)

which purpose is to retrieve the original image x from y destroyed by some blurring matrices A and a random noise 7, see
[14,15]. The matrix A can be obtained by a certain Point Spread Function (PSF) [14], and there is a PSF corresponding
to each kind of blurring [28]. As we know, image deblurring is a large-scale inverse problem that is very ill-condition and
hard to solve.

There are various ways to solve this problem [36], for example, SVD approach, Neural network approach, Wiener
filtering, Blind deconvolution approach, and iterative algorithms like Richardson—Lucy Algorithm, Van Cittert Algorithm,
Landweber Algorithm, and Poisson Map Algorithm.

A well-known approach to model (1.8) is the regularization approach [14]. In this approach, a regularization term is
added to the objective function, and the following general model is considered

N )
%QEHAX—sz‘FMP(X), (1.9)

where ¢ and A are regularization term and parameter, respectively. The purpose of regularization is to overcome the diffi-
culties that occur in solving (1.8). These difficulties are basically a consequence of the problem’s ill-posed nature, and the
regularization approach provides a stable solution using some prior knowledge about it. Some examples of regularization
terms are

— Tikhonov Regularization: This estimate is defined as the solution of (1.9) with ¢ (x) = {|x[3.

— Maximum Entropy Regularization: This estimate is defined as the solution of (1.9) with ¢ (x) = ¥ | x;log(x;).

— Total Variation Regularization: This estimate is defined as the solution of (1.9) with ¢(x) = ||Dx||;, where D is a
discrete approximation to the gradient operator.

Norm p Regularization: This estimate is defined as the solution of (1.9) with ¢ (x) = ||x|| ,, specially for 0 < p < 1.
Smooth Regularization: This estimate is defined as the solution of (1.9) with for example ¢ (x) = ¥ log(1+x?) or

2
(P(X) = f'v=1 1_):)"_2'

Each term has its advantages and disadvantages, and should be used with caution.
In this paper we want to propound a new conjugate gradient method with global convergent and efficient numerical
results. The main features of the paper are:

— Our proposed conjugate gradient method, in addition to gradient values, employees the current function information
during the iterations. It also takes both advantages of the modified secant condition proposed by Zhang et al. [41]
and Zhang and Xu [40], and the method presented in [21] to bring out an efficient conjugate gradient parameter. Our
numerical results show that the resulting method is more efficient in the sense of Dolan—-Moré performance profile.
We make extensive numerical comparisons and consider different choices of the main parameters (about 20) and show
that our proposed method has a better performance than four recent efficient algorithms in the literature.

— Nowadays, image processing is an active field. Therefore, a slight improvement in the performance of algorithms in
this field can have a significant impact on their time efficiency, especially when we are dealing with large dimensions.
Thus, to show the efficiency of the method in practice, we examine our algorithm’s mathematical performance for
solving one of the most appealing image processing problems and report its features and benefits.
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The organization of the paper is as follows.

In Section 2, we provide a brief review of the materials required for the other sections. The details of our new method are
demonstrated in Section 3. In Sections 4 and 5, the new algorithm is presented, and its global convergence is investigated.
In Section 6, we present the numerical behaviour of the method.

2. A BRIEF REVIEW
Nonlinear conjugate gradient methods usually use the secant condition

By 15k = yi, 2.1)

where By | is an approximation of Gy | := V2 f(x;, 1), to benefit from the superlinear convergence properties. Note that,
in this condition, the gradient information are only being used. Many efforts have been made by researchers to improve
(2.1). Zhang et al. [41] and Zhang and Xu [40] introduced the modified secant condition

A 3
Bi1sk =3k, Ik =Yk + Uk, (2.2)
Sk Uy

where

Ok = 6(fx — fir) +3(8k+ 8x+1)" sk, (2.3)

and uy is a suitable vector with s,{ ui # 0. They provided this condition by using the Taylor expansion

1 1
fi = fert — 8hmise+ ESZGk-Hsk - ESJZ(TkHSk)SkﬂL O (||s]|*), and

1
Sk 8k = St g1 — 5t G156 + ESIZ(TkHSk)Sk +0 (|sell*),

where G := V2 Sf(xx) and iy € R"™ ™" is the tensor of f in x;, 1. By removing the tensor term in the both expressions,
they obtained

st G5k = (81 — 8k) sk +6(fe — fir1) +3(gk + g1) s+ O([|sie]| ) -

The modified secant condition (2.2) is obtained by considering By as an approximation of Gy . It is shown in [31]
that for a convex quadratic function by using the exact line search, we have 8 = 0 in (2.3) and so the modified secant
condition is equivalent to the standard secant condition (2.1). Some well-known choices of u; satisfying s,{uk #0 are
U = Sk, U = Yk and Uup = Vf(xk).

In the above modified secant condition, in addition to gradient vectors, function values are as well as used. It is proved
in [40] that J is a better approximation of V2 f(xs)sx than y;. In fact, if ||s;| is sufficiently small,

S/{ [Gk+1sk —ﬁk] =0 (HS/(H4) y and
st [Girrsk—yi] = O ([Isel)

for any u; with s,{uk # 0. It is known that using a modified secant condition can lead to designing new methods with
better performance in both theoretical and numerical aspects. Many articles, including Andrei [4, 5], Babaie-Kafaki [8],
Babaie-Kafaki and Mahdavi-Amiri [11], Babaie-Kafaki ef al. [12,13], Yabe and Takano [39], Dong et al. [19,20], Li et al.
[31], Amini and Gorbani [1], Narushima and Yabe [34], and Wei et al. [37], have applied the modified secant equation
(2.2) to design and develop new conjugate gradient methods.

Fatemi [21] introduced a new efficient conjugate gradient method which was globally convergent. The method, which
was founded on an optimization problem, showed remarkable performance. To provide an efficient conjugate gradient
algorithm, the author introduced an optimization problem by combining three conditions (1.5)—(1.7) as follows

min [l 1disr +M ((ehas0)*+ (@v)) | (2.4)
Bx
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where M is a penalty parameter. To solve (2.4), g;1» is replaced by its first order approximation using Taylor series
expansion as gyio ~ tBy1di+1 + gk+1, where ¢t > 0 is an estimation of | [21]. By solving this problem and using the
secant condition (2.1), the author introduced

[ — 81k Jry/{gkﬂ_ toSigkt1
DM +1%) (yid)*  yide  (1+12) yldy

This method, with a proper choice of parameters, is globally convergent. Moreover, numerical comparisons reported by
the author show that the method is efficient in the sense of Dolan—-Moré performance profile [18].

3. A NEW FORMULA FOR f3;
Yabe and Takano in [39] introduced an extension of the modified secant equation (2.2) as
Ok
2k = Yk + Pk = Uk; 3.1)
Sk Uy
where p; > 0 is an arbitrary scalar. Consider the modified secant condition

Bii15k = 2, (3.2)

if pr =0 or 1, (3.2) converts to (2.1) and (2.2), respectively.
The following equation was introduced in [21] by solving (2.4)
B —gh ., di +2M1* (] Bii18k+1) (51 By 1d)
2M22 (sTBiady)” +2M (3T dy)’
n —2Mt (s{ grr1) (¢ Beridi) +2M (yf i) (Vi di)

Br

- 3 2 . (3.3)
2M1t? (Sk Bk+1dk) +2M (yk dk)
It converts to the Dai—Liao parameter, when M gose to infinity.
The good features of the modified secant condition (3.2) motivate us to use it in (3.3) and obtain
g = Skt 2ME (Ggen) (i) | ~2 (signrn) (Gede) +2 (kgnn) (i) 3.4)

2Me? (1dy) +2M (T dy)’ 22 (Fd)’ +2 (Yl dy)

Now, we face with a big problem which is introducing a suitable penalty parameter M. It should have the following
properties.

— The search direction dy| must satisfy the sufficient descent condition (1.7).
— It should tend to infinity during the iterations.

In the following lemma, we propose such a suitable penalty parameter.

Lemma 3.1. Consider the conjugate gradient method (1.1) and (1.4) with the strong Wolfe line search (1.2) and (1.3)

and By in (3.4). Then, for some positive scalars 'y, Y, satisfying 1 + 1 < 1, and py selected in such a way that 0 < py <
1—

WCEZQ)’ we have

A8 < —(1=1 —»)llge |, (3.5)

where M
7 (Ve k)

1-1) < ——F—,
=0 < Tl

(3.6)
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and

252 (Fsi) + O s0)?) 3.7)
I @) 2+ O s — A (s il |

where A < 1 is an arbitrary scalar.

Proof. The proof is similar to Lemma 1 in [21]. We can use the mathematical induction to prove it.

Clearly, we have from (1.4) that
dg g0 = —llgoll* < —(1 =71 — ) llgoll*

Assume
dlg <—(1—1—p)lel*
First, we evaluate the quantity z,fsk. We have by (1.2), (1.3), (2.3), and (3.1) that

24 Sk = Vi Sk + Pr6k
= yi 5+ 6P (fic — firn) + 3P+ ger1) sk
> (143p)gf 156+ (3pc — 1)gf sc — 6prcigf s
= (1+3p)gis 15k + (3pk — 6per — 1)gf s
> (143pp)cagi si+ (3px — 6peet — 1)gf sk
(3 +cz—201)+(62—1))gksk.

Now, using

gh sk = ougr di <0,

and noting that 0 < pg < #226) there exists a constant m; > 0 such that

2 sk = —ma(gf sk) >0, (3.8)
and consequently,
2 d, > 0. (3.9)
Now, we show that (3.5) holds. Using (1.4) and (3.4), we have

(Szgkﬂ)z
oM [tz (szsk (vF sk 2}

df 181 = — llgket I + Bed{ gt = —|gi1 |1 —

[ (1) (i) + OFawnr) OFs)] (sTgeer) 1 (Fsi) (sT@unn)”
2 (L) + O0F s0)” 2 (L) + (0Fs0)”

+
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Since A, < 1, we have that
2
(51{ gk+1)
2 2
M {tz (eFse)”"+ (vF k) }

N (12 (zf i) (zf gre1) + (f ) (0F grevr) — A (2 se) (s gr1)] (5F garn)
2 (e si)* + (o si)?

(57 gics1)” (] st)
2 (2l si)* + (vF sx)

2
5 < = llgk1ll”—

di gk £

(1—1) (21 sx) (S/{gkﬂ)z

2 ()" + (6T s0)”

(s,fgkﬂ )2
M {tz (z,{sk)2 + (y,{sk)z}
(2 (2 si) 2+ O0F s0) e — A (2 s) si] " g (57 g
2 (zfs)" + (0F )

(1—1) (g x) (Slzngrl)Z.

2 (f'50)* + OF'se)’

= d1<T+1gk+1 < — g l* -

Now, using the inequality ab < ﬁaz + %bz, where a, b and [ are positive scalars,

(5£8k+1)2 n (1—1) (2t sx) (S;fgk+1)2

diy gk < — llgkl* —
+ oM |2 (fse)” + ()] 2 (els)”+ O )

2
l . 2 (57 8x+1)
+7(12sz zi+ (si) v — M (zise) se] 8 )+7 ’
3 (st Oesyem A Ges) s in ) +7 | S s
S/ B
where [ = AT+ 0lw) and so

(1-1) (eFse) (sF gesn)’
2 (e si)* + (O se)

M T 2
+ [tz (zd k) 2+ (Ve se) e — Ae (zdse) 5] &)
2 (t2 (z,(Tsk)2 + (ykTsk)2> ( )

Finally, using Cauchy—Schwartz inequality implies that

dkT+1gk+1 < —lgesl*+

(1—1) (2 sk) |Isel|® M
dl g1 <—|[1— - 162 (2 i) 2+ (0 i) v — Ae (2 sic) siell*| gt 1%
e 12 (Z,{sk)z + (y,{sk)2 2 [ﬂ (z,fsk)2 + (vFsk) 2} ¢ ¢ ‘

The proof is completed using (3.6), (3.7), and (3.9). O

In order to accelerate the growth rate of M, that is our second goal, we minimize the denominator of (3.7) and have

12 (szk)z + (yTsk)2
A =min{ 1, —% k : 3.10)
e =mi { (s2) Tl (
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Remark 3.2. Unlike the Newton method which o = 1 provides a quadratic convergence rate, in conjugate gradient
algorithms a suitable step size is not predictable and therefore the following process is suggested.

t =min{#, T} (3.11)
where
o if (1-ag) < %
" ‘ — AR (){sk)z 0.W.
EIE
and T > 0 is a large arbitrary constant.
Finally, by replacing (3.7) in (3.4), we have
poo _OTa) OFd)  refs) () P (Cs) ()
2 () + (i)™ 2 (i)™ + ()™ 22 (i)™ + (v i)
2z se) 2+ (0 si) v — M (i) sl 81k . 3.12)
aples)’+0ls)?] 2 GEld) +0fd)’

4. GLOBAL CONVERGENCE FOR STRONGLY CONVEX FUNCTIONS

We are now in a position where we can sum up the contents of the previous sections to introduce our new conjugate

gradient algorithm.

Algorithm 4.1. Modified Secant Conjugate Gradient Algorithm (MSCG).

Step 1. Choose a starting point xo € R” and a suitable value for the positive parameters py, 7,0 < c; < ¢z < 1 and
%1 + 7 < 1. Compute go = V f(xo), set dyp = —go and k = 0.

Step 2. Check the stopping condition if it is established, then stop; else go to step 3.

Step 3. Compute the step length oy using strong Wolfe condition (1.2) and (1.3).

Step 4. Compute xi11 = X + Qdis fir1 = f(Xut1)s 8kr1 = Vo (kr1)s Sk = X1 — Xk and Y = gey1 — k-

Step 5. Select a desirable value of u; € R" such that s,fuk # 0, and then compute 6; and z; according to (2.3) and
(3.1), respectively.

Step 6. Compute A and 7 by (3.10) and (3.11).

Step 7. Compute the conjugate gradient parameter B using (3.12).

Step 8. Compute the search direction di 1 = —grr1 + Brd.

Step 9. Setk =k+ 1 and go to step 2.

Our final task is the investigation of global convergence properties of Algorithm 4.1 (MSCG).

Theorem 4.2. Suppose that f is a strongly convex and bounded below function and the gradient function g(x) is Lipschitz
continuous on the level set

V={xeR": f(x) < f(xo)},

which is assumed to be bounded. In other words, there exists L > 0 such that, for x and y belonging to 'V,

lg(x) =gl < Lljx—y- (4.1)

Furthermore, the generated sequence of iterations, x, is bounded.

Consider any descent methods of the form (1.1) where oy is determined by strong Wolfe line search, then we have that

o (sfdi)’

)y

k=1 HdkH2
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Proof. See [17]. O
Now using the above theorem and Theorem 3 in [21], we prove the global convergence of the new method for strong
convex functions.

Theorem 4.3. Consider the method presented by Algorithm 4.1, then, under the conditions mentioned in Theorem 4.2 we
have that

Jim [lxl| =0
Proof. Since f(x) is strongly convex, so
w1 < (g(x) =) (x =), (4.2)

where 1 > 0 is a constant. Using (4.2), we have that woy||d||> < Vi T dy.. Moreover, the Cauchy-Schwartz inequality, and
the inequalities (5.13) and (5.20) presented in [39] imply that there are m > 0 and L’ > 0 such that:

llzxll < L'||sk||, and

4.3)
zisk = mlsi)*.
We show that the search direction d | is bounded above. In fact
< ill? g 1 ltill Jel - lsell - Nzl - gt ll - el 22 - Hlzell® - llget - 1l
Bl
2(Fd) + )" 2 () + () 2 (Fdi)” + (i)
+\|12 (zicsk) 2+ Ok 1) e — M (2 se) sll® — Nlguall - lldell (4.4)
2 2 .
aplREs)’+ 07| 2l + Ol d)
Clearly,
2 2 2
2 (i d)” + (vide)” =17 (zf di) (4.5)
and ) ) 5
1 (zhdi)” + (i de)” = (ki)™ (4.6)
Now from (4.4) to (4.6), and the triangle inequality, we have
Bl < [l - Nl Ngretll [0~ lzell - lisill - el - llgwrnll , Nzl® - Nl - gt
(v di)’? (v di)’? (e i)’
2
[l - llgk+1 200112 2 (adsi) sl 200 si)llzell - [y
+ > o | el el ™+ =+ T
ap (1 (f ) + (o)) (v sx) %S

+ 2|zl - Isell +

2 (g k) el - sl |
Vi sk

Therefore,

2.\\d t- K d 2. \d
Bi| < vill” - Nkl - lgaall | 1] lzall - [[swll - lldill - ||gk+1||+||ZkH il - 1l gxr

=
(T d)* T di)* (Fdi)*
lzall® - letell - llgxsall | Iyell- lill - Ngrsall  Nzall® - lsill* - el - lgara
ap (of i)’ an (v d)’ 40T (0] de)”
el - Nzl - lsell - lldall - llgasa ] n [[2kl] - [Isll - llill - [l gk+1l
20 (i) (0F i)’ 29 (5] i)’

||ZkH il - sl - 1l - [l gest
272(yk5k)( dk)

)
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and then, we have from (3.11), (4.1), (4.2) and (4.3) that

L2 Ylsel® - il - llgrenll | T L lsell® - il - Nl gest |

= Bl <
2o ||di* 2o ||di1*
L2 lsell- Nl - g ||, L7 llsill - el - llgrs1 |
m> g ||y |[* Ao o |4
L [Isell® - leliell - Nlgrenll L2 lsicll® - Nl - [| gt ||
Ay 2 o |y |+ dpptor - [lsill* - lldel*
2L lsel|* - lldli || - l g ||, L'~ lsiell* - lldell - Nl gesr |
2yamp? o [si||? - || di|* 2purof - ||dil*
LL - |Isg]|* - Ie]l - llgrs |
230 |Isl|? - il
Finally, we have that
L2 TL/ Ll2 L/2 L2 Ll2
|l3k§<+++ + +
wrooproom? o dpm? - Appt - dppt
L’r L L
+ S+ S+ 3) ||8k+1||.
2pmu? - 2pu’ 2pu |
Now, using the above results, we have
di+1 1l < [l gkl + [ Brlll |
- (L2 N TL/ +L/2 N L/Z N L2 N L/2
—\u? o our o om? o 4pm? dpu? o 4put @.7)
N L2r N r N LL | |
2pmp? " 2pp? " 2yt ) BT
and so the proof is completed, using (3.5), (4.7), and Theorem 4.2. (Il

5. GLOBAL CONVERGENCE FOR GENERAL FUNCTIONS

In this section, we use the results obtained in Section 4 of [21], and introduce the following modification of B;:

BY = max (B, xx) (5.1)

where in:
— Xk is real valued function
— |xx|lldk]| is bounded above,

2
— s < Elgetl for some € < 1and 8hy1di > 0.
81k

We prove the global convergence of (MSCGQG) for general functions in follow.

Theorem 5.1. Assume the method (1.1) and (1.4) with ﬁ,ﬁv defined in (5.1), then for a general function f with the strong

Wolfe line search conditions (1.2) and (1.3) and 0 < p; < min{ 1=,

— T . .
3Tre-20) , MYy} sk}, where m is a positive constant, we
have

lilzninf||gk|| =0.
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Proof. Following the same steps of the proof of Lemma 4 in [21] and Lemma 1, we have

di g1 < —max (1—&,1— 1 —p) |lgert > (5.2)

If for a subsequence k;, we have ﬁ,i\/' = Xk;» then we reach to the same contradiction as in Theorem 6 in [21] and proof
is completed. '

If BN = By, for sufficiently large k, we have a bound for f3 as follow.

Firstly, from (1.3) and (3.5), we have

df yi = d{ grr1 —d{ gk = (c2—1)d{ g > 0, (5.3)
Assuming there exist 17; > 0 such that ||gi|| > 11, and using (5.2) and (5.3),
dlyi = (1—cy)max(1—¢&,1 -y — p)ni, (5.4)
and so
ngf];'l' < max (16262,1) , (5.5)

see [25]. On the other hand (1.7) and (3.8) imply
dize = —my (d] gx) = mic|\gel|* = mieni. (5.6)
Secondly, we show that there exists a constant R > 0 such that

1Bel < R||sil|- (5.7)
Using (3.12), (4.5) and (4.6) we have

1Bi| < |)’k8k+l||kak| I ‘t‘|skgk+l||zkdk| f2|Zng+1HZde|

(OF de) (OF i) 2 (e di)?
. 8k <|r2 s zl? | 1 OFso)wl? | | (fse) sell?
ap (P (@da)+0fa)’) \ 2Es)° Ofs)” Ofs)’
4_2||f2 (zF s) zll (y;ZS1<)yk||+2||f2 (stk)ZkHH(ZkSk)SkH 2|| (v si) eIl (Zzsk)sk||>
2 (ef si) 2 (ef si)’ (O se)®
S Bl < |)’;Z§2+1| |l|\skgk+1||Z dy| |ngz+1|
Vi (ykdk) Sk

T d d T 2 2 T d
(HZk”zmeﬂ | e ] o) Wl Jekird]
(1 i) Ofd)® (s (i di)
2|zl llyell gk 164l lgirdil 2 (zgse) Iviellllsll g dkl
T X 7+ T X 3
(@d) — (vidi) (v dy) Vi Sk (vf di)

2 T
1 laisel  Iell® l8icadil | lsell®  (zisi)” 18kl
= Bl < = { Ivf g1 | + |17 grs1 | X + X x
Vi di k ¢ OFs)  4n i di % (s) 20 yldy

_|_

+ 2 e llsll

n llzk [l sl o lgh1del  lyillllsell y A y |8 19kl
T T T
2y Vi dk 2y Ofse)  yida
1 | |g il lzell - lvell 18k
" 1 gt |+ Bl k1l llzell - llyell « B )
21 di 4n 21 dy 2y Vi dk
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Now using mean value theorem

=6(fi— fir1) + 3 (Vi + VSier) s

=6V (M) (o —xis1) +3 (Ve + Vi) sk

= =6V () sk +3(VSfi+ Vi) s

=3(Vfi— V) +VSirr — V) s,
where 1 = @x; + (1 — @)x;1; and ® € (0,1). Thus, we have using (4.1) that

10k < 3 (Lxx — Mell + Lilxxer — 1wl [lsell

=3 (L(1 — @)l]xx = xpt1[| + Lo xg 11 — xic|]) [|se | (5.8)
= 3L|s >
Now using (3.1) and (5.8), we have
T ykSk+Pk Sk“k
Gk ‘1+p"" <1+ |m8| < 1+ 3Lm|sel, (5.9)
Yk Sk yksk
and
Gk 2
|zl = wﬁmmuk < el +m | Ok [l || < Lilsicll + 3Lm||se]|[Jue ]|,
3

where m is an appropriate upper bound obtained by considering different values of u; as s and yi.
As a consequence, there exist a constant L' > 0 such that

k]l < L'flsk- (5.10)

Thus, using (3.11), (4.1), (5.9), (5.10), Cauchy—Schwartz inequality and the assumption that 7}, is an upper bound on
llgk||, we have

L2||Sk||2 |8 14|
4y yidy

Bl < < (Ln2||sk|| + T2 (14 3Lml|se||*) llsell +

d Ll 2 T d
+ HskH % (1+3Lm||sk||2)2>< |gk-sT-1 k| n ||Sk|| % |gk4T—1 il
¢} Vi i 2y Vi i
Ll .1 G-
S
LN (1 +3Lm||sk||2) X 1‘;7]’(
2y ykdk

L] < |8k 1] JFLL’IISkII2 " 8k1dkl )
4n yldy 2p yldi

1
+ = Td <L/TI2||S H+

We can see from (5.4)—(5.6), (5.11), and Theorem 4.2 that there exist a constant R > 0 such that (5.7) holds.
Finally, following the steps of the proof of Theorem 3.2 in [25], the proof is completed. (]

6. NUMERICAL EXPERIMENT AND COMPARISONS

In this section, we consider the iterative scheme (1.1) and (1.4) with five different values of S:

— ﬁ,?]ew: The method presented in Algorithm 4.1 (MSCG) with parameter p = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
09, 1.



— BF: The method introduced by Fatemi in [21].
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TABLE 1. Test problems collection.
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Function n Function n Function n
AKIVA 2 DIXMAANH 3000 QUARTC 5000
ALLINITU 4 DJTL 2 ROSENBR 2
ARGLBLE 200 DQDRTIC 5000 S308 2
ARGLCLE 200 ECKERLE4LS 3 SBRYBND 5000
ARGLINA 200 EG2 1000 SCHMVETT 5000
ARGLINB 200 ENSOLS 9 SENSORS 100
ARGLINC 200 EXTROSNB 1000 SINEVAL 2
ARWHEAD 5000 FMINSURF 5625 SISSER 2
BARD 3 GENROSE 500 SPARSQUR 10000
BEALE 2 HAIRY 2 SPMSRTLS 4999
BIGGS6 6 HILBERTA 2 SROSENBR 5000
BOX3 3 HILBERTB 10 TOINTGOR 50
BROWNAL 200 HUMPS 2 TOINTGSS 5000
BROYDN3DLS 10 INTEQNELS 12 TOINTQOR 50
BRYBND 500 JENSMP 2 TQUARTIC 5000
CHAINWOO 4000 KOWOSB 4 VARDIM 200
CHNROSNB 50 KOWOSBNE 4 VAREIGVL 50
CHNRSNBM 50 LIARWHD 5000 WOODS 4000
COSINE 10000 LOGHAIRY 2 YFITU 3
DANIWOODLS 2 LSCILS 3 ZANGWIL2 2
DANWOODLS 2 MANCINO 100

DENSCHA 2 MARATOSB 2

DENSCHB 2 MGHO09LS 4

DIXMAANA 3000 MGHI0LS 3

DIXMAANB 3000 MODBEALE 2000

DIXMAANC 3000 MOREBV 5000

DIXMAAND 3000 NONDIA 5000

DIXMAANE 3000 PENALTY1 1000

DIXMAANF 3000 POWELLSG 5000

DIXMAANG 3000 POWER 10000

— BT: The method introduced by Yabe and Takano in [39] with (p =0.5,#=0.3) and (p =0.7,t =0.5).

— BBGL: The parameter (3.21) introduced by Babaie-kafaki ef al. [12] with t = 0.05005.
& P y
- ﬁf’Gz: The parameter (3.53) introduced by Babaie-kafaki et al. [12] with ¢ = 0.05010.

It should be noted that all these parameters belong to the Dai—Liao family and all of them use the modified secant

condition, except f{ .
The following points were taken into account in the implementation of the algorithms.

or the number of function evaluations are exceeded 3000.
We choose 7 = 0.01 and %5 = 0.98 in our numerical tests.

19 (x0) | < max (1075,1072)9 £ (1) |- )

We use the CG-DESCENT line search procedure with initial parameters as reported in [26].
We consider the two different choices of uy; namely sz and yi.
The algorithms are terminated if
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(a) (b)

©
FIGURE 1. Number of function evaluations performance profile. (a) p = 0.7, uy = s¢. (b) p = 0.8,

uy = sg. (¢) p = 0.8, ux = yy.

() (b)

FIGURE 2. Number of gradient evaluations performance profile. (a) p = 0.7, uy = s. (b) p = 0.8,
Uy = . (¢) p= 0.8, u; = Vk-

.........................

(b) ()

FIGURE 3. CPU time performance profile. (a) p = 0.7, uy = s. (b) p = 0.8, ux = s¢. (¢) p = 0.8, ux = yi.

To examine and compare the algorithm’s efficiency, we considered 80 problems of CUTEr collection [24] with different
dimensions, as presented in Table 1. Since conjugate gradient methods effectively solve large scale problems, we tried to
list problems with large dimensions. Moreover, we have also selected some problems with low dimensions, because we
found that they were hard to solve for some algorithms due to their ill-condition nature.

The tests were done on a 2.4 Intel Core(TM) 17-5500U processor computer with 8 GB of RAM with Linux operating
system on MATLAB R2015a programming environment.
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FIGURE 4. The 250 x 250 original and blurred/noisy Brain image.

TABLE 2. PSNR results of Tikhonov regularization.

Conjugate gradient parameters  Brain’s image = Cameraman’s image

BNV p=07,u=s 29.7078 24.0688
BNeW o =08u=s 29.7144 24.0658
ﬁlf"e& p=08u=y 29.7214 24.0377
ﬁ,? 28.9451 24.031
AT p=05u=s 29.7015 24.1205
BXT p=05u=y 29.7466 23.9811
BXT.p=07u=s 29.6733 24.1912
T rho =0.7,u=y 29.6603 24.1815
BEG! 29.6625 24.1733
ﬁlﬁ(‘ﬂ 29.7295 24.0446
ﬁlhs 29.6454 23.7595
BR 29.0431 23.1993
BERP 28.9495 23.1458
BLP 23.9086 19.4664
B-S 29.0302 23.0885
BPY 29.5452 23.8327
B~ 29.1291 23.2477

The algorithms equipped with ﬁ,?]ew and [3[ successfully solved all the test problems, while with the others, we faced
with a NaN (Not-a-Number) for DANWOODLS problem. Figures 1-3 show the performance profile for the number of
function evaluations, the number of gradient evaluations and CPU time for all algorithms. By examining them, we find
that B,?Iew is more efficient than the other algorithms for many different choices of p, especially when u;, = s;. We report
p = 0.7 and 0.8 as the best choices of p in our algorithm.

Here, to save space, we decided to post the detail of the results in publication tab of the link “https://wp.kntu.ac.
ir/smfatemi/” (We investigated the results of each algorithm on every problem for about 20 different parameters).

We also studied image deblurring problem (1.9) in details. We considered some smooth nonlinear regularization terms
as well as Tikhonov regularization. We blurred some 250 x 250 images using Toeplitz matrices. In Figure 4, a medical
image has blurred with the linear motion by 15 pixels, and in Figure 8, the cameraman image has blurred with a Gaussian
smoothing kernel with 4 deviation. According to [33], the best value of the regularization parameter A is around 0.001.

Regarding the peak signal-to-noise ratio (PSNR), which usually is defined as the ratio between the maximum possible
value of a signal and the power of distorting noise that affects the quality of its representation, it can be seen from Tables 2—
4 that on average, the new algorithm outperforms the other algorithms, especially, in the cases of nonlinear regularization
terms. The bold values in these tables show the good performance of our algorithm, and possibly some exceptions, in com-
parison with the other algorithms. Figures 5-7, and 9-11 show the results corresponding to the Tikhonov regularization
choice. In other words, BNV recovers images in an acceptable quality. Consequently, the method with a proper choice of


https://wp.kntu.ac.ir/ smfatemi/
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TABLE 3. PSNR Results of Brain’s image.

Conjugate gradient parameters

n

9() =X

Xi

60 = 1 log(1-+.5})

iZ1 147 iz
BN p =07, u=s 20.3239 20.9590
BNeW p =08 u=s 20.3148 21.4276
ﬁ,;W,p =08,u=y 20.3131 20.9367
B! 19.2218 20.8551
ST p=05u=s 20.1350 18.3449
ST p=05u=y 20.1188 18.8039
ST p=07,u=s 20.1317 19.5504
,?{T,rho =0.7,u=y
BBGI 20.3330 20.1586
[SIEGZ 9.7171 20.3707
ﬁ’hs 20.4205 20.2007
ﬁlﬁR 9.7005 NaN
[3’,§RP 20.3105 20.4720
BEP 18.8203 18.9510
BLS 20.3201 20.4633
BPY 19.9363 19.6200
B 18.4660 19.8873

TABLE 4. PSNR Results of Cameraman’s image.

Xi

n
Conjugate gradient parameters @ (x) = Y, 5 0(x)= ¥ log(1 +x2)
i=1 L +x; i=1
BNV p=07,u=s 21.0252 19.3449
BNeW p=08,u=s 21.3824 21.7894
ﬁ,%ew,p =08, u=y 21.0178 20.8595
Bl 20.0459 20.6611
ST p=05u=s 20.9315 14.1041
ST p=05u=y 20.9191 16.3832
T p=07u=s 20.9462 12.8312
T rho =0.7,u=y 20.9366 12.8099
B’EGI 20.8959 17.9764
ﬁ,hGZ 20.8729 21.7695
ﬁ,i:S 21.0225 19.6434
BR 5.5962 NaN
BERP 20.8842 21.7782
BEP 21.2427 19.0937
BLs 20.8336 21.7804
BPY 18.7045 18.6832
Hz 20.1129 17.1293
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FIGURE 5. Deblurring image with BN"W. (a) p = 0.7 and uy = s, PSNR = 29.7078. (b) p = 0.8 and
uy = sg, PSNR =29.7144. (c) p = 0.8 and uy, = y;, PSNR =29.7214.

FIGURE 6. Deblurring image with 87 (image (a)), BYT (image (b) and (c)), BBC! (image (d)) and
BBG2 (image (). (a) PSNR = 28.9451. (b) p — 0.7, u — s, PSNR — 29.6733. (c) p = 0.7, y = vy,
PSNR = 29.6603. (d) PSNR = 29.6625. (¢) PSNR = 29.7295.

parameters is also effective in solving real-world problems. We also posted the figures for the other regularization terms
on the website.

7. CONCLUSION

We presented an effective conjugate gradient method. Our method satisfies the sufficient descent condition and is
globally convergent. Numerical results showed that in practice, the method has good performance and outperforms some
well-known methods. We also examined the ability of our method to solve some real-world applications. In this way,
a common problem from image processing applications was considered. We showed that the image recovered by our
method is acceptable in the sense of PSNR test.
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FIGURE 7. Deblurring image with other popular 8. (a) BHS, PSNR = 29.6454. (b) BFR, PSNR =
29.0431. (c) BPRP, PSNR — 28.9495. (d) S, PSNR — 23.9086. (¢) -5, PSNR — 29.0302. (f) BPY,
PSNR — 29.5452. (g) BHZ, PSNR — 29.1291.

FIGURE 8. The 250 x 250 original and blurred/noisy cameraman image.

P;"“, 7"1‘.@'
= MY

(©)

FIGURE 9. Deblurring image with BN, (a) p = 0.7 and u; = s3, PSNR = 24.0688. (b) p = 0.8 and
ur = s, PSNR = 24.0658. (c) p = 0.8 and uy, = y;, PSNR = 24.0377.
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FIGURE 10. Deblurring image with B (image (a)), BYT (image (b) and (c)), BBC! (image (d)) and
BBY2 (image (e)). (a) PSNR = 24.0310. (b) p = 0.5, ux = sz, PSNR = 24.1205. (c) p = 0.5, uy = vy,
PSNR = 23.9811. (d) PSNR = 24.1733. (e) PSNR = 24.0446.

FIGURE 11. Deblurring image with other popular B. (a) B PSNR = 23.7595. (b) BR, PSNR =
23.1993. (c) BPRP, PSNR = 23.1458. (d) B, PSNR = 19.4664. (e) B"S, PSNR = 23.0885. (f) BPY,
PSNR = 23.8327. (g) B4, PSNR = 23.2477.
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