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A NEW CONJUGATE GRADIENT METHOD BASED ON A MODIFIED SECANT CONDITION
WITH ITS APPLICATIONS IN IMAGE PROCESSING

FAHIMEH ABDOLLAHI AND MASOUD FATEMI∗

Abstract. We propose an effective conjugate gradient method belonging to the class of Dai–Liao methods for
solving unconstrained optimization problems. We employ a variant of the modified secant condition and introduce
a new conjugate gradient parameter by solving an optimization problem. The optimization problem combines the
well-known features of the linear conjugate gradient method using some penalty functions. This new parameter
takes advantage of function information as well as the gradient information to provide the iterations. Our proposed
method is globally convergent under mild assumptions. We examine the ability of the method for solving some
real-world problems from image processing field. Numerical results show that the proposed method is efficient in
the sense of the PSNR test. We also compare our proposed method with some well-known existing algorithms using
a collection of CUTEr problems to show its efficiency.
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1. INTRODUCTION

Consider the unconstrained optimization problem

min
x∈Rn

f (x),

where f : Rn −→ R is a smooth function. Conjugate gradient algorithm is a powerful iterative method for solving this
problem due to its strong local and global convergence properties, and also its low memory requirements. The algorithm
generates an iterative sequence

xk+1 = xk +αkdk, (1.1)

where αk > 0 is a step length calculated by some (inexact) line search procedure, like the strong (standard) Wolfe condi-
tions as follows:

f (xk +αkdk)6 f (xk)+ c1αkdT
k gk, and (1.2)

|dT
k gk+1|6−c2dT

k gk
(
dT

k gk+1 ≥ c2dT
k gk
)
, (1.3)
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where 0 < c1 < c2 < 1 are arbitrary constants and gk := ∇ f (xk). The search direction dk is computed by

dk+1 =−gk+1 +βkdk (d0 =−g0), (1.4)

recursively. The conjugate gradient parameter, denoted by βk, is one of the most important parameters in this method. This
parameter should be defined carefully since different choices of βk leads to the different conjugate gradient algorithms.

As we know, standard conjugate gradient method for solving strictly convex quadratic problems satisfies both the
conjugacy condition

dT
k+1yk = 0, (1.5)

where yk := gk+1−gk, and the orthogonality property

dT
i gk = 0, i = 0,1, . . . ,k−1. (1.6)

Some famous classical choices of βk can be found in Hestenes and Stiefel (HS) [29], Fletcher and Reeves (FR) [23], Polak
and Ribiere and Polyak (PRP) [35], Fletcher (CD) [22], Liu and Storey (LS) [32], and Dai and Yuan (DY) [17]. Some
famous of them are

β
HS
k =

gT
k+1yk

dT
k yk

, β
FR
k =

‖gk+1‖2

‖gk‖2 , β
PRP
k =

gT
k+1yk

‖gk‖2 ,

β
CD
k =

‖gk+1‖2

−dT
k gk

, β
LS
k =

gT
k+1yk

−dT
k gk

and β
DY
k =

‖gk+1‖2

dT
k yk

,

where ‖ · ‖ denotes the Euclidean norm.
The outcomes of the numerical and theoretical studies, reported by Andrei [2], show that some methods like HS, PRP,

and LS (that have the term gT
k+1yk in the numerator) have a better practical performance than the methods FR, CD, and DY

(that have the term ‖gk+1‖ in the numerator). In contrast, the second group has stronger convergence properties. Nowa-
days, researchers are interested in designing and improving βk so that the corresponding methods have better numerical
performance and good theoretical convergence properties.

Andrei [2] classified conjugate gradient algorithms into 6 groups: classical, hybrid, modified, scaled, parameterized and
accelerated; he also introduced 40 different types of these parameters, and thus, 40 different types of conjugate gradient
algorithms. See, e.g., [2, 3, 6, 20, 27, 30].

Dai and Liao introduced a class of these parameters in [16] as

β
DL
k =

gT
k+1yk− τgT

k+1sk

yT
k dk

,

where τ > 0 is some constants and sk := xk+1− xk. They showed that search directions generated by the method satisfy a
variant of the conjugacy condition as dT

k+1yk =−τgT
k+1sk, but the sufficient descent condition

dT
k gk 6−c‖gk‖2, (1.7)

where c > 0 is a constant, was not necessarily established. It should be noted that an appropriate choices of τ can lead
to excellent results. Unfortunately, there are not any theoretically optimal values for this parameter working well for any
problem instances. Many efforts have been made to improve this parameter, e.g., Babaie-Kafaki and Ghanbari [9, 10],
Andrei [7], Yabe and Takano [39], and Dong et al. [20].

One of the most efficient values for τ was presented by Hager and Zhang [25] as τ = 2‖yk‖2
sT
k yk

leading to

β
HZ
k =

gT
k+1yk

dT
k yk

−2
‖yk‖2

dT
k yk

gT
k+1dk

yT
k dk
·
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The search direction generated by β HZ
k satisfies the sufficient descent condition (1.7) with c = 7

8 , independent of the
line search procedure. Numerical and theoretical results presented in [2, 6, 25–27] show that it is one of the most efficient
methods.

Optimization problems have appeared in many research fields, such as image processing. Image processing is an emerg-
ing scientific discipline that has made significant advances in recent years because of its important role in various fields
such as photography, medicine, astronomy, industry, and military. Meanwhile, image blur is one of the most common prob-
lems in this field. It is caused by different reasons, such as camera and object motion, long exposure times, atmospheric
distortions motion, optical aberrations, environmental effects, etc. that, in many cases, is unavoidable [14, 15, 36, 38].
Therefore, the image deblurring problem retrieving an image from a blurred/noisy observation is the intention.

The most commonly used model for the damaged images due to blurring and noise is the following linear model:

y = Ax+η x ∈X, (1.8)

which purpose is to retrieve the original image x from y destroyed by some blurring matrices A and a random noise η , see
[14, 15]. The matrix A can be obtained by a certain Point Spread Function (PSF) [14], and there is a PSF corresponding
to each kind of blurring [28]. As we know, image deblurring is a large-scale inverse problem that is very ill-condition and
hard to solve.

There are various ways to solve this problem [36], for example, SVD approach, Neural network approach, Wiener
filtering, Blind deconvolution approach, and iterative algorithms like Richardson–Lucy Algorithm, Van Cittert Algorithm,
Landweber Algorithm, and Poisson Map Algorithm.

A well-known approach to model (1.8) is the regularization approach [14]. In this approach, a regularization term is
added to the objective function, and the following general model is considered

min
x∈X

1
2
‖ Ax− y‖2

2 +λφ(x), (1.9)

where φ and λ are regularization term and parameter, respectively. The purpose of regularization is to overcome the diffi-
culties that occur in solving (1.8). These difficulties are basically a consequence of the problem’s ill-posed nature, and the
regularization approach provides a stable solution using some prior knowledge about it. Some examples of regularization
terms are

– Tikhonov Regularization: This estimate is defined as the solution of (1.9) with φ(x) = 1
2‖x‖

2
2.

– Maximum Entropy Regularization: This estimate is defined as the solution of (1.9) with φ(x) = ∑
N
i=1 xi log(xi).

– Total Variation Regularization: This estimate is defined as the solution of (1.9) with φ(x) = ‖Dx‖1, where D is a
discrete approximation to the gradient operator.

– Norm p Regularization: This estimate is defined as the solution of (1.9) with φ(x) = ‖x‖p, specially for 0 < p≤ 1.
– Smooth Regularization: This estimate is defined as the solution of (1.9) with for example φ(x) = ∑

N
i=1 log(1 + x2

i ) or

φ(x) = ∑
N
i=1

x2
i

1+x2
i
.

Each term has its advantages and disadvantages, and should be used with caution.
In this paper we want to propound a new conjugate gradient method with global convergent and efficient numerical

results. The main features of the paper are:

– Our proposed conjugate gradient method, in addition to gradient values, employees the current function information
during the iterations. It also takes both advantages of the modified secant condition proposed by Zhang et al. [41]
and Zhang and Xu [40], and the method presented in [21] to bring out an efficient conjugate gradient parameter. Our
numerical results show that the resulting method is more efficient in the sense of Dolan–Moré performance profile.
We make extensive numerical comparisons and consider different choices of the main parameters (about 20) and show
that our proposed method has a better performance than four recent efficient algorithms in the literature.

– Nowadays, image processing is an active field. Therefore, a slight improvement in the performance of algorithms in
this field can have a significant impact on their time efficiency, especially when we are dealing with large dimensions.
Thus, to show the efficiency of the method in practice, we examine our algorithm’s mathematical performance for
solving one of the most appealing image processing problems and report its features and benefits.
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The organization of the paper is as follows.
In Section 2, we provide a brief review of the materials required for the other sections. The details of our new method are

demonstrated in Section 3. In Sections 4 and 5, the new algorithm is presented, and its global convergence is investigated.
In Section 6, we present the numerical behaviour of the method.

2. A BRIEF REVIEW

Nonlinear conjugate gradient methods usually use the secant condition

Bk+1sk = yk, (2.1)

where Bk+1 is an approximation of Gk+1 := ∇2 f (xk+1), to benefit from the superlinear convergence properties. Note that,
in this condition, the gradient information are only being used. Many efforts have been made by researchers to improve
(2.1). Zhang et al. [41] and Zhang and Xu [40] introduced the modified secant condition

Bk+1sk = ŷk, ŷk = yk +
θk

sT
k uk

uk, (2.2)

where

θk = 6( fk− fk+1)+3(gk +gk+1)T sk, (2.3)

and uk is a suitable vector with sT
k uk 6= 0. They provided this condition by using the Taylor expansion

fk = fk+1−gT
k+1sk +

1
2

sT
k Gk+1sk−

1
6

sT
k (Tk+1sk)sk +O

(
‖sk‖4) , and

sT
k gk = sT

k gk+1− sT
k Gk+1sk +

1
2

sT
k (Tk+1Sk)sk +O

(
‖sk‖4) ,

where Gk := ∇2 f (xk) and Tk+1 ∈Rn×n×n is the tensor of f in xk+1. By removing the tensor term in the both expressions,
they obtained

sT
k Gk+1sk = (gk+1−gk)T sk +6( fk− fk+1)+3(gk +gk+1)T sk +O

(
‖sk‖4).

The modified secant condition (2.2) is obtained by considering Bk+1 as an approximation of Gk+1. It is shown in [31]
that for a convex quadratic function by using the exact line search, we have θ = 0 in (2.3) and so the modified secant
condition is equivalent to the standard secant condition (2.1). Some well-known choices of uk satisfying sT

k uk 6= 0 are
uk = sk, uk = yk and uk = ∇ f (xk).

In the above modified secant condition, in addition to gradient vectors, function values are as well as used. It is proved
in [40] that ŷk is a better approximation of ∇2 f (xk+1)sk than yk. In fact, if ‖sk‖ is sufficiently small,

sT
k [Gk+1sk− ŷk] = O

(
‖sk‖4) , and

sT
k [Gk+1sk− yk] = O

(
‖sk‖3) ,

for any uk with sT
k uk 6= 0. It is known that using a modified secant condition can lead to designing new methods with

better performance in both theoretical and numerical aspects. Many articles, including Andrei [4, 5], Babaie-Kafaki [8],
Babaie-Kafaki and Mahdavi-Amiri [11], Babaie-Kafaki et al. [12,13], Yabe and Takano [39], Dong et al. [19,20], Li et al.
[31], Amini and Gorbani [1], Narushima and Yabe [34], and Wei et al. [37], have applied the modified secant equation
(2.2) to design and develop new conjugate gradient methods.

Fatemi [21] introduced a new efficient conjugate gradient method which was globally convergent. The method, which
was founded on an optimization problem, showed remarkable performance. To provide an efficient conjugate gradient
algorithm, the author introduced an optimization problem by combining three conditions (1.5)–(1.7) as follows

min
βk

[
gT

k+1dk+1 +M
((

gT
k+2sk

)2 +
(
dT

k+1yk
)2
)]

, (2.4)
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where M is a penalty parameter. To solve (2.4), gk+2 is replaced by its first order approximation using Taylor series
expansion as gk+2 ≈ tBk+1dk+1 +gk+1, where t > 0 is an estimation of αk+1 [21]. By solving this problem and using the
secant condition (2.1), the author introduced

βk =
−1

2M(1+ t2)
gT

k+1dk

(yT
k dk)2 +

yT
k gk+1

yT
k dk

− t
(1+ t2)

sT
k gk+1

yT
k dk

·

This method, with a proper choice of parameters, is globally convergent. Moreover, numerical comparisons reported by
the author show that the method is efficient in the sense of Dolan–Moré performance profile [18].

3. A NEW FORMULA FOR βk

Yabe and Takano in [39] introduced an extension of the modified secant equation (2.2) as

zk = yk +ρk
θk

sT
k uk

uk, (3.1)

where ρk > 0 is an arbitrary scalar. Consider the modified secant condition

Bk+1sk = zk, (3.2)

if ρk = 0 or 1, (3.2) converts to (2.1) and (2.2), respectively.
The following equation was introduced in [21] by solving (2.4)

βk =
−gT

k+1dk +2Mt2
(
sT

k Bk+1gk+1
)(

sT
k Bk+1dk

)
2Mt2

(
sT

k Bk+1dk
)2 +2M

(
yT

k dk
)2

+
−2Mt

(
sT

k gk+1
)(

sT
k Bk+1dk

)
+2M

(
yT

k gk+1
)(

yT
k dk
)

2Mt2
(
sT

k Bk+1dk
)2 +2M

(
yT

k dk
)2 · (3.3)

It converts to the Dai–Liao parameter, when M gose to infinity.
The good features of the modified secant condition (3.2) motivate us to use it in (3.3) and obtain

βk =
−gT

k+1dk +2Mt2
(
zT

k gk+1
)(

zT
k dk
)

2Mt2
(
zT

k dk
)2 +2M

(
yT

k dk
)2 +

−2t
(
sT

k gk+1
)(

zT
k dk
)
+2
(
yT

k gk+1
)(

yT
k dk
)

2t2
(
zT

k dk
)2 +2

(
yT

k dk
)2 · (3.4)

Now, we face with a big problem which is introducing a suitable penalty parameter M. It should have the following
properties.

– The search direction dk+1 must satisfy the sufficient descent condition (1.7).
– It should tend to infinity during the iterations.

In the following lemma, we propose such a suitable penalty parameter.

Lemma 3.1. Consider the conjugate gradient method (1.1) and (1.4) with the strong Wolfe line search (1.2) and (1.3)
and βk in (3.4). Then, for some positive scalars γ1, γ2 satisfying γ1 + γ2 < 1, and ρk selected in such a way that 06 ρk <

1−c2
3(1+c2−2c1) , we have

dT
k+1gk+1 6−(1− γ1− γ2)‖gk+1‖2, (3.5)

where

(1− t)≤
γ1(yT

k sk)2

(zT
k sk)‖sk‖2 , (3.6)
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and

M =
2γ2(t2

(
zT

k sk
)2 +(yT

k sk)2)
‖t2
(
zT

k sk
)

zk +(yT
k sk)yk−λk

(
zT

k sk
)

sk‖2
, (3.7)

where λk ≤ 1 is an arbitrary scalar.

Proof. The proof is similar to Lemma 1 in [21]. We can use the mathematical induction to prove it.
Clearly, we have from (1.4) that

dT
0 g0 =−‖g0‖2 6−(1− γ1− γ2)‖g0‖2.

Assume

dT
k gk 6−(1− γ1− γ2)‖gk‖2.

First, we evaluate the quantity zT
k sk. We have by (1.2), (1.3), (2.3), and (3.1) that

zT
k sk = yT

k sk +ρkθk

= yT
k sk +6ρk( fk− fk+1)+3ρk(gk +gk+1)T sk

> (1+3ρk)gT
k+1sk +(3ρk−1)gT

k sk−6ρkc1gT
k sk

= (1+3ρk)gT
k+1sk +(3ρk−6ρkc1−1)gT

k sk

> (1+3ρk)c2gT
k sk +(3ρk−6ρkc1−1)gT

k sk

=
(
3ρk(1+ c2−2c1)+(c2−1)

)
gT

k sk.

Now, using

gT
k sk = αkgT

k dk < 0,

and noting that 06 ρk < 1−c2
3(1+c2−2c1) , there exists a constant m1 > 0 such that

zT
k sk >−m1(gT

k sk) > 0, (3.8)

and consequently,

zT
k dk > 0. (3.9)

Now, we show that (3.5) holds. Using (1.4) and (3.4), we have

dT
k+1gk+1 = −‖gk+1‖2 +βkdT

k gk+1 =−‖gk+1‖2−
(
sT

k gk+1
)2

2M
[
t2
(
zT

k sk
)2 +

(
yT

k sk
)2
]

+

[
t2
(
zT

k gk+1
)(

zT
k sk
)
+
(
yT

k gk+1
)(

yT
k sk
)](

sT
k gk+1

)
t2
(
zT

k sk
)2 +

(
yT

k sk
)2 −

t
(
zT

k sk
)(

sT
k gk+1

)2

t2
(
zT

k sk
)2 +

(
yT

k sk
)2 ·
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Since λk ≤ 1, we have that

dT
k+1gk+1±

(
sT

k gk+1
)2 (zT

k sk
)

t2
(
zT

k sk
)2 +

(
yT

k sk
)2 ≤ −‖gk+1‖2−

(
sT

k gk+1
)2

2M
[
t2
(
zT

k sk
)2 +

(
yT

k sk
)2
]

+

[
t2
(
zT

k sk
)(

zT
k gk+1

)
+
(
yT

k sk
)(

yT
k gk+1

)
−λk

(
zT

k sk
)(

sT
k gk+1

)](
sT

k gk+1
)

t2
(
zT

k sk
)2 +

(
yT

k sk
)2

+
(1− t)

(
zT

k sk
)(

sT
k gk+1

)2

t2
(
zT

k sk
)2 +

(
yT

k sk
)2

⇒ dT
k+1gk+1 ≤ −‖gk+1‖2−

(
sT

k gk+1
)2

2M
[
t2
(
zT

k sk
)2 +

(
yT

k sk
)2
]

+

[
t2
(
zT

k sk
)

zk +
(
yT

k sk
)

yk−λk
(
zT

k sk
)

sk
]T gk+1

(
sT

k gk+1
)

t2
(
zT

k sk
)2 +

(
yT

k sk
)2

+
(1− t)

(
zT

k sk
)(

sT
k gk+1

)2

t2
(
zT

k sk
)2 +

(
yT

k sk
)2 ·

Now, using the inequality ab≤ l
4 a2 + 1

l b2, where a, b and l are positive scalars,

dT
k+1gk+1 ≤ −‖gk+1‖2−

(
sT

k gk+1
)2

2M
[
t2
(
zT

k sk
)2 +

(
yT

k sk
)2
] +

(1− t)
(
zT

k sk
)(

sT
k gk+1

)2

t2
(
zT

k sk
)2 +

(
yT

k sk
)2

+
l
4

([
t2 (zT

k sk
)

zk +
(
yT

k sk
)

yk−λk
(
zT

k sk
)

sk
]T

gk+1

)2
+

1
l

( (
sT

k gk+1
)

t2
(
zT

k sk
)2 +

(
yT

k sk
)2

)2

,

where l = 2M
t2(zT

k sk)
2
+(yT

k sk)
2 , and so

dT
k+1gk+1 ≤ −‖gk+1‖2 +

(1− t)
(
zT

k sk
)(

sT
k gk+1

)2

t2
(
zT

k sk
)2 +

(
yT

k sk
)2

+
M

2
(

t2
(
zT

k sk
)2 +

(
yT

k sk
)2
) ([t2 (zT

k sk
)

zk +
(
yT

k sk
)

yk−λk
(
zT

k sk
)

sk
]T

gk+1

)2
.

Finally, using Cauchy–Schwartz inequality implies that

dT
k+1gk+1 ≤−

1−
(1− t)

(
zT

k sk
)
‖sk‖2

t2
(
zT

k sk
)2 +

(
yT

k sk
)2 −

M

2
[
t2
(
zT

k sk
)2 +

(
yT

k sk
)2
]‖t2 (zT

k sk
)

zk +
(
yT

k sk
)

yk−λk
(
zT

k sk
)

sk‖2

‖gk+1‖2.

The proof is completed using (3.6), (3.7), and (3.9). �

In order to accelerate the growth rate of M, that is our second goal, we minimize the denominator of (3.7) and have

λk = min

{
1,

t2
(
zT

k sk
)2 +

(
yT

k sk
)2(

zT
k sk
)
‖sk‖2

}
· (3.10)
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Remark 3.2. Unlike the Newton method which αk = 1 provides a quadratic convergence rate, in conjugate gradient
algorithms a suitable step size is not predictable and therefore the following process is suggested.

t = min{t1,T} (3.11)

where

t1 =


αk if (1−αk)6

γ1(yT
k sk)

2

(zT
k sk)‖sk‖2∣∣∣∣1− γ1(yT

k sk)
2

(zT
k sk)‖sk‖2

∣∣∣∣ o.w.

and T > 0 is a large arbitrary constant.

Finally, by replacing (3.7) in (3.4), we have

βk =

(
yT

k gk+1
)(

yT
k dk
)

t2
(
zT

k dk
)2 +

(
yT

k dk
)2 −

t
(
sT

k gk+1
)(

zT
k dk
)

t2
(
zT

k dk
)2 +

(
yT

k dk
)2 +

t2
(
zT

k gk+1
)(

zT
k dk
)

t2
(
zT

k dk
)2 +

(
yT

k dk
)2

−
‖t2
(
zT

k sk
)

zk +
(
yT

k sk
)

yk−λk
(
zT

k sk
)

sk‖2

4γ2

[
t2
(
zT

k sk
)2 +

(
yT

k sk
)2
] gT

k+1dk

t2
(
zT

k dk
)2 +

(
yT

k dk
)2 · (3.12)

4. GLOBAL CONVERGENCE FOR STRONGLY CONVEX FUNCTIONS

We are now in a position where we can sum up the contents of the previous sections to introduce our new conjugate
gradient algorithm.

Algorithm 4.1. Modified Secant Conjugate Gradient Algorithm (MSCG).
– Step 1. Choose a starting point x0 ∈Rn and a suitable value for the positive parameters ρk, T , 0 < c1 < c2 < 1 and

γ1 + γ2 < 1. Compute g0 = ∇ f (x0), set d0 =−g0 and k = 0.
– Step 2. Check the stopping condition if it is established, then stop; else go to step 3.
– Step 3. Compute the step length αk using strong Wolfe condition (1.2) and (1.3).
– Step 4. Compute xk+1 = xk +αkdk, fk+1 = f (xk+1), gk+1 =5 f (xk+1), sk = xk+1− xk and yk = gk+1−gk.
– Step 5. Select a desirable value of uk ∈ Rn such that sT

k uk 6= 0, and then compute θk and zk according to (2.3) and
(3.1), respectively.

– Step 6. Compute λk and t by (3.10) and (3.11).
– Step 7. Compute the conjugate gradient parameter βk using (3.12).
– Step 8. Compute the search direction dk+1 =−gk+1 +βkdk.
– Step 9. Set k = k +1 and go to step 2.

Our final task is the investigation of global convergence properties of Algorithm 4.1 (MSCG).

Theorem 4.2. Suppose that f is a strongly convex and bounded below function and the gradient function g(x) is Lipschitz
continuous on the level set

V = {x ∈Rn : f (x)6 f (x0)} ,

which is assumed to be bounded. In other words, there exists L > 0 such that, for x and y belonging to V ,

‖g(x)−g(y)‖6 L‖x− y‖. (4.1)

Furthermore, the generated sequence of iterations, xk, is bounded.
Consider any descent methods of the form (1.1) where αk is determined by strong Wolfe line search, then we have that

∞

∑
k=1

(
gT

k dk
)2

‖dk‖2 < ∞.
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Proof. See [17]. �

Now using the above theorem and Theorem 3 in [21], we prove the global convergence of the new method for strong
convex functions.

Theorem 4.3. Consider the method presented by Algorithm 4.1, then, under the conditions mentioned in Theorem 4.2 we
have that

lim
k−→∞

‖gk‖= 0.

Proof. Since f (x) is strongly convex, so

µ‖x− y‖2 6 (g(x)−g(y))T (x− y), (4.2)

where µ > 0 is a constant. Using (4.2), we have that µαk‖dk‖2 6 yT
k dk. Moreover, the Cauchy-Schwartz inequality, and

the inequalities (5.13) and (5.20) presented in [39] imply that there are m > 0 and L′ > 0 such that:

‖zk‖6 L′‖sk‖, and

zT
k sk > m‖sk‖2.

(4.3)

We show that the search direction dk+1 is bounded above. In fact

|βk| ≤
‖yk‖2 · ‖gk+1‖ · ‖dk‖
t2
(
zT

k dk
)2 +

(
yT

k dk
)2 +

|t| · ‖sk‖ · ‖zk‖ · ‖gk+1‖ · ‖dk‖
t2
(
zT

k dk
)2 +

(
yT

k dk
)2 +

t2 · ‖zk‖2 · ‖gk+1‖ · ‖dk‖
t2
(
zT

k dk
)2 +

(
yT

k dk
)2

+
‖t2
(
zT

k sk
)

zk +
(
yT

k sk
)

yk−λk
(
zT

k sk
)

sk‖2

4γ2

[
t2
(
zT

k sk
)2 +

(
yT

k sk
)2
] ‖gk+1‖ · ‖dk‖

t2
(
zT

k dk
)2 +

(
yT

k dk
)2 · (4.4)

Clearly,
t2 (zT

k dk
)2 +

(
yT

k dk
)2
> t2 (zT

k dk
)2

(4.5)

and
t2 (zT

k dk
)2 +

(
yT

k dk
)2
>
(
yT

k dk
)2

. (4.6)

Now from (4.4) to (4.6), and the triangle inequality, we have

|βk| ≤
‖yk‖2 · ‖dk‖ · ‖gk+1‖(

yT
k dk
)2 +

|t| · ‖zk‖ · ‖sk‖ · ‖dk‖ · ‖gk+1‖(
yT

k dk
)2 +

‖zk‖2 · ‖dk‖ · ‖gk+1‖(
zT

k dk
)2

+
‖dk‖ · ‖gk+1‖

4γ2

(
t2
(
zT

k dk
)2 +

(
yT

k dk
)2
) [t2‖zk‖2 +‖yk‖2 +

(
zT

k sk
)2 ‖sk‖2

(yT
k sk)2 +

2(yT
k sk)‖zk‖ · ‖yk‖

zT
k sk

+ 2‖zk‖ · ‖sk‖+
2
(
zT

k sk
)
‖yk‖ · ‖sk‖

yT
k sk

]
·

Therefore,

⇒ |βk| ≤
‖yk‖2 · ‖dk‖ · ‖gk+1‖(

yT
k dk
)2 +

|t| · ‖zk‖ · ‖sk‖ · ‖dk‖ · ‖gk+1‖(
yT

k dk
)2 +

‖zk‖2 · ‖dk‖ · ‖gk+1‖(
zT

k dk
)2

+
‖zk‖2 · ‖dk‖ · ‖gk+1‖

4γ2
(
zT

k dk
)2 +

‖yk‖2 · ‖dk‖ · ‖gk+1‖
4γ2
(
yT

k dk
)2 +

‖zk‖2 · ‖sk‖4 · ‖dk‖ · ‖gk+1‖
4γ2(yT

k sk)2
(
yT

k dk
)2

+
‖yk‖2 · ‖zk‖ · ‖sk‖ · ‖dk‖ · ‖gk+1‖

2γ2
(
zT

k sk
)(

yT
k dk
)2 +

‖zk‖ · ‖sk‖ · ‖dk‖ · ‖gk+1‖
2γ2
(
yT

k dk
)2

+
‖zk‖ · ‖yk‖ · ‖sk‖2 · ‖dk‖ · ‖gk+1‖

2γ2(yT
k sk)

(
yT

k dk
)2 ,
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and then, we have from (3.11), (4.1), (4.2) and (4.3) that

⇒ |βk| ≤
L2 · ‖sk‖2 · ‖dk‖ · ‖gk+1‖

µ2α2
k ‖dk‖4 +

T ·L′ · ‖sk‖2 · ‖dk‖ · ‖gk+1‖
µ2α2

k ‖dk‖4

+
L′2 · ‖sk‖2 · ‖dk‖ · ‖gk+1‖

m2α2
k ‖dk‖4 +

L′2 · ‖sk‖2 · ‖dk‖ · ‖gk+1‖
4γ2m2α2

k ‖dk‖4

+
L2 · ‖sk‖2 · ‖dk‖ · ‖gk+1‖

4γ2µ2α2
k ‖dk‖4 +

L′2 · ‖sk‖6 · ‖dk‖ · ‖gk+1‖
4γ2µ4α2

k · ‖sk‖4 · ‖dk‖4

+
L2L′ · ‖sk‖4 · ‖dk‖ · ‖gk+1‖

2γ2mµ2α2
k ‖sk‖2 · ‖dk‖4 +

L′ · ‖sk‖2 · ‖dk‖ · ‖gk+1‖
2γ2µ2α2

k · ‖dk‖4

+
LL′ · ‖sk‖4 · ‖dk‖ · ‖gk+1‖

2γ2µ3α2
k ‖sk‖2 · ‖dk‖4 .

Finally, we have that

|βk| ≤
(

L2

µ2 +
T L′

µ2 +
L′2

m2 +
L′2

4γ2m2 +
L2

4γ2µ2 +
L′2

4γ2µ4

+
L2L′

2γ2mµ2 +
L′

2γ2µ2 +
LL′

2γ2µ3

)
× ‖gk+1‖
‖dk‖

·

Now, using the above results, we have

‖dk+1‖ ≤ ‖gk+1‖+ |βk|‖dk‖

≤
(

L2

µ2 +
T L′

µ2 +
L′2

m2 +
L′2

4γ2m2 +
L2

4γ2µ2 +
L′2

4γ2µ4

+
L2L′

2γ2mµ2 +
L′

2γ2µ2 +
LL′

2γ2µ3

)
‖gk+1‖,

(4.7)

and so the proof is completed, using (3.5), (4.7), and Theorem 4.2. �

5. GLOBAL CONVERGENCE FOR GENERAL FUNCTIONS

In this section, we use the results obtained in Section 4 of [21], and introduce the following modification of βk:

β
N
k = max(βk,χk) (5.1)

where in:

– χk is real valued function
– |χk|‖dk‖ is bounded above,

– χk 6
ε‖gk+1‖2

gT
k+1dk

, for some ε < 1 and gT
k+1dk > 0.

We prove the global convergence of (MSCG) for general functions in follow.

Theorem 5.1. Assume the method (1.1) and (1.4) with β N
k defined in (5.1), then for a general function f with the strong

Wolfe line search conditions (1.2) and (1.3) and 0 ≤ ρk < min
{

1−c2
3(1+c2−2c1) ,myT

k sk

}
, where m is a positive constant, we

have

liminf
k→∞

‖gk‖= 0.
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Proof. Following the same steps of the proof of Lemma 4 in [21] and Lemma 1, we have

dT
k+1gk+1 6−max(1− ε,1− γ1− γ2)‖gk+1‖2. (5.2)

If for a subsequence k j, we have β N
k j

= χk j , then we reach to the same contradiction as in Theorem 6 in [21] and proof
is completed.

If β N
k = βk, for sufficiently large k, we have a bound for βk as follow.

Firstly, from (1.3) and (3.5), we have

dT
k yk = dT

k gk+1−dT
k gk > (c2−1)dT

k gk > 0, (5.3)

Assuming there exist η1 > 0 such that ‖gk‖> η1, and using (5.2) and (5.3),

dT
k yk > (1− c2)max(1− ε,1− γ1− γ2)η2

1 , (5.4)

and so

|dT
k gk+1|
|dT

k yk|
6max

(
c2

1− c2
,1
)

, (5.5)

see [25]. On the other hand (1.7) and (3.8) imply

dT
k zk >−m1

(
dT

k gk
)
> m1c‖gk‖2 > m1cη

2
1 . (5.6)

Secondly, we show that there exists a constant R > 0 such that

|βk|6 R‖sk‖. (5.7)

Using (3.12), (4.5) and (4.6) we have

|βk| ≤
|yT

k gk+1||yT
k dk|(

yT
k dk
)2 +

|t||sT
k gk+1||zT

k dk|(
yT

k dk
)2 +

t2|zT
k gk+1||zT

k dk|
t2
(
zT

k dk
)2

+
|gT

k+1dk|

4γ2

(
t2
(
zT

k dk
)2 +

(
yT

k dk
)2
) (‖t2

(
zT

k sk
)

zk‖2

t2
(
zT

k sk
)2 +

‖
(
yT

k sk
)

yk‖2(
yT

k sk
)2 +

‖
(
zT

k sk
)

sk‖2(
yT

k sk
)2

+
2‖t2

(
zT

k sk
)

zk‖‖
(
yT

k sk
)

yk‖
t2
(
zT

k sk
)2 +

2‖t2
(
zT

k sk
)

zk‖‖
(
zT

k sk
)

sk‖
t2
(
zT

k sk
)2 +

2‖
(
yT

k sk
)

yk‖‖
(
zT

k sk
)

sk‖(
yT

k sk
)2

)

⇒ |βk| ≤
|yT

k gk+1|
yT

k dk
+
|t||sT

k gk+1||zT
k dk|(

yT
k dk
)2 +

|zT
k gk+1|
zT

k dk

+
1

4γ2

(
‖zk‖2×

|gT
k+1dk|(

zT
k dk
)2 +‖yk‖2×

|gT
k+1dk|(

yT
k dk
)2 +

(
zT

k sk
)2 ‖sk‖2(

yT
k sk
)2 ×

|gT
k+1dk|(

yT
k dk
)2

+
2‖zk‖‖yk‖(

zT
k dk
) × |gT

k+1dk|(
yT

k dk
) +2‖zk‖‖sk‖×

|gT
k+1dk|(

yT
k dk
)2 +

2
(
zT

k sk
)
‖yk‖‖sk‖

yT
k sk

×
|gT

k+1dk|(
yT

k dk
)2

)

⇒ |βk| ≤
1

yT
k dk

(
|yT

k gk+1|+ |t||sT
k gk+1|×

|zT
k sk|(

yT
k sk
) +
‖yk‖2

4γ2
×
|gT

k+1dk|
yT

k dk
+
‖sk‖2

4γ2
×
(
zT

k sk
)2(

yT
k sk
)2 ×

|gT
k+1dk|
yT

k dk

+
‖zk‖‖sk‖

2γ2
×
|gT

k+1dk|
yT

k dk
+
‖yk‖‖sk‖

2γ2
×
|zT

k sk|(
yT

k sk
) × |gT

k+1dk|
yT

k dk

)

+
1

zT
k dk

(
|zT

k gk+1|+
‖zk‖2

4γ2
×
|gT

k+1dk|
zT

k dk
+
‖zk‖ · ‖yk‖

2γ2
×
|gT

k+1dk

yT
k dk

)
·
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Now using mean value theorem

θk = 6( fk− fk+1)+3(∇ fk +∇ fk+1)
T sk

= 6∇ f (ηk)T (xk− xk+1)+3(∇ fk +∇ fk+1)
T sk

=−6∇ f (ηk)T sk +3(∇ fk +∇ fk+1)T sk

= 3
(
∇ fk−∇ f (ηk)+∇ fk+1−∇ f (ηk)T sk

)
,

where ηk = ωxk +(1−ω)xk+1 and ω ∈ (0,1). Thus, we have using (4.1) that

|θk| ≤ 3(L‖xk−ηk‖+L‖xk+1−ηk‖)‖sk‖
= 3(L(1−ω)‖xk− xk+1‖+Lω‖xk+1− xk‖)‖sk‖
= 3L‖sk‖2.

(5.8)

Now using (3.1) and (5.8), we have∣∣∣∣ zT
k sk

yT
k sk

∣∣∣∣=
∣∣∣∣∣∣
yT

k sk +ρk
θk

sT
k uk

sT
k uk

yT
k sk

∣∣∣∣∣∣=
∣∣∣∣1+

ρkθk

yT
k sk

∣∣∣∣< 1+ |mθk|< 1+3Lm‖sk‖2, (5.9)

and

‖zk‖=
∥∥∥∥yk +ρk

θk

sT
k uk

uk

∥∥∥∥≤ ‖yk‖+m1|θk|‖uk‖ ≤ L‖sk‖+3Lm‖sk‖2‖uk‖,

where m1 is an appropriate upper bound obtained by considering different values of uk as sk and yk.
As a consequence, there exist a constant L′ > 0 such that

‖zk‖ ≤ L′‖sk‖. (5.10)

Thus, using (3.11), (4.1), (5.9), (5.10), Cauchy–Schwartz inequality and the assumption that η2 is an upper bound on
‖gk‖, we have

|βk| ≤
1

yT
k dk

(
Lη2‖sk‖+T η2

(
1+3Lm‖sk‖2)‖sk‖+

L2‖sk‖2

4γ2
×
|gT

k+1dk|
yT

k dk

+
‖sk‖2

4γ2
×
(
1+3Lm‖sk‖2)2×

|gT
k+1dk|
yT

k dk
+

L′‖sk‖2

2γ2
×
|gT

k+1dk|
yT

k dk

+
L‖sk‖2

2γ2
×
(
1+3Lm‖sk‖2)× |gT

k+1dk|
yT

k dk

)

+
1

zT
k dk

(
L′η2‖sk‖+

L′2‖sk‖2

4γ2
×
|gT

k+1dk|
yT

k dk
+

LL′‖sk‖2

2γ2
×
|gT

k+1dk|
yT

k dk

)
·

(5.11)

We can see from (5.4)–(5.6), (5.11), and Theorem 4.2 that there exist a constant R > 0 such that (5.7) holds.
Finally, following the steps of the proof of Theorem 3.2 in [25], the proof is completed. �

6. NUMERICAL EXPERIMENT AND COMPARISONS

In this section, we consider the iterative scheme (1.1) and (1.4) with five different values of βk:

– β New
k : The method presented in Algorithm 4.1 (MSCG) with parameter ρ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9, 1.
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TABLE 1. Test problems collection.

Function n Function n Function n

AKIVA 2 DIXMAANH 3000 QUARTC 5000
ALLINITU 4 DJTL 2 ROSENBR 2
ARGLBLE 200 DQDRTIC 5000 S308 2
ARGLCLE 200 ECKERLE4LS 3 SBRYBND 5000
ARGLINA 200 EG2 1000 SCHMVETT 5000
ARGLINB 200 ENSOLS 9 SENSORS 100
ARGLINC 200 EXTROSNB 1000 SINEVAL 2
ARWHEAD 5000 FMINSURF 5625 SISSER 2
BARD 3 GENROSE 500 SPARSQUR 10 000
BEALE 2 HAIRY 2 SPMSRTLS 4999
BIGGS6 6 HILBERTA 2 SROSENBR 5000
BOX3 3 HILBERTB 10 TOINTGOR 50
BROWNAL 200 HUMPS 2 TOINTGSS 5000
BROYDN3DLS 10 INTEQNELS 12 TOINTQOR 50
BRYBND 500 JENSMP 2 TQUARTIC 5000
CHAINWOO 4000 KOWOSB 4 VARDIM 200
CHNROSNB 50 KOWOSBNE 4 VAREIGVL 50
CHNRSNBM 50 LIARWHD 5000 WOODS 4000
COSINE 10 000 LOGHAIRY 2 YFITU 3
DANIWOODLS 2 LSC1LS 3 ZANGWIL2 2
DANWOODLS 2 MANCINO 100
DENSCHA 2 MARATOSB 2
DENSCHB 2 MGH09LS 4
DIXMAANA 3000 MGH10LS 3
DIXMAANB 3000 MODBEALE 2000
DIXMAANC 3000 MOREBV 5000
DIXMAAND 3000 NONDIA 5000
DIXMAANE 3000 PENALTY1 1000
DIXMAANF 3000 POWELLSG 5000
DIXMAANG 3000 POWER 10 000

– β F
k : The method introduced by Fatemi in [21].

– β YT
k : The method introduced by Yabe and Takano in [39] with (ρ = 0.5, t = 0.3) and (ρ = 0.7, t = 0.5).

– β BG1
k : The parameter (3.21) introduced by Babaie-kafaki et al. [12] with t = 0.05005.

– β BG2
k : The parameter (3.53) introduced by Babaie-kafaki et al. [12] with t = 0.05010.

It should be noted that all these parameters belong to the Dai–Liao family and all of them use the modified secant
condition, except β F

k .
The following points were taken into account in the implementation of the algorithms.

– We use the CG-DESCENT line search procedure with initial parameters as reported in [26].
– We consider the two different choices of uk; namely sk and yk.
– The algorithms are terminated if

‖∇ f (xk)‖∞ ≤max
(

10−6,10−12‖∇ f (x1)‖∞

)
or the number of function evaluations are exceeded 3000.

– We choose γ1 = 0.01 and γ2 = 0.98 in our numerical tests.
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FIGURE 1. Number of function evaluations performance profile. (a) ρ = 0.7, uk = sk. (b) ρ = 0.8,
uk = sk. (c) ρ = 0.8, uk = yk.

FIGURE 2. Number of gradient evaluations performance profile. (a) ρ = 0.7, uk = sk. (b) ρ = 0.8,
uk = sk. (c) ρ = 0.8, uk = yk.

FIGURE 3. CPU time performance profile. (a) ρ = 0.7, uk = sk. (b) ρ = 0.8, uk = sk. (c) ρ = 0.8, uk = yk.

To examine and compare the algorithm’s efficiency, we considered 80 problems of CUTEr collection [24] with different
dimensions, as presented in Table 1. Since conjugate gradient methods effectively solve large scale problems, we tried to
list problems with large dimensions. Moreover, we have also selected some problems with low dimensions, because we
found that they were hard to solve for some algorithms due to their ill-condition nature.

The tests were done on a 2.4 Intel Core(TM) i7-5500U processor computer with 8 GB of RAM with Linux operating
system on MATLAB R2015a programming environment.
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FIGURE 4. The 250×250 original and blurred/noisy Brain image.

TABLE 2. PSNR results of Tikhonov regularization.

Conjugate gradient parameters Brain’s image Cameraman’s image

β New
k ,ρ = 0.7,u = s 29.7078 24.0688

β New
k ,ρ = 0.8,u = s 29.7144 24.0658

β New
k ,ρ = 0.8,u = y 29.7214 24.0377

β F
k 28.9451 24.031

β YT
k ,ρ = 0.5,u = s 29.7015 24.1205

β YT
k ,ρ = 0.5,u = y 29.7466 23.9811

β YT
k ,ρ = 0.7,u = s 29.6733 24.1912

β YT
k ,rho = 0.7,u = y 29.6603 24.1815

β BG1
k 29.6625 24.1733

β BG2
k 29.7295 24.0446

β HS
k 29.6454 23.7595

β FR
k 29.0431 23.1993

β PRP
k 28.9495 23.1458

β CD
k 23.9086 19.4664

β LS
k 29.0302 23.0885

β DY
k 29.5452 23.8327

β HZ
k 29.1291 23.2477

The algorithms equipped with β New
k and β F

k successfully solved all the test problems, while with the others, we faced
with a NaN (Not-a-Number) for DANWOODLS problem. Figures 1–3 show the performance profile for the number of
function evaluations, the number of gradient evaluations and CPU time for all algorithms. By examining them, we find
that β New

k is more efficient than the other algorithms for many different choices of ρ , especially when uk = sk. We report
ρ = 0.7 and 0.8 as the best choices of ρ in our algorithm.

Here, to save space, we decided to post the detail of the results in publication tab of the link “https://wp.kntu.ac.
ir/smfatemi/” (We investigated the results of each algorithm on every problem for about 20 different parameters).

We also studied image deblurring problem (1.9) in details. We considered some smooth nonlinear regularization terms
as well as Tikhonov regularization. We blurred some 250× 250 images using Toeplitz matrices. In Figure 4, a medical
image has blurred with the linear motion by 15 pixels, and in Figure 8, the cameraman image has blurred with a Gaussian
smoothing kernel with 4 deviation. According to [33], the best value of the regularization parameter λ is around 0.001.

Regarding the peak signal-to-noise ratio (PSNR), which usually is defined as the ratio between the maximum possible
value of a signal and the power of distorting noise that affects the quality of its representation, it can be seen from Tables 2–
4 that on average, the new algorithm outperforms the other algorithms, especially, in the cases of nonlinear regularization
terms. The bold values in these tables show the good performance of our algorithm, and possibly some exceptions, in com-
parison with the other algorithms. Figures 5–7, and 9–11 show the results corresponding to the Tikhonov regularization
choice. In other words, β New recovers images in an acceptable quality. Consequently, the method with a proper choice of

https://wp.kntu.ac.ir/ smfatemi/
https://wp.kntu.ac.ir/ smfatemi/
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TABLE 3. PSNR Results of Brain’s image.

Conjugate gradient parameters φ(x) =
n
∑

i=1

xi

1+ x2
i

φ(x) =
n
∑

i=1
log(1+ x2

i )

β New
k ,ρ = 0.7,u = s 20.3239 20.9590

β New
k ,ρ = 0.8,u = s 20.3148 21.4276

β New
k ,ρ = 0.8,u = y 20.3131 20.9367

β F
k 19.2218 20.8551

β YT
k ,ρ = 0.5,u = s 20.1350 18.3449

β YT
k ,ρ = 0.5,u = y 20.1188 18.8039

β YT
k ,ρ = 0.7,u = s 20.1317 19.5504

β YT
k ,rho = 0.7,u = y

β BG1
k 20.3330 20.1586

β BG2
k 9.7171 20.3707

β HS
k 20.4205 20.2007

β FR
k 9.7005 NaN

β PRP
k 20.3105 20.4720

β CD
k 18.8203 18.9510

β LS
k 20.3201 20.4633

β DY
k 19.9363 19.6200

β HZ
k 18.4660 19.8873

TABLE 4. PSNR Results of Cameraman’s image.

Conjugate gradient parameters φ(x) =
n
∑

i=1

xi

1+ x2
i

φ(x) =
n
∑

i=1
log(1+ x2

i )

β New
k ,ρ = 0.7,u = s 21.0252 19.3449

β New
k ,ρ = 0.8,u = s 21.3824 21.7894

β New
k ,ρ = 0.8,u = y 21.0178 20.8595

β F
k 20.0459 20.6611

β YT
k ,ρ = 0.5,u = s 20.9315 14.1041

β YT
k ,ρ = 0.5,u = y 20.9191 16.3832

β YT
k ,ρ = 0.7,u = s 20.9462 12.8312

β YT
k ,rho = 0.7,u = y 20.9366 12.8099

β BG1
k 20.8959 17.9764

β BG2
k 20.8729 21.7695

β HS
k 21.0225 19.6434

β FR
k 5.5962 NaN

β PRP
k 20.8842 21.7782

β CD
k 21.2427 19.0937

β LS
k 20.8336 21.7804

β DY
k 18.7045 18.6832

β HZ
k 20.1129 17.1293
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FIGURE 5. Deblurring image with β New. (a) ρ = 0.7 and uk = sk, PSNR = 29.7078. (b) ρ = 0.8 and
uk = sk, PSNR = 29.7144. (c) ρ = 0.8 and uk = yk, PSNR = 29.7214.

FIGURE 6. Deblurring image with β F (image (a)), β YT (image (b) and (c)), β BG1 (image (d)) and
β BG2 (image (e)). (a) PSNR = 28.9451. (b) ρ = 0.7, uk = sk, PSNR = 29.6733. (c) ρ = 0.7, uk = yk,
PSNR = 29.6603. (d) PSNR = 29.6625. (e) PSNR = 29.7295.

parameters is also effective in solving real-world problems. We also posted the figures for the other regularization terms
on the website.

7. CONCLUSION

We presented an effective conjugate gradient method. Our method satisfies the sufficient descent condition and is
globally convergent. Numerical results showed that in practice, the method has good performance and outperforms some
well-known methods. We also examined the ability of our method to solve some real-world applications. In this way,
a common problem from image processing applications was considered. We showed that the image recovered by our
method is acceptable in the sense of PSNR test.
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FIGURE 7. Deblurring image with other popular β . (a) β HS,PSNR = 29.6454. (b) β FR, PSNR =
29.0431. (c) β PRP, PSNR = 28.9495. (d) β CD, PSNR = 23.9086. (e) β LS, PSNR = 29.0302. (f) β DY,
PSNR = 29.5452. (g) β HZ , PSNR = 29.1291.

FIGURE 8. The 250×250 original and blurred/noisy cameraman image.

FIGURE 9. Deblurring image with β New. (a) ρ = 0.7 and uk = sk, PSNR = 24.0688. (b) ρ = 0.8 and
uk = sk, PSNR = 24.0658. (c) ρ = 0.8 and uk = yk, PSNR = 24.0377.
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FIGURE 10. Deblurring image with β F (image (a)), β YT (image (b) and (c)), β BG1 (image (d)) and
β BG2 (image (e)). (a) PSNR = 24.0310. (b) ρ = 0.5, uk = sk, PSNR = 24.1205. (c) ρ = 0.5, uk = yk,
PSNR = 23.9811. (d) PSNR = 24.1733. (e) PSNR = 24.0446.

FIGURE 11. Deblurring image with other popular β . (a) β HS,PSNR = 23.7595. (b) β FR, PSNR =
23.1993. (c) β PRP, PSNR = 23.1458. (d) β CD, PSNR = 19.4664. (e) β LS, PSNR = 23.0885. (f) β DY,
PSNR = 23.8327. (g) β HZ , PSNR = 23.2477.
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