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A COMMON WEIGHTS MODEL FOR INVESTIGATING EFFICIENCY-BASED
LEADERSHIP IN THE RUSSIAN BANKING INDUSTRY

SAJAD KAzZEMI' MADJID TAVANAZ3* MEHDI ToLOO*® NIKOLAY A. ZENKEVICH!

Abstract. In this race for productivity, the most successful leaders in the banking industry are those
with high-efficiency and a competitive edge. Data envelopment analysis is one of the most widely
used methods for measuring efficiency in organizations. In this study, we use the ideal point concept
and propose a common weights model with fuzzy data and non-discretionary inputs. The proposed
model considers environmental criteria with uncertain data to produce a full ranking of homogenous
decision-making units. We use the proposed model to investigate the efficiency-based leaders in the
Russian banking industry. The results show that the unidimensional and unilateral assessment of leading
organizations solely according to corporate size is insufficient to characterize industry leaders effectively.
In response, we recommend a multilevel, multicomponent, and multidisciplinary evaluation framework
for a more reliable and realistic investigation of leadership at the network level of analysis.
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1. INTRODUCTION

Globalization has converted the banking industry and, subsequently, the financial system into a vital sector
of the economy [46]. Consequently, the efficiency of the banking industry has been a key driver of financial and
economic development and growth [41,90,96]. Inefficient banks threaten the stability of the financial system, and
banks are under constant pressure to increase their efficiency by adopting efficient banking practices, lowering
their costs, improving productivity, and avoiding risky investments [8].

In this race for productivity, the most successful leaders in the banking industry are those with high profitabil-
ity [29,92], visibility [21], and competitive advantage [9]. Consequently, according to the competitive dynamics
[43,72], and the neo-institutional theoretical perspectives [25,56], organizations in similar situations tend to
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imitate the leader’s structure, processes, and strategies [48,49]. Hence, studying the efficiency-based leadership
among a set of competitive organizations such as banks is a critical task for managers who want to follow the
leaders. In this regard, both parametric and non-parametric methods are widely used for efficiency analysis
in the banking industry [22,71,74]. While parametric methods restrict the production function to a special
parametric form before estimation them, non-parametric methods avoid a parametric production function and
provide a clear understanding of the production possibility set [11].

One of the most applicable and popular non-parametric methods for performance measurement is the data
envelopment analysis (DEA) method, which has been introduced by Charnes et al. [12]. The conventional
DEA models consider three specific assumptions. First, they require precise input and output data. In con-
trast, the fuzzy and stochastic DEA models are designed to consider uncertain data in performance evaluation
[67,65]. Second, primary models with homogeneous decision-making units (DMUs) have been developed using
“exogenously fixed” or non-discretionary factors for different operating environments [7,37,64]. Third, initial
models with the ability to divide DMUs into two groups of efficient and inefficient units without providing
any additional information and ranking of the efficient DMUs have been proposed for performance evaluation
[4,16,36,50] in the form of common weights (CW) models [18]. We consider these three assumptions and propose
a CW model for investigating efficiency-based leadership in the Russian banking industry.

The remainder of this paper is organized as follows. In Section 2, we present a review of the relevant literature
review, followed by a description of the fuzzy CW model with non-discretionary inputs in Section 3. In Section 4,
we present a case study to demonstrate the applicability of the proposed model. Conclusions and future research
are provided in Section 6.

2. LITERATURE REVIEW

2.1. Data envelopment analysis (DEA)

DEA is a non-parametric fractional mathematical programming method for measuring and comparing the
relative efficiency as a ratio of a weighted sum of the outputs to a weighted sum of the inputs among a set
of homogeneous DMUs with numerous applications in airports, hospitals, universities, banks, technologies, etc.
[13,20,78,91]. In the following, the CCR (Charnes, Cooper, and Rhodes) input-oriented model of DEA proposed
by Charnes et al. [12] is presented as the central model for development in the literature.

2.1.1. The CCR model

Using the traditional denotations in DEA and according to the research of Charnes et al. [12], we assume
that there are a set of n DMUs and each DMUj, (j = 1,...,n) produces s different outputs using m different
inputs which are denoted by z;;, (¢ =1,...,m) and y,j, (r =1,...,s), respectively. It is assumed that z;; and
yr; are all positive. For any evaluated DMUj, the efliciency score E can be calculated by the following CCR
input-oriented multiplier model:

r=1

s.t.

S m

Z UrYrj Z Vi Tij < 07 V]a (2 1)
r=1 i=1

m

E ViZio = 1,
i=1
u, > 0,v; >0, Vr, Vi

where the decision variables v; and u, are the assigned weights for the ith input and the rth output, respectively.
The efficiency score for DMU, (E,) is calculated as the weighted sum of its outputs, while the weighted sum of
its inputs equals 1.

While the conventional DEA models such as CCR require accurate measurement of both inputs and outputs,
crisp input and output data may not always be relevant in real-world situations. The observed values of the
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input and output data in real-world problems sometimes include missing data, judgment data, or predictive
data, which are generally imprecise or vague. One way to deal with the uncertain data is the consideration of
fuzzy numbers in developing DEA models [6,60]. Four general approaches have been recognized in the literature
for developing fuzzy DEA models [27,90]. Here we will focus on the a-level approach, which has been proposed
by Saati et al. [65]. Although this approach is not computationally efficient, it is possibly the most popular
method due to its linear computation for each a value [73]. In the following subsection, a particular case of
fuzzy DEA with triangular fuzzy numbers for inputs and outputs has been proposed by Saati et al. [65] based
on the CCR model.

2.1.2. The fuzzy CCR model

Saati et al. [65] define all inputs and outputs as triangular fuzzy numbers Z;; = (mfj,xf;,xfj) and
Urj = (yij,y;'},yﬁj), respectively. The fuzzy CCR model using a-level approach is formulated as model
(2.2) and (2.3) by defining two interval variables, including #;; € [om:?]’-‘ +(1—a)l azit + (1 —a) z%] and

ij ij
Urj € [oay;’} +(1—a) yij, ays + (1 —a) y;*j] where « € (0, 1].

s
E, = max Z UrYro
r=1

s.t.

s . m A )
Z UrYrj — Z ViXij <0, N4
r=1 1=1

m
Y Ui = 1,
i=1

axll + (1 —a)al; < & <oxly+ (1 —a)zly, Vi,V

oyt + (1—a)yl; < gy <oylt + (1—a)yl, Vr,Vj,
Up, Vs i, Grj = 0, vr, Vi, V7.

(2.2)

The model includes (n + 1) (m + s) decision variables. Although model (2.2) is a non-linear programming
(NLP) model due to the existence of non-linear terms v;Z;; and w, g, it can be transformed into the follow-
ing linear programming (LP) model (2.3) using two changes in variables &;; = v;&;; and y,; = u,¥rj, and
substituting them in model (2.2):

S
E, =max Y ro

r=1
s.t.
> Urg = 20 Ei <0, vJ,
Tﬂ:’bl 2121 (23)
Tio = 1,
=1

v; (e + (1 — o) zl)) <@ <o (azll + (1 —a)zly), Vi,V
ur (ayy; + (L= @) yry) < gy Sur (a7 + (L= @)ury) - V5,
Uravi7j7ijyyrj Z O7 V’I“, VZ,V]

where #;; and 9,; are decision variables used to convert the primary non-linear fuzzy model into a crisp para-
metric LP model while « € (0, 1] [62]. Accordingly, the model will provide an optimal solution for each . In this
model, all evaluated DMUs must be homogeneous according to the original DEA’s fundamental assumptions.
However, in many real-world problems, environmental diversity may violate the presumption of homogenous
units [37,63]. Ruggiero [63] has demonstrated that the consequence of not controlling the environmental variables
results in biased estimation of technical efficiency. In response, researchers have focused on the “exogenously
fixed” or “non-discretionary” factors in their models to meet this assumption (e.g., [7,35]). A CCR model with
non-discretionary inputs proposed by Banker and Morey [7] is presented next to demonstrate the mathematical
application of these inputs in the model.
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2.1.8. The CCR model with non-discretionary inputs

Homogeneity is a fundamental assumption for all basic DEA models [7]. According to the homogeneity
assumption, all DMUs must agree to the following three conditions: (i) the DMUs should execute the same
processes; (ii) their efficiency should be evaluated by the same input and output variables; and (iii) all DMUs
operate within the same environment under the same conditions [99]. When environmental factors cause non-
homogeneity, they are considered in a single model as non-discretionary inputs. Therefore, different reference sets
are defined to discriminate DMUs in different environments [7,33,63]. There is no generally accepted approach
for using non-discretionary factors in DEA models. Therefore, this study considers the research of Banker and
Morey [7], who proposed the CCR model by applying non-discretionary inputs k (z;), (k =1, ...,t) for its
simplicity and popularity as the following model (2.4):

S t
Eo =max ) UplYro — Y WkZko,
k=1

r=1
s.t.
S t m .
> UYrj — O Whak — 2 vty <0, V) (2.4)
r=1 k=1 =1
m
> ViTio = 1,
i=1
Uy, Vi, Wi > €, vr, Vi, Vk,

where ¢ is a small, non-negative number used to avoid ignoring factors in calculating efficiency for DMU, [3].

This model can be extended to situations where some non-discretionary outputs are beyond the manager’s
discretionary controls. In this case, increasing output is not a meaningful target for managers while there are
non-controllable outputs. In other words, managers are interested in estimating the maximum possible increase
in the discretionary outputs with keeping the inputs and non-discretionary outputs at their current levels.
Therefore, the output-oriented objective function of the CCR model describes this situation more realistically
[7].

The above DEA models evaluate the relative efficiency with favorable weights for each DMU. These efficiency
scores usually lie in (0, 1]. While a ranking for inefficient DMUs is given using these models, they do not provide
sufficient information about the efficient DMUs with an efficiency score of 1. Researchers have solved this
problem by using various methods (e.g., [4,16,50,94]). Among them, the CW models are more favorable and
applicable according to the literature (e.g., [15,28,50,76,79,86]). In this research, we will use the CW model
based on the ideal point method proposed by Sun et al. [75]. The prominent feature of this method compared
to competing methods, is its feasibility feature [66].

2.1.4. The CW model with ideal point approach

The CW models reduce the flexibility and the dispersion in the optimal weights assigned to the inputs and
outputs by each DMU and make it possible to compare and rank the efficiency of all DMUs on the same basis
[42,86]. In this study, we use the CW model based on the ideal point method proposed by Sun et al. [75], which
provides a basic model for our final model development.

Definition 2.1. The (virtual) ideal DMU is a DMU that its inputs are at the minimum level, and its outputs
are at the maximum level among all DMUs.

The ideal DMU is shown by IDMU = (x,y) where x and y respectively denote the inputs and outputs of the
ideal unit, and z; = min {z;;|Vj}, (Vi) and §,, = max{y,;|Vj}, (¥Vr). The CW model with ideal point method
is developed next as model (2.5) based on the CCR model [44, 75]:
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9::1nh1§5 [551%($m‘—wfﬂ}'+ éé [55 uT(yr__yﬂ»}

j=1 Li=1 j=1 lr=1
s.t.
S m .
Z UrYrj Z Vi Tij <0, V]
T;l i=1 (25)
>, viz; =1,
i=1
S
Z u'r‘yr 17
r=1
Vi, Uy > €, Vi, Vr,

where (v,u) € R™"* is the common set of weights and the constraints Znil viz; =1land Y 0_, 4,7, = 1 ensure
that the IDMU is efficient. The efficiency score of DMUj; is measured by Zﬁnli”’” for j = 1,...,n, which is
less than or equal to one due to the first set of constraints.

In contrast to the conventional DEA models, which must be solved n times, model (2.5) is solved one time
for all units.

3. PROPOSED MODEL

In this study, we propose a novel DEA model to overcome the shortfalls highlighted earlier and find a

. . . . ~ _ l m u . . .
common set of weights in a fuzzy environment where the inputs 2;; = (xij, zi, xij), non-discretionary inputs

Zij = (zéj, s z}jj), and outputs ,; = (yij, (T yﬁ‘]) are triangular fuzzy numbers. To this aim, we define the
fuzzy ideal DMU as FIDMU = (5: z 5) in which:

(a) &, = (2}, 2 zy) , 2b = min { 2%, | Vj} Vi, Vb e {l,m,u}.
(b) 7, :(yr,yr,yr) yr—mm{ym’V]} Vr, Vb € {l,m,u}.
(¢) Zr = (2, 20, 2) , 2h = mln{zkj‘Vj} Vk,¥b € {l,m,u} .

Accordingly, the CW model with the ideal point method proposed by Sun et al. [75] is developed in a
fuzzy environment by applying non-discretionary inputs in Models (2.3)—(2.5) and defining six interval vari-

ables, including #;; € [ax]} + (1—a)zl, 0z} + (1 —a)zl], & € oz + (1 — o)z}, azf + (1 —a)z}],

Zrj € laziy + (1—«a) z,lw,azk;- + (I —a)zyl, 2 € Jazgt + (1 —a)zh oz + (1—a)z¥], 9 € [y +
(1-a) yf,j,ay;’; + (1 -a)yl, and 7, € [ag™ 4+ (1 — )T, o™ + (1 — a) 7] to propose the following NLP
model:

t
EIDMU = mlnz [Z % xl] 72‘ Z W (ij - Zk) + ZUT y”
k=1

s.t.
S m t
D iy = > vidi; — Y wiieg <0, V7,
r=1 i=1 k=1
m
Zviii = 1a
i=1
s _ t
> und, = Y wpky =1, (3.1)
r=1 k=1

i < 2 <oz + (1 — o)z, Vi, V7,
7Zn+(1 _a>£?7 VZ,
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azy; + (1-a) zfm < <azp;+ (1-a) Zhi»
azi' + (1 —a) 2 < zj, < ezl + (1 — @)z,
ay + (1 —a)yh; < grj < oy + (1 —a)yy,
ag + (1 -a)F, <§, < af + (1 - )3y,

Uiy U, Wi > g,

LijyLys zkjaék;a yT‘jvgr 2 07

The NP model (

vk, V7,
vk,
vr, V7,
vr,
Vi, Vr,VEk, (3.2)
Vi, Vr,Vk, V7.

3.2) has (n+2) (m + s +t) decision variables. We use six variable changes, including &;; =

Vilij, T = Uik, Zkj = WEZkj, 2 = WEZyg, Yrj = Uilrj, and ¥, = .9, to formulate the following linearized

model:

n m t s
Efpmy (@) = min 3 (i — &)+ > (rg — 26) + 2 (9,
j=1 Li=1 k=1 r=1
s.t.
t .
Z yT] Z xl] Z Zkj < Ov
r=1 k=1

,MS
o3
Il
\.)—‘

~
Il
—

M
<
3

|
MN
[e-
ES)

I
-

r=1 k=1

v; (ozx?; +(1—a)al) <iy < v (oaxl + (1 - a)xfj)
o (o + (1—a)al) < &, < vi (0al + (1 - @)ab),

wy (az,z'; + (1 - @)z ) < Zrj <wp (ezfs + (1 a)z}éj)
Wi (aZZ” +(1—a)z)) <z <wi ozl +(1-a)z}),

<
) < i <up (ay+ (1= a)y)
<Y, <up(ag)" + (1 - a)yy)
viau’r‘;wk Z g, _
z.ijal.iaékjyzk7yrjvyr Z 07

—rj)

V3,

Vi, v,

Vi,

vk, Vj,

vk,

vr,vj,

vr,

Vi, Vr, Vk,
Vi, Vr,Vk, ;.

It is evident that in this model, all DMUs consider the IDMU as the reference object. In other words,
the IDMU must take the efficiency value of one, and other DMUs are compared to the IDMU for efficiency
calculation in a fuzzy environment.

This model is now a crisp parametric LP problem and provides an optimal solution table for different «

values, « € (0,1]. The model possesses (n + 2) (m + s + t) decision variables and (2n + 3) (m + s +t) +

(n+2)

constraints. Accordingly, if (v, u,w,&*,y*, £*) is the optimal solution for model (3.3), then, we have E¥* =

) t .
o=t y:j_Zk:1 z;j

T x
i=1%ij

. EX* is a-efficiency score of DMU; and the value of alpha affects efficiency scores. Also,

according to model (3.3), the value of epsilon is important for its impact on the calculated weights of inputs and
outputs. Note that an unsuitable value for the epsilon may lead to infeasibility [3,67]. In addition, its optimal

value to reach maximum weights is another problem that needs further investigation.

Definition 3.1. DMUj is said to be efficient at given o € (0,1] if B = 1.

Theorem 3.2. E;-‘OQ < E;O‘l for a1 < as.

Proof. Let S («) be the feasible region of the model (3.3) for a given a. It is easy to verify that S (ag) C S (aq).
This fact that model (3.3) is a minimization problem that completes the proof.

The proposed model has several innovative features. Our model:

O
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(1) provides investigators with the opportunity to address three potential concerns collectively. The first concern
is uncertainty and fuzzy variables. The second concern is related to the conventional DEA limitation of not
providing sufficient information for evaluating and ranking the efficient DMUs. Finally, the third concern is
the homogeneity of the DMUs as a central premise in DEA modeling.

(2) provides the leadership literature with a quantitative model for measuring leadership from an efficiency
perspective, which has been emphasized in previous studies [19,30,47,97]. This characteristic of leadership
illustrates the fact that an organization with a higher leadership index is more efficient and performs better
than competing organizations [53,61]. As a result, these high-performing organizations become role models
for other competitors [29,48].

Finally, we suggest the following model (3.4) for finding a suitable value for the epsilon in model (3.3):

e* (o) = maxe
S.t.
S . m . t .
D Urj = > g — Y Ekj <0, v,
r=1 i=1 k=1

MS
e
Il
l_k

s
Il
_

M«
<
3

[
Mw
-
x>

Il
vb—‘

r=1 k=1

v; (el + (1 — a) aly) <y < v () + (1 — o) 22) Vi, Vg,

vi (0] + (1 - a) &) < &; <o (ad]" + (1 —a) &), Vi, (3.4)
Wi (ozz,’c’} +(1 a)z,lcj <z S wg (azp; + (1 — )z, Yk, V7,

we (azp' + (1 - o) 2) < & Swp (0 + (1—a) 2),  VE,

Uy (ay{]} +(1-a) yij) < Yrj < Up (ay:f; +(1-a) ygj) vr,Vj,

Ur (a@«mﬂl—a)ﬂ) <y < (ayr +(1-a)y, vr,

e—v; <0, Vi,

e—ur <0, vr,

e —wi <0, vk,

e>0 B

é'k;ay’fjvyr Z 0) Viavr7 \V’k,VJ,

where ¢ is a decision variable. This parametric LP model presents the maximum epsilon (¢*) which applies to
model (3.3) and all other values higher than ¢* cause infeasible results.

Choosing a suitable value for ¢ is a challenging problem in DEA (see [80,81]). The value of ¢ selected in the
epsilon-based DEA model influences the size of multipliers. In other words, different values of € may lead to
various efficiency assessments. Cook et al. [17] explained that letting € = &*, results in an identical assessment
and, more importantly, the resulting DEA model has a sharper discriminating power.

Theorem 3.3. Model (3.4) is always feasible.

0 _ 1 0 Ay 00 1 S0 1y, 001 0 _ 1 0
Proof. Let y,; = {VrVj, &3; = .Vi,Vj, &, = {VkVj, &f = Vi, g, = {Vr, Z = {Vk, v €
1 1 S0 1 1 0 1 1
azmF(1—a)z?’ aggﬂ+(1—a)§g} Vi, wy € [ag'k"ur(lfoz)éz’ ag'}f—!—(l—a)g'fj vk, up € |:o¢z'/7rn+(1—o¢)y':f’ i +(l—a)g- v,

and e = min {v), w, ), Vi, Vk,Vr}. Since ai;™ + (1 — o) " < axf} + (1 —a)zfy and a@™ + (1 - )i <

azli + (1 - ) xéjVi,Vj it is easy to verify that:

?(ax;’;—i—(l—a)xé-) <

v J

< vio (am?} +(1-a) x;‘]) ,  Vi,Vj
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and
o) (adf" + (1 —a)il) <

i 7

Analogously, we obtain:

1 .
w) (o2 + (1 a)zéj) < n <w? (a2 + (1 —a)zy) Yk, Vg,
1
wy, (a2 + (1 - a)zl) < n < wp (e + (1 @)zi5) vk,
m 1 m ;
w) (g + (1= aJyyy) < - <o) (o + (1 - ayly), vr, Vi,
1 . .
uf (g + (1 =), ) < < <ul (af) + (1 - )7, v,
s

Hence, the vector (50, 00, u? wl, &, 9° 20 &, 9, ;’) is a feasible solution for model (3.4). This completes the
proof. O

Theorem 3.4. ¢* € (0, 00).

Theorem 3.5. model (3.3) is feasible for e = * (see [82]).

4. CASE STUDY

In this section, we study the efficiency-based leadership in 20 independent banks' in the Russian Federation
using the method proposed in this study. The Russian banking sector has experienced considerable disorder
in a highly centralized economy with the collapse of the Soviet Union. Russian banking system operates in an
adverse economic environment and is dominated by large state-owned banks, which are highly fragmented and
free of financial repression. The most significant feature of the modern Russian banking system is that the rules
and regulations do not apply to all banks equally [45,54,95]. Among emerging and transition economies, the
Russian banking industry has been rarely studied for performance management and efficiency.

4.1. Measurement inputs and outputs

DEA does not provide any guidelines for selecting input and output variables. Many researchers have sug-
gested regression analysis and principal component analysis for selecting input and output variables. Deposit
is a factor widely used for DEA applications in the banking industry with a dual role [31,77,88]. There are
three approaches for designating deposits as inputs, outputs, or both (dual role). These approaches include the
production approach with the aim of deposit producing, intermediation approach with the aim of profit earn-
ing, and intermediate product approach with both aims through two processes [31,62]. Appropriate inputs are
those variables that managers would like to minimize, and appropriate outputs are those with the maximizing
purpose [59]. We found employees, fixed assets, and interest expenses are regularly defined as input variables
(e.g., [34,58]) while loans and incomes are regularly defined as output variables (e.g., [24,40]). We performed
a comprehensive review of the recent DEA applications in the banking industry presented in Table 1 to select
the most suitable input and output variables for our study. We chose three discretionary inputs (z1: number
of branches, x5: interest expense, and x3: total expenses); two outputs (y;: net profit and ys: total assets as
the ultimate outputs); and one non-discretionary input (z;: branch density, which is defined as the number of
branches per square kilometer and is an indicator of the space dimension for each national market). z; represents
the availability of banking services for clients [52].

1 The names are changed to protect the anonymity of the banks.
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TABLE 1. Most recent DEA publications banking.

221

No. Analysis Inputs Outputs Reference
1 A multi-period and multi-stage DEA model using tri- Employees’ salaries Net interest incomes Zhou et al. [98]
angular type-2 fuzzy numbers for measuring the effi-
ciencies over consecutive periods.
Fixed assets Non-performing loans
Interest payments
2 DEA utilized for examining the effects of risk deter- Interest expenses Total income Fernandes et al. [24]
minants on efficiency considering the Malmquist
Productivity Index. Double Bootstrapped Truncated
Regression for obtaining bias-corrected scores.
Operating expenses
3 A copula-based econometric model for identifying Labor physical capital Total loans Huang et al. [34]
parameters of the structural equations and estimat-
ing technical efficiencies of the stochastic production
and cost frontiers.
Investments
Non-interest income
4 A new version of the modified Semi-Oriented Radial Total non-interest Gross interest and Kaffash et al. [40]
Measure model, using directional distance function expenses dividend income
and choosing a relevant direction to efficiently deal
with variables with both positive and negative values.
Other operating expenses Total non-interest
operating income
Fixed assets Loans
Equity Net income
5 A new DEA-based analysis framework with a Personnel expenses Gross loans Ouenniche and
regression-based feedback mechanism for providing Carrales [58]
DEA with feedback about the relevance of the inputs
and the outputs.
Fixed assets Total customer deposits
Equity Gross income
Total interest expense
6 A fuzzy two-stage Game-DEA approach was proposed Personnel costs Interest income Tavana et al. [77]
using a bargaining game model.
Operating costs Fee income
Interest costs Fund transfer income
7 Two-stage network DEA model and bootstrapped Fixed assets Investments Gulati and Kumar
truncated regression for measuring overall bank effi- [26]
ciency and its decomposition in intermediation and
operating efficiencies.
Employees Net-interest
Loanable funds Income
Non-interest income
8 An input-oriented profit bootstrap DEA for inves- Direct operating expenses Non-interest income Aggelopoulos and
tigating homogeneous and heterogeneous branches Georgopoulos [2]
according to branch size and location.
Loan loss provisions Net interest income
9 DEA and stochastic frontier approach for investigat- Total interest expenses Deposits Silva et al. [70]
ing the reliability of the single frontier model
Total non-interest Loans
expenses
Liquid assets
10 Two approaches for selecting inputs and outputs in Employees Deposits Toloo and Tichy [83]
DEA
Number of branches Loans
Assets Non-interest income
Equity Interest income
Expenses
11 Fuzzy multi-objective two-stage DEA model for pro- Total liability ratio Profit ratio Wang et al. [87]

viding a common scale for comparing performance.

Total equity ratio
Unit employee cost

ROA
ROE
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No. Analysis Inputs Outputs Reference
12 Additive two-stage network DEA for disaggregating, Fixed assets Non-interest income Wang et al. [88]
evaluating, and testing the efficiencies.
Employees Interest income
Non-performing loans
13 The network-DEA centralized efficiency model for Number of branches Equity Wanke and Barros
optimizing two stages simultaneously. [89]
Number of employees Performance assets
Personnel expenses
14 A statistical test in the network DEA framework for Operational costs Non-interest earnings Matthews [55]
assessing the importance of the risk metrics in evalu-
ating income efficiency.
Fixed assets Interest earnings
Deposits Non-performing loans
Number of branches
Interest costs
15 Three-stage data envelopment analysis with adjust- Number of operational Net interest spread income Shyu and Chiang
ment of environmental factors and statistical noise for staff [69]
measuring managerial efficiency and highlighting the
effect of environmental criteria.
Number of business Net fee income
personnel
Branch office rent
Operating expenses
16 An alternative DEA model that treats deposits as an Fixed assets Total loans Holod and Lewis
intermediate product. [31]
Number of employees Other earning assets
17 DEA utilized for investigating the effect of the “First Interest expense Interest revenue Hsiao et al. [32]

Financial Restructuring” on the operating efficiency.

Non-interest expense
Total deposits

Non-interest revenue
Total loans

4.2. Data collection

We developed a database using the 2018 financial statements of the 20 banks selected for this study. In

addition, we used the annual reports from the SPARK database, provided by the Interfax news agency and
the Central Bank of the Russian (CBR) Federation. Russia is ideal for this study because of its largest market
among the Commonwealth of Independent States countries with bank-based economies. We used the websites
of the Russian banks and the CBR site to collect data on banks in this study. While the collected data were
in crisp form, there were some uncertainties concerning the accuracy of the data. We also needed to consider
the problem of income smoothing in financial statements [10]. In response, we decided to use fuzzy sets [93]
to incorporate these uncertainties and ambiguities into our model [62]. We used triangular fuzzy numbers
(a,a™,a") to represent the uncertainties and vagueness in our data [14]. Accordingly, the collected crisp was
converted into triangular fuzzy data through the following steps [62]:

1) Considering crisp data as a™.
g P

(2) a'is equal to a™ — 1%a™.

(3) a* is equal to a™ + 0.01%a™.

The fuzzy input and output data for the Russian banks considered in this study are presented in Table 2.

5. RESULTS AND DISCUSSION

We used model (3.3) to calculate the efficiencies of 20 banks (DMUs) and normalized the results. The
normalization of the efficiency scores is intended to produce efficiencies between 0 and 1 with at least one efficient
unit [39, 85]. We used the GAMS program with different o values and an epsilon value of 10~7. We selected
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TABLE 3. Normalized efficiency scores and rankings of the Russian banks.

j DMU Efficiency scores”
a=0.25 Rank a=0.5 Rank «a=0.75 Rank a=1 Rank

1 Yekaterinburg Savings Bank 0.069623 18 0.069622 18 0.069621 18 0.06962 18
2 Bryansk Capital Bank 0.243749 6 0.243748 6 0.243748 6 0.243748 6
3 Novosibirsk People Bank 0.453649 5 0.45365 5 0.453651 5 0.453652 5
4 Northwest People Bank 0.222637 7 0.222618 7 0.222599 7 0.22258 7
5 Northern Kazan Trust 0.192283 9 0.192289 9 0.192295 9 0.192302 9
6 Volga National Bank 0.187337 10 0.187341 10 0.187343 10 0.187347 10
7 Saint Petersburg Savings Bank 0.612904 2 0.61305 2 0.613196 2 0.613342 2
8 Krasnodar Financial 0.222145 8 0.222145 8 0.222146 8 0.222146 8
9 Nizhny Tagil Bank 0.111105 15 0.111104 15 0.111102 15 0.1111 15
10 Khabarovsk Capital Bank 0.152525 13 0.152527 13 0.152529 13 0.152531 13
11 Barnaul Bancorp 0.165635 11 0.165631 11 0.165626 11 0.16562 11
12 Omsk Financial Group 0.07534 17 0.075341 17 0.075343 17 0.075343 17
13 Far East Bank 0.587567 3 0.58756 3 0.587552 3 0.587544 3
14  Siberia State Bank 0.159976 12 0.15997 12 0.159965 12 0.159958 12
15  Union Bank of Tyumen 0.045352 19 0.045353 19 0.045356 19 0.045358 19
16 Ural Trust Bank 0.08212 16 0.082128 16 0.082135 16 0.082143 16
17  First Citizens Samara 0.571191 4 0.571175 4 0.57116 4 0.571144 4
18 Makhachkala Federal 1 1 1 1 1 1 1 1
19  First Chita Bank 0.135226 14 0.135223 14 0.13522 14 0.135216 14
20  Cherepovets Bank 0.031122 20 0.031122 20 0.031122 20 0.031121 20

Notes. *Normalized efficiency scores are calculated for o € (0,1] and € = 107".

this non-maximum value for epsilon arbitrarily to achieve feasible solutions due to the large values. However,
epsilon’s optimal value is influential in measuring the weights and producing results with more discriminating
power [17].

Table 3 illustrates the normalized efficiency scores of the 20 banks and their ranks for different values of
alpha in columns 3-12. The results demonstrate that all 20 banks are inefficient, and their efficiency values have
decreased substantially because of using the CW approach and the ideal point method in efficiency evaluation.
This method will consider a virtual ideal unit as the reference object with the lowest inputs and highest outputs.
This ideal unit will be considered our ideal efficient DMU with an efficiency score of one [75]. There is a large
difference between the efficiency of the ideal unit and all other DMUs.

In the last step, model (3.4) is used to obtain the maximum value of epsilon for model (3.3). Other values
greater than ¢* produce infeasible results [82]. Accordingly, the epsilon’s optimal values (maximum epsilon)
were estimated for « € (0,1] and applied to recalculate the efficiency scores in the case study, and their value
is presented in Table 4. Again, we have normalized the efficiency scores to avoid small efficiencies derived from
the implementation of the CW model and the ideal unit method.

A graphical representation of the recalculated efficiency scores for the optimal epsilon values is presented in
Figure 1. The majority of the DMUs have the same rankings for different alpha values due to the adjustments of
the weights for achieving optimal answer for Ejyy;(a) in a CW model when there is no flexibility for weights.

As shown in Tables 3 and 4, the efficiency scores of the proposed model decrease with the implementation of
e*, and all DMUs obtain different rankings. Also, the efficiency scores in Table 4 follows a different trend. The
efficiency scores for the majority of the DMUs decrease with increasing alpha from zero to 0.5 and then follow
an increasing trend.

The results in Table 3 show that by using a lower value for the epsilon in model (3.3), the Makhachkala Federal
Bank with an efficiency score of 1 is the best DMU even with lower corporate size (around 3170 employees) in
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TABLE 4. Normalized recalculated efficiency scores and rankings of the Russian banks.
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j DMU Efficiency scores™
a=0.25 Rank o =0.5 Rank o =0.75 Rank a=1 Rank
e* = 4.047 x 10 e* =4.422 x 10 e* =4.421 x 10 e* =4.420 x 10

1 Yekaterinburg Savings Bank 0.128967 14 0.127221 13 0.127222 13 0.127222 13
2 Bryansk Capital Bank 0.431073 7 0.426641 7 0.426641 7 0.426641 7
3 Novosibirsk People Bank 1 1 1 1 1 1 1 1
4  Northwest People Bank 0.129593 13 0.123205 14 0.123205 14 0.123206 14
5 Northern Kazan Trust 0.271678 8 0.265887 8 0.265887 8 0.265887 8
6  Volga National Bank 0.486234 5 0.468991 5 0.468993 5 0.468996 5
7  Saint Petersburg Savings Bank 0.179926 12 0.178515 12 0.178515 12 0.178515 12
8 Krasnodar Financial 0.026062 20 0.025027 20 0.025027 20 0.025027 20
9 Nizhny Tagil Bank 0.050153 18 0.049827 18 0.049827 18 0.049827 18
10 Khabarovsk Capital Bank 0.755002 3 0.782661 3 0.782663 3 0.782665 3
11 Barnaul Bancorp 0.0345 19 0.031521 19 0.031521 19 0.031521 19
12 Omsk Financial Group 0.053232 17 0.052798 17 0.052798 17 0.052798 17
13 Far East Bank 0.265247 9 0.242162 10 0.242163 10 0.242164 10
14 Siberia State Bank 0.106244 16 0.067849 16 0.067849 16 0.067849 16
15 Union Bank of Tyumen 0.110847 15 0.118905 15 0.118905 15 0.118906 15
16 Ural Trust Bank 0.827162 2 0.877927 2 0.877942 2 0.877958 2
17 First Citizens Samara 0.442172 6 0.434996 6 0.434997 6 0.434998 6
18 Makhachkala Federal 0.637418 4 0.627753 4 0.627754 4 0.627756 4
19 First Chita Bank 0.264653 10 0.251886 9 0.251886 9 0.251887 9
20 Cherepovets Bank 0.210726 11 0.224387 11 0.224389 11 0.22439 11

Notes. *Normalized recalculated efficiency scores are obtained with o € (0,1] and the maximum .

L \ o \ ,

9 10 11 12 13 14 15 16 17 18 19 20

0=0.25 ma=0.5 Wa=0.75 mo=1

Fi1GURE 1. Efficiency scores with different alpha levels.
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comparison with Nizhny Tagil Bank (around 27550 employees) and Khabarovsk Capital Bank (around 27300
employees). However, this result is different when we selected €* as the optimal value of the epsilon in model
(3.3). In this situation, the Novosibirsk People Bank, with an efficiency of 1 has the highest efficiency among
the 20 banks. The results demonstrate that focusing on unidimensional and unilateral attributes like the firm
size [23,68] is not sufficient for successfully characterizing leaders. Consequently, most literature reviews have
concluded that trait theories have fallen out of interest between researchers in the leadership area [38]. We
advocate a multilevel, multicomponent, and multidisciplinary approach to leadership [1,5,51,84] for achieving
robust and reliable results.

6. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we highlighted three shortcomings in the existing DEA models and used non-discretionary
inputs and fuzzy data in a CW model with an ideal point method to measure efficiency in the Russian banking
industry. We also considered uncertainties inherent in real-world data and used fuzzy sets to take into account
these uncertainties. In addition, we considered non-discretionary inputs to incorporate the homogeneity of the
DMUs in our model. We used the proposed CW model and ranked 20 independent banks in the Russian
Federation. Finally, we used our model to find the efficiency-based leaders in the Russian banking industry. The
results show a unidimensional and unilateral assessment of leading organizations merely according to corporate
size is not sufficient to effectively characterize industry leaders.

As for further research, we suggest developing a multidimensional DEA model considering different weights
for different dimensions. This will allow us to include various characteristics of leadership based on the existent
theories in the forms of different dimensions of inputs and outputs.
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