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ON GENERALIZED APPROXIMATE CONVEX FUNCTIONS AND
VARIATIONAL INEQUALITIES

BaouwaN CHANDRA JOSHI*

Abstract. In this paper, we consider a vector optimization problem involving locally Lipschitz gener-
alized approximately convex functions and provide several concepts of approximate efficient solutions.
We formulate approximate vector variational inequalities of Minty and Stampacchia type under the
framework of Clarke subdifferentials and use these inequalities as a tool to characterize an approximate
efficient solution of the vector optimization problem.
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1. INTRODUCTION

The variational inequality problem includes many interesting classes of variational problems with applications
in game theory, economics and engineering. The basic prototype is smooth convex optimization. Other problems
which can be formulated as variational inequalities, include systems of equations, complementarity problems,
saddle-point problems and many equilibrium problems. We refer the reader to Chapter 1 of [7] and [8] for an
extensive review of applications of the variational inequality problem in economics and engineering. For recent
developments in variational inequalities, we refer to [4,9,14,27] and references therein.

The approximation procedures are of immense importance in optimization theory, because sometimes it is
practically impossible or computationally very expensive to find out an exact solution. Thus, approximate effi-
cient solutions help to overcome the difficulties arise due to the computational inaccuracies and the modeling
limitations. In 1984, Loridan [16] introduced the concept of epsilon efficient solutions for the vector optimiza-
tion problems. Later, White [29] proposed several concepts of approximate solutions for the vector optimization
problems through scalarization. Recently, a concept of approximate efficient solution has been introduced by
Mishra and Laha [18] and characterized using approximate vector variational inequalities of Stampacchia and
Minty type under assumptions of approximately straight functions. Later, Wang et al. [28] proved that the solu-
tions of generalized vector variational-like inequalities in terms of the generalized Jacobian are the generalized
quasi-efficient solutions of nonsmooth multi-objective programming problems under the higher-order generalized
invexity assumptions.

In the last three decades, several definitions extending the concept of convexity of a function have been
introduced by many researchers. Usually, generalized convex functions have been introduced in order to weaken
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the convexity requirements as much as possible to obtain results related to optimization theory. One of the
significant generalization of convex function is invex function (invarient under convex transformations) [5,12].
The class of invex functions preserves many properties of the class of convex functions and has shown to be very
useful in a variety of applications [17]. Osuna-Gémez et al. [25] introduced the notions of generalized invexity
for differentiable functions in a finite-dimensional contex. This generalized invexity has been extended to locally
Lipschitz functions using the generalized Jacobian (see [11]). Ivanov [13] provided the concept of second-order
invex functions and dealt with the optimal solution of nonlinear programming problem. For more literature on
generalized convexity and their applications, we refer to [1,3,10,19,22,23,26] and references therein.

Recently, much attention has been given to the class of approximately convex functions as it helps to relax
the convexity or smoothness assumptions for practical applications. In 2000, Ngai et al. [24] introduced the
concept of approximate convexity as an extension of the concept of epsilon convexity given by Jofre et al. [15].
Later, Daniilidis and Georgiev [6] showed that a locally Lipschitz function is approximately convex if and only
if its Clarke subdifferential is a submonotone operator. Motivated by the earlier work on approximate convex
function, Wang et al. [28] introduced several extended approximately invex vector-valued functions of higher
order involving a generalized Jacobian. Inspired and motivated by this ongoing research work, we present the
concept of approximately invex function. The outline of this paper is as follows: in Section 2, we give some
basic definitions and results which will be used in the sequel. In Section 3, we give a variant of the concept of
approximate efficient solutions for a vector optimization problem involving locally Lipschitz approximately invex
functions and characterize these approximate efficient solutions using approximate vector variational inequalities
of Minty and Stampacchia type in terms of the Clarke subdiffferentials.

2. PRELIMINARIES

In this section, we recall some known definitions and results which will be used in the sequel. Let R™ be the
n-dimensional Euclidean space. For any u := (u1,...,u,) and v := (v1,...,v,), we define:

u<v <= u—ve-R}\{0};

ugv <= u—v¢-R}\{0};

u<y <= u—vcintRY;

ugv <= u—v¢intRY}.
Let B be a real Banach space endowed with a norm || e || and B* its dual space with a norm || e ||*. We denote by
(., ), [u,v] and (u,v), the dual pair between B and B*, the line segment for u,v € B and the interior of [u,v] ,
respectively. Let B(u; 0) denotes the open ball centered at v € B with radius § > 0. Let h : B — R, := RU{+o00}
be an extended real valued function with domain domh := {u € B : g(u) # +o0}.

Let f:=(f1,...,fm): B — R™ be given. For each y € R™ the composite function, (yf) : B — R, is defined
by

(yf)(w) =y, f(u) = Zylfz(u)
i=1
The Clarke directional derivative of yf at @ in the direction x € B is given by

(yf)°(a;2) = lim sup (y, fu+ ttx) ~ f(w)

The Clarke subdifferential of f at @ is given by
of(u) ={u" € L(B,R™) : (yf)°(u;z) = (2" (x),y),Vx € B,Vy € R™}.

Definition 2.1 ([21]). The subset X C R" is said to be invex with respect to n : X x X — R", if for every
u,v € X, X € [0,1], we have v + An(u,v) € X.
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Definition 2.2 ([20]). A locally Lipschitz vector function f: X C R™ — R™ is said to be approximate convex
at u € X, iff for any € > 0, there exists § > 0 such that, for all u,v € B(@;0),a* € df(u), one has

fv) = f(u) 2 (@, v —u) —el][lv—ul|, where e=(e..., €) € intRY.

From now onwards, we always assume that the subset X C R™ is a nonempty invex set with respect to some n
unless otherwise specified.

Wang et al. [28] presented the notions of approximate invexity of higher order with respect to the two kernel
functions. Motivated by the work of Wang et al. [28] we are introducing the definition of approximate invexity
(of order one) with respect to the single kernel function.

Definition 2.3. A locally Lipschitz vector function f : X — R™ is said to be approximate invex at 7 € X,
with respect to the kernel function 7 : X x X — R™ if for any € > 0, there exists § > 0, for all u € X, a* € 9f(u),
one has

f(u) — f(u) 2 (@*,n(u,w)) —elln(u,u)||, where e= (e, ... ,€) € intRY.

Example 2.4. Let X =R and e = (e, €2)7 > 0. Consider the following functions: f: X — R%2,n: X x X — R
defined by
flu) = (u,max{—u,0,u =117, n(u, ) =u—1a.

Take % = —1, then we have @* = (1,—1)T. It follows that,
flu) = f(a) = (u,max{—u,0,u —1})" — (=1,1)7 = (u+ 1, max{—u,0,u — 1} — 1)",
and
(@, n(u, @) — elln(u, w)l| = (1, -1)"(u+1) = (e1,e2)" [Ju+ 1|
=w+1,—(u+1)T = (e1,e) " |Ju+1].
Obviously,
(u+ 1, max{—u,0,u—1} = 1)" > (u+1,—(u+1))".
Since, e = (€1, 62)T > 0, we can arrive at
(u+1,max{—u,0,u— 1} = DT > (u+1,—(u+1)" — (e, e2)|Ju+ 1||.
That is
flu) = f(@) 2 (@, n(u,w)) — eln(u,w)].
So, we have verified that f is approximately invex at 4 = —1 with respect to 7.

Now, we provide an example which is approximate invex but not approximate convex.

0 <0
© SV then at @ = 0, we have @* = [0, 1]. Now, suppose
u, u>0

f is approximate convex at @ = 0 then for all v € R and € > 0, we have
flu) = f(@) — (@, u —a) > ellu—al|.

If we take u > 0, and e = 2, then the above assumption contradicts. That is function is not approximate convex
at u=0.
Now, if we take ,u = 0 and n(u, @) = usin @, then following inequality holds

flu) = f(@) = @, n(u, @) = elln(u, w). (2.1)

That is f with respect to the kernel function 7 satisfies (2.1). So function f is approximate invex at @ = 0, with
respect to the given kernel function 7.

Example 2.5. Let f: R — R is given by f(u) =
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Interested reader is referred to [28] for more details on approximated invex functions.
In the next section, we will define approximate Minty type and Stampacchia type vector variational
inequalities.

3. APPROXIMATE VECTOR VARIATIONAL INEQUALITIES
In this section, we consider the nonsmooth vector optimization problem as follows:
(VOP) min f(u) subject to u € X,

where f : X — R™ is locally Lipschitz on X and approximately invex at @ € X. A vector @ € X is said to be
an efficient solution of the VOP, iff there is no vector © € X such that

flu) < f(a). (3.1)

When (3.1) is true for all u in a small neighborhood of @, we say that u is a local efficient solution of the VOP.
The following concepts of efficient solutions (AES) is a variant of the concept of approximate efficient solution
introduced in [18].

Definition 3.1. (a) A vector 4 € X is said to be an approximate efficient solution of type one with respect
to the kernel function 1 of the VOP, denoted by (AES);, iff for any € > 0 sufficiently small, there does not
exist § > 0 such that, for all v € B(a, d)\{a}, one has

flu) = f(u) < eln(u, a)].

(b) A vector @ € X is said to be an efficient solution of type two with respect to the kernel function of the
VOP, denoted by (AES)s, iff for any e > 0 sufficiently small, there exists § > 0 such that, for all u € B(a, §),
one has

fu) = (@) & elln(u, w)].

(¢) A vector @ € X is said to be an efficient solution of type three with respect to the kernel function of the
VOP, denoted by (AES)s, iff for any € > 0, there exists 6 > 0 such that, for all u € B(@,d), one has

f(u) = f(u) £ —eln(u, w)].
Remark 3.2. An equivalent definition of the above solutions can be given as follows.

(a) A vector u € X is an (AES);, iff there is a sequence of vectors {u¥},en converging to @ such that f_.(u¥) &
fe(@) for every y € N, where f_o(u) = £(u) — elln(u, @),

(b) A vector @ € X is an (AES),, iff it is a local efficient solution of the problem of minimizing the function
f-e(u) over X.

(¢) A vector u € X is an (AES)s, iff it is a local efficient solution of the problem of minimizing the function
fe(u) = f(u) + elln(u, w)| over X.

An (AES); is a strengthened notion of local efficiency while an (AES)3 is a weakened notion of local efficiency.
Moreover, an (AES); can be regarded as a quasi-efficient solution of the VOP. It is clear that an (AES), of the
VOP is also an (AES); and an (AES)s3 of the VOP.

Example 3.3. Consider the multiobjective optimization problem (MOP) as follows:

min f(u) := (f1(u), f2(u)) s.t. u € R,
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where f1(u) :=sin |u| and fa(u) := |u| — u* let @ := 0 and n(u, @) = u. For any € > 0, one has
fi(w) = f1(@) + eln(u, w)|| = sinfu| =0, Vu € [-m 7],
fa() = fa(@) + elln(u, @) = ul —u* >0, Vue[-1,1].

Choose 0 < § < 1, one has

F(u) = f(@) +elln(u, )| ¢ —RI\{0},  Vu € B(0,0).
Hence, @ := 0 is (AES)3 of the MOP.

Example 3.4. Consider fi(u) = |u| — u? and fa(u) = u3 — u?, let @ := 0 and n(u, %) = u. For given 0 < ¢ < 1,
one has

fr(w) = f1(@) = elln(u, @)l = [u] —v* —eful > 0, Vue[-(1-e),(1-e)].

Also
1+ /14 4e

fa(u) = fo(@) = elln(u, @)|| = v* — u? —elu| >0, Vu > 5

Choose 0 < § < (1 —¢€). Then

flu) = f(@) = eln(u,a)|l ¢ ~RI\{0}, Vu € B(0,0).
Hence, @ := 0 is (AES) of the MOP. Similarly, one can see that @ := 1 is also an (AES)3 of the MOP.

Example 3.5. In the MOP of Example 3.3, let u := 0. Proceeding as in Example 3.4, it can be shown that,
for given 0 < € < 1 and for any § > 0, there exists v € B(@,d)\{a} such that

flu) = f(@) = elln(u,@)|| ¢ ~R\{0},
which implies that @ := 0 is an (AES); of the MOP.

3.1. Approximate Minty type vector variational inequality

The following vector variational inequalities of Minty type will be used in the sequel to characterize an
approximate efficient solution of the VOP.

(AMV); To find @ € X such that, for any € > 0 sufficiently small, there does not exist § > 0 such that, for all
u € B(w,d)\{a} and u* € df(u), one has

(", m(u, w) < el[n(u, vl
(AMV)s To find @ € X such that, for any e > 0 sufficiently small, there exists 6 > 0 such that, for all
u € B(u, ) and u* € 9f(u), one has
(u*,n(u, w)) £ elln(u, a)l|.

(AMYV)3 To find 4 € X such that, for any € > 0, there exists ¢ > 0 such that, for all u € B(@, ) and u* € 9f (u),
one has

(W n(u, w)) £ —elln(u, wl.

Special cases: Following are some special cases in which we have related our present vector variational inequal-
ities with the variational inequalities existed in the literature.



S3004 B.C. JOSHI

— Assume that n(u, %) = u — @ then (AMV); reduces to approximate weak vector variational inequalities [18]:
for finding w € X, such that for any, € > 0 there does not exist § > 0 such that, for all i =1,2,...,m,u;* €
OF fi(uw) and u € B(u,9), one has

<ai*vu_a><6||u_a”a U?éﬂ

where 0% (i) stands for Frechet subdifferentials [2] of the function f at point .
— If in (AMV)y, we put n(u,%) = v — % and € = 0 then (AMV); reduces to vector variational inequalities [20]:
find a point @ € X such that there exist no u € X such that

(@*,u—1u) <0; Vua*edf(u),
where Jf (@) stands for Clarke subdifferentials of the function f at point .

Remark 3.6. It is also clear that a solution of the (AMV); is also a solution of the (AMV); and (AMV)3, but
the converse does not always hold.

The following theorem gives an approximate version of the Minty variational principle for an (AES); of the
VOP in terms of the (AMV); and (AMV)s,.

Theorem 3.7. Let f be locally Lipschitz on X and approzimately inver at @ € X with respect to the kernel
function n. Then, the following statements hold:

(a) If u is an (AES); of the VOP, then it is also a solution of the (AMV); with respect to the common kernel
function n;

(b) If @ is a solution of the (AMV)sq, then it is also an (AES)s with respect to the kernel function n of the VOP;

(¢) If u is an (AES)3 of the VOP, then it is also a solution of the (AMV)3 with respect to the common kernel
function n.

Proof. (a) Suppose to the contrary that @ is not a solution of the (AMV);. Then, for some € > 0 sufficiently
small, there exists § > 0 such that, for all u € B(a,d) and u* € 9f(u), one has

(u* n(u, @) < 5 lIn(w, v, (3-2)

where € := (€,...,€) € intR". Since f is locally Lipschitz on X and approximately invex at %, with respect to
the common kernel function 7, it follows that, for any € > 0, there exists § > 0 such that, for all u € B(a, 5)
and u* € Jf(u), one has

F(@) = F(w) 2 (@, ) = Sln(@,w)]l-

By setting 6 := min{4, 3}, it follows that, for some € > 0 sufficiently small, there exists & > 0 such that, for
all u € B(@, ) one has
fw) = f(u) <eélln(u, a),
a contradiction to the fact that 4 is an (AES); of the VOP. This completes the proof.
(b) Suppose to the contrary that 4 € X is not an (AES)y of the VOP. Then, for some € > 0 sufficiently small
and for every d > 0 one finds some u € B(@,d)\{a} such that

Fw) = (@) < Slnw, o).

For this € we choose § > 0, so that the relation given in (AMV)sy holds. Then, with this &, let u € B(@, d)
be such that

(s, @) (3.3)
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Applying the mean value theorem, there exist ug € co(df([@, uo])) such that
(3.4)

f(uo) - f(’a) = <U(*),770(ua 12)>

uy from the open segment (@, up),u} € 0f(u1),...,u; € 0f(ug),0 < B1 <

Accordingly there exist uq,
< Br <1l,ai,...,a > 0 such that
k
o Foq,.., o =1 ul=oul + agul + ...+ aguy :uTJrZai(u uy)
=2
ni(u, @) = Bino(u,a), i=1,...,k. (3.5)
By approximate invexity of f at u, with respect to the kernel function 7, it follows that
e )
<U:_uy1ﬁ,77z(uyul)> z —§||771(U7U1)||7 VZ:1,2,,]€ (36)
from (3.3) to (3.5), it follows that
k
<u8, nO(uv ﬂ)) = <UT7 770(“» ﬂ)> + Z a1<u? - uTa nO(ua ’L_L)>
=2
1 k Q; 3
= —(uj,n(u,u)) + : —uy,ni(u,ur)) < = u, U 3.7
gy w0+ 32 2t = () < Gl )1 (3.7
from (3.6) it follows that
e
Slmo(w, w)l| + 5 Z ﬁ ||?7z(u uy)|-

[\

1
5, (s m (u, @) <

Consequently, from (3.5), it follows that

k
(1 +Zaz> [l (w, @)|| = eflm (w, v,

1=2

w\m

<UT7 m (u7 ﬂ)> X

with uy € [1,ug] C B(@,0) and uj € df(uy). This contradicts the fact that @ is a solution of the (AMV)
(c) We proceed as for (a). Suppose that @ is an (AES); of the VOP. Then, for any e > 0, there exists 6 > 0

such that, for all u € B(4, d) one has
(3.8)

J) = (@) & =5 I D)

Since f is locally Lipschitz on X and approximately invex at @, with respect to the kernel function 7, i.e.
for any e > 0, there exists 4 > 0 such that, for all u € B(@,) and u* € df(u), one has

_ * _ € _
f@) = flu) 2 (u,n(@,w)) = Sln@, vl
Setting & := min{J,d}, it follows that, for any ¢ > 0, there exists § > 0 such that, for all u € B(, ) and
u* € df(u), one has
<U*,77<Uaa)> #\ _eHn(U’ Q)H
O

Hence, 4 is a solution of the (AMV)3. This completes the proof.



S3006 B.C. JOSHI

3.2. Approximate Stampacchia type vector variational inequality

Now, we consider the approximate Stampacchia type vector variational inequalities as follows:
(ASV); To find @ € X such that, for any ¢ > 0 sufficiently small, there are some v € X\{a} and @* € 0f(u)
satisfying
(@, n(u, @) £ elln(u, ).
(ASV), To find @ € X such that for any e > 0 sufficiently small, for every u € X and a* € df(a), one has
(@, n(u, ) & el[n(u, w|.

(ASV)3 To find @ € X such that, for any € > 0, for all u € B(%, ) and @* € 0f(u), one has

(@, n(u, ) £ —elln(u, a)].
Remark 3.8. A solution of the (ASV), is also a solution of the (ASV); and the (ASV)s.

The following theorem gives the relationship between solutions of the variational inequality problems of
Stampacchia type and efficient solutions of the VOP.

Theorem 3.9. Let f be locally Lipschitz on X and approximately invex at u € X. If u is a solution of the
(ASV); (respectively (ASV)s and (ASV)3), then 4 is also an (AES); (respectively (AES)y and (AES)3) of the
VOP.

Proof. Let 4 be a solution of the (ASV); and suppose to the contrary that it is not an (AES);. There exist
€ >0 and § > 0 such that

f(u) = f(u) < eln(u, v

for all u € B(4, ),z # u. Since f is approximate invex at @, with respect to the kernel function 7, i.e. there is
0" < ¢ such that

(@, n(u,w)) = f(u) - f(u)
for all u € B(u,d’) and @* € 9f(@). Then
(@ n(u,u)) < eln(u,v)]|

for all u € B(a,d),u # 4, and hence for all u € X\{a}. This contradicts the fact that @ solves (ASV);.
Next we show that if 4 is a solution of (ASV)s, then it is a solution of (AMV )2, which in its turn is an (AES)
by Theorem 3.7. Indeed, for every e > 0, for every v € X and u* € df(u), we have

— _ € _
(u*, n(u, @) £ Sln(uw)]-
Since f is approximate invex, for u sufficiently close to @, we have

(' — @ n(u, @) = —<|lg(u,@)|| for all u* € Of (7).

N o

Consequently,
(", n(u, w)) & elln(u, @)

for all u in a small neighborhood of % and for all u* € 0f(u). By this 4 is a solution of (AMV),. Finally, let u is
a solution of the (ASV)s3. Then, for any € > 0, there exists 0 > 0 such that, for all u € B(@,0) and @* € 9f(a),
one has

(@ (@) £ =5 ()] (3.9)
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Since f is locally Lipschitz on X and approximately invex at @, with respect to the common kernel function 7,
i.e. for any € > 0, there exists 6 > 0 such that, for all u € B(@,d) and a* € Jf(u), one has

Flw) = F(@) 2 (@ n(u,@)) = Sln(u, )]
Setting 6 := {3, 5}, it follows that, for any € > 0, there exists 6 > 0 such that, for all u € B(a, 5) one has
Fw) = £(@) £ —elln(u, ).
Hence, @ is an (AES)s of the VOP. This completes the proof. a
Example 3.10. Consider the VOP as follows:
(VOP) minf(u) == (fi(u), f2(u)) s.t. u € R,
where fi(u) := 2u® — 3u? and fa(u) := u — 2u. For 4 := 0, one has
fi(u) — fi(a) = 2u® —3u* <0 Vuc(0,1.5),

and
fo(u) = fo(@) =u® —2u< 0 Yuc(0,1.4).

Hence, % := 0 is neither a weak efficient solution of the VOP nor a local weak efficient solution of the VOP.
Now, it is easy to see that for any e > 0, there exists § > 0 such that, for all u € B(q, ), one has

(fi(u) = f1(@) + elln(u, @), f2(uw) = f2(a) + €e[n(u, @)]) ¢ —RE\{0}.
Hence, @ := 0 is (AES)3 of the VOP.

Acknowledgements. The author is thankful to the anonymous referees for their valuable comments and suggestions which
helped to improve the presentation of the paper.
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