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A PYTHON-BASED MULTICRITERIA PORTFOLIO SELECTION DSS
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Abstract. Our purpose in this article is to develop an integrated portfolio management decision
support system, which takes into account the inherent multidimensional nature of the problem, while
allowing the DM, i.e. investor, to incorporate his/her preferences in the decision process. The pro-
posed DSS has been developed in Python programming language and consists of two components:
The first component is associated with the security selection phase, while the second component
is associated with the portfolio optimization phase. In the first phase, four discrete multicriteria
methods are employed; the PROMETHEE II, the ELECTRE III, the MAUT and the TOPSIS.
After the cumulative integration of the results, a series of mathematical programming models are
applied in the second phase, that of multicriteria portfolio optimization; a mixed-integer quadratic
programming model, a goal programming model, a genetic algorithm model, and a multiobjective
PROMETHEE flow model. Finally, the proposed approach is tested through a large-scale illustrative
application in several stock markets and various sectors, analyzing simultaneously a very large number of
securities.
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1. Introduction

The conventional formulation of a typical single-period portfolio selection problem was initially expressed
as a non-linear bi-criteria optimization process, where the expected return is maximized and the risk is min-
imized [12]. One criticism over this model, which has often been addressed both by practitioners and aca-
demics, is that it fails to embody the objectives of the decision maker (DM), through the various stages of
the decision process [1, 24]. Indeed, the whole portfolio management framework may become very compli-
cated, when multiple investment criteria, such as various components of risk and return, are to be simulta-
neously taken into consideration [20, 21]. In this case, the portfolio selection process reflects to a multicriteria
portfolio selection problem, the computational difficulties and business practice of which, are very complex
[8, 17,18].
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On this basis, multiple criteria decision making (MCDM), the field of operational research (OR) that deals
with problems that involve multiple criteria, can provide the sound methodological basis to resolve the intrinsic
multicriteria nature of the portfolio selection problem [14, 22]. Because the classical approach seems to be
necessary, but not sufficient to manage portfolio selection efficiently [23], the main contribution of the MCDM
framework is associated with two significant issues. Firstly, by exploiting the MCDM benefit there is the potential
for more portfolio realistic models to be built, by taking into account, apart from the two basic criteria of return
and risk, a number of important other variables, e.g. criteria that are based on the theory of fundamental
analysis, like for example the security’s dividend yield and price to earnings valuation ratio, or criteria related
to the market characteristics of the companies, like the alpha and beta coefficients. Second, the classical approach
imposes a norm to the investor’s behavior that can be restrictive [6], since it cannot incorporate his/her individual
goals, personal preferences and attitude towards risk, i.e. his/her investment policy statement (IPS). Thus, the
MCDM framework has the advantage of taking into account the specific preference system of any particular
investor, while allows for synthesizing in a one and single procedure all the theoretical and practical aspects of
the portfolio management (PM) theory.

Our purpose in this article is to develop an integrated portfolio management decision support system (DSS),
which takes into account the inherent multidimensional nature of the problem, while allowing the DM, i.e.
investor, to incorporate his/her preferences in the decision process. The proposed DSS has been developed
in Python programming language and consists of two components: The first component is associated with
the security selection phase, while the second component is associated with the portfolio optimization phase.
In the first phase, four discrete multicriteria methods are employed; the PROMETHEE II, the ELECTRE
III, the MAUT and the TOPSIS. After the cumulative integration of the results, a series of mathematical
programming models are applied in the second phase, that of multicriteria portfolio optimization; a mixed-
integer quadratic programming (MIQP) model, a goal programming (GP) model, a genetic algorithm (GA)
model, and a multiobjective PROMETHEE flow model. Finally, the proposed approach is tested through a
large-scale illustrative application in several stock markets and various sectors, analyzing simultaneously a very
large number of securities.

The paper proceeds as follows: In Section 2, we present the proposed methodological framework. In Section 3,
we meticulously analyze the corresponding information system. Finally, the empirical results and concluding
remarks are given in Sections 4 and 5.

2. Methodological framework

In the existing literature, only few studies have proposed an integrated methodological framework, fully
implemented in a decision support system, for modeling the complex problems of security selection and portfolio
optimization. In this respect, the proposed model is an innovative methodological framework that fully takes
into account the inherent multidimensional nature of the problem, while allowing the decision maker (DM) to
express his/her preferences in all the phases of the decision process.

We divide the portfolio management process in two phases: The first phase focuses on portfolio selection,
concerning the selection of the securities which prevail as the strongest investment opportunities based on several
criteria, while the second phase addresses the portfolio optimization problem, concerning the determination of
the most efficient allocation of the available capital to the selected securities in order to satisfy a series of
objective functions.

The ultimate goal is the effective management of security portfolios, which undoubtedly constitute one of
the most risky market investments. The proposed methodology aspires to combine existing knowledge with
a set of theoretical and practical innovations. It is important that the whole methodology should be applied
in communication with the DM, as it is necessary that he/she interacts with the model importing his/her
preferences during the process. An extensive diagram of the proposed methodological framework is presented
in Figure 1.
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Figure 1. Extensive presentation of the proposed portfolio management methodological frame-
work.
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2.1. Phase I: Security selection

The first phase deals with the portfolio selection problem, concerning the construction of a set of securities
which are considered as the best investment opportunities. The DM selects the sector and the stock exchange that
he/she wishes to get involved with, resulting in a pool of securities which constitute the problem alternatives.
The problem of security selection is faced with a series of discrete MCDM methods, under a variety of financial
indexes which serve as the criteria of the problem. Each method results in a ranking of the securities and
finally the aggregated ranking of the securities can be calculated as the weighted average of the four individual
rankings. Consequently, the portfolio should consist of a limited number of securities, excluding securities which
have undesirable characteristics.

It is, also, necessary to emphasize the following characteristics of the methodology: (a) The process of security
evaluation is based on specific financial indexes (problem criteria), after an extensive study of the existing
literature and (b) the companies should be categorized into predefined classes before the evaluation is applied,
depending on their activity and the industrial sector they belong to. The necessity of this step derives from
the fact that the comparison of financial indexes among companies of different industrial sectors would be a
contentious assumption.

Let A = {a1, . . . , an} be a set of n alternatives and let F = {f1, . . . , fq} be a consistent family of q criteria.
Without loss of generality, we make the assumption that the above criteria should be maximized. The evaluation
process of securities is based on a set of suitable financial criteria, which depend on the accounting and economic
plans of the companies, as well as on experts’ analysis (Tab. 1). The ranking of the securities is based on the
following MCDA methods: (a) ELECTRE III, (b) PROMETHEE II, (c) MAUT and (d) TOPSIS.

Table 1. Problem criteria.

# Criteria Utility Units

A Price-to-Earnings Ratio Minimization Percentage
B Earnings per share Maximization Percentage
C Revenue Maximization Dollars
D Beta Minimization Fraction
E Dividend Yield Maximization Percentage
F Monthly technical recommendation Maximization Rank
G Year-to-date performance Maximization Percentage
H 1-year performance Maximization Percentage

2.1.1. ELECTRE III

The ELECTRE family in MCDA problems is based on the concept of outranking relationship. An alternative
a1 outranks a2 if and only if there is sufficient evidence to believe that a1 is better than a2 or at least a1 is
as good as a2. More specifically, ELECTRE III method, originally presented by Roy [15], is used for ranking
problems, using a structured procedure to calculate the outranking relationship between each pair of alternatives.
It includes a preference threshold, an indifference threshold and a veto threshold.

Let q(fi) and p(fi) represent the indifference and preference thresholds for each criterion fi, i = 1, . . . , q,
respectively, and let P denote a strong preference, Q denote a weak preference and I denote indifference between
a1 and a2 for criterion k. If fk(ai) ≥ fk(aj), then:

fk(ai) > fk(aj) + p(fk)⇔ a1Pa2

fk(aj) + q(fk) < fk(ai) < fk(aj) + p(fk)⇔ a1Qa2

fk(aj) < fk(ai) < fk(aj) + q(fk)⇔ a1Ia2.



A PYTHON-BASED MULTICRITERIA PORTFOLIO SELECTION DSS S3013

Algorithm 1: ELECTRE III Algorithm.
input: n (alternatives), q (criteria), fi(aj) (evaluation table);
for all pairs of alternatives ai, aj, i, j ∈ {1, . . . , n} do

for all criteria fk, k ∈ {1, . . . , q} do
compute outranking degree Ck(ai, aj)

end

end
for all pairs of alternatives ai, aj, i, j ∈ {1, . . . , n} do

compute concordance index C(ai, aj)
end
for all pairs of alternatives ai, aj, i, j ∈ {1, . . . , n} do

for all criteria fk, k ∈ {1, . . . , q} do
compute discordance index Dk(ai, aj)

end

end
for all pairs of alternatives ai, aj, i, j ∈ {1, . . . , n} do

compute degree of outranking relationship S(ai, aj)
end
for all alternatives ai, i ∈ {1, . . . , n} do

compute concordance credibility index φ+(ai)
compute discordance credibility index φ−(ai)
compute net credibility index φ(ai)

end
FinalRanking = SortDesc(φ)
Result: FinalRanking

The outranking degree Ck(ai, aj), (0 ≤ Ck(ai, aj) ≤ 1) of the alternative ai and the alternative aj for criterion
fk is calculated according to the preference definitions (linear interpolation):

Ck(ai, aj) =



0 if fk(aj)− fk(ai) > p(fk)

1 if fk(aj)− fk(ai) ≤ q(fk)

p(fk) + fk(ai)− fk(aj)
p(fk)− q(fk)

otherwise.

(2.1)

The concordance index C(ai, aj) is computed for each pair of alternatives ai, aj , as follows:

C(ai, aj) =

q∑
k=1

wkCk(ai, aj)

q∑
k=1

wk

· (2.2)

Let v(fk) represent the veto threshold for criterion fk. The veto threshold rejects the possibility of aiSaj

if, for any criterion fk, the relationship fk(aj) > fk(ai) + v(fk) is satisfied. The discordance index D(ai, aj),
(0 ≤ Dk(ai, aj) ≤ 1) for each criterion is defined as follows:

Dk(ai, aj) =



0 if fk(aj)− fk(ai) ≤ p(fk)

1 if fk(aj)− fk(ai) > v(fk)

fk(aj)− fk(ai)− p(fk)
v(fk)− p(fk)

otherwise.

(2.3)
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Let J(ai, aj) represent the set of criteria for which Dk(ai, aj) > C(ai, aj). The reliability index S(ai, aj) is:

S(ai, aj) =


C(ai, aj) if Dk(ai, aj) ≤ C(ai, aj) ∀k ∈ J

C(ai, aj)×
∏

k∈J(ai,aj)

1−Dk(ai, aj)
1− C(ai, aj)

otherwise.
(2.4)

The concordance credibility degree φ+(ai) is an indicator that measures how an alternative ai dominates all
the other alternatives [7, 11]. The definition of concordance credibility degree is:

φ+(ai) =
∑
x∈A

S(ai, x). (2.5)

The discordance credibility degree φ−(ai) is an indicator that measures how an alternative ai is dominated
by all the other alternatives. The definition of discordance credibility degree is:

φ−(ai) =
∑
x∈A

S(x, ai). (2.6)

Finally, the net credibility degree φ(ai) is an indicator of the value of the alternative ai. A higher net credibility
degree implies a better alternative. The definition of the net credibility degree for an alternative ai is:

φ(ai) = φ+(ai)− φ−(ai). (2.7)

The ELECTRE III final ranking is obtained by ordering the alternatives according to the decreasing values
of the net flow scores.

2.1.2. PROMETHEE II

PROMETHEE is the product of Brans and Vincke [3] and Brans et al. [4]. Insightful applications of
PROMETHEE are found in the review of Behzadian et al. [2]. One of the creators of PROMETHEE, Bertrand
Mareschal, maintains a list of references on his website www.promethee-gaia.net, which as of January 2020
contained over 2200 references.

Once again, consider a problem with m actions or alternatives, A = {a1, . . . , am}, which are to be evaluated on
a set of k criteria, F = {f1, . . . , fk}. Suppose, without loss of generality, that all criteria are to be maximized. For
each criterion j and for each pair of actions (a, b), assume the DM is able to express his/her degree of preference
in the form of Pj(a, b) ∈ [0, 1], where the order of notation is that action a is preferred to b based upon the
difference dj(a, b) = fj(a)−fj(b). The degree of preference is obtained using a preference function chosen by the
DM. The preference functions that have been proposed are: (a) the usual criterion, (b) the U-shaped criterion,
(c) the V-shaped criterion, (d) the level criterion, (e) the V-shaped criterion with indifference region, and (f)
the Gaussian criterion. These six types are easy to define and have a clear intuition for the DM.

Depending on the function chosen, threshold values may be required. For example, if the DM selects a V-
shaped criterion with indifference region, the DM is then required to specify the threshold values of pj (strict
preference) and qj (indifference). If the difference between the evaluation of a and b on the jth criterion is smaller
than the indifference threshold qj , then neither action is preferred. If the difference between the evaluations of
a and b is greater than the preference threshold, pj , dj(a, b) > pj , then action a is preferred to action b.

In order to evaluate how much action a is preferred to b over all criteria, the preference index π(a, b) is
calculated using a weighted sum of the degrees of preference Pj(a, b). The weights, wj > 0, are to reflect the
importance of each criterion in the decision. That is, the greater the weight, the more important is the criterion.
The preference indices are:

π(a, b) =
k∑

j=1

wj × Pj(a, b) (2.8)

www.promethee-gaia.net
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Algorithm 2: PROMETHEE II Algorithm.
input: n (alternatives), q (criteria), fi(aj) (evaluation table), Pi (preference function);
for all criteria fk, k ∈ {1, . . . , q} do

dk(ai, aj) = fk(ai)− fk(aj)
end
for all pairs of alternatives ai, aj, i, j ∈ {1, . . . , n} do

πk(ai, aj) = Pk[dk(ai, aj)]
end
for all criteria fk, k ∈ {1, . . . , q} do

π(ai, aj) = sum(πk(ai, aj))
end
for all pairs of alternatives ai, aj, i, j ∈ {1, . . . , n} do

φ+(ai) = sum(π(ai, aj))
φ−(ai) = sum(π(aj , ai))

end
for all alternatives ai, i ∈ {1, . . . , n} do

φ(ai) = φ+(ai)− φ−(ai)
end
FinalRanking = SortDesc(φ)
Result: FinalRanking

and

π(b, a) =
k∑

j=1

wj × Pj(b, a) (2.9)

where π(a, b) expresses the degree to which a is preferred over b for all criteria, and π(b, a) represents how much
b is preferred to a. As each action is compared with other m−1 actions, positive φ+ and negative φ− outranking
flows can be defined as follows:

φ+(a) =
1

m− 1

∑
x∈A

π(a, x) (2.10)

φ−(a) =
1

m− 1

∑
x∈A

π(x, a). (2.11)

The positive flow φ+(a) expresses how much alternative a outranks all other m − 1 alternatives, thus it
represents the global preference for action a in comparison to all the other actions. The higher the value of
φ+(a), the better the alternative is. The negative flow, φ−(a), expresses how alternative a is outranked by all
other m − 1 alternatives, thus it represents the global weakness of a in comparison to all the other actions.
The smaller φ−(a), the better the alternative is. Based on the positive and negative outranking flows, the
PROMETHEE I partial ranking is defined as follows:

a P b iff =



φ+(a) > φ+(b) and φ−(a) < φ−(b)
or

φ+(a) = φ+(b) and φ−(a) < φ−(b)
or

φ+(a) > φ+(b) and φ−(a) = φ−(b)

(2.12)

a I b iff = φ+(a) = φ+(b) and φ−(a) = φ−(b) (2.13)

a R b iff =


φ+(a) > φ+(b) and φ−(a) > φ−(b)

or
φ+(a) < φ+(b) and φ−(a) < φ−(b).

(2.14)
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The positive and the negative flows can be combined to obtain the net outranking flow, defined as follows:

φ(a) = φ+(a)− φ−(a). (2.15)

PROMETHEE II exploits the above net flow in order to provide a complete ranking of actions, from best to
worst; the higher the value of φ(a), the better the alternative is:{

aPb iff φ(a) > φ(b)
aIb iff φ(a) = φ(b).

(2.16)

2.1.3. MAUT

Multi-Attribute Utility Theory (MAUT), developed by Keeney and Raiffa [10], is a structured methodology
which was originally designed in order to handle the trade-offs among multiple objective functions. MAUT
belongs to the family of multicriteria utility theory, it can be considered as an additive value function and it
has the advantage that it is adaptable to the profile of the DM, as it can describe optimistic and pessimistic
behaviors.

Algorithm 3: MAUT Algorithm.
input: n (alternatives), q (criteria), wi (weights), fi(aj) (evaluation table);
for all alternatives ai, i ∈ {1, . . . , n} do

for all criteria fk, k ∈ {1, . . . , q} do
compute normalized decision matrix xk(ai)

end

end
for all alternatives ai, i ∈ {1, . . . , n} do

for all criteria fk, k ∈ {1, . . . , q} do
compute integrated DM’s attitude uk(ai)

end

end
for all alternatives ai, i ∈ {1, . . . , n} do

compute utility U(i) = sum(wkuk(ai))
end
FinalRanking = SortDesc(U)
Result: FinalRanking

Let fk(amin), fk(amin) represent the minimum and maximum value for criterion k. The evaluation table is
normalized, as follows:
For maximization criteria:

xk(ai) =
fk(ai)− fk(amin)
fk(amax)− fk(amin)

· (2.17)

For minimization criteria:

xk(ai) =
fk(amax)− fk(ai)
fk(amax)− fk(amin)

· (2.18)

The attitude of the decision-maker is incorporated into the normalized decision matrix, as follows:

uk(ai) =
1− ecxi

1− ec

where c is an index that represents the attitude of the decision maker. The Utility function is computed as
follows:

Ui =
q∑

k=1

wkuk(ai). (2.19)
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The MAUT final ranking is obtained by ordering the alternatives according to the decreasing values of the
utility function.

2.1.4. TOPSIS

TOPSIS is the product of Hwang and Yoon [9] and Chen and Hwang [5]. TOPSIS stands for Technique for
Order of Preference by Similarity to Ideal Solution. Representative applications in a number of areas can be
found in the reviews of Palczewski and Sa labun [13] and Salih et al. [16].

Algorithm 4: TOPSIS Algorithm.
input: n (alternatives), q (criteria), wi (weights), fi(aj) (evaluation table);
for all alternatives ai, i ∈ {1, . . . , n} do

for all criteria fk, k ∈ {1, . . . , q} do
compute normalized score rk(ai)

end

end
for all alternatives ai, i ∈ {1, . . . , n} do

for all criteria fk, k ∈ {1, . . . , q} do
compute weighted normalized score tk(ai)

end

end

compute positive ideal solution A+

compute negative ideal solution A−

for all alternatives ai, i ∈ {1, . . . , n} do
compute separation distance from positive ideal solution S+(i)
compute separation distance from negative ideal solution S−(i)
compute relative closeness to the positive ideal solution C−(i)

end
FinalRanking = SortDesc(C)
Result: FinalRanking

Consider a problem with m alternatives numbered 1 to m, and k criteria numbered 1 to k. Let each alternative
be evaluated with respect to each criterion. This yields a decision matrix X = (xij)m×k, where xij in X is the
value assigned to alternative i by criterion j. According to TOPSIS, the first step is to make the criteria
dimensionless. This is done by normalization, which is accomplished by re-scaling the columns of X, that is, by
converting each xij value into an rij as follows:

rij =
xij√∑m
q=1 x

2
qj

, i = 1, . . . ,m, j = 1, . . . , k. (2.20)

Then each rij is converted into a vij value as follows:

vij = wjrij , i = 1, . . . ,m, j = 1, . . . , k (2.21)

where the wj are the criterion weights obtained from the weighting system. In this way, the ith row of V =
(vij)m×k is the weighted normalized criterion vector of the ith alternative.

The next task of TOPSIS is to construct the ideal (zenith) and anti-ideal (nadir) solutions of the problem.
The simplest case is that the ideal and anti-ideal points are fixed by the decision maker, but this should be
avoided as it would imply that the decision maker can actually make a credible elicitation of the two points and
it would add more subjectivity to the procedure. A better approach is to construct the components of the ideal
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solution v+ = (v+
1 , . . . , v

+
k ) by means of:

v+
j =

{
max {vij |i = 1, . . . ,m} if j is a benefit criterion
min {vij |i = 1, . . . ,m} if j is a cost criterion

(2.22)

and the components of the anti-ideal solution v− = (v−1 , . . . , v
−
k ) by means of:

v−j =

{
min {vij |i = 1, . . . ,m} if j is a benefit criterion
max {vij |i = 1, . . . ,m} if j is a cost criterion.

(2.23)

Now it is necessary to calculate how far the weighted normalized criterion vector of each alternative is from
the ideal solution. This is done by computing:

D+
i =

√√√√ k∑
j=1

(vij − v+
j )2, i = 1, . . . ,m, j = 1, . . . ,m. (2.24)

Similarly, it is necessary to calculate how far the weighted normalized criterion vector of each alternative is
from the anti-ideal solution. This is done by computing:

D−i =

√√√√ k∑
j=1

(
vij − v−j

)2
, i = 1, . . . ,m, j = 1, . . . ,m. (2.25)

Using these two distances, we compute each alternative’s relative closeness to the ideal solution:

C+
i =

D+
i

D+
i −D

−
i

· (2.26)

2.1.5. Cumulative ranking

After the application of the four MCDA methods, four ranking lists of the alternatives have been formulated.
However, the decision-maker should be provided with a final ranking in order to select the k-best securities
among them. The suggested methodology to combine the four rankings is the weighted average measure. More
specifically, each ranking method is provided with a weighting factor wk, k = {1, 2, 3, 4}. The cumulative ranking
index CRi for alternative i is calculated as follows:

CRi =
4∑

k=1

wkrk (2.27)

where rk represents the ranking of alternative i in method k.

2.2. Phase II: Portfolio optimization

The second phase involves the problem of portfolio optimization. The conventional approach to this problem
has been a bi-criteria model where the expected return should be maximized while the portfolio risk should be
minimized. The proposed methodological framework sets a series of models to address the problem. Firstly, a
bi-objective integer programming model is formulated based on the mean-variance approach, where additional
integer constraints are imposed in order to control the weighting factor of each security. Secondly, a goal
programming methodology is introduced. Additionally, an implementation of a genetic algorithm for portfolio
optimization is presented. Finally, a three-objective optimization approach is introduced, involving the net flow
of PROMETHEE method.
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2.2.1. MIQP model

The conventional formulation of the portfolio optimization problem was expressed as a nonlinear bi-criteria
optimization problem. According to Markowitz, the portfolio expected return should be maximized and the
portfolio risk should be minimized. The risk is quantified as the variance of portfolio returns, resulting in a
quadratic programming problem.

Let E(Ri) be the expected return and wi the weighting factor of security i. The first objective concerns the
portfolio expected return and is expressed as follows:

max
w

E(Rp) =
m∑

i=1

wiE(Ri) (2.28)

where m is the total number of securities. Let σij be the covariance between securities i and j. The second
objective concerns the portfolio risk which is expressed as follows:

min
w
σ2

P =
m∑

i=1

m∑
j=1,j 6=i

wiwjσij . (2.29)

Moving to the model’s set of constraints, the corresponding expression for capital completeness is introduced:

m∑
i=1

wi = 1 (2.30)

while the restriction concerning no short sales allowance is:

wi ≥ 0. (2.31)

Thus, a bi-objective quadratic optimization problem is formulated, which is presented as follows:

max
w

E(rP ) =
m∑

i=1

wiE(ri)

min
w

σ2
P =

m∑
i=1

m∑
j=1,j 6=i

wiwjσij

s.t.
m∑

i=1

wi = 1

wi ≥ 0, i = 1, 2, . . . ,m.

(2.32)

The problem is solved parametrically for a predefined parameter of the portfolio expected return. Let R be
the portfolio expected return. The problem is transformed into a linear programming problem with an additional
restriction concerning the expected return, which is presented below:

min
w

σ2
P =

m∑
i=1

m∑
j=1,j 6=i

wiwjσij

s.t.
m∑

i=1

wiE(ri) = R

m∑
i=1

wi = 1

wi ≥ 0, i = 1, 2, . . . ,m.

(2.33)
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In the proposed methodology, a variation of the conventional mean-variance model, originally introduced by
Xidonas and Mavrotas [20] is presented. The model is equipped with binary variables bi, in order to control
the existence of each security in the portfolio. More specifically, if bi = 1 the ith security participates in the
portfolio, else if bi = 0 it does not. The use of binary variables allows the direct determination of the number of
securities in the portfolio, producing the following cardinality constraint equation:

SL ≤
m∑

i=1

bi ≤ SU

where SL and SU are the minimum and maximum number of securities allowed to participate in the portfolio.
Moreover, the diversification of the portfolio can be supported constraining the upper bound of each security

weight. In order to determine the lower and upper weighting factor of each security the following restrictions
are introduced:

wi −WL × bi ≥ 0, i = 1, 2, . . . ,m
wi −WU × bi ≤ 0, i = 1, 2, . . . ,m

where WL and WU are the minimum and maximum security weights that are allowed in the portfolio.
Thus, the following multiobjective integer programming (MOIP) problem is formulated:

max
w

E(rP ) =
m∑

i=1

wiE(ri)

min
w

σ2
P =

m∑
i=1

m∑
j=1,j 6=i

wiwjσij

s.t.
m∑

i=1

bi ≤ SU

m∑
i=1

bi ≥ SL

m∑
i=1

wi = 1

wi −WL × bi ≥ 0 i = 1, 2, . . . ,m
wi −WU × bi ≤ 0 i = 1, 2, . . . ,m.

(2.34)

Similarly, the solution is determined parametrically for a predefined parameter of the portfolio expected
return. The problem is transformed into a mixed-integer quadratic programming (MIQP) problem with an
additional restriction for the expected return, which is presented below:

min
w

σ2
P =

m∑
i=1

m∑
j=1,j 6=i

wiwjσij

s.t.
m∑

i=1

wiE(ri) = R

m∑
i=1

bi ≤ SU

m∑
i=1

bi ≥ SL

m∑
i=1

wi = 1

wi −WL × bi ≥ 0 i = 1, 2, . . . ,m
wi −WU × bi ≤ 0 i = 1, 2, . . . ,m.

(2.35)
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The formulated problem can be solved parametrically considering the parameter R, thus producing the
efficient frontier of solutions.

2.2.2. Goal programming model

The decision variables of the goal programming problem will be the weighting factor w of each security. Let
wi be the weighting factor of the ith security. The following goals are defined:

(1) The beta index of the portfolio βP , which is defined as the weighted sum of the individual beta index of
each security, is given the target value βG.

βP =
m∑

i=1

wi × βi.

(2) The portfolio dividend yield, which is defined as the weighted sum of the individual dividend yield of each
security, is given the target value DYG

DYP =
m∑

i=1

wi ×DYi.

(3) The portfolio PROMETHEE flow, which is defined as the weighted sum of the individual flow of each
security, is given the target value φG

φP =
m∑

i=1

wi × φi.

Introducing the deviational (or slack) variables d+
i , d−i the problem is formulated as follows:

min
d+,d−

w+
1 d

+
1 + w−1 d

−
1

βG
+
w+

2 d
+
2 + w−2 d

−
2

DYG
+
w+

3 d
+
3 + w−3 d

−
3

φG

s.t.
m∑

i=1

wiβi + d−1 − d
+
1 = βG

m∑
i=1

wiDYi + d−2 − d
+
2 = DYG

m∑
i=1

wiφi + d−3 − d
+
3 = φG

m∑
i=1

bi ≤ SU

m∑
i=1

bi ≥ SL

m∑
i=1

wi = 1

wi −WL × bi ≥ 0 i = 1, 2, . . . ,m
wi −WU × bi ≤ 0 i = 1, 2, . . . ,m

(2.36)

where w+, w− are the weights of the deviational variables. Attention is needed not to confuse the weighting
factor w of each security with the overachievement and underachievement weights w+, w− of the deviational
variables.
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2.2.3. Genetic algorithm model

The philosophy of this problem differs from all the other, as the weighting factors are determined with the
assistance of a market index. Additionally, another significant difference is that in this case there is a unique
solution of the optimization problem, while the other problems result in a set of Pareto efficient solutions.

More specifically, let m be the market index and rim the return of index m in period i. Let us define, also,
m securities and rij the return of security j in period i. The portfolio return in period i is equal to:

rip =
m∑

j=1

wjrij (2.37)

where wj is the proportion of the security j in portfolio p.
We say that the constructed portfolio beats the market index in period i if the following inequation applies:

rip ≥ rim. (2.38)

Therefore, the genetic algorithm takes as input the historical data for T periods and attempts to maximize
the percentage of cases that the constructed portfolio beats the market index. This claim is quantified as follows:

max
wi

T∑
i=1

bi
T

s.t.
N∑

i=1

wi = 1

wi ≥ 0 ∀i = 1, 2, . . . N

(2.39)

where bi is a binary variable that takes the value 1 if rip ≥ rim in period i, else it takes the value 0.
The selected genetic algorithm that we use in the proposed methodology is called differential evolution.

Differential evolution [19] is a stochastic population based method developed by Storn and Price, which is used
in order to find the global minimum of a multivariate function. Every time that the algorithm examines the
population, it mutates each candidate solution by mixing it with other candidate solutions in order to create
a trial candidate. The most common strategy to create a trial candidate is the best1bin strategy, where two
members of the population are randomly chosen and their difference is used to mutate the best member b0:

b′ = b0 + mutation ∗ (population [i]− population [j]). (2.40)

Then, a trial vector is constructed which is filled with parameters either from b′ or the original candidate,
generated with a binomial distribution (meaning that we generate a random number between 0 and 1; if the
number is less than a predefined constant then the parameter is filled from b′, otherwise it is filled from the
original candidate. After the construction of the trial candidate, its fitness is assessed. If the trial candidate is
better than the original candidate, it replaces the original candidate. If it is also better than the best overall
candidate, it also replaces that. By default the best solution vector is updated continuously within a single
iteration. Finally, the possibility of finding a global minimum is improved by increasing the population size,
which results in widening the search radius, but slowing the convergence of the algorithm.

2.2.4. Multiobjective PROMETHEE flow model

This approach connects the concept of the PROMETHEE method of multicriteria decision analysis with a
measure of risk, in this case Beta index. Finally, let us introduce the dividend yield as a third objective function.

Additionally, the problem could be equipped with integer decision variables in order to control the number of
securities with non-zero proportion to the portfolio. Based on the above observations the optimization problem
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is formulated as follows:

max
w

φP =
m∑

i=1

wiφi

min
w

βP =
m∑

i=1

wiβi

max
w

DYP =
m∑

i=1

wiDYi

s.t.
m∑

i=1

bi ≤ SU

m∑
i=1

bi ≥ SL

m∑
i=1

wi = 1

wi −WL × bi ≥ 0 i = 1, 2, . . . ,m
wi −WU × bi ≤ 0 i = 1, 2, . . . ,m.

(2.41)

This is a multiobjective programming problem in 3 dimensions with integer variables. It is obvious that
the computational complexity of the above problem becomes huge, especially if the number of securities is
significantly large. A variety of methodologies have been proposed for problems like this such as the e-constraint
method, which faces the problem as a 1-objective optimization problem, transforming the remaining objectives
into constraints. However, in this paragraph a methodology based on goal programming and the MINIMAX
objective is proposed to solve this MOLP problem.

The first step of the methodology is to solve the model to find the solution that minimizes each objective
function ignoring the other objective function. If we solve the problem for all objective functions, we obtain the
optimal value for each objective, respectively.

The next step is to formulate the goal programming problem. The target value for each objective function is
set equal to the optimal value calculated in the previous step. The percentage deviation from this target can be
computed as follows:

t =
actual value− target value

target value
(2.42)

for goals derived from minimization objectives,

t =
target value− actual value

target value
(2.43)

for goals derived from maximization objectives.
Therefore, having determined the goals of the GP model, the last step involves the configuration of the

objective function. The implementation of the objective function is made with the introduction of a MINIMAX
variable Q which should be minimized. If wi is the offset for the ith objective function, the goal is to minimize
the maximum of witi. The above claim is expressed with the following mathematical equation:

minQ
s.t. w1t1 ≤ Q

w2t2 ≤ Q
w3t3 ≤ Q.

(2.44)

Thus, a set of Pareto optimal solutions derives from the adjustment of the weighting factors wi.
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Figure 2. A general framework of the programming language and the additional packages
used for the development of the information system.

3. Information system

3.1. System architecture

The Portfolio Management process includes the analysis of a large volume of financial information and data.
In order to support real-time investment decision it is important to analyse a continuous load of information
for all the securities which can be possible investment placements. Therefore, the development of modern and
user-friendly software applications is really important in order to support the analysis of the necessary financial
information.

In this context, we have developed a Python-based information which implements the proposed methodology
in real time. In this system, all the discussed methods of both phases are developed in detail in order to support
the application of the discussed portfolio management approach. The information system is implemented in
Python 3 programming language which makes it available for Windows, Linux and macOS operating systems.
It also incorporates a series of open-source libraries (Fig. 2) such as: (a) Matplotlib: a Python plotting library
which produces high quality figures in a variety of formats, (b) Pandas: an open source library which provides
high performance, useful data structures and data analysis tools, (c) NumPy: the fundamental library for
scientific computing with Python and (d) MIP: a library of Python tools for the modeling and solution of
Mixed-Integer Linear programming problems.

3.2. Interaction diagrams

The innovative features of the developed information system for portfolio construction and selection system
are the following: Firstly, it facilitates high level of interaction between the DM and the proposed methodology,
as the model is structured each time according to the DM’s preferential system and investment strategy. Thus
the role of the investor is improved, opposing to the conventional decision support systems which do not take
into consideration the investor’s preferences. Secondly, it combines the whole methodological framework from
security selection until portfolio optimization. All the provided techniques are based on highly sophisticated
models and algorithms, facing the portfolio management process with a well-structured scientific background.
Finally, the system is fully configurable, making possible to operate in real-time problems. It can easily be
connected with the proper databases and handle a huge volume of financial data.

In Figure 3, the sequential diagram is presented, describing the interactions among each part of the system
arranged in time sequence. It depicts the sequence of messages which are exchanged between the different parts
of the system (decision-maker, database etc.), in order to achieve the functionality of each scenario.
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Figure 3. The UML Sequential Diagram of the developed information system.
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3.3. Source code

As mentioned earlier, the proposed methodology was implemented in Python 3.0. A series of indicative
source code examples from both phases, along with the corresponding output are presented in the following
paragraph. The first cell of code includes a part of the TOPSIS algorithm, and more specifically the calculation
of the positive and negative ideal solutions and the separation distances. The second cell of code shows the
connection with the Yahoo API, in order to obtain the necessary input data for the second phase. Finally, the
third cell of code demonstrates the visualization of several securities’ returns in a comparative diagram.

============ Positive/Negative Ideal Solution ============
Criterion Positive Score Negative Score

P/E Ratio 0.025 0.071
EPS 0.096 0.014
Revenue (B) 0.094 0.002
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Beta 0.029 0.067
Dividend Yield 0.101 0.027
Monthly 0.053 0.042
YTD (%) 0.066 0.029
1 Year 0.081 0.000

===== Distance from Positive/Negative Ideal Solutions =====
Company Dis. from Positive Dis. from Negative

Accenture 0.119 0.068
Northrop 0.098 0.114
IBM 0.104 0.133
Motorola 0.138 0.091
MSCI 0.144 0.092
Oracle 0.132 0.067

Number of securities: 6
Number of dates: 754

============== Stock Values ==============
Symbols ACN NOC IBM MSI MSCI ORA
Date
2016-01-04 102.6200 185.9799 135.6000 67.6699 71.0999 35.6300
2016-01-05 101.9700 187.8500 136.7599 66.5000 70.6100 35.1500
2016-01-06 100.8099 190.1600 134.3800 65.5700 70.2600 34.7900
2016-01-07 99.7500 187.8999 133.6999 64.6299 69.2399 35.0400
2016-01-08 99.4800 188.7899 133.1799 64.3300 69.5800 35.5200
... ... ... ... ... ... ...
2018-12-31 140.3999 243.3099 113.3300 113.0299 146.5000 53.0099
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Figure 4. Visualisation of Security Returns in Python 3.0.
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4. Empirical testing

The proposed methodological approach has been applied on data from four stock exchanges: (a) NYSE,
(b) NASDAQ, (c) Paris and (d) Tokyo. The sample considered in the study consists of securities from three
different sectors: (a) technological, (b) energy and (c) financial. The time horizon of the study was set to three
calendar years (between 1/1/2016 and 31/12/2018), recording the daily closing prices. In this article we present
the application on NYSE stock exchange, including a set of 516 securities (69 securities from the technological
sector, 89 securities from the energy sector and 358 securities from the financial sector). Therefore, in Table 2
specific information is provided about the securities which have participated in the empirical testing process.

Table 2. Empirical testing input information.

Stock exchange Industrial sector Number of securities
used

Number of securities
with missing data

Total number of
securities

NYSE
Technology 69 177 246
Energy 89 131 220
Financial 358 461 819

NASDAQ
Technology 326 213 539
Energy 6 40 46
Financial 93 471 564

Paris
Technology 50 91 141
Energy 7 8 15
Financial 33 24 57

Tokyo
Technology 485 263 748
Energy 30 4 34
Financial 143 51 194

In this paragraph, we present the experimental application on NYSE stock exchange. The selection of the
offsets was determined according to three different scenarios, in order to conduct a sensitivity analysis on the
results. In this paragraph, the results according to the scenario of equal offsets among the alternatives are
presented.

The thresholds configuration differs significantly according to the multicriteria method. For each ranking
method the configuration process was based on the partition of the values’ range. Firstly, we determine the
range by calculating the minimum and maximum value of the alternatives for each criterion and secondly we
split this range as follows: (i) For ELECTRE III method which involves three different thresholds (preference p,
indifference q and veto v) we split the range in four sections and assign the values respectively: q(i) < p(i) < v(i),
(ii) For PROMETHEE II method which involves two different thresholds (preference p and indifference q) we
split the range in three sections and assign the values respectively: q(i) < p(i), (iii) MAUT and TOPSIS methods
do not involve any thresholds.

In Table 3, the results of the four ranking multicriteria methods for the technological sector are presented
indicatively. The same process has been applied to the energy and financial sectors, as well. The securities with
highest aggregated score are the ones which finally participate to the portfolio. The number of securities that
will be included in the portfolio is selected by the DM. In the context of this experimental application the total
number of securities in the portfolio is set to 60. Therefore, we selected the 20-highest ranked securities from
each one of the three sectors, which means that the portfolio consists of 20 technological securities, 20 energy
securities and 20 financial securities.

Given the results of the multicriteria methods, the final step of the first phase involves the cumulative
ranking of the securities. Assuming that we select the 20-highest ranked securities from each industrial sector,
the portfolio has been formulated as shown in Table 4.
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Table 3. Results presentation for Phase I (security selection) for the Technology Sector of
NYSE stock exchange.

Security Name ELECTRE III MAUT PROMETHEE II TOPSIS

ABB ADR 11.57 26.99 −22.32 30.96
Accenture 51.66 62.42 38.03 43.95
SAP ADR 1.74 40.47 −3.72 33.49
Infosys ADR 18.75 57.52 23.24 38.55
Wipro ADR −28.89 23.38 −31.61 29.81
BT ADR 17.89 33.19 −19.79 34.52
STMicroelectronics ADR 10.58 54.31 16.04 39.92
Canon ADR 10.05 32.53 −10.75 34.49
Agilent Technologies 6.24 52.21 7.06 36.48
Allegion PLC 13.61 54.72 18.49 38.85
Ametek 12.99 53.93 16.71 38.90
. . . . . . . . . . . . . . .
Xerox −3.92 48.70 4.03 40.19

Table 4. Selected securities from NYSE stock exchange.

Technology Energy Financial

Northrop Grumman Phillips 66 Renaissancere
GlobalSCAPE NACCO Industries White Mountains Insurance
Accenture Cypress Energy Partners LP Triplepoint Venture
Synnex Global Partners JPMorgan
IBM Sunoco LP Cohen Steers TR Realty Closed
Taiwan Semiconductor TC Energy Santander Consumer USA Holdings Inc
Motorola Royal Dutch Shell ADR BlackRock Taxable Muni Bond Trust
Jabil Circuit GasLog Partners Pref A Hartford
Oracle Phillips 66 Partners LP Wells Fargo Real Estate Invest Pref
MSCI Royal Dutch Shell B ADR Nuveen AMT Free Muni Credit
Roper Technologies World Fuel Services MFS California
Danaher Cosan Ltd Wells Fargo Pref L
Leidos Magellan Saratoga Investment Corp
Benchmark Electronics CVR Energy Allstate
Infosys ADR BP ADR Blackrock Muni Target Term Closed
Hubbell Chevron PennyMac Mortgage
Nelnet CNOOC ADR Flaherty and Crumrine Dynamic Pref
CAE Inc. Exxon Mobil Metlife Inc Pref
Hexcel ONEOK PNC Financial
Broadridge PetroChina ADR Reinsurance of America

The model is equipped with both continuous and binary decision variables. Firstly, the continuous variables
Xi, where i = 1, . . . , 60 represent the percentage of capital to be invested in the ith security of the portfolio.
Secondly, the use of the binary variables controls the existence of the ith security in the portfolio (if bi = 1 the
ith security participates in the portfolio, else if bi = 0 the ith security does not participate). The necessity for
the incorporation of both kinds of variables stems from the fact that the combination of continuous and binary
variables results in a more realistic modeling of the portfolio optimisation problem.
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The models are equipped with both mandatory constraints and policy constraints for the needs of the appli-
cation. The mandatory constraints are necessary for the correct formulation of the problem and the avoidance
of logical errors, while the policy constraints are very important in order to incorporate the preferences of the
DM. More specifically, the imposed constraints are the following:

(1) Completeness constraint: the completeness constraint is a mandatory constraint which requires all the
available capital to be invested.

60∑
i=1

Xi = 1. (4.1)

(2) Minimum/Maximum number of securities to participate in the portfolio: the existence of binary variables
has provided the opportunity to control the minimum and maximum number of securities to participate in
the portfolio. It is a common strategy to restrict the number of minimum securities, in order to maintain a
diversified portfolio. Additionally, the maximum number of securities could also be restricted according to
the specific needs of the DM. The constraint is formulated as follows:

6 ≤
m∑

i=1

bi ≤ 40. (4.2)

(3) Minimum/Maximum percentage of capital invested in a security: we also restrict the minimum and maximum
amount of capital that can be invested in a specific security. The maximum amount of capital should be
restricted in order to avoid the allocation of big capital percentage to a specific security, while the minimum
amount is restricted because there is a lower threshold to the amount one can invest. Therefore this constraint
is formulated as follows:

wi − 0.03× bi ≥ 0, i = 1, 2, . . . , 60 (4.3)
wi − 20× bi ≤ 0, i = 1, 2, . . . , 60. (4.4)

The results of each model are presented in Tables 5–8, respectively. More specifically: In Table 5 we present
the Pareto efficient portfolios which were generated from the Mean-Variance MIQP model. In Table 6 we present
the solution of the Goal Programming model. In Table 7 we present the Pareto efficient frontier of the MOIP
PROMETHEE Flow model. Finally, in Table 8 the Genetic Algorithm portfolio is presented.

5. Conclusions

The criticism addressed, over the traditional bi-criteria optimization Markowitz models, which, among else,
fail to assess complex scenarios of multiple investment objectives and constraints, is consistently emphasized
by both practitioners and academics. Our aim in this article was to expand the limited Markowitz framework,
within which the portfolio selection process is conventionally dealt with. More specifically, we presented a
Python-based multicriteria portfolio selection DSS. The contribution of both the proposed methodology and
the corresponding DSS is a multi-tiered one. The DM’s preference system is effectively incorporated in the
decision-making process by fully assessing his/her investment policy objectives and constraints, regarding the
portfolio architecture.

The proposed DSS consists of two components: The first is linked with security selection, while the second one
is connected with the portfolio optimization phase. In the first phase, four multicriteria methods are utilized,
such as the PROMETHEE II, the ELECTRE III, the MAUT and the TOPSIS. After integrating the results,
a variety of mathematical programming models are applied, such as a mixed-integer quadratic programming
(MIQP), a goal programming (GP), a genetic algorithm (GA), and a multiobjective PROMETHEE flow. The
proposed approach is tested through a large-scale illustrative application in several stock markets and various
sectors, analyzing simultaneously a very large number of securities.
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Table 5. Set of efficient portfolios produced by the Mean-Variance MIQP model for NYSE
stock exchange.

Portf NOC GSB ACN SNX IBM TSM MSI JBL ORCL MSCI ROP . . . DFP MET PNC RGA

1 0.01 0.00 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.00 0.0 . . . 0.08 0.0 0.00 0.00

2 0.01 0.00 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.00 0.0 . . . 0.08 0.0 0.01 0.00

3 0.01 0.01 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.00 0.0 . . . 0.07 0.0 0.01 0.00

4 0.00 0.01 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.00 0.0 . . . 0.06 0.0 0.00 0.00

5 0.01 0.01 0.0 0.0 0.0 0.0 0.03 0.0 0.0 0.00 0.0 . . . 0.06 0.0 0.00 0.00

6 0.00 0.01 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.00 0.0 . . . 0.05 0.0 0.00 0.01

7 0.00 0.01 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.00 0.0 . . . 0.04 0.0 0.00 0.02

8 0.00 0.01 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.00 0.0 . . . 0.03 0.0 0.00 0.02

9 0.00 0.01 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.00 0.0 . . . 0.00 0.0 0.00 0.03

10 0.00 0.01 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.00 0.0 . . . 0.00 0.0 0.00 0.03

11 0.00 0.01 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.01 0.0 . . . 0.00 0.0 0.00 0.03

12 0.00 0.01 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.01 0.0 . . . 0.00 0.0 0.00 0.03

13 0.00 0.01 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.02 0.0 . . . 0.00 0.0 0.00 0.03

14 0.00 0.01 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.02 0.0 . . . 0.00 0.0 0.00 0.03

15 0.00 0.01 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.03 0.0 . . . 0.00 0.0 0.00 0.03

16 0.00 0.01 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.03 0.0 . . . 0.00 0.0 0.00 0.04

17 0.00 0.01 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.04 0.0 . . . 0.00 0.0 0.00 0.04

18 0.00 0.01 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.05 0.0 . . . 0.00 0.0 0.00 0.04

19 0.00 0.01 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.05 0.0 . . . 0.00 0.0 0.00 0.04

20 0.00 0.01 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.06 0.0 . . . 0.00 0.0 0.00 0.05

21 0.00 0.01 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.06 0.0 . . . 0.00 0.0 0.00 0.05

22 0.00 0.01 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.06 0.0 . . . 0.00 0.0 0.00 0.06

23 0.00 0.01 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.07 0.0 . . . 0.00 0.0 0.00 0.06

24 0.00 0.01 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.07 0.0 . . . 0.00 0.0 0.00 0.07

25 0.00 0.01 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.08 0.0 . . . 0.00 0.0 0.00 0.06

26 0.00 0.01 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.08 0.0 . . . 0.00 0.0 0.00 0.06

27 0.00 0.01 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.09 0.0 . . . 0.00 0.0 0.00 0.07

28 0.00 0.01 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.10 0.0 . . . 0.00 0.0 0.00 0.07

29 0.00 0.01 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.11 0.0 . . . 0.00 0.0 0.00 0.07

30 0.00 0.01 0.0 0.0 0.0 0.0 0.07 0.0 0.0 0.12 0.0 . . . 0.00 0.0 0.00 0.07

Table 6. The portfolio produced by the Goal Programming model for NYSE stock exchange.

NOC GSB ACN SNX IBM TSM MSI JBL ORCL MSCI
0.1158 0.0300 0.0 0.0 0.0 0.0 0.0300 0.0 0.2000 0.0
ROP DHR LDOS BHE INFY HUBB NNI CAE HXL BR
0.0300 0.0299 0.0 0.0443 0.0356 0.0 0.0300 0.0300 0.0 0.0305
PSX NC CELP GLP SUN TRP RDS-A GLOP PSXP RDS-B
0.0 0.0300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
INT CZZ MMP CVI BP CVX CEO XOM OKE PTR
0.0300 0.0300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RNR WTM TPVG JPM RFI SC BBN HIG NVG WFC
0.0300 0.0300 0.0 0.0 0.0 0.0 0.0 0.0300 0.0 0.0
SAR ALL BTT PMT DFP MET PNC RGA
0.0 0.1541 0.0300 0.0 0.0 0.0 0.0 0.0300
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Table 7. Set of efficient portfolios for NYSE stock exchange with MOIP PROMETHEE
methodology.

Portf NOC GSB ACN SNX IBM TSM MSI JBL ORCL MSCI ROP . . . DFP MET PNC RGA

1 0.00 0.03 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 . . . 0.03 0.00 0.00 0.03

2 0.03 0.03 0.00 0.03 0.00 0.00 0.03 0.00 0.00 0.00 0.00 . . . 0.03 0.00 0.00 0.00

3 0.03 0.03 0.00 0.03 0.00 0.00 0.03 0.00 0.00 0.00 0.00 . . . 0.03 0.00 0.00 0.00

4 0.03 0.03 0.03 0.03 0.00 0.03 0.03 0.00 0.00 0.00 0.00 . . . 0.03 0.00 0.00 0.00

5 0.09 0.03 0.03 0.03 0.00 0.03 0.03 0.00 0.00 0.00 0.00 . . . 0.03 0.00 0.00 0.00

6 0.14 0.03 0.03 0.03 0.00 0.03 0.03 0.00 0.00 0.00 0.00 . . . 0.03 0.00 0.00 0.00

7 0.18 0.03 0.03 0.03 0.00 0.03 0.03 0.00 0.00 0.00 0.00 . . . 0.03 0.00 0.00 0.00

8 0.20 0.03 0.03 0.03 0.00 0.03 0.03 0.03 0.00 0.00 0.00 . . . 0.03 0.00 0.00 0.00

9 0.20 0.03 0.03 0.03 0.00 0.03 0.03 0.03 0.00 0.00 0.00 . . . 0.03 0.00 0.00 0.00

10 0.20 0.03 0.03 0.08 0.00 0.03 0.03 0.03 0.00 0.00 0.00 . . . 0.03 0.00 0.00 0.00

11 0.20 0.03 0.03 0.10 0.00 0.03 0.03 0.03 0.00 0.03 0.00 . . . 0.00 0.00 0.00 0.00

12 0.20 0.03 0.03 0.11 0.00 0.03 0.03 0.03 0.00 0.03 0.00 . . . 0.00 0.00 0.00 0.00

13 0.20 0.03 0.03 0.16 0.00 0.03 0.03 0.03 0.00 0.03 0.00 . . . 0.00 0.00 0.00 0.00

14 0.20 0.03 0.03 0.17 0.00 0.03 0.03 0.03 0.00 0.03 0.00 . . . 0.00 0.00 0.00 0.00

15 0.20 0.03 0.03 0.20 0.00 0.03 0.03 0.03 0.00 0.03 0.00 . . . 0.00 0.00 0.00 0.00

16 0.20 0.03 0.04 0.20 0.00 0.03 0.03 0.03 0.00 0.03 0.00 . . . 0.00 0.00 0.00 0.00

17 0.20 0.03 0.04 0.20 0.00 0.03 0.03 0.03 0.00 0.03 0.00 . . . 0.00 0.00 0.00 0.00

18 0.20 0.03 0.09 0.20 0.00 0.03 0.03 0.03 0.00 0.03 0.00 . . . 0.00 0.00 0.00 0.00

19 0.20 0.03 0.09 0.20 0.00 0.03 0.03 0.03 0.00 0.03 0.00 . . . 0.00 0.00 0.00 0.00

20 0.20 0.00 0.08 0.20 0.00 0.03 0.03 0.03 0.00 0.03 0.00 . . . 0.00 0.00 0.00 0.00

21 0.20 0.00 0.04 0.20 0.03 0.03 0.03 0.03 0.00 0.03 0.00 . . . 0.00 0.00 0.00 0.00

22 0.20 0.00 0.04 0.20 0.03 0.03 0.03 0.03 0.00 0.03 0.00 . . . 0.00 0.00 0.00 0.00

23 0.18 0.00 0.03 0.20 0.03 0.03 0.00 0.03 0.03 0.03 0.00 . . . 0.00 0.00 0.00 0.00

24 0.13 0.00 0.03 0.20 0.03 0.03 0.00 0.03 0.03 0.03 0.00 . . . 0.00 0.00 0.00 0.00

25 0.09 0.00 0.03 0.20 0.03 0.03 0.00 0.03 0.03 0.03 0.00 . . . 0.00 0.00 0.00 0.00

26 0.04 0.00 0.03 0.20 0.03 0.03 0.00 0.03 0.03 0.03 0.00 . . . 0.00 0.00 0.00 0.00

27 0.03 0.00 0.03 0.17 0.03 0.03 0.00 0.03 0.03 0.03 0.03 . . . 0.00 0.00 0.00 0.00

28 0.03 0.00 0.03 0.10 0.03 0.03 0.00 0.03 0.03 0.03 0.03 . . . 0.00 0.00 0.00 0.00

29 0.03 0.00 0.03 0.04 0.03 0.03 0.00 0.03 0.03 0.03 0.03 . . . 0.00 0.00 0.00 0.00

30 0.00 0.00 0.03 0.00 0.03 0.00 0.00 0.00 0.03 0.03 0.03 . . . 0.00 0.03 0.03 0.00

Table 8. The portfolio produced by the Genetic algorithm model for NYSE stock exchange.

NOC GSB ACN SNX IBM TSM MSI JBL ORCL MSCI
0.1 0.005 0.003 0.209 0.004 0.0 0.003 0.005 0.003 0.004
ROP DHR LDOS BHE INFY HUBB NNI CAE HXL BR
0.322 0.003 0.003 0.005 0.004 0.004 0.003 0.004 0.196 0.003
PSX NC CELP GLP SUN TRP RDS-A GLOP PSXP RDS-B
0.003 0.0 0.0 0.0 0.003 0.004 0.003 0.005 0.005 0.004
INT CZZ MMP CVI BP CVX CEO XOM OKE PTR
0.003 0.004 0.002 0.003 0.003 0.004 0.004 0.003 0.002 0.004
RNR WTM TPVG JPM RFI SC BBN HIG NVG WFC
0.003 0.003 0.004 0.004 0.004 0.004 0.003 0.003 0.005 0.004
SAR ALL BTT PMT DFP MET PNC RGA
0.004 0.002 0.004 0.003 0.003 0 0 0.003
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In closing, further research that may be considered for broadening the proposed approach can be summarized
as follows: (a) Expansion of the criteria set towards a qualitative direction, by considering for example analysts’
estimates, buy-hold-sell signals etc., (b) expansion of the methodology’s focus so as to include additional asset
classes, such as bonds, ETFs etc., and (c) connection of the DSS with a portfolio reporting and order execution
system, for the vertical integration of the whole portfolio management business cycle, as a professional routine.
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