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SOLVING METHODS FOR THE QUAY CRANE SCHEDULING PROBLEM AT
PORT OF TRIPOLI-LEBANON

AL SKAFY, SID LAMROUS!, ZAKARIA HAMMOUDAN? AND MARIE-ANGE MANIER!

Abstract. The quay crane scheduling problem (QCSP) is a global problem and all ports around the
world seek to solve it, to get an acceptable time of unloading containers from the vessels or loading
containers to the vessels and therefore reducing the docking time in the terminal. This paper proposes
three solutions for the QCSP in port of Tripoli-Lebanon, two exact methods which are the mixed integer
linear programming and the dynamic programming algorithm, to obtain the optimal solution and one
heuristic method which is the genetic algorithm, to obtain near optimal solution within an acceptable
CPU time. The main objective of these methods is to minimize the unloading or the loading time of
the containers and therefore reduce the waiting time of the vessels in the terminals. We tested and
validated our methods for small and large random instances. Finally, we compared the results obtained
with these methods for some real instances in the port of Tripoli-Lebanon.
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1. INTRODUCTION AND RELATED WORKS

This study addresses the QCSP at port of Tripoli-Lebanon. Lebanon has two ports, the first one is located in
the north (port of Tripoli) and the other one is located in Beirut (port of Beirut) which is the largest port. The
port of Tripoli-Lebanon has 3 zones: water zone, land zone and dump zone with areas 2200000 m?, 320 000 m?
and 480 000 m? respectively. It receives about 400 ships every year.

In August 2016, the container transportation and shipping company CMA CGM (Compagnie Maritime
d’Affretement (CMA) and Compagnie Générale Maritime (CGM)) released a route from south Asia to north
Europe passing by the port of Tripoli-Lebanon, as a transshipment port. This will transfer the port from the
secondary to the main center. Therefore, about 800 containers will pass through the port of Tripoli-Lebanon in
a week, and finally the vessels will move to their intended ports.

The quay crane is a machine used to unload containers from the vessels or to load containers on the vessels,
and the container is an enclosure for holding products such as cars, food, wood... (Fig. 1). Each vessel is
divided into many rows, and many bays and contains a specific number of containers (Fig. 2). (Figure reference:
https://www.morethanshipping.com).
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FIGURE 2. Vessel-quay cranes-bays.

The scheduling problem is a popular problem in many maritime ports. In this paper we propose a solution
for the scheduling problem in the port of Tripoli-Lebanon. Many researchers have proposed the QCSP and have
proposed methods for solving problems such as exact and heuristic methods. Some of them are mentioned in
the list below:

Daganzo [8] is one of the first searcher who studied the QCSP for multiple container vessels. His suggestion
was to divide the container vessels into bays, where only one quay crane can work on a bay at a time. These
quay cranes are free to move quickly from one bay to another, and container vessels cannot depart until all
their bays are unloaded. Minimizing the cost of delay is the main purpose, with an exact and an approximate
solution method. Furthermore, a branch and bound method for the static QCSP was developed by Peterkofsky
et al. [21], only if the quay cranes could cross over each other, while Kim et al. [14] discussed the QCSP with
non-interference constraints, considering the case of a single container vessel. The main purpose was to reduce
the total completion time of all quay cranes.

Some of the researchers proposed a mixed-integer linear programming model:

Azza et al. [4] found the handling sequence of tasks at ship. Their objective is to minimize the time spent by
the vessel at berth and minimize the total cost. Moreover, they proposed an ant colony algorithm to solve the
problem. Meanwhile, Alnaqgbi et al. [2] aimed to minimize the latest starting time for the vessel and its handling
time. Furthermore, they proposed a hybrid algorithm to solve the problem. At the same time, Al Awar et al.
[3] proposed a solution to minimize the entire processing time for all vessels. While, Zhen et al. [32] studied
the quay crane and yard truck scheduling problem to minimize the total handling time of all tasks, a particle
swarm optimization algorithm-based solution was proposed with the MILP. Finally, Xiazhong et al. [30] found
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the optimal storage location of container groups while minimizing both the maximum completion time and the
traveling time of trucks. Moreover, they proposed a tabu search to solve the problem.

Others proposed a mixed-integer programming model:

Moghaddam et al. [27] presented a novel, MIP model for the quay crane scheduling and assignment problem,
and Al-Dhaheri et al. [1] determined the sequence of unloading operations of a vessel that a set of quay cranes
will perform so that the completion time of the operations is minimized.

And also the genetic algorithm was proposed by many researchers:

Liang et al. [15] studied the berthing position problem and determined the number of quay cranes assigned
to each ship. The objective was to reduce the handling time and the waiting time for each vessel. While, Chung
et al. [7] proposed a modified genetic algorithm to deal with the problem and to test the optimization reliability
of the proposed algorithm. A set of well-known benchmarking problems was solved, Furthermore, Diabat et al.
[9] developed a formulation for the quay crane scheduling problem and quay crane assignment which accounts
for crane position. Moreover, Salhi et al. [22] proposed a model that combines three distinct problems, namely
berth allocation, quay crane assignment, and quay crane scheduling that arises in container ports.

And several resolution algorithms were proposed:

Lim et al. [16] assumed that a container vessel is a job. When this job is assigned to quay crane, there is a
profit value. They found an assignment matching which maximizes the total profit. A dynamic programming
algorithm and a Tabu search are used to provide a solution to the problem. Moreover, Yi et al. [31] proposed
a general model for the QCSP and introduced a heuristic model to solve it. Their objective is to minimize the
total handling time of all tasks. Furthermore, Liu et al. [17] proposed models and algorithms for the general
double-cycling problem with internal-reshuffles, where reshuffle containers can move directly from one stack to
another. A branch-and-price framework is used to solve the problem. And Msakni et al. [19] studied the problem
of determining the assignment of quay cranes to containers vessels and the scheduling operation by each quay
crane. They developed an exact method based on a branch-and-price algorithm.

Finally, some researchers have suggested studies and classification schemes:

Steeken et al. [26] studied the QCSP to increase the competition’s capacity of port container terminals. Then,
Wang et al. [28] determined the sequence of unloading operation, with the objective to minimize the weighted
operation time of jobs and travel time. After that, Wang et al. [29] made a study to improve knowledge for
quay crane and berth scheduling. Boysen et al. [6] presented a classification scheme for the QCSP without
considering the non-interference constraints between the quay cranes. A scheme was applied to classify the
existing literature, to determine the status-quo of complexity results, and to identify future research. While, De
Oliveira et al. [20] focused on the integration of quay side operations and the QCSP taking in consideration the
minimization of the time spent and the fuel consumption. And, Liu et al. [18] studied a scheduling problem with
two uniform quay cranes. Their objective was to minimize the turn-around time of a vessel. Finally, Haoyuan
et al. [11] proposed a simulation model of container terminal, to solve its quay crane scheduling problem, with
the objective to optimize the shortest total delay time for all vessels.

In our previous studies, Skaf et al. [23] studied the QCSP with non-interference constraints in the port
of Tripoli-Lebanon. They proposed a mixed-integer linear programming (MILP) model and a dynamic pro-
gramming algorithm to solve the problem. After that, Skaf et al. [24] studied the QCSP with non-interference
constraints in the port of Tripoli-Lebanon, they proposed a genetic algorithm to solve the problem, and finally
they compared the obtained results with the mentioned port results.

The above review suggests that methods such as genetic algorithm are adapted to solve the Quay Crane
Scheduling Problem (QCSP).

Meanwhile, Skaf et al. [25] aimed to study both the quay crane and yard truck scheduling problem for a
single quay crane and multiple yard trucks, the main objective is to minimize the total completion time for all
containers. They proposed a MILP and a dynamic programming to solve the problem.

Table 1 shows a classification of works according to the resolution methods (exact or heuristic) and according
to the variant of the studied problem. We note that most researchers have used the MILP as an exact method
and the genetic algorithm (GA) as a heuristic method to solve the QCSP.
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TABLE 1. Classification of works.

References Variant Resolution methods
Exact Heuristic

Lim et al. [16] QCSP DPA Tabu search

Liang et al. [15] QCSP GA

Diabat et al. [9] QCSP GA

Al-Dhaheri et al. [1] QCSP MIP

Moghaddam et al. [27] QCSP MIP

Chung et al. [7] QCSP GA

Azza et al. [4] QCSP MILP Ant-colony

Alnaqbi et al. [2] QCSP MILP Hybrid

Al Awar et al. [3] QCSP MILP

Salhi et al. [22] QCSP GA

Zhen et al. [32] QCYTSP MILP PSO

Xiazhong et al. [30] QCYTSP MILP Tabu search

This study QCSP MILP, DPA GA

Notes. QCSP: quay crane scheduling problem. QCYTSP: quay crane and yard truck scheduling problem.

In this study, we propose three solving methods for the scheduling problem of unloading tasks performed by
several cranes assigned to a single vessel in ports like that of Tripoli-Lebanon. Those methods are a MILP, a
dynamic programming algorithm (DPA) and a genetic algorithm. After that, we compare all obtained results
for those methods with real results from the mentioned port. The proposed MILP and the DPA allow us to
find all possible assignments for the quay cranes to the bays, taking into consideration the non-interference
constraints between quay cranes. Their main objective is to minimize the total completion time.

The proposed genetic algorithm aims to minimize the total completion time and to find the near optimal
solutions. This study allows to find the optimal completion time for a container’s vessel. We observe that the
dynamic programming algorithm provided better results than the mixed-integer linear programming in terms
of CPU time and completion time for large number of bays. Nevertheless, the drawback of the DPA is that
for larger instances, for example, for 22 bays, it may take 4h to give a result, and therefore in such cases, we
propose a genetic algorithm to obtain optimal or near optimal results with a quick execution time for the quay
cranes scheduling problem without cranes crossing.

Later in this paper, in Section 2 we define the studied problem. In Section 3 we propose three solving
methods. In Section 4 we compare the results of the three solving methods and the real results in the port of
Tripoli-Lebanon. Finally, in Section 5 we give a conclusion and a direction for future research.

2. PROBLEM DEFINITION AND MATHEMATICAL FORMULATION

In this section, we provide the problem definition and the mathematical formulation such as the assumptions,
the needed parameters and the decision variables used in the mathematical model.

We study a QCSP with non-interference constraints for a single vessel unloaded by several quay cranes, as
can be encountered in the port of Tripoli-Lebanon, using three solving methods to improve the results of such
port.

2.1. Assumptions
The QCSP we study has the following characteristics:

— A single vessel is considered, which transports containers. Its surface is divided into many bays and each bay
contains a specific number of containers put in a row or over each other. (Cranes number < bays number).
— The quay cranes move along a single-track, this means that they work without any crossing between them.
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— Each quay crane is able to unload containers from only one bay at a time, when it completes its work in the
current bay, it can pass to the next one.

Each quay crane can unload one container at a time.

Each bay is handled by at most one quay crane at a time.

— We ignore the travel time between two bays because it is short compared to the unloading times.

— No idle quay crane.

2.2. Mathematical formulation

In this sub-section, we present the mathematical formulation of the problem with the different parameters,
variables and the mathematical model.

2.2.1. Data

— @Q: set of quay cranes, with |Q|: number of quay cranes.

i: index of quay crane (i = {1...]Q|}).

gq;: the ith quay crane (i = {1...]Q|}).

B: set of bays, with |B|: number of bays.

— j:index of bay (j = {1...|B|}) on the vessel.

— C;: number of containers in bay j.

— Tc: time to unload a container by a quay crane and put it in the storage. It is supposed to be the same for
all containers in all bays.

— M: great integer number.

2.2.2. Deciston variables
Vi e Q,Vj,5 € B.

.. _ J 1 if bay j is handled by quay crane i
TG4 =10  otherwise.

. _ |1 if the unloading of bay j finishes before starting to unload bay ;'
#(3) T 10 otherwise.

— t; : completion time of bay j.

— Clnax : makespan.

2.2.8. Mathematical model

Here we show some equations to facilitate the understanding of the problem.

tj <ty Vi, i € B (2.1)
tj <ty —(Tc-Cy) Vj,j' € B (2.2)
t; >ty — (Te-Cyr) Vj,j' € B (2.3)
¢ +1<qin Vg € Q. (2.4)

Equations (2.1) means, if there are two successive bays to be worked inside, then the completion time of the
second one is greater than the first one. Equation (2.2) is used when the work at bay j finishes before than
starting the work at bay j’, while equation (2.3) is used when the work at bay j finishes after the one at bay j’
starts. Equation (2.4) is used if quay crane ¢; works in bay j and quay crane g;; works in bay j’ to prevent
the crossing between quay cranes.

3. SOLVING METHODS

In this section, we will propose three solving methods: MILP solved by CPLEX and dynamic programming
algorithm coded with Java to obtain exact solutions, and a genetic algorithm which is a meta-heuristic method
coded in Java to obtain near optimal solutions.
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3.1. Mixed integer linear programming

The mixed integer linear formulation was found by Leonid Kantorovich [13]. It is a technique for the opti-
mization of an objective function, subject to linear inequality and equality constraints.
The MILP we propose is as follows:

Objective
Minimize Chax (3.1)
Subject to
Q]
> agay =1 VjeB (3.2)
i=1
t; > (Te-Cy) Vj €B (3.3)
tj—tj/+(TC'Oj/)+Z(j’jr)-M>O Vj,j' € B .
tj — tj/ —|— (TC . Cj/) — (1 — Z(j,j’)) . M S O \V/j,jl S B (35)
Q| Q|
Yoy 1S Y w2+ 2g) - M Vj,j' € B,j <j' (3.6)
1=1 =1
Crax = max t; (3.7)
J
251 =1{0,1} Vj,j' € B,j <j (3.9)

Equation (3.1) is the objective function that it is desired to minimize the makespan (completion time of all
bays). Constraint (3.2) ensures that every bay must be handled only by one quay crane. Constraint (3.3) ensures
that the completion time is bigger than the working time in each bay (Working time = number of containers x
time needed to unload a container and store it). Constraint (3.4) indicates that if z(; jy = 1, then bay j finishes
before bay j" starts (Eq. (2.2)) and constraint (3.5) indicates if z(; ;) = 0, bay j finishes after bay j" starts
(Eq. (2.3)). Constraint (3.6) avoids the interference between the quay cranes: Suppose that bays j and j’ are
performed simultaneously and j < j’, if the first quay crane works in bay j and the second quay crane works
bay j', then ¢; + 1 < g2 (Eq. (2.4)). Constraint (3.7) defines the Cpax value, finally constraints (3.8) and (3.9)
define the property of the decision variables.

3.2. Dynamic programming algorithm

3.2.1. Definition

Dynamic programming algorithm was found by Richard Bellman [5]. It is used for problems optimization to
explore the optimal solution. The dynamic programming algorithm (DPA) consists in dividing the problem into
many small sub-problems and after solving each sub-problem only once, and ultimately, the problem has been
solved. Finally, we can save the results and select the obtained optimal solution. The dynamic programming
problems can be classified into two categories:

— Optimization problems
Selecting the feasible solution with the value of the function is maximized or minimized.
— Combinatorial problems

Figuring out the number of ways to do something, or the probability of some events happening.
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3.2.2. Hierarchy tree diagram

A hierarchical chart represents a system of hierarchy progressing from the top to the bottom and can also be
referred to as a structure chart.

The first node of the tree is called the root. If this root node is connected by another node, the root is then
a parent node and the connected node is a child. All Tree nodes are connected by links called edges. It’s an
important part of trees, because it manages the relationship between nodes.

We start by generating all parameters and we finish by obtaining the optimal solution.

The DPA works depending on the hierarchy tree diagram system. As shown below, a detailed tree example
of the DPA is provided:

We start by developing all the needed conditions in the problem. After we get all possible choices whatever
the CPU time will be high, with a single solution for each choice. Finally, we choose the optimal solution which
is the smallest one.

3.2.8. Algorithm description

Algorithm 1. Dynamic programming algorithm.

1: Generate_variables();

2: Generate_assignments();

3: for each assignment do

4:  if crossing = false then

5: calculate_completion_time();
6: else

7 go_to_next_assignment;

8: end if

9: end for

10: min«—value_first_assignment;

11: for each assignment do

12:  if min > value_next_assignment then
13: min«<value_next_assignment;
14: End;

15:  else

16: go_to_next_assignment;

17:  end if

18: end for

Lines explanation

— Line 1: generating all needed variables (number of quay cranes, number of bays, number of containers in a
specific bay, and time to unload a container by the quay crane).

— Line 2: generating all possible choices for the assignment of all bays to quay cranes.

— Lines 3-9: for each assignment, we test if there is any crossing between the quay cranes. If yes, we test
another assignment; if there is no crossing, we calculate the completion time.

— Line 10: create a new variable called min and give it the calculated value of the first assignment.

— Lines 11-18: for each assignment, we test if the completion time is less than the variable min, if yes set min
to the new completion time, or else go to the next assignment.

3.2.4. Process example

We suppose that we have 2 quay cranes with 4 bays containing 13, 16, 12 and 9 containers respectively to be
unloaded. The container’s unloading times of these 4 bays are respectively 15.21, 18.72, 14.04 and 10.53 time
units (Fig. 3 describes the full process for this example).
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Bay1 Bay 2 Bay3 Bay4

Number of Containers 13 16 12 9
Unloading time 15.21 18.72 14.04 10.53

15¢ assignment m
ac1 15.21 14.04 | 1521+3.51+1404=3276
ac2 18.72 1053 | 18.72 + 10.53 = 29.25

2nd assignment Maximum
Qc1 15.21 18.72 I 15.21 +18.72 =33.93 33.93
ac2 14.04 1053 | 14.04 + 10.53 = 24.57

3rd assignment Maximum
ac1 15.21 | 15.21

43.29

Qc2 18.72 14.04 10.53 I 18.72 + 14.04 + 10.53 = 43.29

4th assignment Maximum
Qc1 15.21 18.72 14.04 I 15.21 +18.72 + 14.04 = 47.97 47.97
ac2 10.53 | 10.53 i

5th assignment Maximum
Qc1 15.21 18.72 10.53 I 15.21 +18.72 + 10.53 = 44.46 44.46
ac2 14.04 | 14.04

6th assignment Maximum
Qc1 15.21 14.04 10.53 I 15.21 +3.51 + 14.04 + 10.53 = 43.29 43.29
ac2 18.72 | 18.72

7th assignment Maximum
Qc1 15.21 10.53 I 15.21 +17.55 + 10.53 = 43.29 43.29
Qc2 18.72 14.04 I 18.72 + 14.04 = 32.76 i

FIGURE 3. Process example.

Our DPA generates all variables and then all crane-to-bay assignments. In this case, for 4 bays and 2 cranes,
there is initially 2%, or 16 possible assignments which are: 1-1-1-1, 1-1-1-2, 1-1-2-1, 1-1-2-2, 1-2-1-1, 1-
2-1-2, 1-2-2-1, 1-2-2-2, 2-1-1-1 , 2-1-1-2, 2-1-2-1, 2-1-2-2, 2-2-1-1, 2-2-1-2, 2-2-2-1, 2-2-2-2. In these
x—y—=2—t type lists, the value in ith position represents the number of the crane assigned to unload bay 1.

In a second step, the 2 assignments (1-1-1-1 and 2-2-2-2) are eliminated because all the cranes reserved for
the vessel are all supposed to unload containers. We are therefore forbidden here to use only one crane.

In the next step, a crossing test is carried out, which leads to eliminating the assignments which start with 2.
In fact, if the second crane works in the first bay there will be a crossing between the cranes. Note that the
reverse is not true: the quay crane 1 can unload the containers from bay 4, however it cannot start with this
bay, which will be limiting in terms of the scheduling phase.

— The first assignment is 1-2-1-2, means that the first quay crane (QC1) unloads the containers from bays 1
and 3 for a theoretical completion time of 29.25 (15.21 + 14.04), while the second quay crane (QC2) unloads
bays 2 and 4 with an effective working time of 29.25 (18.72 + 10.53). The makespan should theoretically
be 29.25. However, once bay 1 has been unloaded, QC1 cannot start to unload bay 3 because QC2 does not
finish its work in bay 2 until 18.72. QC1 must therefore wait 3.51 units of time, and then the two cranes
can move simultaneously towards bays 3 and 4 respectively. The actual end of work date of QC1 is therefore
not 29.25 because it is necessary to add a time of waiting for 3.51 to avoid a collision, which is 32.76. The
makespan is therefore equal to 32.76.

— The second assignment is 1-1-2-2, means that QC1 unloads containers 1 and 2 with a completion time of
33.93, while QC2 unloads containers in bays 3 and 4 with a time completion of 24.57. The total time to
perform the unloading is therefore equal to 33.93.

— The third assignment is 1-2-2-2, means that QC1 unloads the 13 containers from bay 1 with a completion
date of 15.21, while QC2 unloads the containers from bay 2, 3 and 4 and completes work on date 43.29. The
makespan is therefore equal to 43.29.

— The fourth assignment is 1-1-1-2: QC1 unloads bay 1, 2, and 3 until date 47.97, while QC2 takes care of
bay 4 with a completion date of 10.53. The total time for unloading the vessel is therefore equal to 47.97.
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— The fifth assignment is 1-1-2—1: QC1 unloads the containers from bays 1, 2 and 4 and ends at 44.46, QC2
finishes unloading bay 3 at 14.04. The time to unload the 50 containers is therefore equal to 44.46.

— The sixth assignment is 1-2-1-1: QC1 unloads the containers from bays 1, 3 and 4 and theoretically ends at
39.78 (15.21 + 14.04 4 10.53), but actually at 43.29. Indeed, QC2 takes care of bay 2 until the date 18.72,
and once bay 1 is unloaded at 15.21, QC1 must wait for the end of the work of QC2 to be able to move to
bays 3 and 4. QC1 must therefore undergo a 3.51 wait (18.72 — 15.21). The time to unload the 50 containers
is therefore equal to 43.29 (39.78 + 3.51).

— The seventh assignment is 1-2-2-1: the QC1 crane (respectively QC2) unloads the containers from bays 1
and 4 (respectively 2 and 3) with an end date of 43.29 (respectively 32.76). The makespan is therefore equal
to 43.29. As for scenario 6, this date includes a waiting time for QC1, here of 17.55 time units between the
unloading of bays 1 and 4, in order to allow QC2 time to finish its work in bays 2 and 3 and avoid thus a
collision.

3.2.5. Summary

The dynamic programming algorithm (DPA) allows to find all possible completion times which grow when
the number of quay cranes and bays increases, taking into consideration the non-crossing conditions for the
quay cranes. Finally, it allows to choose the optimal completion time.

3.3. Genetic algorithm

After testing large instances using the MILP and dynamic programming algorithm, we observed that those
two methods took a long CPU time to solve the problem and obtain the optimal solution (as we will see later
in the next section). We propose a meta-heuristic method which is the genetic algorithm (GA) to obtain near
optimal solution with fast CPU time. The genetic algorithm (GA) was proposed by John Holland [12] and
developed and applied by David Goldberg [10].

In this paper, GA depends on Roulette wheel selection, order crossover and swap mutation.

The genetic algorithm steps are presented as follows: generation of an initial population of solutions, after
that, test of the non-interference constraints for the quay cranes to avoid the crossing between them, if there is
no crossing, calculation of the fitness value, if not setting of the fitness to zero. If the current generation is the
final one, then the program is terminated, and the results are provided. If not, we execute the GA steps which
are roulette wheel selection, order crossover and swap mutation.

We choose the genetic algorithm due to its simplicity, as it is easy to be implemented. Figure 4 describes the
flowchart of this genetic algorithm.

3.3.1. Representation of a chromosome

The solution in the genetic algorithm is called a chromosome and each element inside is called gene. In our
study, the chromosome is composed of a series of bays. Table 2 shows a chromosome and each gene contains the
bay number. For example, the third element (third gene) in the chromosome represents the bay number 4.

8.8.2. Initial positions of quay cranes

To fix the initial position of a quay crane we use the following equation: 14 (i — 1) x R, where ¢ is the index
of the quay crane and R a random number between 1 and L, with L = bays number/quay cranes number. If
L is a rational number, we take its natural part number. Be aware that the position of the first quay crane is
always at the first bay.

Example: Let us suppose that we have 12 bays and 3 quay cranes, then R should be a random number between
1 and 12/3 (hence between 1 and 4). If R = 2, then the main position of quay crane 1 is at bay 1, quay crane 2
is at bay 3 and quay crane 3 is at bay 5.
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| Generate population l

Non-interference

constraints? No—p Fitness = 0

Yes

v

Calculate fitness value

Generation is final ?

e “

No

v

| Selection |

v

| Crossover |

v

| Mutation |

FIGURE 4. Genetic algorithm flowchart.

TABLE 2. Chromosome and genes.

8.83.3. Quay cranes scheduling

Algorithm 2 explains how the scheduling problem works. The initial positions of the quay cranes, and therefore
the bays will be assigned to the quay cranes. A sequential procedure is used to consider the order of the bays
in the chromosome.
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Algorithm 2. Quay cranes scheduling.

if gnp =1 then
g1 bayj;
bay; — —1;
=i+
COMpq < COMPq + Whay,;
nd
Ise
if compq, Not in {compq}/comp,, then
compg, = Min{compg};
bay; — —1;
j = Next_bay();
COMPg,; < COMPq; + Whay;;
nd
Ise
if A(bay) > 0 then
¢i < bay; with shorter distance;
bay; — —1;
j = Next_bay();
COMPy; ¢ COMPg; + Whay, ;
end
nd
Ise
@i < bay; with smaller index number;
bay; — —1;
j = Min_bay();
COMPyq; = COMPq; + Whay;;
end
end

o 0

o 0

o 0

compg: quay crane’s completion time // bay;: bay number j // gnp: number of quay cranes // ¢;: the ith quay crane //
Whay,: quay crane’s time to finish working in bay j // A = |bayk2 — bayx1|: calculate the distance between bays//
Next_bay(): get the next bay, Min_bay(): get the smaller bay number

The four following steps of this algorithm are featured. For each step we clarify it with the numerical example
used in Section 3.3.1 with 3 quay cranes and 10 bays. In this example, the main makespan (completion time) of
all the quay cranes is initialized to 0, because no unloading operation has been performed until now (iteration
init in Tab. 3).

In the chromosome, we consider the current bay (current gene) which corresponds to an unassigned bay, and
we assign it to a crane. For example, let us take the first gene of the chromosome (bay 7), and we suppose the
processing time for all bays is 10.

Non-crossing (step 1): the first step consists to determine which quay cranes can unload the first unassigned
bay in the chromosome without crossing with the other quay cranes. If there is only one available quay crane,
this bay is assigned to this quay crane, else we continue to the next step. For our example, quay crane 2 and
quay crane 3 can handle bay 7 without interference with quay crane 1.

Selection based on time criteria (step 2): among these two cranes, we choose the one which is available
sooner. In case of equality, that means if the two cranes have the same completion time, then we go to step 3
to discriminate them according to a distance criterion. In our example, the completion times of quay crane 2
and quay crane 3 are equal.



126 A. SKAF ET AL.

TABLE 3. Detailed example.

Iteration QC1 QC2 QC3

init Bay position 1 3 5
Partial scheduling ] 0 0
Completion time 0 0 0

1 Bay position 1 3 7
Partial scheduling 0 0 7
Completion time 0 0 10

2 Bay position 1 3 9
Partial scheduling 0 0 7,9
Completion time 0 0 20

3 Bay position 1 4 9
Partial scheduling 0 4 7,9
Completion time 0 10 20

4 Bay position 1 4 10
Partial scheduling 0 4 7,9, 10
Completion time 0 10 30

5 Bay position 3 4 10
Partial scheduling 3 4 7,9, 10
Completion time 10 10 30

6 Bay position 3 8 10
Partial scheduling 3 4,8 7,9, 10
Completion time 10 20 30

7 Bay position 6 8 10
Partial scheduling 3,6 4,8 7,9, 10
Completion time 20 20 30

8 Bay position 1 8 10
Partial scheduling 3,6,1 4,8 7,9, 10
Completion time 30 20 30

9 Bay position 1 2 10
Partial scheduling 3,6,1 4,8,2 7,9, 10
Completion time 30 30 30

10 Bay position 2 5 10
Completed scheduling 3,6,1 4,8,2,5 7,9,10
Completion time 30 40 30

Selection based on distance criteria (step 3): if no crane has been chosen in step 2 with the time criterion,
we assign the current bay to the nearest crane. In case of equality (if the two cranes are at equal distance from
the bay), we choose the crane at the left (with the smallest index). The distance between bay 7 and bay 3
(which quay crane 2 works inside) is 3 bays and the distance between bay 7 and bay 5 (which quay crane 3
works inside), is 1 bay. Then crane 3 is nearer to bay 7 than crane 2.

Assignment (step 4): assign bay 7 to quay crane 3. Update the position of quay crane 3 and the associated
completion time (see iteration 1 in Tab. 3). Then update the current gene (following one) in the chromosome
(gene 2, bay 9 in our example). Repeat the four steps until all bays are assigned to one quay crane.

Algorithm 2 describes the process of the quay cranes scheduling while Table 3 shows a detailed numerical
example for the scheduling.

3.8.4. Fitness

In the previous section, we have seen a procedure to prevent the interference between the quay cranes.
Nevertheless, we should check if the quay cranes satisfy the constraints or not, so we used the two constraints
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Population Fitness

A 12
B 16.8
C 18
D 28.8
E 44.4

Random number = 25, then individual B is selected

FIGURE 5. Roulette wheel selection.

(3.4) and (3.5) and then checked the interference constraint (3.6) to ensure that there is no collision between
quay cranes. The fitness value will be calculated from the equation (3.6). If the constraints are not satisfied, the
fitness value will be set to zero.

Fitness = 1/Chax- (3.10)

3.8.5. Roulette wheel selection

The roulette wheel selection is a process to choose individuals from a population, according to the “fitness”
function or the values of their cost, to form a new population. Individuals will be evolved by some successive
iterations of selection, called generations.

All individuals are selected proportionally to their “fitness” function, so an individual with a higher fitness
function will be more likely to be selected than another with a lower fitness value. This function can be considered
as a measure of profit or quality that one wishes to maximize. A simple operator of selection is the technique of
the weighted roulette where each individual of a population occupies a surface of the roulette proportional to
the value of its function “fitness”. For reproduction, candidates are selected with a probability proportional to
their “fitness”. For each selection of an individual, a simple rotation of the wheel gives the selected candidate.
Roulette Wheel Selection works as follows:

Calculate the sum of all fitness, then generate a number between 0 and this sum; add the fitness values to a
partial sum X starting from the top of population, and finally the chosen chromosome is the first chromosome
for which X overpasses the random number. The procedure is illustrated in Figure 5.

3.8.6. Order crossover

The order crossover procedure aims to select randomly a substring from a random parent. After that we
create an offspring by copying the selected substring in their corresponding positions. Then, we delete from
the second parent all existing in the substring and place the genes in the empty positions of the offspring from
left to right. Finally, we should take into consideration the order of the sequence of the offspring creation. The
procedure is illustrated in Figure 6.

3.8.7. Swap mutation

The swap mutation procedure aims to test all the individuals bit by bit.

From the chromosome, we randomly select two positions (two genes) and then we swap the values of these
two positions.

The procedure is illustrated in Figure 7.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our methods (MILP, dynamic programming, and genetic
algorithm). For this goal, we test them on randomly instances, as well as on a real case related to the port of
Tripoli-Lebanon.



128 A. SKAF ET AL.

Substring

ParentX|1|2|3|4|5|6|7|8|9|10|

offspring [ 8 [ 3 [ 2 [a[s]e[7 ]9 [10] 1]

il

ParentY [ g | 3|6 | 2|7]|9|af10f5]|12

FIGURE 6. Order crossover.

Random positions

| l

9(512|8|6|3|1]|]7]|4]10

FIGURE 7. Swap mutation.

Our programs were executed in a MacBook Pro 2,7 GHz Intel Core i5 with 8 GB RAM 1867 MHz DDR3
running in OSX 10.11.6.

We fix the size of the population, the probability of the mutation, the probability of the crossover and the
max number of generations when executing the genetic algorithm which are respectively 300, 0.2, 0.25 and 1000.

Small and large sizes instances were generated randomly with 2 or 3 quay cranes, 4-15 bays, and containers
number in each bay were also generated in a random way between 5 and 30 containers.

4.1. MILP versus DPA

The MILP was solved by CPLEX 12.7.1, a software for solving integer programming, while the DPA is coded
with JAVA J2EE. JAVA is a programming language developed by Sun Microsystems. It was designed to develop
programs and creating web applications. It is an object-oriented programming language and its syntax is similar
to C++.

As shown in Table 4, CPLEX results and DPA results are logically the same (same makespan) for small and
large instances, but DPA is better in terms of CPU time.

For instance 21 with 14 bays and 2 quay cranes, CPLEX did not provide any result after 2 h, so we interrupted
the execution, while DPA solved the problem to optimality. But in instance 22 for 14 bays and 3 quay cranes
CPLEX gives us a result like DPA. For instances 23 and 24, we waited more than 3h using CPLEX without
obtaining any result. We can therefore state that DPA is more efficient in terms of time than MILP. We will
adopt DPA as the exact method to be compared with the meta-heuristic method.

4.2. DPA versus GA

The genetic algorithm (GA) and the DPA are both coded with JAVA J2EE.
Table 5 shows us, that both GA and DPA gave the same optimal solution with an acceptable and realistic
CPU time but only for small instances.



SOLVING METHODS FOR THE QUAY CRANE SCHEDULING PROBLEM 129

TABLE 4. Small and large instances.

No. (|Q| x |BJ) Makespan CPU Time
CPLEX DPA CPLEX DPA

(min)  (min) (s) (s)

1 2x4 32.76 32.76 <1 <1

2 3x4 24.57 24.57 <1 <1

3 2x5 39.78 39.718 <1 <1

4 3Xx5 29.25 29.25 <1 <1

5 2x6 51.48 51.48 <1 <1

6 3%x6 37.44 3744 <1 <1

7 2x7 58.5 58.5 <1 <1

8 3xT 39.78 39.78 <1 <1

9 2x38 73.71 73.71 <1 <1
10 3x8 51.48 51.48 <1 <1
11 2x9 90.09 90.09 <1 <1
12 3x9 60.84 60.84 <1 <1
13 2x10 99.45 99.45 4.77 1.33
14 3x10 70.2 70.2 1.16 0.35
15 2x11 104.13 104.13  24.43 3.89
16 3x11 73.71 73.71  5.57 1.13
17 2x12 107.64 107.64 115.27 13.34
18 3x12 73.71 73.71  7.39 3.28
19 2x13 114.66 114.66  1723.85  32.59
20 3x13 76.05 76.05 20.38 4.57
21 2x14 N.A. 119.34 N.A. 82.44
22 3x14 81.9 81.9 197.83 34.86
23 2x15 N.A. 12753 N.A. 131.77
24 3x15 N.A. 91.26 N.A. 104.82

Notes. |Q| X | B|: number of quay cranes x number of bays. N.A. = No result after interrupting execution.

TABLE 5. Small instances.

No. (|Q| x |B|) Makespan CPU Time
DPp GA GAP DP GA
(min) (min) (%) () ()

1 2x4 3276 3276 O <1l <1

2 3Ix4 2457 2457 0 <1l <1

3 2x5 39.78 39.78 0 <1 <1

5 2x6 51.48 5148 0 <1l <1

As shown in Table 6, from instance 1 to instance 20, DPA gives us the optimal solutions and GA gives us
near optimal solutions, but the difference is the higher CPU time for DPA. The GAP between DPA results and
GA results is between 0% and 3.33%. From instance 21, DPA was unable to provide any solution after more
than 4h of CPU processing time, meanwhile GA provides solutions in a very short time. We therefore state
that the proposed GA is successful and practical for our problem. (GAP = ((DPA — GA)/DPA) * 100).

4.3. Stability analysis of the genetic algorithm

To evaluate if our genetic algorithm is stable, we executed the same instance 5 times and we got the same
result as shown in Table 7 for small instances.
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TABLE 6. Large instances.

No. (|Q| x |BJ) Makespan CPU Time
DPA GA GAP DPA GA

(min)  (min) (%) (5) (s)

1 2x12 107.64 109.98 2.13 13.34 <1

2 3x12 73.71 74.88 1.56 3.28 <1

3 2x13 114.66 115.83 1.01 32.59 <1

4 3x13 76.05 76.05 0 4.57 <1

5 2x14 119.34 122.85 2.86 112.44 <1

6 3x14 81.9 83.07 141 54.86 <1

7 2x15 127.53 129.87 1.8 231.77 <1

8 3x15 91.26 92.43 1.27 104.82 <1

9 2x 16 132.21 13221 O 303.04 2.31

10 3 x 16 95.94 98.28 2.38 112.94 1.59

11 2x17 139.23 142.74 2.46 509.96 4.36

12 3x17 101.79 105.3 3.33 203.34 3.12

13 2x18 146.25 147.42 0.79 1144.12  9.67

14 3x18 105.3 106.47 1.1 708.32 7.39

15 2x19 153.27 155.61 1.5 1392.84 13.34

16 3x19 113.49 11349 O 912.48 10.62

17 2x 20 161.46 164.97 2.13 1601.13  32.99

18 320 118.17 119.34 0.98 1044.19  28.64

19 2x 21 170.82 173.16 1.35 3563.7 58.28

20 3x21 125.19 127.53 1.83 2390.13  34.72

21 2 %22 N.A. 180.18 — N.A. 77.14

22 3 x 22 N.A. 128.7 - N.A. 60.12

23 2x 23 N.A. 186.03 - N.A. 104.35
TABLE 7. Stability analysis for small instances.

(QIx1B) (QIx|B]) (Qlx|B) (Qx|B])

Execution 2x4 3x4 2x5 3 x5

1 32.76 24.57 39.78 29.25

2 32.76 24.57 39.78 29.25

3 32.76 24.57 39.78 29.25

4 32.76 24.57 39.78 29.25

5 32.76 24.57 39.78 29.25

For the large instances, we also executed the same instance 5 times (Tab. 8). At least two executions have
the same near optimal result, with a percentage of 40% while the three other executions give results more or
less 3% away from the near optimal result.

As an example, for 2 quay cranes and 12 bays, the first, third and fourth executions give the near optimal
solution obtained by the genetic algorithm (109.98), while the second and the fifth executions give results more
or less 3% away from the near optimal solution.

Percentage calculation for second execution

- 112.32 — 109.98 = 2.34
(2.34/109.98) * 100 = 2.12% from the near optimal result.
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TABLE 8. Stability analysis for large instances.

QI x[Bl) (IQ] x|B])

Execution 2 x 12 3x12
1 109.98* 74.88"
2 113.49 76.39
3 109.98* 77.22
4 109.98* 77.22
5 112.32 74.88*

Notes. *The best near optimal solution.

TABLE 9. DPA results versus Port results versus GA results.

Ex. Cranes Bays Containers Port DPA GA Saved time %
makespan Port-DPA

1 2 6 25 40 19.5 21.84 51.25

2 2 4 62 95 44.78 4595 52.86

3 2 3 90 103 70.2 72.54 31.84

4 2 4 84 96 49.14 52.01 48.81

— 113.49 — 109.98 = 3.51

(3.51/109.98) * 100 = 3.19% from the near optimal result.
- 7722 -7488 =2.34

(2.34/74.88) * 100 = 3.12% from the near optimal result.
- 76.39 — 74.88 = 1.51

(1.51/74.88) * 100 = 2.01% from the near optimal result.

We therefore state that the proposed genetic algorithm is stable and good to be applied.

4.4. Comparison between both DPA, GA and port results

In Table 9, the real results in the port of Tripoli-Lebanon are compared with the dynamic programming
algorithm (DPA) results and with the genetic algorithm (GA) results.

In the second example in Table 9, there are two quay cranes and four bays containing in total 62 containers.
The time to unload a container by a quay crane is about 1.17 min. DPA makespan is 44.78 min, whereas in the
port, the unloading time of 62 containers is about 95 min. Finally, the DPA enables us to save time by 52.86%,
while GA result is 45.95 min and it enables to save time by 51.63%. (we add the percentage of the saved time
only for DPA because it is the best method). The better one should have the higher percentage of saved time
but although the percentage of the saved time by GA is smaller than DPA percentage, the GA results are good
and can be applied. Note that this model accommodates the true conditions of the port of Tripoli-Lebanon.

5. CONCLUSION

This paper studies the QCSP in its multi-cranes variant, for which we proposed a mixed-integer linear
programming (MILP) model, a dynamic programming algorithm (DPA) and a genetic algorithm (GA). Then,
we make results comparison with the real instances from the port of Tripoli-Lebanon.

This paper shows the difference between two exact methods and a meta-heuristic method. We saw that for
the large instances, the QCSP should be solved by a meta-heuristic method which is genetic algorithm, to have
good solutions quickly.
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To improve the quality of solutions in terms of execution time and convergence towards the optimal solution,
other meta-heuristic methods should be tested in future work.
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