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ALPHA-ROBUST MEAN-VARIANCE INVESTMENT STRATEGY FOR DC
PENSION PLAN WITH UNCERTAINTY ABOUT JUMP-DIFFUSION RISK

Danping Li1, Junna Bi1,∗ and Mengcong Hu2

Abstract. This paper considers an α-robust optimal investment problem for a defined contribution
(DC) pension plan with uncertainty about jump and diffusion risks in a mean-variance framework.
Our model allows the pension manager to have different levels of ambiguity aversion, rather than only
consider the extremely ambiguity-averse attitude. Moreover, in the DC pension plan, contributions are
supposed to be a predetermined amount of money as premiums and the pension funds are allowed
to be invested in a financial market which consists of a risk-free asset, and a risky asset satisfying
a jump-diffusion process. Notice that a part of pension members could die during the accumulation
phase, and their premiums should be withdrawn. Thus, we consider the return of premiums clauses
by an actuarial method and assume that the surviving members will share the difference between
the return and the accumulation equally. Taking account of the pension fund size and the volatility
of the accumulation, a mean-variance criterion as the investment objective for the DC plan can be
formulated. By applying a game theoretic framework, the equilibrium investment strategies and the
corresponding equilibrium value functions can be obtained explicitly. Economic interpretations are
given in the numerical simulation, which is presented to illustrate our results.
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1. Introduction

The pension system is a fundamental part of the society which renders potent support to the retired old
people, and its significance is getting more attention since the society is aging more rapidly. There are generally
two kinds of pension plans, the defined benefit (DB) and defined contribution (DC). In DB plans, the benefit
is predetermined by sponsors and the contribution is connected with pension fund value. In DC plans, only the
contributions are defined and the financial risk is shifted from the sponsor to the contributor. In recent years,
DC plans have become popular in the pension market due to the demographic evolution and the development
of the equity markets. In the last decade of years, both preliminary researches and researches with certain
profundity have been conducted and the base of the DC pension plan studies has been built firmly.
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Among all these works, there are two main approaches to study the optimal investment problems of DC
pension plans. One is the martingale method, Deelstra et al. [7] considered the optimal design of the guarantee
for DC plans. Guan and Liang [14] discussed the optimal management of the DC pension plan under loss
aversion and Value-at-Risk constraints. Chen et al. [6] studied the asset allocation under loss aversion and
minimum performance constraint in the DC pension plan with inflation risk. The other is the stochastic dynamic
programming approach, which is also used in this paper. Cairns et al. [5], Xiao et al. [30], Gao [8,9], and Giacinto
et al. [12] studied the optimal investment strategies during the accumulation phase of the DC plan with different
forms of utility functions. Han and Hung [15] investigated the optimal asset allocation for the DC pension plan
with downside protection under stochastic inflation. He and Liang [16] obtained the optimal investment strategy
for the DC plan during the accumulation phase with the return of premiums. He and Liang [17] derived the
optimal dynamic asset allocation strategy for the ELA scheme of DC pension plans during the distribution
phase. Guan and Liang [13] considered the optimal investment strategy of the DC pension plan with stochastic
interest rates, stochastic volatility and a guarantee. Wu and Zeng [29] introduced the mortality risk into the DC
pension fund management problem. Sun et al. [26] discussed the optimization problem for the DC plan under a
jump-diffusion model. Li et al. [23] studied equilibrium investment strategy for the DC pension plan with default
risk and return of premiums clauses under the CEV model. Bian et al. [1] considered the pre-commitment and
equilibrium investment strategies for the DC pension plan with regime switching.

However, most above-mentioned papers assume the pension managers are assumed to know perfectly the true
probability law governing the dynamics of underlying assets in the financial market. As we all know, there exist
many factors in financial risks which are beyond the knowledge of pension managers, but may have significant
impacts on the estimation of model parameters. Thus, some scholars have advocated and investigated the effect
of model uncertainty on investment problem of the DC pension plan to obtain the robust investment strategy.
For example, Wang and Li [28] obtained the robust optimal investment strategy for an AAM of DC pension
plans with stochastic interest rate and stochastic volatility. Zeng et al. [31] introduced ambiguity aversion
and derivative investment in the DC pension plan management problem. Sun et al. [27] considered the robust
portfolio choice for the DC pension plan with stochastic income and interest rate. Although there are studies
carrying out the investigation regarding the robust problems, the robust situation in these works cannot fully
describe the real-world status in a good manner due to the fact that people should have a variety range of
ambiguity-aversion instead of merely being extremes. A more appropriate kind of model will be used, which
is called the α-robust model akin to Li et al. [22], Kang et al. [18]. This model allows the investor to have
different levels of ambiguity aversion, which was introduced and characterized by many economists as well, see,
for instance, Ghirardato et al. [10], Ghirardato et al. [11], Marinacci [24], and Klibanoff et al. [19, 20].

Although both Li et al. [22] and this paper consider the α-robust mean-variance optimization problem, and
the method used in the two papers are similar, there are two main differences between Li et al. [22] and this
paper. On one hand, this paper investigates the α-robust mean-variance investment strategy for the DC pension
plan, while Li et al. [22] focus on the optimization problem for an insurer. On the other hand, in this paper, we
assume that the price process of the risky asset is described by a jump-diffusion process, which is more general
than geometric Brownian motion without jumps in the risky asset’s price process used in Li et al. [22]. The main
contributions of this paper are as follows. (i) We extend the optimal investment problem of the DC pension plan
to the α-robust framework. As far as we know, with the basis of these studies, there is not a one that utilizes
the α-robust model to analyze the optimal investment strategy of the DC pension plan. (ii) Both the return of
premiums clauses and jump-diffusion model are considered in our problem. We assume that the pension manager
is allowed to invest in a financial market consisting of a risk-free asset and a risky asset whose price process follows
a jump-diffusion process, and meanwhile has different levels of ambiguity aversion to the financial market. The
jump is described by a Lévy process, which is a general model of compound Poisson process. Notice that a part
of pension members could die during the accumulation phase, and their premiums should be withdrawn. Thus,
we consider the return of premiums clauses by an actuarial method and assume that the surviving members will
share the difference between the return and the accumulation equally. (iii) Under the mean-variance criterion,
we derive the equilibrium investment strategies and the corresponding equilibrium value functions explicitly
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by solving the extended Hamilton–Jacobi–Bellman (HJB) equation. Economic interpretations are given in the
numerical simulation, which is presented to illustrate our results.

The paper is organized as follows. In Section 2, we present the model formulation and introduce the actuarial
methods of the DC pension plan with the return of premiums clauses. In Section 3, we present the main result
of the solution to the alpha-robust investment problem for a mean-variance DC pension manager. In Section 4,
results of different strategies are analyzed. We conclude this paper in Section 5. The derivation of the investment
strategies is postponed to the Appendix A.

2. Model formulation

Let (Ω,F ,F = {F(t)}t≥0,P) be a filtered complete probability space satisfying the usual conditions. In the
DC plan, contributions to the pension fund are supposed to be a predetermined amount of money as premiums
during the accumulation phase. We assume that the premium per unit time is c and the accumulation period
starts from the age ω0 and lasts to the age ω0 + T when the pension members retire, i.e., the length of the
pension fund’s accumulation period is T . To gain higher yields, the pension funds are allowed to invest in a
financial market consisting of a risk-free asset and a risky asset. The price process of the risk-free asset follows

dS0(t) = r0S0(t)dt, S0(0) = 1,

while the price process of the risky asset is described by

dS(t) = S(t)
[
rdt+ σdW (t) +

∫ ∞
−1

yN(dt,dy)
]
, S(0) = s0,

where r0 is the risk-free interest rate, r and σ are the expected return rate and the instantaneous volatility,
respectively. W (t) is a standard Brownian motion, and N(dt,dy) is a Poisson random measure, independent of
W (t), representing the number of the price jumps that occur in the risky asset of the size (y, y+ dy) within the
time period (t, t+ dt). The compensated measure of N(dt,dy) is denoted by Ñ(dt,dy) = N(dt,dy)− υ(dy)dt,
where υ is a Lévy measure such that

∫∞
−1
yυ(dy) <∞. Similar to Branger and Larsen [4], here we suppose that

the jump y satisfies y ∈ [−1,∞) to ensure that the risky asset price remains positive. To capture the features
of the real market, we assume that r +

∫∞
−1
yυ(dy) > r0.

Considering that some pension members could die during the accumulation phase, the change of the DC
pension fund size would be associated with the uncertainty of the mortality risk. Therefore, the fund manager
could take the return of premiums clauses into account, which means part of the premiums should be withdrawn
and the surviving members share the difference between the return and the accumulation equally. To understand
better our model, we first introduce the wealth process during the time interval [t, t+ 1

n ]

Xπ
(
t+ 1

n

)
=

1
1− 1

n
qω0+t

{
Xπ(t)

[(
1− π(t)

Xπ(t)

)
S0(t+ 1

n )
S0(t)

+
π(t)
Xπ(t)

S(t+ 1
n )

S(t)

]
+
c

n
− act 1

n
qω0+t

}
. (2.1)

In equation (2.1), π(t) is the money amount allocated in the risky asset by the pension manager at time t,
and the rest Xπ(t) − π(t) is allocated in the risk-free asset. Specifically, 0 ≤ π(t) ≤ Xπ(t) means that the
pension manager invests part of pension funds, π(t), in the risky asset; π(t) < 0 implies short selling in the
risky asset; π(t) > Xπ(t) implies borrowing from the money market (at the interest rate r0) for investment.
Xπ(t)

(
1− π(t)

Xπ(t)

)
S0(t+ 1

n )

S0(t) and Xπ(t) π(t)
Xπ(t)

S(t+ 1
n )

S(t) represent the effects of investments in the risk-free asset and

risky asset on the wealth during [t, t+ 1
n ]. c

n represents the contributions during [t, t+ 1
n ]. 1

n
qω0+t is an actuarial

symbol standing for the probability that the member who is alive at the age of ω0 + t will be dead in the
following 1

n time period, a is a parameter with the value 1 or 0. If a = 1, the premiums are returned to the
pension member when she is dead, whereas if a = 0, the pension member obtains nothing. Therefore, act 1

n
qω0+t

represents the premium which should be returned to the dead member from time t to time t+ 1
n . The coefficient
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1
1− 1

n
qω0+t

means that after returning the premium, the difference between the return and the accumulation will

be equally distributed by the surviving members.
To simplify equation (2.1), we denote

4δ
1
n
t =

(
1− π(t)

Xπ(t)

)
S0(t+ 1

n )− S0(t)
S0(t)

+
π(t)
Xπ(t)

S(t+ 1
n )− S(t)
S(t)

,

and the conditional death probability tqx = 1 − tpx = 1 − e−
∫ t
0 µ(x+ν)dν , where µ(t) is the force function of

mortality at time t, and for n→∞,

1
n
qω0+t = 1− e−

∫ 1
n

0 µ(ω0+t+ν)dν ≈ µ(ω0 + t)
1
n

= O

(
1
n

)
is satisfied. Similarly,

1
n
qω0+t

1− 1
n
qω0+t

=
1− e−

∫ 1
n

0 µ(ω0+t+ν)dν

e−
∫ 1
n

0 µ(ω0+t+ν)dν

=e
∫ 1
n

0 µ(ω0+t+ν)dν−1 ≈ µ (ω0 + t)
1
n

=O

(
1
n

)
·

Then equation (2.1) becomes

Xπ
(
t+ 1

n

)
=
(
Xπ(t)(1 +4δ

1
n
t ) +

c

n
− act 1

n
qω0+t

)(
1 +

1
n
qω0+t

1− 1
n
qω0+t

)

= Xπ(t)(1 +4δ
1
n
t ) +Xπ(t)µ(ω0 + t)

1
n

+
c

n
− actµ(ω0 + t)

1
n

+ o
(

1
n

)
·

(2.2)

When n→∞, the fund size Xπ(t) satisfies

dXπ(t) =
[
r0X

π(t) + (r − r0)π(t) +Xπ(t)µ(ω0 + t) + c− actµ(ω0 + t)

+
∫ ∞
−1

π(t)yυ(dy)
]
dt+ π(t)σdW (t) +

∫ ∞
−1

π(t)yÑ(dt, dy),

Xπ(0) = x0.

(2.3)

This method is also used by He and Liang [16], Sun et al. [26].
According to the Abraham De Moivre model (cf. Kohler and Kohler [21]), we characterize the force function

of mortality µ(t) and the survival function s(t) as follows

s(t) = 1− t

ω
, µ(t) =

1
ω − t

, for 0 ≤ t < ω,

where ω is the maximal age of the life table. Then equation (2.3) degenerates to

dXπ(t) =
[(

r0 +
1

ω − ω0 − t

)
Xπ(t) + (r − r0)π(t) +

c (ω − ω0 − (1 + a)t)
ω − ω0 − t

+
∫ ∞
−1

π(t)yυ(dy)
]
dt+ π(t)σdW (t) +

∫ ∞
−1

π(t)yÑ(dt, dy).
(2.4)

To introduce the ambiguity on the financial risk, we define a set of prior probability measures as below. Let
φ := (φW (t), φN (t, y))t∈[0,T ],y∈[−1,∞) be a probability distortion function, whose admissible set Θ is defined as
follows.
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Definition 2.1. The probability distortion function φ = (φW (t), φN (t, y))t∈[0,T ],y∈[−1,∞) is admissible, i.e.,
φ ∈ Θ, if it satisfies the following conditions:

(1) φW (t) and φN (t, y) are deterministic functions of t and y;
(2) For any t ∈ [0, T ],

e

{∫ T
t

(φW (s))2

2 ds+
∫ T
t

∫∞
−1[(1−φN (s,y)) ln(1−φN (s,y))+φN (s,y)]υ(dy)ds

}

<∞.

Each probability distortion function φ ∈ Θ associates to a probability measure Qφ ∼ P such that the Radon-
Nikodym derivative process dQφ

dP

∣∣∣
F(t)

:= Λφ(t) is given by

Λφ(t) = exp
{
−
∫ t

0

φW (s)dW (s)− 1
2

∫ t

0

φW (s)2ds+
∫ t

0

∫ ∞
−1

ln(1− φN (s, y))Ñ(ds,dy)

+
∫ t

0

∫ ∞
−1

[ln(1− φN (s, y)) + φN (s, y)]υ(dy)ds
}
.

We then define a set of prior probability measures by

Q = {Qφ : φ ∈ Θ}.

Clearly, we have P ∈Q.
By Girsanov’s Theorem (e.g. [25], Thm. 1.35), it is well-known that

dWφ(t) = dW (t) + φW (t)dt (2.5)

and
Ñφ(dt,dy) = Ñ(dt,dy) + φN (t, y)υ(dy)dt. (2.6)

Then Wφ(t) is a Brownian motion with respect to Qφ, and Ñφ(dt,dy) is the Qφ-compensated Poisson random
measure with the compensator (1 − φN (t, y))υ(dy) under Qφ. Using (2.4) and (2.5), it is easy to see that the
dynamics of the wealth process Xπ(t) under Qφ is governed by

dXπ(t) =
[(
r0 +

1
ω − ω0 − t

)
Xπ(t) + (r − r0)π(t) +

c (ω − ω0 − (1 + a)t)
ω − ω0 − t

+
∫ ∞
−1

π(t)yυ(dy)− π(t)σφW (t)−
∫ ∞
−1

π(t)yφN (t, y)υ(dy)
]

dt

+ π(t)σdWφ(t) +
∫ ∞
−1

π(t)yÑφ(dt,dy). (2.7)

For ease of notation, we write

Eφt,x[f(Xπ(s))] := EQφ [f(Xπ(s))|Xπ(t) = x]

and
Varφt,x[f(Xπ(s))] = Varφ[f(Xπ(s))|Xπ(t) = x],

where s ≥ t ≥ 0, f : R→ R is a measurable function and (t, x) ∈ [0, T ]× R is any fixed initial state.
According to the Hurwitz’s α-pessimism rule and the α-maxmin expected utility (see, e.g., [10, 19, 24]), we

define the α-robust mean-variance criterion for the wealth process Xπ(t) by

Jπα (t, x) := α inf
φ∈Θ

Jπ,φ(t, x) + α̂ sup
φ∈Θ

J
π,φ

(t, x)

= αJπ,φ
π

(t, x) + α̂J
π,φ

π

(t, x), (2.8)
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where α ∈ [0, 1], α̂ = 1− α,

Jπ,φ(t, x) = Eφt,x[Xπ(T )]− γ

2
Varφt,x[Xπ(T )] +

∫ T

t

hβ(φ(s))ds, (2.9)

J
π,φ

(t, x) = Eφt,x[Xπ(T )]− γ

2
Varφt,x[Xπ(T )]−

∫ T

t

hβ(φ(s))ds, (2.10)

and

hβ(φ) :=
(φW (s))2

2βW
+

∫∞
−1

[(1− φN (s, y)) ln(1− φN (s, y)) + φN (s, y)] υ(dy)
βN

· (2.11)

Here, β := (βW , βN ) ∈ (0,∞) × (0,∞) is a constant vector, and hβ(φ) is the penalty function. We denote φπ

and φ
π

the probability distortion functions to achieve the infimum and supremum in (2.8), respectively.
In the α-robust mean-variance criterion (2.8), a deviation from the reference measure P is penalized by the

term
∫ T
t
hβ(φ(s))ds in which β is used to reflect the level of ambiguity with respect to the reference measure.

More specifically, one can see from (2.11) that βW and βN represent the levels of ambiguity towards stock
return’s diffusion and jump risks. When β ↓ 0, i.e., βW ↓ 0, βN ↓ 0, both infφ∈Θ J

π,φ(t, x) and supφ∈Θ J
π,φ

(t, x)
will be attained at φ = 0, which is corresponding to the reference measure P. Then (2.8) reduces to the classical
mean-variance criterion in the absence of ambiguity. On the other hand, when β ↑ ∞, i.e., βW ↑ ∞, βN ↑ ∞,
the penalty function hβ(φ(s)) vanishes which means that the manager is extremely ambiguous about financial
risks. Higher values of βW and βN imply higher levels of ambiguity.

Moreover, a higher value of α represents a more ambiguity-averse attitude. In particular, α = 1
2 represents

the ambiguity-neutral attitude, α = 1 represents the extremely ambiguity-averse attitude.
The main objective of this paper is to study the α-robust investment problem for a time-consistent mean-

variance DC pension manager, namely,
sup
π∈Π

Jπα (t, x), (2.12)

in which the admissible set of trading strategies, and the equilibrium strategy are defined below.

Definition 2.2 (Admissible trading strategies). The investment strategy π = {π(t)}t∈[0,T ] is called an admis-
sible strategy, i.e., π ∈ Π, if it satisfies the following conditions:

(1) π is F-progressively measurable;
(2) Eφ

π

t,x

[∫ T
0

(π(t))2dt
]
<∞ and Eφ

π

t,x

[∫ T
0

(π(t))2dt
]
<∞ for any (t, x) ∈ [0, T ]× R;

(3) The stochastic differential equation (2.7) has a unique strong solution Xπ(t) for any (t, x) ∈ [0, T ]× R.

Definition 2.3 (Equilibrium investment strategies). For an admissible strategy π∗ = {π∗(t)}t∈[0,T ] ∈ Π, we
consider a perturbed strategy

πε(s) =
{
π̃, t ≤ s ≤ t+ ε,
π∗(s), t+ ε < s ≤ T,

where π̃ ∈ R and ε > 0. Suppose that

lim inf
ε↓0

Jπ
∗

α (t, x)− Jπεα (t, x)
ε

≥ 0,

for any initial state (t, x) ∈ [0, T ] × R. Then π∗ is called an equilibrium investment strategy for (2.12) and
Jπ
∗

α (t, x) is the associated equilibrium value function.

Remark 2.4. In Definition 2.3, we follow Björk and Murgoci [2] and Björk et al. [3] to define the equilibrium
strategies in a feedback form.
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3. Main results

For ease of notation, let C1,2([0, T ] × R) be the space of all continuous functions which is first-order con-
tinuously differentiable in t ∈ [0, T ] and second-order continuously differentiable in x ∈ R. From (2.7), for any
ψ(t, x) ∈ C1,2([0, T ]× R), it is clear that the infinitesimal generator of Xπ(t) under Qφ is given by

Aπ,φψ(t, x) = ψt(t, x) +
[(
r0 +

1
ω − ω0 − t

)
x+ (r − r0)π(t)

+
c (ω − ω0 − (1 + a)t)

ω − ω0 − t
+
∫ ∞
−1

π(t)yυ(dy)− π(t)σφW (t)
]
ψx(t, x)

+
1
2
σ2(π(t))2ψxx(t, x) +

∫ ∞
−1

[ψ(t, x+ π(t)y)− ψ(t, x)] (1− φN (t, y))υ(dy). (3.1)

The proof of the following verification theorem is similar to Li et al. [22], so we omit it here.

Theorem 3.1 (Verification theorem). Suppose there exist V (t, x), g(t, x), g(t, x) ∈ C1,2([0, T ]× R) satisfy the
following conditions:
(1) For any (t, x) ∈ [0, T ]× R,

0 = sup
π∈Π

{
α inf
φ∈Θ

[
Aπ,φV (t, x)− γ

2
Aπ,φg2(t, x) + γg(t, x)Aπ,φg(t, x) + hβ(φ(t))

]
+ α̂ sup

φ∈Θ

[
Aπ,φV (t, x)− γ

2
Aπ,φg2(t, x) + γg(t, x)Aπ,φg(t, x)− hβ(φ(t))

]}
, (3.2)

and (π∗, φ∗, φ
∗
) denote the optimal values to achieve the supremum in π, infimum and supremum in φ,

respectively.
(2) For any (t, x) ∈ [0, T ]× R, 

V (T, x) = x,

Aπ
∗,φ∗g(t, x) = Aπ∗,φ

∗
g(t, x) = 0,

g(T, x) = g(T, x) = x.
(3.3)

(3) For any (t, x) ∈ [0, T ] × R, π∗(t), φ
∗
(t), φ∗(t), Aπ

∗,φ∗V (t, x), Aπ∗,φ
∗
V (t, x), Aπ

∗,φ∗g2(t, x), and
Aπ∗,φ

∗
g2(t, x) are all deterministic functions of t and independent of x.

(4) φ∗ = φπ
∗

and φ
∗

= φ
π∗

.
Then π∗ is the equilibrium strategy and V (t, x) = Jπ

∗

α (t, x) is the equilibrium value function to the α-robust

investment problem (2.12). Besides, g(t, x) = Eφ
∗

t,x[Xπ∗(T )] and g(t, x) = Eφ
∗

t,x[Xπ∗(T )].

Next we present our main result of the solution to the α-robust investment problem for a mean-variance DC
pension manager. The proof is postponed to Appendix A.

Theorem 3.2. Consider the α-robust investment problem (2.12) of the DC pension plan.
(1) The equilibrium investment strategy satisfies

r − r0 + σ2π∗(t) [−αγ − α̂γ + (1− 2α)βW ]
ω − ω0 − t
ω − ω0 − T

er0(T−t)

+
∫ ∞
−1

{
y + α

[
y − γy2π∗(t)

ω − ω0 − t
ω − ω0 − T

er0(T−t)
]

× exp
{
−βN ω−ω0−t

ω−ω0−T er0(T−t)
[
π∗(t)y − γ

2
ω−ω0−t
ω−ω0−T er0(T−t)(π∗(t))2y2

]}
+ α̂

[
y − γy2π∗(t)

ω − ω0 − t
ω − ω0 − T

er0(T−t)
]

× exp
{
βN

ω−ω0−t
ω−ω0−T er0(T−t)

[
π∗(t)y − γ

2
ω−ω0−t
ω−ω0−T er0(T−t)(π∗(t))2y2

]}}
υ(dy) = 0.

(3.4)
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(2) The corresponding equilibrium value function is given by

Jπ
∗

α (t, x) =
ω − ω0 − t
ω − ω0 − T

er0(T−t)x+B(t),

where

B(t) =
∫ T

t

{[
(r − r0)π∗(s) +

c (ω − ω0 − (1 + a)s)
ω − ω0 − s

+
∫ ∞
−1

π∗(s)yυ(dy)
]
A(s)

− 1
2
σ2(π∗(s))2(αγa2(s)− α̂γa2(s))− αβW (π∗(s))2σ2A2(s)

2
+
α̂βW (π∗(s))2σ2A2(s)

2

+
α

βN

∫ ∞
−1

[
1− exp

{
−βN

[
A(s)π∗(s)y − γ

2
a2(s)(π∗(s))2y2

]}]
υ(dy)

− α̂

βN

∫ ∞
−1

[
1− exp

{
βN

[
A(s)π∗(s)y − γ

2
a2(s)(π∗(s))2y2

]}]
υ(dy)

}
ds,

A(t) = a(t) = a(t) =
ω − ω0 − t
ω − ω0 − T

er0(T−t).

(3) The associated probability distortion function of extremely ambiguity-averse measure and the extremely
ambiguity-seeking measure are given respectively byφ∗

W
(t) = βWπ

∗(t)σ
ω − ω0 − t
ω − ω0 − T

er0(T−t),

φ∗
N

(t, y) = 1− exp
{
−βN ω−ω0−t

ω−ω0−T er0(T−t)
[
π∗(t)y − γ

2
ω−ω0−t
ω−ω0−T er0(T−t)(π∗(t))2y2

]}
,

(3.5)

and φ
∗
W (t) = −βWπ∗(t)σ

ω − ω0 − t
ω − ω0 − T

er0(T−t),

φ
∗
N (t, y) = 1− exp

{
βN

ω−ω0−t
ω−ω0−T er0(T−t)

[
π∗(t)y − γ

2
ω−ω0−t
ω−ω0−T er0(T−t)(π∗(t))2y2

]}
.

(3.6)

Corollary 3.3. If βN = βW = 0, our model reduces to the optimal investment problem of the DC pension plan
without ambiguity, and the strategy becomes

r − r0 − σ2π∗(t)γ
ω − ω0 − t
ω − ω0 − T

er0(T−t)

+
∫ ∞
−1

{
y +

[
y − γy2π∗(t)

ω − ω0 − t
ω − ω0 − T

er0(T−t)
]}

υ(dy) = 0.
(3.7)

Corollary 3.4. If α = 1, our model reduces to the optimal investment problem for ambiguity-averse DC pension
manager, and the strategy becomes

r − r0 − σ2π∗(t)(γ + βW )
ω − ω0 − t
ω − ω0 − T

er0(T−t)

+
∫ ∞
−1

{
y +

[
y − γy2π∗(t)

ω − ω0 − t
ω − ω0 − T

er0(T−t)
]

· e
{
−βN ω−ω0−t

ω−ω0−T
er0(T−t)

[
π∗(t)y− γ2

ω−ω0−t
ω−ω0−T

er0(T−t)(π∗(t))2y2
]}}

υ(dy) = 0.

(3.8)

4. Numerical examples

In this section, we provide some numerical examples to support theoretic results about the effects of model
parameters on the α-robust equilibrium investment strategy of the DC pension plan. Suppose that the price
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Figure 1. Effects of t, α, βW and βN on π∗.

process of the risky asset follows a compound Poisson structure, that is, the dynamics of the risky asset’s price
is given by

dS(t) = S(t)

[
rdt+ σdW (t) + d

(
N(t)∑
i=1

Yi

)]
,

where {N(t)}t≥0 is a homogeneous Poisson process with intensity λ > 0, and {Yi}i∈N is a sequence of indepen-
dent and identically distributed random variables. Furthermore, Yi is assumed to follow the truncated normal
distribution supported on (−1,∞) with parameters µY = 1 and σY = 0.1. Hence, the associated Lévy measure
is given by

υ(dy) = λ

1
σY
√

2π
exp

(
− (y−µY )2

2σ2
Y

)
1− Φ

(
−µY
σY

) dy, y > −1.

Other model parameters (when they are fixed) are set to α = 0.8, γ = 0.5, βW = 0.1, βN = 0.2, r = 0.05, λ = 1,
t = 0 and T = 10. Since π∗ is implicitly determined by equation (3.4), we use the common bisection method to
find its root.

Figure 1 presents the effects of t, α, βW and βN on the equilibrium investment strategy π∗ at time 0. As
shown in Figure 1, α, βW and βN exert negative effects on π∗. This is mainly because that if the pension
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Figure 2. Effects of ω, ω0, r and r0 on π∗.

manager is more ambiguity-averse (larger α) or ambiguity to the diffusion (larger βW ) and the jump (larger
βN ), she will be more conservative to investment. As time t increases, i.e., the expiration is coming, the pension
manager may become more aggressive and invest more wealth in the risky asset.

Figure 2 shows the impacts of ω, ω0, r and r0 on the equilibrium investment strategy π∗ at time 0. From
Figure 2, we find that π∗ increases with the maximal age of the life table ω and decreases with the start age
of the accumulation period ω0. When ω0 is fixed, a larger ω means that the pension manager predicts the
death probability of the pension members in the future will be lower. Then, the pension manager will invest
more wealth in the risky asset. Instead, if ω is fixed, a larger ω0 implies the start age of the pension members
taking part in the pension plan is older. Furthermore, the death probability of the pension members predicted
by the pension manager will be higher. Therefore, the pension manager with larger ω0 will be more cautious
to the investment. Moreover, π∗ is a decreasing function of the interest rate r0 and an increasing function of
the expected instantaneous rate of the risky asset’s return r. When the interest rate r0 increases, the risk-free
asset is more attractive. Therefore, the pension manger will invest more wealth in the risk-free asset. A higher r
implies higher expected instantaneous rate of the risky asset, therefore, the risky asset is more worthy to be
invested in.
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5. Conclusion

In this paper, we consider an α-robust optimal investment problem for a DC pension plan with uncertainty
about jump and diffusion risks in a mean-variance framework. The pension manager is allowed to have differ-
ent levels of ambiguity aversion about the diffusion and jump risks. The contributions are supposed to be a
predetermined amount of money as premiums and the pension funds are allowed to be invested in a financial
market which consists of a risk-free asset, and a risky asset satisfying a jump-diffusion process. Since a part
of pension members could die during the accumulation phase, and their premiums should be withdrawn, we
consider the return of premiums clauses by an actuarial method and assume that the surviving members will
share the difference between the return and the accumulation equally. By applying a game theoretic framework,
the equilibrium investment strategies and the corresponding equilibrium value functions are obtained explicitly.
Numerical simulations are provided to illustrate our results.

In future work, we will consider two extensions based on this paper. On one hand, a constant interest rate
is considered in this model. Actually, the investment problem for the DC pension plan usually has a long time
horizon, and the pension manager may face the risk from the volatility of interest rate. Therefore, it is interesting
to incorporate stochastic interest rate into the model. On the other hand, we also want to introduce other assets
into the financial market, such as a defaultable bond, a derivative asset and so on, to enrich the investment of
the pension funds.

Appendix A.

A.1. Proof of Theorem 3.2

We first aim to solve for V, g, g, φ∗, φ
∗

satisfying conditions (1) and (2) of Theorem 3.1, and then we check
conditions (3) and (4).

With some calculations, we can rewrite (3.2) as

sup
π∈Π

{
Vt +

[(
r0 +

1
ω − ω0 − t

)
x+ (r − r0)π +

c (ω − ω0 − (1 + a)t)
ω − ω0 − t

+
∫ ∞
−1

πyυ(dy)
]
Vx

+
1
2
σ2π2(Vxx − αγg2

x
− α̂γg2

x) + α inf
φ∈Θ

[
Lπ,φ(V, g) + hβ(φ)

]
+ α̂ sup

φ∈Θ

[
Lπ,φ(V, g)− hβ(φ)

]}
= 0,

(A.1)

where we denote

Lπ,φ(V, g) := − πσφWVx +
∫ ∞
−1

(
V (t, x+ πy)− V (t, x)− γ

2
(g(t, x+ πy)− g(t, y))2

)
× (1− φN (t, y))υ(dy).

Applying the first-order condition on (A.1) with respect to φ, the infimum and supremum of φ in (A.1) are
achieved respectively at{

φ∗
W

= βWπσVx,

φ∗
N

= 1− exp
{
−βN

[
V (t, x+ πy)− V (t, x)− γ

2 (g(t, x+ πy)− g(t, x))2
]}
,

(A.2)

and {
φ
∗
W = −βWπσVx,
φ
∗
N = 1− exp

{
βN
[
V (t, x+ πy)− V (t, x)− γ

2 (g(t, x+ πy)− g(t, x))2
]}
.

(A.3)
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Substituting (A.2) and (A.3) back into (A.1) yields

sup
π∈Π

{
Vt +

[(
r0 +

1
ω − ω0 − t

)
x+ (r − r0)π +

c (ω − ω0 − (1 + a)t)
ω − ω0 − t

+
∫ ∞
−1

πyυ(dy)
]
Vx

+
1
2
σ2π2(Vxx − αγg2

x
− α̂γg2

x)− αβWπ
2σ2V 2

x

2
+
α̂βWπ

2σ2V 2
x

2
+

α

βN

∫ ∞
−1

[
1− exp

{
−βN

[
V (t, x+ πy)− V (t, x)− γ

2 (g(t, x+ πy)− g(t, x))2
]}]

υ(dy)

− α̂

βN

∫ ∞
−1

[
1− exp

{
βN
[
V (t, x+ πy)− V (t, x)− γ

2 (g(t, x+ πy)− g(t, x))2
]}]

υ(dy)
}

= 0.

(A.4)

Furthermore, applying the first-order condition on (A.4) with respect to π, the supremum in (A.4) is achieved
at π∗ given by

0 = (r − r0)Vx + σ2π∗
[
Vxx − αγg2

x
− α̂γg2

x + (1− 2α)βWV 2
x

]
+
∫ ∞
−1

{
yVx(t, x) + α

[
yVx(t, x+ π∗y)− γy(g(t, x+ π∗y)− g(t, x))g

x
(t, x+ π∗y)

]
× exp

{
−βN

[
V (t, x+ π∗y)− V (t, x)− γ

2
(g(t, x+ π∗y)− g(t, x))2

]}
+ α̂[yVx(t, x+ π∗y)− γy(g(t, x+ π∗y)− g(t, x))gx(t, x+ π∗y)]

× exp
{
βN

[
V (t, x+ π∗y)− V (t, x)− γ

2
(g(t, x+ π∗y)− g(t, x))2

]}}
υ(dy). (A.5)

We conjecture the solutions of V (t, x), g(t, x) and g(t, x) of the forms
V (t, x) = A(t)x+B(t),
g(t, x) = a(t)x+ b(t),
g(t, x) = a(t)x+ b(t),

(A.6)

where A(t), B(t), a(t), b(t), a(t), b(t) are functions of t. By the first and the third relation of (3.3), the boundary
conditions are given by

A(T ) = a(T ) = a(T ) = 1 and B(T ) = b(T ) = b(T ) = 0.

Plugging (A.6) into (A.5) yields

0 = (r − r0)A+ σ2π∗
[
−αγa2 − α̂γa2 + (1− 2α)βWA2

]
+
∫ ∞
−1

{
yA+ α

[
yA− γy2a2π∗

]
exp

{
−βN

[
Aπ∗y − γ

2
a2(π∗)2y2

]}
+ α̂[yA− γy2a2π∗] exp

{
βN

[
Aπ∗y − γ

2
a2(π∗)2y2

]}}
υ(dy). (A.7)

Plugging (A.7) into (A.4) and the second equation in (3.3) yields

Atx+Bt +
[(
r0 +

1
ω − ω0 − t

)
x+ (r − r0)π∗ +

c (ω − ω0 − (1 + a)t)
ω − ω0 − t

+
∫ ∞
−1

π∗yυ(dy)
]
A

− 1
2
σ2(π∗)2(αγa2 − α̂γa2)− αβW (π∗)2σ2A2

2
+
α̂βW (π∗)2σ2A2

2
+

α

βN

∫ ∞
−1

[
1− exp

{
−βN

[
Aπ∗y − γ

2a
2(π∗)2y2

]}]
υ(dy)

− α̂

βN

∫ ∞
−1

[
1− exp

{
βN
[
Aπ∗y − γ

2a
2(π∗)2y2

]}]
υ(dy) = 0,
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atx+ bt +
[(
r0 +

1
ω − ω0 − t

)
x+ (r − r0)π∗ +

c (ω − ω0 − (1 + a)t)
ω − ω0 − t

+
∫ ∞
−1

π∗yυ(dy)

− (π∗)2σ2βWA

]
a+

∫ ∞
−1

aπ∗y exp
{
−βN

[
Aπ∗y − γ

2a
2(π∗)2y2

]}
υ(dy) = 0.

atx+ bt +
[(
r0 +

1
ω − ω0 − t

)
x+ (r − r0)π∗ +

c (ω − ω0 − (1 + a)t)
ω − ω0 − t

+
∫ ∞
−1

π∗yυ(dy)

+ (π∗)2σ2βWA

]
a+

∫ ∞
−1

aπ∗y exp
{
βN
[
Aπ∗y − γ

2a
2(π∗)2y2

]}
υ(dy) = 0.

Separating variables, we have

At +
(
r0 +

1
ω − ω0 − t

)
A = 0,

Bt +
[
(r − r0)π∗ +

c (ω − ω0 − (1 + a)t)
ω − ω0 − t

+
∫ ∞
−1

π∗yυ(dy)
]
A

− 1
2
σ2(π∗)2(αγa2 − α̂γa2)− αβW (π∗)2σ2A2

2
+
α̂βW (π∗)2σ2A2

2

+
α

βN

∫ ∞
−1

[
1− exp

{
−βN

[
Aπ∗y − γ

2
a2(π∗)2y2

]}]
υ(dy)

− α̂

βN

∫ ∞
−1

[
1− exp

{
βN

[
Aπ∗y − γ

2
a2(π∗)2y2

]}]
υ(dy) = 0,

at +
(
r0 +

1
ω − ω0 − t

)
a = 0,

bt +
[
(r − r0)π∗ +

c (ω − ω0 − (1 + a)t)
ω − ω0 − t

+
∫ ∞
−1

π∗yυ(dy)− (π∗)2σ2βWA

]
a

+
∫ ∞
−1

aπ∗y exp
{
−βN

[
Aπ∗y − γ

2
a2(π∗)2y2

]}
υ(dy) = 0.

at +
(
r0 +

1
ω − ω0 − t

)
a = 0,

bt +
[
(r − r0)π∗ +

c (ω − ω0 − (1 + a)t)
ω − ω0 − t

+
∫ ∞
−1

π∗yυ(dy) + (π∗)2σ2βWA

]
a

+
∫ ∞
−1

aπ∗y exp
{
βN

[
Aπ∗y − γ

2
a2(π∗)2y2

]}
υ(dy) = 0.

Considering the boundary conditions, we obtain

A(t) =
ω − ω0 − t
ω − ω0 − T

er0(T−t), a(t) =
ω − ω0 − t
ω − ω0 − T

er0(T−t), a(t) =
ω − ω0 − t
ω − ω0 − T

er0(T−t), (A.8)

B(t) =
∫ T

t

{[
(r − r0)π∗(s) +

c (ω − ω0 − (1 + a)s)
ω − ω0 − s

+
∫ ∞
−1

π∗(s)yυ(dy)
]
A(s)

− 1
2
σ2(π∗(s))2(αγa2(s)− α̂γa2(s))− αβW (π∗(s))2σ2A2(s)

2
+
α̂βW (π∗(s))2σ2A2(s)

2

+
α

βN

∫ ∞
−1

[
1− exp

{
−βN

[
A(s)π∗(s)y − γ

2
a2(s)(π∗(s))2y2

]}]
υ(dy)
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− α̂

βN

∫ ∞
−1

[
1− exp

{
βN

[
A(s)π∗(s)y − γ

2
a2(s)(π∗(s))2y2

]}]
υ(dy)

}
ds, (A.9)

b(t) =
∫ T

t

{[
(r − r0)π∗(s) +

c (ω − ω0 − (1 + a)s)
ω − ω0 − s

+
∫ ∞
−1

π∗(s)yυ(dy)− (π∗(s))2σ2βWA(s)
]
a(s)

+
∫ ∞
−1

a(s)π∗(s)y exp
{
−βN

[
A(s)π∗(s)y − γ

2
(a(s))2(π∗(s))2y2

]}
υ(dy)

}
ds. (A.10)

b(t) =
∫ T

t

{[
(r − r0)π∗(s) +

c (ω − ω0 − (1 + a)s)
ω − ω0 − s

+
∫ ∞
−1

π∗(s)yυ(dy) + (π∗(s))2σ2βWA(s)
]
a(s)

+
∫ ∞
−1

a(s)π∗(s)y exp
{
βN

[
A(s)π∗(s)y − γ

2
(a(s))2(π∗(s))2y2

]}
υ(dy)

}
ds. (A.11)

It is only left to verify conditions (3) and (4) of Theorem 3.1. For condition (3), it is clear that π∗(t),
φ
∗
(t) and φ∗(t) are independent of x. Further, with some calculation, one can show directly that Aπ

∗,φ∗V (t, x)
and Aπ∗,φ

∗
V (t, x) are independent of x due to the relation (3.1), while Aπ

∗,φ∗g2(t, x) and Aπ∗,φ
∗
g2(t, x) are

independent of x due to the ODE of b(t) and b(t) in (A.10) and (A.11).
Last, it is easy to see that the expressions of φ∗ and φ

∗
given in (3.5) and (3.6) are identical to the expressions

of φπ
∗

and φ
π∗

attaining the infimum and the supremum in (2.8). Thus condition (4) of Theorem 3.1 is satisfied.
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