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A SCENARIO-BASED OPTIMIZATION MODEL FOR PLANNING AND
REDESIGNING THE SALE AND AFTER-SALES SERVICES CLOSED-LOOP

SUPPLY CHAIN

Nazanin Esmaeili, Ebrahim Teimoury∗ and Fahimeh Pourmohammadi

Abstract. In today’s competitive world, the quality of after-sales services plays a significant role
in customer satisfaction and customer retention. Some after-sales activities require spare parts and
owing to the importance of customer satisfaction, the needed spare parts must be supplied until the
end of the warranty period. In this study, a mixed-integer linear optimization model is presented
to redesign and plan the sale and after-sales services supply chain that addresses the challenges of
supplying spare parts after the production is stopped due to demand reduction. Three different options
are considered for supplying spare parts, including production/procurement of extra parts while the
product is being produced, remanufacturing, and procurement of parts just in time they are needed.
Considering the challenges of supplying spare parts for after-sales services based on the product’s
life cycle is one contribution of this paper. Also, this paper addresses the uncertainties associated
with different parameters through Mulvey’s scenario-based optimization approach. Applicability of
the model is investigated using a numerical example from the literature. The results indicate that
the production/procurement of extra parts and remanufacturing are preferred to the third option.
Moreover, remanufacturing is recommended when the remanufacturing cost is less than 23% of the
production cost.
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1. Introduction

In today’s competitive and globalizing world, offering after-sales services has become an essential competitive
advantage and a tool for attracting customers [35]. After-sales services are the set of activities, including main-
tenance and repair, which occur after purchasing a product and are devoted to supporting customers in the
usage and disposal of goods [30]. The quality of after-sales services is a critical factor that influences customer
satisfaction and depends on various aspects, including product quality, service response speed, and service cost.
Since many maintenance and repair activities require spare parts, spare parts’ accessibility can profoundly affect
service response speed and hence the perceived quality of after-sales services.
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Warranty is the most common type of after-sales services offered to customers in which the manufacturer
assures the buyer that the product is or shall be as represented and promises to repair the product (or replace
it, if necessary) within a specified period [21]. Since many repair activities require spare parts, fulfilling some
warranty obligations depends on spare parts’ availability. When a product is being produced, its spare parts can
be produced within the same manufacturing system. However, when a product reaches the end of the product
life cycle (Decline Stage) and is no longer being manufactured, supplying spare parts becomes more challenging.
Various options exist for responding to spare parts’ demand in this period, which include:

– Producing or purchasing extra spare parts while the product and its components are still being manufactured;
– Outsourcing after-sales services or the production of spare parts;
– Cannibalization of healthy parts from returned products;
– Remanufacturing defective parts from returned products or the parts customers leave at service centers.

This paper studies the supply chain of sales and after-sales services and proposes a model for redesigning
and planning the closed-loop supply chain. Considering the challenges of supplying spare parts for after-sales
services based on the product’s life cycle is one contribution of this paper. For this aim, the planning horizon is
divided into two periods (based on the availability of production facilities), and different options for supplying
spare parts are considered for each period. The proposed model determines the optimal location and capacity
of collecting/remanufacturing centers, the purchasing amount of raw materials, and the quantity of production,
remanufacturing, and transportation between supply chain members.

The after-sales services supply chain faces many uncertainties, including the return rate of products, cause
of failure, required spare parts, repair cost, and repair time. The sales supply chain, which is the forward chain,
faces some other uncertainties, including demand’s quantity, costs, and exchange rate. Since design decisions
are strategic decisions with long-term effects on a supply chain’s performance, considering these uncertainties
is crucial.

In this paper, three parameters, including demand, the return rate, and failure causes, are uncertain. The
scenario-based optimization approach developed by Mulvey et al. [20] has been employed to deal with existing
uncertainties. This method simultaneously minimizes the mean value and the variance of the objective function
under all scenarios using a weighted approach (minimizing problems). Since the objective function of Mulvey’s
method is non-linear, several researchers have proposed different approaches to obtain the standard deviation
of solutions. In the present study, the approach proposed by Yu and Li [36] has been employed.

Section 2 presents the literature review. In Section 3, the scenario-based optimization approach developed
by Mulvey et al. [20] is explained. The uncertain model is presented and described in Section 4. Section 5 is
dedicated to results, and finally, Section 6 presents the conclusions.

2. Literature review

In this section, related literature regarding reverse logistics and closed-loop supply chain network design,
as well as after-sales services network design, are reviewed. Du and Evans [5] considered outsourcing after-
sales services to a third-party logistics provider and developed a bi-objective mathematical model to find the
optimal capacity of different facilities. Mutha and Pokharel [22] proposed a multi-objective mathematical model
for reverse logistics network design. They assumed that returned products are collected at the warehouses for
inspection before being sent to the reprocessing center.

Pishvaee and Torabi [25] presented a two-objective mixed-integer optimization model for a closed-loop sup-
ply chain network design and employed the fuzzy programming approach to obtain Pareto optimal solutions.
Piplani and Saraswat [24] presented a linear mixed-integer optimization model to design a service network that
provides repair and refurbishment services. They validated their work using real data of a computer manu-
facturer. Vahdani et al. [34] investigated the closed-loop network design problem in the scrap metal recycling
industry. They proposed a mixed-integer non-linear optimization model and dealt with the uncertainties using
a possibilistic programming approach.



A SCENARIO-BASED OPTIMIZATION MODEL S2861

Amin and Zhang [1] developed a linear mixed-integer optimization model for designing a multi-product closed-
loop supply chain network, which includes collecting and recycling centers, production plants, and customer
zones. Ramezani et al. [28] developed a multi-objective probabilistic model for designing a closed-loop supply
chain network. The proposed model aims to maximize profit and responsiveness while minimizing defective
parts received from suppliers. Ashayeri et al. [2] presented a non-linear mixed-integer optimization model for
the after-sales services network design in which after-sales services are outsourced to a third-party logistics
provider.

John et al. [16] presented a linear mixed-integer optimization model for the multi-echelon reverse logistics net-
work design considering three options for returned products: remanufacturing, repair, and recycling. Soleimani
et al. [33] addressed a closed-loop supply chain’s network design problem, including suppliers, manufacturers,
customers, distribution centers, warehouse centers, return centers, and recycling centers. The proposed model
considers profits as well as environmental requirements. Liao [17] developed a mixed-integer non-linear optimiza-
tion model for a multi-echelon reverse logistics network design and used a hybrid Genetic Algorithm to obtain
optimal solutions. They considered different options for returned products, including repair, remanufacturing,
recycling, and reuse.

SahebJamnia et al. [31] presented a multi-objective mixed-integer optimization model for designing a sustain-
able closed-loop network, considering the environmental impacts of processing tires. Zeballos et al. [37] developed
a two-stage mixed-integer linear optimization model for designing a closed-loop supply chain network, consid-
ering the uncertainties associated with the quality and quantity of the returned products. Ghahremani-Nahr
et al. [13] presented a mixed-integer non-linear optimization (MINLP) model for designing a closed-loop sup-
ply chain that minimizes total costs. They considered the uncertainties of demand, the quantity of returned
products, transportation costs, the purchasing price of raw materials, and shortage costs using the robust fuzzy
programming approach (RFP).

Fakhrzad and Goodrazian [7] developed a multi-objective mixed-integer linear optimization model (MOMILP)
for designing a multi-product, multi-period, and multi-level green closed-loop supply chain network. Moreover,
they employed a new fuzzy multi-objective optimization approach to deal with uncertain parameters. Fazli
Khalaf et al. [11] presented a bi-objective mathematical optimization model for the water distribution network
design, which maximizes the total profit and priority of water transferring among demand points. They employed
a robust possibilistic programming approach to cope with the uncertainty of parameters.

Liao et al. [18] developed a multi-objective dual-channel supply chain network model to extend the traditional
location-inventory problem to consider online customers. They proposed a heuristic solution integrating the
Genetic Algorithm, clustering analysis, and a Non-dominated Sorting Genetic Algorithm II to solve the problem.
Fazli Khalaf et al. [12] devised a reliable closed-loop supply chain network and introduced a reliability method
to tackle different types of disruptions. They considered the uncertainties by developing a robust possibilistic
programming (RPP) model. Rezaie et al. [29] presented a multi-objective mathematical model for supply chain
network design considering new product development. They applied an improved multi-choice goal programming
method to solve the problem.

Fazli-Khalaf and Nemati [9] developed a bi-objective multi-period supplier selection model to minimize total
costs and maximize social responsibility. They utilized a chance-constrained possibilistic optimization model to
cope with uncertain parameters. Fazli-Khalaf et al. [10] presented a bi-objective reliable supply chain network
design to minimize costs and maximize the reliability of the supply chain’s facilities and responsiveness. Also,
the fuzzy flexible programming method was employed to deal with uncertainties. Majumder et al. [19] developed
a single-vendor multi-buyer supply chain model considering variable production rate, aiming to minimize total
costs while reducing lead times.

Hamidieh et al. [14] presented a bi-objective optimization model for the supply chain network design prob-
lem. The proposed model aims to minimize total costs while maximizing the responsiveness of the supply chain.
They applied the stochastic scenario-based optimization approach to deal with uncertainties. Fazli-Khalaf and
Hamidieh [8] developed a reliable multi-echelon closed-loop network design model to maximize social responsi-
bilities and minimize costs. They implemented a hybrid robust stochastic optimization approach to tackle the
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uncertainties that are associated with different parameters. Dehghani et al. [4] presented a mixed-integer non-
linear optimization model for the location-inventory problem in a distribution supply chain. A hybrid Markov
process was proposed as the solution method. Also, they employed a robust possibilistic programming approach
to cope with uncertain parameters.

Table 1 presents a brief review of the papers mentioned above. As shown in Table 1, closed-loop supply
chains have received the attention of many researchers in recent years. Although in the beginning, single-period
and single-product supply chains were popular, nowadays, many researchers investigate multi-product chains.
Also, the majority of papers have considered the uncertainties through stochastic and robust optimization
approaches. To the best of our knowledge, the challenges of supplying spare parts for after-sales services have not
been addressed in supply chain network design. Moreover, considering the competition between service centers,
optimizing pricing decisions while optimizing strategic decisions, and offering multiple options to customers
when receiving repairing services can be addressed for future research.

This paper proposes a model for redesigning and planning sales and after-sales services supply chain. Previous
studies assume spare parts are always accessible during the warranty period. However, some spare parts are no
longer manufactured when a product reaches the decline stage. Thus, this model considers the accessibility of
spare-parts by dividing the planning horizon into two periods. The first period starts from the beginning of a
product’s life cycle and ends with the decline stage (when the product’s manufacturing is stopped). The second
period continues from that point to the end of the warranty period. Each period consists of some sub-periods in
which parameters’ values, including demand and return rate, might differ. Three different options are considered
for supplying spare parts, which include (1) production/procurement of extra parts while the product is being
produced, (2) remanufacturing defective parts, and (3) procurement of spare parts just in time they are needed
(at a higher price). Option 1 is only available during the first period, and options 2 and 3 can be considered for
supplying spare parts in the second period.

3. Mulvey’s scenario-based optimization approach

In the literature, there are some approaches to cope with uncertainty in optimization problems [27]. In 1995,
Mulvey et al. [20] proposed a flexible approach for representing scenario-based stochastic optimization mod-
els that penalizes the feasibility shortfall in scenario-related constraints. Consider the following mathematical
optimization model:

min Γ(x, y) = cTx+ dT y (3.1)
s.t.
Ax = b (3.2)
Bx+ Cy = e (3.3)
x, y ≥ 0. (3.4)

Equation (3.1) is the objective function that aims to minimize total costs. Equations (3.2) and (3.3) represent the
constraints of the mathematical optimization problem. Equation (3.2) denotes deterministic parameters, while
equation (3.3) contains uncertain parameters. Equation (3.4) defines decision variables in which x represents
design variables and y represents controlling variables.

Now assume that set Ω indicates different scenarios and is defined as Ω = {1, 2, . . . , s}. The probability of
each scenario is ps, and we assume that (

∑
s ps = 1). We represent uncertain parameters B, C, e as Bs, Cs,

es for each scenario (s ∈ Ω). {z1,z2, . . . , zs} is the set of error variables that show the infeasibility degree for
infeasible constraints and ω represents the penalty. Then, the mathematical model suggested by Mulvey et al.
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[20] is as follows:

minσ(x, ys) + ωp(z1, z2, . . . , zs) (3.5)
s.t.
Ax = b (3.6)
Bsx+ Csys + zs = es ∀s ∈ Ω (3.7)
x, ys, zs ≥ 0 ∀s ∈ Ω. (3.8)

In which:

σ(x, ys) = λ
∑
s∈Ω

psΓs + (1− λ)
∑
s∈Ω

ps

(
Γs −

∑
s∈Ω

psΓs

)2

. (3.9)

Equation (3.5) represents the new objective function, which minimizes the summation of σ(x, ys) and infeasibility
penalty. σ(x, ys) is presented in equation (3.9) and calculates a weighted summation of the mean and the variance
of cost functions. Γ is the cost function, which is defined as Γs = f(x, ys) for each scenario.

∑
s∈Ω psΓs calculates

the mean of cost functions, and
∑
s∈Ω ps

(
Γs −

∑
s∈Ω psΓs

)2 calculates the variance. λ is the weight given by the
decision-maker, and indicates the relative importance of the mean of objectives in comparison to the variance.
When the variance increases, the decision making becomes riskier.

As equation (3.6) only denotes deterministic parameters, it does not change, but equation (3.7) is allowed
some infeasibility. {z1,z2, . . . , zs} is the set of error variables that show the infeasibility degree of equation (3.7).
The decision-maker may omit this set in situations where infeasibility is undesirable. Since the objective function
(3.5) is non-linear, it increases the complexity of problems. Hence, Yu and Li [36] proposed another approach
to obtain the standard deviation of solutions which is as follows:

σ′(x, ys) = λ
∑
s∈Ω

psΓs + (1− λ)
∑
s∈Ω

ps

∣∣∣∣∣Γs −∑
s∈Ω

psΓs

∣∣∣∣∣ . (3.10)

Then equation (3.10) can be rewritten as follows using positive variables ∂s:

σ′(x, ys) = λ
∑
s∈Ω

psΓs + (1− λ)
∑
s∈Ω

ps

[(
Γs −

∑
s∈Ω

psΓs

)
+ 2∂s

]
(3.11)(

Γs −
∑
s′∈Ω

ps′Γs′

)
+ ∂s ≥ 0 ∀s ∈ Ω (3.12)

∂s ≥ 0 ∀s ∈ Ω. (3.13)

Note that equation (3.11) is the linear objective function, and constraints (3.12) and (3.13) calculate ∂s and
should also be added to the mathematical model.

4. The proposed model

In this section, the problem is described, and used notation, including indices, parameters, and decision
variables are introduced. Then, the objective function and constraints are discussed.

4.1. Problem statement

Consider an original equipment manufacturer (OEM) that produces multiple multi-indenture products and
offers after-sales services as a tool to attract customers. Thus, when products fail, customers can return the
products to service centers for repair. In these centers, every product is inspected to determine the defective
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part(s). Once the defective parts are identified, they are replaced with new parts. The defective parts remain
at service centers to be safely destroyed. The OEM supplies demanded parts at service centers by producing or
purchasing them from other suppliers.

While the products are still being produced, supplying their components faces no difficulties since they can be
produced within the same manufacturing facilities or by the same suppliers. However, when a product reaches
the decline stage and is no longer being manufactured, supplying its components becomes more challenging.
Until now, the OEM had two options for supplying needed parts: (1) producing or purchasing more parts
(at a lower price) while the product and its components were still being produced and storing them for later
consumption, and (2) purchasing parts just in time they were needed (at a higher price) from other suppliers.
However, there is a pile of defective parts at service centers that the OEM can remanufacture, requiring opening
new facilities for collection and remanufacturing.

In this research, two main periods are considered for modeling the challenges of supplying spare parts:

– From the beginning of the production to the decline stage when production stops (Period I).
– From that point to the end of the warranty period (Period II).

The closed-loop supply chain network considered in the present study is shown in Figure 1. In this chain, the
components of products are produced in manufacturing facilities using raw materials that are purchased from
suppliers. Then the manufactured parts are transferred to the main production center (OEM) where products
are being assembled, stored, and later transferred to retailers to be sold to customers. Also, the production
center can purchase parts directly from suppliers if needed.

When a product fails, the customer can return the product to service centers for repair. In these centers,
every product is inspected to determine the defective part(s). Once the defective parts are identified, they are
replaced with new parts. Service centers transfer defective parts to collecting/remanufacturing centers where
they are inspected to determine if they can be remanufactured. Defective parts that can be remanufactured are
stored, and the rest are safely destroyed. It should be noted that collecting/ remanufacturing centers do not
remanufacture in Period I when the parts are still being produced. In fact, collecting/ remanufacturing (C/R)
centers collect and inspect during the first period, and during Period II, they carry out collection, inspection,
and remanufacturing operations.

The proposed model for redesigning and planning of the closed-loop supply chain of sales and after-sales
services aims to minimize total costs of the chain while determining the optimal location and capacity of
collecting/remanufacturing centers, the purchasing amount of raw materials, and the quantity of production,
remanufacturing, and transportation between members of the supply chain. Moreover, demand, the return rate,
and the cause of failure are uncertain.

Other assumptions are as follows:

– The OEM is responsible for providing spare parts for after-sales services.
– Parts and products can only be produced in Period I.
– Defective parts can only be remanufactured in Period II.
– Damaged products are repaired by replacing the defective parts(s).
– Not all defective parts can be remanufactured. Also, collecting/remanufacturing centers may not remanu-

facture all defective parts.
– The remanufactured parts are as good as new parts.
– In Period II, spare parts can be purchased from suppliers at a higher price.
– The beginning and end of Period I and Period II may differ for different products.

4.2. Notation

Indices, parameters, and decision variables used in the proposed model are as follows:
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Figure 1. The closed-loop supply chain of sales and after-sales services.

Indices and sets

l ∈ {1, . . . , L} Suppliers.
c ∈ {1, . . . , C} Potential locations for collecting/remanufacturing centers.
r ∈ {1, . . . , R} Retailers.
s ∈ {1, . . . , S} Service centers.
p ∈ {1, . . . , P} Manufacturing facilities.
i ∈ {1, . . . , I} Products.
j ∈ {1, . . . , J} Parts.
m ∈ {1, . . . ,M} Raw materials.
t ∈ {1, . . . , T0i, . . . , T1i, . . . , T2i, . . . , T} Periods: Period Ii = {T0i, . . . , T1i} and Period IIi = {T1i + 1, . . . , T2i}

(T1i determines the period in which the production of product i stops while (T2i determines the end of the
warranty period for product i).

v ∈ {1, . . . , V } Capacity levels.
θ, θ′ Scenarios.

Parameters

Dirtθ The demand of retailer r for product i in period t under scenario θ.
RPistθ Return rate: the quantity of products type i needing repair at service center s in period t under scenario

θ.
αijθ The probability that part j is the cause of failure in product i under scenario θ.
ϕij The required quantity of part j for assembling product i.
ϕ′jm The required amount of raw material m for producing part j.
πij Percentage of the defective parts j from product i which can be remanufactured.
RPCjlt The purchasing cost of part j from supplier l in period t.
RPCMmlt The purchasing cost of raw material m from supplier l in period t.
PRCOit Producing cost of product i in period t.
PRCOJjpt Producing cost of part j in period t at manufacturing facility p.
PRCjct Remanufacturing cost of part j in period t at collecting/remanufacturing center c.
SVjt Salvage value of part j in period t (is negative if safe disposal of part j has costs).
HCPOit Holding cost of product i in period t at the main production center.
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HCSOjt Holding cost of a new part j in period t at manufacturing facilities and the main production center.
HCSSjt Holding cost of a new part j in period t at service centers.
HCSCjt Holding cost of a defective part j at collecting/remanufacturing centers in period t.
HCRCjt Holding cost of a remanufactured part j at collecting/remanufacturing centers in period t.
HCMPmt Holding cost of raw material m at manufacturing facilities in period t.
TCirt Transportation cost of product i from the main production center to retailer r in period t.
TCBjlt Transportation cost of a new part j from supplier l to the main production center in period t.
TCMmlpt Transportation cost of raw material m from supplier l to manufacturing facility p in period t.
TCBJjpt Transportation cost of a new part j from manufacturing facility p to the main production center in

period t.
TCNjst Transportation cost of a new part j from the main production center to service center s in period t.
TCRjcst Transportation cost of a new part j from collecting/remanufacturing center c to service center s in

period t.
TCFjsct Transportation cost of a defective part j from service center s to collecting/remanufacturing center c

in period t.
ICj Inspection cost of part j in collecting/remanufacturing center.
Dlplp Distance between supplier l and manufacturing facility p.
Dpop Distance between manufacturing facility p and the main production center.
Dsol Distance between supplier l and the main production center.
Dorr Distance between the main production center and retailer r.
Doss Distance between the main production center and service center s.
Dscsc Distance between service center s and remanufacturing center c.
Capjjpt The production capacity of part j at manufacturing facility p in period t.
Capmp The capacity of manufacturing facility p for holding raw materials.
Capnopp The capacity of manufacturing facility p for holding parts.
Capmlmlt The supplying capacity of supplier l for raw material m in period t.
Capit The production capacity of product i at the main production center in period t.
Caprjcv The remanufacturing capacity of part j at collecting/remanufacturing center c with a capacity level v.
Cappo The capacity of the main production center for holding products.
Capno The capacity of the main production center for holding parts.
Capfccv The capacity of collecting/remanufacturing center c with capacity level v for holding defective parts.
Caprccv The capacity of collecting/remanufacturing center c with capacity level v for holding remanufactured

parts.
Capnss The capacity of service center s for holding parts.
Capljlt The supplying capacity of supplier l for part j in period t.
CCcv Opening cost of collecting/remanufacturing center c with a capacity level v.
FCt Fixed cost of supplier selection in period t.
BN Big number.
DPi The volume of product i.
DIj The volume of part j.
DMm The volume of raw material m.
ξθ Probability of scenario θ.
λ Mulvey’s coefficient.

Decision variables

QMmlptθ The amount of raw material m transported from supplier l to manufacturing facility p in period t
under scenario θ.

QJjptθ Quantity of part j produced by manufacturing facility p in period t under scenario θ.
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QPOjptθ Quantity of part j transported from manufacturing facility p to the main production center in period
t under scenario θ.

QBjltθ Quantity of part j transported from supplier l to the main production center in period t under scenario
θ.

QPitθ Quantity of product i produced in the main production center in period t under scenario θ.
QOSjstθ Quantity of new product j transported from OEM to service center s in period t under scenario θ.
QSCjsctθ Quantity of defective part j transported from service center s to collecting/remanufacturing center c

in period t under scenario θ.
QRSjcstθ Quantity of remanufactured part j transported from collecting/remanufacturing center c to service

center s in period t under scenario θ.
QRjctθ Quantity of part j remanufactured by collecting/remanufacturing center c in period t under scenario θ.
Invmmptθ Inventory of raw material m in manufacturing facility p in period t under scenario θ.
Invnojjptθ Inventory of new part j in manufacturing facility p in period t under scenario θ.
Invpoitθ Inventory of product i in the main production center in period t under scenario θ.
Invnojtθ Inventory of new part j in the main production center in period t under scenario θ.
Invfcjctθ Inventory of defective part j in collecting/remanufacturing center c in period t under scenario θ.
Invrcjctθ Inventory of remanufactured part j in collecting/remanufacturing center c in period t under scenario θ.
Invnsjstθ Inventory of new part j in service center s in period t under scenario θ.
Disjctθ Quantity of part j which cannot be remanufactured and is disposed of in collecting/remanufacturing

center c in period t under scenario θ.
Disvjctθ Quantity of part j which is not needed and is disposed of in collecting/remanufacturing center c in

period t under scenario θ.
ycv Equals 1 if the collecting/remanufacturing center c with capacity level v is opened, otherwise 0.
ylt Equals 1 if supplier l is selected in period t.
ωθ Linearization variable.
zθ Total costs under scenario θ.
Z ′ The objective function of Mulvey’s method.

4.3. Objective function and model constraints

In this paper, the scenario-based optimization approach developed by Mulvey et al. [20] has been employed
to deal with existing uncertainties. It should be noted that in this study, the optimal solution is feasible under
all scenarios. The objective function and constraints are as follows:

MIN Z′ = λ
∑

θ

ξθ · zθ + (1 − λ) ·
∑

θ

ξθ

[(

zθ −
∑

θ

ξθ · zθ

)

+ 2ωθ

]

(4.1)

zθ =
∑

i

∑

j

∑

l

∑

t

(
RPCjlt · QBjltθ + PRCOit · QPitθ

)
(4.2)

+
∑

j

∑

l

∑

m

∑

p

∑

t

(
RPCMmlt ·QMmlptθ + PRCOJjpt · QJjptθ

)
(4.3)

+
∑

i

∑

j

∑

p

∑

t

(
HCPOit · Invpoitθ + HCSOjt ·

(
Invnojtθ + Invnojjptθ

))
(4.4)

+
∑

j

∑

s

∑

c

∑

t

(HCSSjt · Invnsjstθ + HCSCjt · Invfcjctθ) (4.5)

+
∑

j

∑

c

∑

m

∑

p

∑

t

(HCRCjt · Invrcjctθ + HCMPmt · Invmmptθ) (4.6)

+
∑

j

∑

c

∑

t

PRCjct · QRjctθ −
∑

j

∑

c

∑

t

SVjt · (Disjctθ + Disvjctθ) (4.7)

+
∑

j

∑

p

∑

m

∑

l

∑

t

(TCBJjpt · Dpop · QPOjptθ + TCMmlpt · Dlplp ·QMmlptθ) (4.8)
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+
∑

i

∑

j

∑

l

∑

r

∑

t

(
Dsol · TCBjlt · QBjltθ + Dorr · TCirt · QORirtθ

)
(4.9)

+
∑

j

∑

s

∑

c

∑

t

(
Doss · TCNjst ·QOSjstθ + Dscsc · TCRjcst · QRSjcstθ

+ Dscsc · TCFjsct · QSCjsctθ
)

(4.10)

+
∑

c

∑

v

CCcv · ycv +
∑

j

∑

s

∑

c

∑

t

ICj ·QSCjsctθ +
∑

t

∑

l

FCt · ylt (4.11)

s.t. :(
zθ −

∑
θ′

ξθ′ · zθ′
)

+ ωθ ≥ 0 ∀θ (4.12)

Invpoitθ = Invpoi,t−1,θ + QPitθ −
∑
r

Drtθ ∀i, θ, t ∈ Period I (4.13)

Invnojtθ = Invnoj,t−1,θ +
∑
l

QBjltθ +
∑
p

QPOjptθ −
∑
i

ϕijQPitθ −
∑
s

QOSjstθ ∀j, θ, t ∈ Period I (4.14)

Invfcjctθ =
∑
s

QSCjsctθ + Invfcjc,t−1,θ −Disjctθ ∀j, c, θ, t ∈ Period I (4.15)

Disjctθ =
∑
i

∑
s

(1− πij) ·QSCjsctθ ∀j, c, t, θ (4.16)

Invfcjctθ =
∑
s

QSCjsctθ + Invfcjc,t−1,θ −Disjctθ −Disvjctθ −QRjctθ ∀j, c, θ, t ∈ Period II (4.17)∑
j,s

QSCjsctθ = BN ·
∑
v

ycv ∀c, θ, t ∈ Period II (4.18)

Invrcjctθ = Invrcjc,t−1,θ + QRjctθ −
∑
s

QRSjcstθ ∀j, c, θ, ti ∈ {T1i + 1, . . . , T2i} (4.19)∑
c

QSCjsctθ =
∑
i

ϕij · αijθ · RPistθ ∀j, s, t, θ (4.20)

Invnsjstθ = Invnsjs,t−1,θ + QOSjstθ −
∑
i

ϕij · αijθ · RPistθ ∀j, s, θ, t ∈ Period I (4.21)

Invnsjstθ = Invnsjs,t−1,θ + QOSjstθ −
∑
i

ϕij · αijθ · RPistθ +
∑
c

QRSjcstθ ∀j, s, θ, t ∈ Period II (4.22)∑
i

DPi · Invpoitθ ≤ Cappo ∀t ∈ Period I (4.23)∑
j

DIj · Invnojtθ ≤ Capno ∀t, θ (4.24)

∑
j

DIj · Invfcjctθ ≤
∑
v

Capfccv · ycv ∀c, t, θ (4.25)

∑
j

DIj · Invrcjctθ ≤
∑
v

Caprccv · ycv ∀c, θ, t ∈ Period II (4.26)

∑
j

DIj · Invnsjstθ ≤ Capnss ∀s, t, θ (4.27)

∑
j

QRjctθ ≤
∑
v

Caprcvt · ycv ∀c, θ, t ∈ Period II (4.28)

QBjltθ ≤ Capljlt ∀j, l, θ, t ∈ Period I (4.29)
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QPitθ ≤ Capit ∀i, θ, t ∈ Period I (4.30)∑
v

ycv ≤ 1 ∀c (4.31)

Invnojjptθ = Invnojjp,t−1,θ + QJjptθ −QPOjptθ ∀j, p, θ, t ∈ Period I (4.32)
QJjptθ ≤ Capjjpt ∀j, p, θ, t ∈ Period I (4.33)∑
j

DIj · Invnojjptθ ≤ Capnoppt ∀p, t, θ (4.34)

Invmmptθ = Invmmp,t−1,θ −
∑
j

ϕ′jm ·QJjptθ +
∑
l

QMmlptθ ∀m, p, θ, t ∈ Period I (4.35)

∑
p

QMmlptθ ≤ Capmlmlt ∀m, l, θ, t ∈ Period I (4.36)

∑
m

DMm · Invmmptθ ≤ Capmpt ∀p, θ, t ∈ Period I (4.37)

QMmlptθ ≤ BN · ylt ∀m, l, p, θ, t ∈ Period I (4.38)
ylt ≤ QMmlptθ ∀m, l, p, θ, t ∈ Period I (4.39)
QBjltθ ≤ BN · ylt ∀j, l, θ, t ∈ Period I (4.40)
ylt ≤ QBjltθ ∀j, l, θ, t ∈ Period I (4.41)
QMmlptθ,QJjptθ,QPOjptθ,QBjltθ,QPitθ,QOSjstθ,QSCjsctθ,QRSjcstθ,QRjctθ, Invmmptθ, Invnojjptθ,
Invpoitθ, Invnojtθ, Invfcjctθ, Invrcjctθ, Invrcjctθ,Disjctθ,Disvjctθ, ωθ ≥ 0, ycv, ylt ∈ {0, 1}. (4.42)

Equation (4.1) is the objective function of Mulvey’s approach, which was explained in Section 3. Terms (4.2)–
(4.11) calculate the total costs of the supply chain under each scenario in which term (4.2) determines the
purchasing cost of parts and the producing cost of products. Term (4.3) shows the purchasing cost of raw
materials and the cost of producing parts at manufacturing centers, and terms (4.4)–(4.6) calculate the holding
cost of parts and products. Term (4.7) shows remanufacturing costs and the salvage value of defective parts,
and terms (4.8)–(4.10) determine transportation costs of parts and products. Finally, Term (4.11) shows the
cost of opening new facilities, inspection, and supplier selection.

Equation (4.12) is the linearization equation. Note that the index of summation is θ′. Equation (4.13) calcu-
lates the inventory of final products at the main production center under each scenario. Also, equation (4.14)
determines the inventory of parts at the main production center under each scenario. Equation (4.15) states
the inventory of defective parts at collecting/remanufacturing centers under each scenario. Equation (4.16) cal-
culates the number of defective parts that cannot be remanufactured and are safely disposed of under each
scenario. Equation (4.17) shows the inventory of defective parts at the remanufacturing centers in Period II
under each scenario.

Constraint (4.18) guarantees that collecting/remanufacturing centers are only operational if they are opened.
Equation (4.19) calculates the inventory of remanufactured products at the collecting/remanufacturing center
under each scenario. Equation (4.20) guarantees that all defective parts are sent to collecting/remanufacturing
centers. Equation (4.21) shows the inventory of new parts at service centers in Period I under each scenario.
Equation (4.22) shows the inventory of new parts at service centers in Period II under each scenario.

Constraint (4.23) shows the capacity of the main production center for holding products. Also, constraint
(4.24) determines the capacity of the main production center for holding parts. Constraint (4.25) indicates
the capacity of collecting/remanufacturing centers for holding defective parts, while constraint (4.26) indicates
the capacity of collecting/ remanufacturing centers for holding remanufactured parts. Constraint (4.27) shows
the capacity of service centers for holding parts. Constraint (4.28) expresses the remanufacturing capacity at the
collecting/remanufacturing centers.
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Table 2. Information regarding the size of the problem.

Chain member Number

Suppliers 25
Potential collecting/remanufacturing centers 5
Retailers 35
Service centers 10
Periods 4, two sub-periods for Period I and two for Period II
Products 2
Parts 5
Materials 5
Scenarios 800, which were grouped into ten fuzzy clusters

Table 3. Information regarding the size of the coded problem in GAMS and results.

Single equations 29 449
Single variables 67 533
Non-zero elements 450 886
Discrete variables 119
Generation time 15 026.204 s.
Cplex time 276.734 s.
MIP solution (λ = 1) 180 293 965 293 725.34 (693 464 iterations, 1036 nodes)
Final solve (λ = 1) 180 293 965 293 724.81 (9229 iterations)
Absolute gap 0
Relative gap 0

Constraint (4.29) guarantees that the quantity of purchased parts from suppliers does not exceed their capac-
ity. Constraint (4.30) determines the production capacity of the main production center. Constraint (4.31) states
that only one capacity level can be selected for any new facility. Equations (4.32) and (4.33) are related to the
inventory of new parts and production capacity at manufacturing facilities. Constraint (4.34) guarantees that
the inventory of new parts at manufacturing facilities does not exceed their capacity under each scenario. Equa-
tion (4.35) calculates the inventory of raw materials at manufacturing facilities. Constraint (4.36) determines
the suppliers’ capacity for raw materials. Constraint (4.37) indicates the capacity of manufacturing facilities for
holding raw materials. Constraints (4.38)–(4.41) show that raw materials and parts can only be purchased from
selected suppliers. Finally, Equation (4.42) presents the decision variables and their types.

5. Implementation and results

The proposed model is coded in GAMS 24.1.2 and is solved by CPLEX 12.5.1.0 solver. All tests are carried
out on an Intel Core i5 @ 2.53 GHz computer with 4.00 GB RAM. A real example from Hasani et al. [15] is used
to investigate the applicability of the proposed model (see Appendix A). Information regarding the size of the
problem is presented in Table 2, and the size of the coded model in GAMS is presented in Table 3.

In this model, the uncertainty of product demand, the number of products that need repair (return rate), and
the cause of failure are considered through a scenario-based optimization approach. Scenario building requires
a broad spectrum of knowledge and opinions from multidisciplinary team members, or in other words, experts
[32]. In this research, we asked the experts to provide us with pessimistic, realistic, and optimistic values for
uncertain parameters. The experts suggested five values for demand and the return rate (very low, low, medium,
high, very high) and two values for the probability that part j is the failure cause of product i. Hence, five,
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Table 4. Results of solving the proposed model with λ = 0.8.

Decision variable Optimal quantity

j = 1 2012
j = 2 1614

The average number of part j = 3 1229
remanufactured per scenario j = 4 3337

j = 5 2032
sum 10 224
j = 1 1604

The average number of part j = 2 963
transported to the service j = 3 1296
center per scenario j = 4 2310

j = 5 1040
sum 7213

five, and 25 (2 levels for each part) values are considered for every parameter, respectively. Thus, 800 possible
scenarios are generated, of which more than 80% are compatible.

The high number of scenarios raises the complexity of the problem and reduces the efficiency of the solution.
Also, in principle, only a few substantially different scenarios are needed [23]. Thus, it is suggested to use
scenario reduction techniques to reduce the number of scenarios. One of the methods for reducing the number
of scenarios is the clustering method. In the present research, similar to the research by Pishvaee et al. [26], the
Fuzzy C-Means clustering method has been employed. The Fuzzy C-Means clustering method was developed
by Dunn [6] and improved by Bezdek [3]. This method is as follows:

min J =
c∑
i=1

n∑
k=1

umik ‖xk − vi‖
2 (5.1)

s.t. :
c∑
i=1

uik = 1, ∀k = 1, . . . , n (5.2)

vi =
∑n
k=1 u

m
ikxk∑n

k=1 u
m
ik

(5.3)

0 ≤ uik ≤ 1, ∀i, k. (5.4)

In the objective function (5.1), m is a fuzzifier that is a real number greater than 1. In most cases, number 2
is chosen for m. xk is the kth sample and vi is the representative or center of the ith cluster. uik denotes the
amount of belonging of the ith sample in the kth cluster. Sign || ∗ || is the similarity amount (distance) of the
sample with the center of the cluster, and any function that represents the similarity of sample and center of
the cluster can be used. From uik we can define a U matrix with c rows and n columns, and its components can
have any value between 0 and 1. If all the components of the matrix U are 0 or 1, the algorithm is similar to
the classic hard c-means. Equation (5.2) states that the sum of each column’s components must be equal to 1.
Equation (5.3) calculates the center of each cluster, and equation (5.4) determines the acceptable range for uik.

In this paper, scenarios are grouped into ten fuzzy clusters using the Fuzzy C-Means Clustering Algorithm in
MATLAB software. In other words, the number of scenarios has been reduced to 10 scenarios. Implementation
of the proposed model with ten scenarios in the GAMS software takes about 4 h.

The optimal solution of the proposed model when λ equals 0.8 is presented in Table 4. In the optimal solution,
in Period II, spare parts are supplied using two options:
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Figure 2. The number of remanufactured parts when remanufacturing cost increases.
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Figure 3. The number of purchased parts from alternative suppliers when purchasing price
increases.

– Producing or purchasing extra parts in Period I to satisfy spare parts demand in Period II.
– And remanufacturing.

Overall, 10 224 parts are remanufactured to meet the demand for after-sales services. Also, 7213 new parts
are transported to service centers, from which 2895 parts are stored to be used in Period II. The third option,
“purchasing parts just in time they were needed from other suppliers,” is not optimal. It should be noted that
in the optimal solution, three collecting/remanufacturing centers are opened with the lowest capacity level.

In order to validate the results, sensitivity analysis is done regarding three parameters, including (1) reman-
ufacturing cost, (2) Purchasing price of parts in Period II, and (3) Mulvey’s coefficient.

5.1. Sensitivity analysis to remanufacturing cost

The effect of increasing and decreasing remanufacturing costs on the number of remanufactured parts is
shown in Figure 2. In this real example, when the remanufacturing cost reaches eight dollars, the quantity of
remanufactured parts falls to zero. In these circumstances, the needed parts for after-sales services are provided
through purchasing/producing extra parts in Period II. As is shown in Figure 2, the number of defective parts
that can be remanufactured is a limiting factor.

5.2. Sensitivity analysis to the purchasing price of parts in Period II

The effect of increasing and decreasing purchasing prices of parts in Period II is shown in Figure 3. In this
real example, the third option, “purchasing parts just in time they were needed from other suppliers,” is not
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Table 5. Optimal results for different values of λ.

Value of λ λ = 1 λ = 0.8 λ = 0.5 λ = 0.3 λ = 0.1 λ = 0

Objective function 1.80294E+14 1.80294E+14 1.83981E+14 1.83982E+14 1.86741E+14 1.89542E+14

Opening costs 300 000 300 000 320 000 340 000 440 000 750 000

Optimal opening loca-

tion for collecting /

remanufacturing cen-

ters

Three centers

with the lowest

capacity level

Three centers

with the lowest

capacity level

Two centers with

capacity level 1

and one center

with capacity

level 2

One center with

capacity level 1

and two centers

with capacity

level 2

Two centers with

capacity level 1

and two centers

with capacity

level 2

Five centers with

capacity level 3

Table 6. The effect of remanufacturing on costs.

Purchasing and producing costs of parts

With remanufacturing 3.652331E+08
Without remanufacturing 4.058146E+08

employed when the difference between purchasing price in Period I and II is more than 30%. Also, this option
has the last priority for supplying spare parts.

5.3. Sensitivity analysis to the parameter λ

The results of the proposed model with different values of λ are shown in Table 5. This parameter determines
the relative importance of the mean of the objective functions versus the standard deviation. As is shown in
this table, reducing the value of λ increases opening costs.

We also investigated the economic benefits of remanufacturing. As shown in Table 6, remanufacturing reduces
purchasing and producing costs of parts by 10%.

It should be noted that remanufacturing does not always reduce costs. In this example, remanufacturing is
cost-efficient when the remanufacturing cost is equal to or less than 23% of the production cost. When the cost
of remanufacturing is equal to or less than 15% of the production cost, all parts that can be remanufactured,
will be remanufactured. Moreover, as shown in Figure 3, the third option, purchasing parts at a higher price in
Period II, is only used if the cost of purchasing is equal to or less than 30% of the production cost.

6. Conclusions

Since many maintenance and repair activities require spare parts, accessibility of spare parts can highly affect
service response speed and hence the quality of after-sales services. When a product is being produced, its spare
parts can simultaneously be produced within the same manufacturing system. However, when a product reaches
the end of its life cycle (Decline Stage) and is no longer being manufactured, supplying spare parts becomes
more challenging. In the present study, a scenario-based optimization model was developed for planning the
physical flow of products and components and redesigning of sales and after-sales services closed-loop network,
considering three different option for supplying spare parts: (1) producing or purchasing extra parts (at a lower
price) while the product and its components are still being produced and storing them for later consumption,
(2) remanufacturing defective parts, and (3) purchasing parts just in time they were needed (at a higher price)
from other suppliers. For this aim, the planning horizon is divided into two periods (based on the availability
of production facilities).

Since design decisions are strategic decisions that have long-term effects on the performance of a supply chain,
considering these uncertainties is crucial. Thus, in this paper, three parameters, including demand, the return
rate, and failure causes, are considered to be uncertain. The scenario-based optimization approach developed
by Mulvey et al. [20] has been employed to deal with existing uncertainties.
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Applicability and advantages of the proposed model are investigated using a real numerical example from
the literature. The results indicate that extra production/procurement and remanufacturing are preferred to
the third option. The third option is only employed when the difference between the purchasing price of parts
in Period I and II is less than 30%. Also, at least three collecting/remanufacturing facilities should be opened
for the remanufacturing of defective parts.

Considering other options for supplying spare parts after production is stopped, distinguishing between
remanufactured and new components, as well as studying the benefits of remanufacturing from an environmental
point of view, are possible issues for future researches.

Appendix A.

In this paper, A real example from Hasani et al. [15] is used to investigate the applicability of the proposed
model. Table A.1 provides the information regarding the Parameters’ values. Note that all costs are in USD.

Table A.1. Information regarding other parameters’ values.

Parameter Value

ϕij i = 1 i = 2

∀j ∈ {1, 2, 3} = 1 ∀j ∈ {4, 5} = 1

πij i = 1 i = 2

j = 4 0.85 j = 1 0.8

j = 5 0.95 j = 2 0.9

j = 3 0.7

RPCjlt ∀j, l, t = 20

Alternative Supplier = 60

PRCOit ∀i = 30

PRCjct ∀j, c, t = 5

RPCMmlt ∀m, l, t = 2

PRCOJjpt ∀j, p, t = 5

SVjt ∀j, t = 2

HCPOit ∀i, t = 2

HCSOjt ∀j, t = 1.5

HCSSjt ∀j, t = 1.5

HCSCjt ∀j, t = 1

HCRCjt ∀j, t = 2

TCirt ∀i, r, t = 0.25

TCBjlt ∀j, l, t = 0.05

TCMmlpt ∀m, l, p, t = 0.01

TCBJjpt ∀j, p, t = 0.03

TCNjst ∀j, s, t = 0.05

TCRjcst ∀j, c, s, t = 0.05

TCFjsct ∀j, s, c, t = 0.03

ICi ∀i = 1

Capjjpt t = 1 ∀j, p = 40 000

t = 2 ∀j, p = 40 000

t = 3 ∀j, p = 0

t = 4 ∀j, p = 0

Capmp ∀p = 60 000

Capnopp ∀p = 40 000

Capmlmlt t = 1 ∀m, l = 40 000

t = 2 ∀m, l = 40 000

t = 3 ∀m, l = 0

t = 4 ∀m, l = 0
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Table A.1. (continued.)

Parameter Value

Capit i = 1 i = 2

t = 1 500 000 t = 1 500 000

t = 2 500 000 t = 2 500 000

t = 3 0 t = 3 0

t = 4 0 t = 4 0

Caprjcvt v = 3, ∀j, c v = 2, ∀j, c v = 1, ∀j, c
t = 1 0 t = 1 0 t = 1 0

t = 2 0 t = 2 0 t = 2 0

t = 3 1500 t = 3 1000 t = 3 7500

t = 4 1500 t = 4 1000 t = 4 7500

Cappo [600 000, 600 000, 0, 0]

Capno [600 000, 600 000, 0, 0]

Capfccv v = 1 ∀c = 6000

v = 2 ∀c = 8000

v = 3 ∀c = 11 000

Caprccv v = 1 ∀c = 5000

v = 2 ∀c = 7000

v = 3 ∀c = 10 000

Capnss ∀t = 10 000

Capljlt t = 1 ∀j, l = 20 000

t = 2 ∀j, l = 20 000

t = 3 ∀j, l = 0

t = 4 ∀j, l = 0

CCcm m = 1 ∀c = 100 000

m = 2 ∀c = 120 000

m = 3 ∀c = 150 000
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