
RAIRO-Oper. Res. 55 (2021) S2831–S2858 RAIRO Operations Research
https://doi.org/10.1051/ro/2020125 www.rairo-ro.org

HUB LOCATION PROBLEM IN ROUND-TRIP SERVICE APPLICATIONS

Omar Kemmar1,∗, Karim Bouamrane1 and Shahin Gelareh2

Abstract. In this paper, we introduce a new hub-and-spoke structure for service networks based on
round-trips as practiced by some transport service providers. This problem is a variant of Uncapacitated
Hub Location Problem wherein the spoke nodes allocated to a hub node form round-trips (cycles)
starting from and ending to the hub node. This problem is motivated by two real-life practices in logistics
wherein runaway nodes and runaway connections with their associated economies of scale were foreseen
to increase redundancy in the network. We propose a mixed integer linear programming mathematical
model with exponential number of constraints. In addition to the separation routines for separating from
among exponential constraints, we propose a hyper-heuristic based on reinforcement learning and its
comparable counterpart as a variable neighborhood search. Our extensive computational experiments
confirm efficiency of the proposed approaches.

Mathematics Subject Classification. 68T20, 90C59, 90C27, 90B80, 90C35, 90C05, 90C11.

Received January 31, 2020. Accepted October 31, 2020.

1. Introduction

While hub-and-spoke operations have almost always been practiced in the modern transportation industry,
in certain circumstances, these structures are the only possible way ahead. This work has been motivated by
two consultancy projects that have been carried out over the last 5 years: a set of maritime projects and an aid
distribution problem arising in the context of Syrian refugees in Lebanon.

We are dealing with structures depicted in Figure 1 (see [21]), which frequently appear in various and
sometimes very different areas including supply chain logistics as well as telecommunications.

However, this structure has some weaknesses, as every potential failure or disruption can render an important
part of the network unreachable. In the following, we point out two cases that we have encountered in our
collaboration with the stakeholders from the industry.

Liner shipping industry. In liner shipping wherein vessels operate round-trips, this notion has received
much more attention. About 80 per cent of the world trade by volume and more than 70 per cent of world
trade in value is carried by sea, making liner shipping the basis of world trade [46]. Liner shipping operates
on hub-and-spoke structures where major terminals are considered as global or regional hubs and the smaller

Keywords. Hub location problem, liner shipping, runaway node, branch-and-cut, hyper-heuristic, variable neighborhood search,
reinforcement learning, k-means.

1 Laboratoire d’informatique d’Oran (LIO), Université Oran 1, BP 1524 EL Mnaouer Oran, Algeria.
2 Département Réseaux et Télécommunications, Université d’Artois, F-62400 Béthune, France.
∗Corresponding author: Omke1941@hotmail.com, omke1993@gmail.com

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2021

https://doi.org/10.1051/ro/2020125
https://www.rairo-ro.org
mailto:Omke1941@hotmail.com
mailto:omke1993@gmail.com
https://www.edpsciences.org

S2832 OMAR KEMMAR ET AL.

Figure 1. A typical hub-and-spoke based round-trip service network.

ports are the spoke/feeder ports. Almost a decade ago, when the extremely costly and spacious mega-vessels
of 18 000 TEU (twenty-foot equivalent) such as Emma Maersk have emerged and were deployed, both ports
and liner operators were really concerned. The string managers (those in charge of designing seasonal round-
trip service network in shipping companies) were worried that such costly and huge vessels may have to be
deployed under-utilized (at least during some periods) without being able to efficiently exploit their economies
of scale. The port operators or major terminals were worried of being now exposed to a much higher risk should
any possible disruptions occur. If such a disruption happens and delays go beyond the normal and expected
turnaround time for the vessels (which would increase operation costs for liners), it would causes dissatisfaction
for the liners and jeopardize the ports competitiveness in their business. Such large vessels could not call many
ports due to the draught requirement and moreover, many European ports did not have the capacity (not even
potential for physical expansion) to serve such huge vessels. The solution was mainly in the hand of network
operators rather than hub operators, to introduce sufficient redundancy such that a reasonable part of the risks
could be mitigated. This could be achieved by providing possibility of cross-rotation escape operation through
some nominated ports. One way to achieve this was to make sure that the feeder round-trips do not rely on
(not monopolized by) one and only one hub port and if the single hub fails (due to strikes, threats, etc.), the
operation can still be re-directed through runaway connections at a minimal overhead operational cost.

Distribution of humanitarian aids. A very recent case we have recently worked on is related to distribution
of humanitarian aids among the UNHCR-recognized displaced Syrians who fled out of the war situation and
scattered all across Lebanon as one of the major host countries. A central depot in Beirut suburbs, supplies a
set of hub locations identified among the demand nodes. Cycles are formed starting from every hub locations,
visiting a set of spoke demand points (the villages wherein refugees are residing) and returning to the depot on
the same day (see Fig. 2). For some domestic reasons, it is very likely that a hub node becomes unavailable at
anytime without any prior notice. This can even happens after it receives the supply for spoke nodes allocated
to it in which case new supply must be sent from the main depot but via a different runaway node and runaway
connection.

We need to introduce some redundancy in the hub-and-spoke structure in Figures 1 and 3 in such a way
that in an (un)likely event of disruption in the hub-level elements, the service provision remains possible. Such
a redundancy can be achieved by providing alternative paths for spoke nodes on the cycle (feeder) of a given
hub node. We achieve this by connecting cycles via a third type of nodes we refer to as runaway nodes. These
nodes do not necessarily incorporate very sophisticated and expensive hub-type facilities, yet the infrastructure
is upgraded to outperform spoke nodes and enable them to process larger volumes in the case of necessity.

HUB LOCATION PROBLEM IN ROUND-TRIP SERVICE APPLICATIONS S2833

Figure 2. Network structure for a hub-and-spoke structure distribution network of humani-
tarian aids in Lebanon. Source: Displaced Syrian distribution by CAZA, Lebanese Government.

Figure 3. A typical structure of network in a runaway hub-and-spoke structure.

1.1. Literature review

This work can be considered as a variant of the uncapacitated single allocation hub location problem
(USAHLP). In the following, we review some of the closely related contributions in the literature, with particular
attributes: (1) single allocation scheme, (2) cyclic spoke-level sub-networks, and (3) solution approaches based
on (meta-)heuristics and hyper-heuristics.

S2834 OMAR KEMMAR ET AL.

Danach et al. [16] proposed a Mixed Integer Programming (MIP) formulation, a Lagrangian relaxation and a
hyper-heuristic for a hub location and routing problem. In this study, the single allocation scheme is considered
where the capacity is defined on the volume of flow circulating on a spoke-level route that needs to respect the
capacity of transporters available on it.

Azizi [2] introduced a MIP formulation and a Particle Swarm Optimization (PSO) algorithm for the Uncapac-
itated Single Allocation p-hub Location Problem under risk of hubs disruption. The author constructs networks
in which every single demand point has a backup hub to be served from in case of disruption.

Zhong et al. [52] tackled the hierarchical hub location model and proposed a MIP formulation for the problem
with hub capacity constraints as well as a hybrid meta-heuristic (genetic algorithm and tabu search).

A two-stage formulation for reliable Single Allocation Hub Location Problem was introduced in Rostami
et al. [42] with a Benders decomposition approach to solve large scale instances. In this study, whenever a hub
breaks down, its corresponding flow is rerouted via a single backup hub.

Monemi and Gelareh [33] proposed a 2-index integer programming (IP) formulation and a branch-and-cut
algorithm with some classes of valid inequalities for the Ring Spur Assignment Problem introduced by Carroll
et al. [9]. This problem arises in the design of next-generation telecommunications networks but shares some
common features with this work.

A 2-index model and a branch-and-cut algorithm based on Benders decomposition are given in Gelareh et al.
[22] for the Bounded Cardinality Capacitated Hub Routing Problem (BCCHRP) with route capacity constraints.

In Chaharsooghi et al. [11], the reliable uncapacitated multiple allocation hub location problem under hub
disruptions is considered. The author proposed a two-stage stochastic model and an adaptive large neighborhood
search meta-heuristic as a non-exact approach. In this problem, whenever a hub fails, the spokes allocated to
that hub, are either reallocated to other hubs that are still working or a penalty is paid in the case they do not
receive any service due to the high reallocation costs.

Contreras et al. [12] presented a MIP formulation and a branch-and-cut algorithm for the Cycle Hub Location
Problem (CHLP). A greedy randomized adaptive search procedure (GRASP) is developed to obtain feasible
solutions for large-scale instances of the CHLP.

Rodriguez-Martin et al. [41] proposed a branch-and-cut algorithm for the problem of designing a two level
network where the upper level consists of a backbone ring network connecting the hub nodes, and the lower
level is formed by access ring networks that connect the spoke nodes to the hub nodes. It is a purely location
problem and does not incorporate any flow.

Mohammadi et al. [32] proposed a bi-objective mixed-integer non-linear programming and an evolutionary
algorithm for the Single Allocation p-hub Center-Median Problem under data uncertainty, where the objective
is to obtain a reliable network. Interested readers are also referred to the recent network reliability studies:
Yahyaei et al. [48], Zhalechian et al. [51] and Cardoso et al. [7].

In Martins de Sá et al. [29] a Benders decomposition algorithm and several metaheuristics were proposed for
the Hub Line Location Problem (HLLP) introduced in Martins de Sá et al. [30]. This problem is tailored for
public transportation systems.

The hub location and routing problem is studied in Rodriguez-Martin et al. [40]. A MIP formulation and a
branch-and-cut algorithm are proposed. In this work, the capacity constraint is defined in terms of number of
spokes per cycle, and the number of hubs is assumed to be an exogenous information.

Gelareh et al. [21] proposed a hub-and-spoke structure with one central hub cycle and spoke-level (feeder)
cycles attached to every hub node. They use Lagrangian decomposition approach equipped with a Lagrangian
heuristic.

Yang et al. [50] proposed a hybrid particle swarm optimization (PSO) algorithm for the p-Hub Center Problem
in fuzzy environments by combining PSO, genetic operators and a local search (LS).

Alumur et al. [1] proposed a MIP for a hierarchical multi-modal hub location problem, where two types of
hub nodes and hub edges are considered (for ground and air transportation) and a time definite delivery service.

HUB LOCATION PROBLEM IN ROUND-TRIP SERVICE APPLICATIONS S2835

Gelareh and Nickel [20] proposed a MIP with a Benders decomposition method and a greedy heuristic to solve
the Uncapacitated Multiple Allocation Hub Location Problem adapted for urban transport and liner shipping
network design.

Çetiner et al. [10] proposed an iterative two stages heuristic, which firstly locates the hub nodes and then
design routes using traveling salesman problem heuristics. The Turkish postal delivery system data is used as a
case study.

A Reliable p-hub Location Problem was proposed in Kim and O’Kelly [26] for telecommunication networks,
where two mathematical model formulations are given considering the single and multiple assignment schemes.

In Berman et al. [3], a model is proposed in which, given n nodes, the objective is to locate p helicopter pads
and one facility (hospital) to minimize the total time (minisum) or the maximum time (minimax).

Yaman et al. [49] proposed a minimax mathematical model for ground-based cargo delivery system with
stopovers for the latest arrival hub location problem.

A local search approach and different meta-heuristic algorithms were proposed in Carello et al. [8] for the
capacitated single allocation hub location problem (CSAHLP) where the hubs are transit nodes and the spokes
are access nodes.

A branch-and-bound procedure was proposed in Ebery et al. [18] for the capacitated multiple allocation hub
location problem applied to postal networks together with an efficient heuristic algorithm using shortest paths
to obtain the upper bound.

Campbell [6] presented the first linear programming formulations for Multiple/Single Allocation Uncapaci-
tated/Capacitated Hub Location Problems. This work has introduced a fundamental set of hub location prob-
lems that have served as a building block for a lot of research works. Skorin-Kapov et al. [44] proposed an
improvement to the best-known MIP formulation for the Single Allocation p-hub Median Problem (SApHMP).

Kuby and Gray [27] developed a MIP formulation to design the least cost single-hub air network assuming
that the hub location is predetermined.

O’Kelly [35] introduced single allocation hub location problem (SAHLP) with fixed costs making the num-
ber of hubs an endogenous part of the problem and proposed a quadratic integer formulation. Campbell [5]
introduced the first model for the multiple allocation problem.

For most part, the works tackling Hub Location Problems in the literature consider the standard hub and
spoke network structures. In addition, most of the non-exact approaches proposed in the previous studies
are generally heuristics and meta-heuristics, leaving great potential of the hyper-heuristic approaches almost
untouched in this context.

This paper proposes an extension to the work in Danach et al. [16] and therefore shares some elements.
However, our work is distinguished from Danach et al. [16] as follows: in Danach et al. [16], the hub-level
network is a complete subgraph, while in here, it is an endogenous part of the problem and not necessarily
a complete subgraph. In the aforementioned work, there are two sorts of nodes and connections (spoke and
hub nodes), while in this study we define an additional type of node/connection and we use the conventional
term from practice to refer to it as runaway. Runaway nodes and edges (the edges connecting runaway nodes)
provide alternative paths and augment the redundancy to meet the origin-destination demands. Finally, in
Danach et al. [16], every origin-destination demand passes through the hub-level network while this is not
necessary the case in the current work.

The main features of the most related contributions in the literature are summarized in Table 1.

1.2. Contribution and scope

The problem in this paper is motivated by a couple of real-life cases wherein the spoke-level network structure
resembles the one depicted in Figures 2 and 3. In the real practice, we seek to upgrade such structures to
introduce more redundancy through runaway nodes such as the one in Figure 3. The dashed lines (runaway
connections) connecting runaway nodes (nodes that have attributes somewhere between being a sophisticated
hub node and a simple spoke node) lying on the spoke-level round-trips introduce some level of redundancy
and cope with potential failures (strikes, unforeseen threats, etc.) at the hub nodes or the connections to/from

S2836 OMAR KEMMAR ET AL.

Table 1. A summary of the relevant contributions in the literature.

Work Alloc. Num. hubs Objective Capacity Solution method

Danach et al. [16] SA Exogenous Time (transit +
transshipment)

Yes MIP + Lagrangian relax-
ation + Hyper-heuristic

Zhong et al. [52] SA Endogenous Cost Yes MIP + Meta-heuristic
Contreras et al. [12] SA Exogenous Cost No MIP + Branch-and-cut +

Meta-heuristic

Rodriguez-Martin et al. [41] SA Endogenous Cost ≤ q spokes
per access ring

+ 1 ≤ access

rings ≤ k per
hub

MIP + Branch-and-cut

Gelareh et al. [22] SA q = 3 ≤ . . . ≤ p Time (transit +

transshipment)

Yes MIP + Branch-and-cut +

Benders decomposition
Rodriguez-Martin et al. [40] SA Exogenous Cost ≤ q spokes per

cycle

MIP + Branch-and-cut

Gelareh et al. [21] SA Exogenous Cost ≥ q spokes per
cycle

MIP + Lagrangian decom-
position based heuristic

Çetiner et al. [10] MA Endogenous Cost + Num. of
vehicles

No Heuristic

Current work SA Exogenous Cost No MIP + Meta-heuristic +

Hyper-heuristic

the hub nodes. In contrast to a backup hub node and sophisticated hub edges (connecting such backup node to
the hub-level network) which are expensive to setup and maintain, the runway nodes are some enhancements
to the normal spoke nodes and are only connected to one or two peer runaway nodes using connections that
are somewhere between the performance of a hub edge and a spoke edge, making it much cheaper to operate
and maintain until the disruption is over. Moreover, when the hub-level network is targeted by a disruptive
occurrence and becomes temporarily unavailable, this notion provides excess capacity somewhere outside the
focus of disruption and in a decentralized fashion – i.e. at the spoke level network. We have carried out a
thorough investigation of the matter in two cases from the real practice and a close collaboration with the
relevant decision makers from the sectors. From the theoretical and modeling point of view, this model opens a
new perspective in including redundancy in the hub-and-spoke structures and generalizes some of the previous
work (including our work in [21]). We propose the first (exponential) mixed integer programming formulation
for this problem, an efficient separation routine to separate from among the exponentially many constraints,
and an efficient heuristic-selection hyper-heuristic delivering high quality solutions in a very reasonable time.
Extensive computational experiments on randomly generated instances of various sizes, confirm computational
efficiency of the proposed solution framework and the viability of the approach.

This paper is organized as follows: The problem is formally described in Section 2 and a mathematical model
with an exponential number of constraints is proposed in Section 3. Section 4 provides a detailed description
and elaborates on the components of the hyper-heuristic approach (initial solution, selection method, low-
level heuristics and the main procedure), the metaheuristic and the separation routine. Section 5 reports and
discusses the results of our computational experiments. In Section 6, we summarize, draw conclusions and
provide suggestions for further research directions.

2. Problem statement

The p-Hub Location Problem with Runaway (pHLPwR) (Fig. 3) can be formally described as in the following:
Given a set of nodes V where |V | = n, a cost matrix C where cij is the cost per unit of flow on the edge i
to j, a flow/demand matrix W where wij is the flow to be sent from i to j and the fixed costs of setting up

HUB LOCATION PROBLEM IN ROUND-TRIP SERVICE APPLICATIONS S2837

hub nodes and runaway nodes. The fixed costs of setting up hub and runaway nodes, hub edges, spoke arcs and
runaway connections are denoted by Fk, Gk, Ikl, Skl and Tkl, respectively. The problem is to find p nodes called
hub nodes and establish the hub-level network using hub edges, connecting hub nodes in such a way that the
hub-level network remains connected with undirected connections (edges). The remaining n− p spoke nodes will
be allocated to different hub nodes from among the p hubs. The spoke level nodes form directed rotation services
starting from the hub node, visiting all the spoke nodes allocated to it and returning to the hub node. There
will be at least two spoke nodes allocated to every hub node unless practical real-life situations do not permit
this, in which case the sole allocated spoke node is called an isolated spoke node and is spurred at the hub node.
A runaway node is an upgraded spoke node chosen from among the spoke nodes allocated to a given hub in
order to provide a second access to outside the rotation in addition to the one provided by the hub node. Every
cycle will include one runaway node, which is connected to two other such nodes on different rotations. The
runaway connections are undirected. A discount factor, α, represents the economies of scale at the hub-level
and a λ counterpart (α ≤ λ ≤ 1 as the runaway connections do not provide the full function of a hub edge and
as a result, the factor of economies of scale are less advantageous for the runaways) applies to the runaway
connections. The objective is to find the optimal structure minimizing the total costs associated to setting up
facilities and transportation costs on such a structure.

3. Mixed-integer linear programming formulations

The variables of model follow: xij = 1 (∀i 6= j), if node i is allocated to hub j, 0, otherwise; hi = 1 if i is
a hub, 0, otherwise; yij = 1 (∀i 6= j), if there exists a spoke arc (i, j), 0 otherwise; bij = 1 (∀i < j), if a hub
edge {i, j} is established between two hub nodes i and j, 0 otherwise; zij = 1 (∀i < j), if there exists a runaway
connection {i, j} between i and j, 0 otherwise; gi = 1, if i is runaway node, 0 otherwise; wijkl represents the
fraction of flow from i to j routed via hub edge (k, l); sijkl stands for the fraction of flow from i to j routed via
spoke edge (k, l) and vijkl, represents the fraction of flow from i to j routed via runaway connection (k, l).

Additionally, for any subset S ⊂ V, δ+(S) = {a = (i, j)|i ∈ S, j ∈ V/S}, δ−(S) = {a = (j, i)|i ∈ S, j ∈ V/S},
y(δ(S)+) =

∑
i∈S,j∈V/S yij .

The p-Hub Location Problem with Runaway (pHLPwR) model can be stated as follows:

min
n∑

i=1

n∑
j=1
j 6=i

n∑
k=1
k 6=j

n∑
l=1
l 6=k
l 6=i

wijckl(sijkl + λvijkl + αwijkl)

+
n∑

k=1

n∑
l=1
l>k

Iklbkl +
n∑

k=1

n∑
l=1
l 6=k

Sklykl +
n∑

k=1

n∑
l=1
l>k

Tklzkl

+
n∑

k=1

Fkhk +
n∑

k=1

Gkgk (3.1)

s.t.
n∑

j=1

hj = p, (3.2)

xij ≤ hj , ∀i, j ∈ V, j 6= i, (3.3)
n∑

j=1,j 6=i

xij + hi = 1, ∀i ∈ V, (3.4)

gi + hi ≤ 1, ∀i ∈ V, (3.5)
n∑

j>i

zij +
n∑

j<i

zji = 2gi, ∀i ∈ V, (3.6)

S2838 OMAR KEMMAR ET AL.

n∑
i=1

n∑
j>i

zij ≤ p, (3.7)

zij ≤ gj , ∀i ∈ V, j > i, (3.8)
gi + xik + gj + xjk ≤ 3, ∀i, j, k ∈ V, k 6= j, k 6= i, j > i, (3.9)
yij + xik ≤ 1 + xjk, ∀i, j, k ∈ V, k 6= j, k 6= i, j 6= i, (3.10)
yij + hi ≤ 1 + xji, ∀i, j, k ∈ V, k 6= j, j 6= i, (3.11)
yij + xij ≤ 1 + hj , ∀i, j, k ∈ V, k 6= i, j 6= i, (3.12)
yij + yji + xki + xkj ≤ 3− hi − hj , ∀i, j, k ∈ V, k 6= j, k 6= i, j > i, (3.13)

n∑
j=1,j 6=i

yij = 1, ∀i ∈ V, (3.14)

n∑
j=1,j 6=i

yji = 1, ∀i ∈ V, (3.15)

bij ≤ hi, ∀i, j ∈ V, j > i, (3.16)
bij ≤ hj , ∀i, j ∈ V, j > i, (3.17)

n∑
l=1,l 6=i

wijil +
n∑

l=1,l 6=i

vijil +
n∑

l=1,l 6=i

sijil = 1, ∀i, j ∈ V, j 6= i, (3.18)

n∑
l=1,l 6=j

wijlj +
n∑

l=1,l 6=j

vijlj +
n∑

l=1,l 6=j

sijlj = 1, ∀i, j ∈ V, j 6= i, (3.19)

n∑
l=1
l 6=i,
l 6=k

wijkl +
n∑

l=1,
l 6=i,
l 6=k

vijkl +
n∑

l=1,
l 6=i,
l 6=k

sijkl

=
n∑

l=1,
l 6=j,
l 6=k

wijlk +
n∑

l=1,
l 6=j,
l 6=k

vijlk +
n∑

l=1,
l 6=j,
l 6=k

sijlk, ∀i, j, k ∈ V, k 6= i, k 6= j, j 6= i, (3.20)

sijkl ≤ ykl, ∀i, j, k, l ∈ V, l 6= k, l 6= i, k 6= j, j 6= i, (3.21)
vijkl + vijlk ≤ zkl, ∀i, j, k, l ∈ V, l > k, j 6= i, (3.22)
wijkl + wijlk ≤ bkl, ∀i, j, k, l ∈ V, l > k, j 6= i, (3.23)

y(δ+(S)) ≥
∑

j∈V/S

xij , ∀i ∈ S ⊂ V, (3.24)

y(δ−(S)) ≥
∑

j∈V/S

xij , ∀i ∈ S ⊂ V, (3.25)

hi, gi, xij , yij , zik, bik ∈ {0, 1}, ∀i, j, k, l ∈ V, j 6= i, k > i, (3.26)
wijkl, vijkl, sijkl ∈ (0, 1), ∀i, j, k, l ∈ V, l 6= k, l 6= i, k 6= j, j 6= i. (3.27)

The objective function minimizes the transportation costs and the setup costs for hubs, runaways, hub edges,
runaway connections and spoke arcs. Constraints (3.2) ensure that the number of hubs is equal to p. Constraints
(3.3) guarantee that a node i can be allocated to node j, only if node j is a hub. Constraints (3.4) ensure that
a node i is either a hub node or is allocated to only one hub. Constraints (3.5) assure that a node i cannot be a
hub and a runaway node at the same time. Constraints (3.6) ensure that a runaway node must be adjacent to

HUB LOCATION PROBLEM IN ROUND-TRIP SERVICE APPLICATIONS S2839

Figure 4. Subtour example (n = 13, p = 4).

two runaway connections. Constraints (3.7) assure that the number of runaway connections is at most equal to
p. Constraints (3.8) ensure that if there is a runaway connection (i, j), then j is a runaway node. Constraints
(3.9) ensure that in each cycle there is at most one runaway node. Constraints (3.10)–(3.12) guarantee that a
spoke arc links two spokes of the same hub (cycle). Constraints (3.13) are aggregations of the two constraints
yij + yji ≤ 1 and xki + xkj ≤ 2− hi − hj . The former makes sure that two spoke arcs in opposite directions do
not exist and the later guarantees that one spoke node cannot be allocated to two hub nodes at the same time.

Constraints (3.14) ensure that a spoke i has exactly one outgoing spoke arc. Constraints (3.15) ensure that
a spoke i has exactly one incoming spoke arc. Constraints (3.16) and (3.17) ensure that if the hub edge bij
exists then the nodes i and j are hubs. Constraints (3.18) assure an origin-destination flow i− j leaves i via a
spoke, a hub or a runaway connection. Constraints (3.19) assure that an origin-destination flow i− j arrives to
its destination j via a spoke, a hub or a runaway connection. Constraints (3.20) assure that flow conservation
holds at every intermediate node visited along a origin-destination path for flow i− j.

Constraints (3.21)–(3.23) guarantee that a flow between two nodes i and j will traverse the link k− l (spoke
arc, runaway connection or hub edge) if compatible link exists.

Constraints (3.24) and (3.25) ensure that ∀i ∈ S ⊂ V if i is a spoke node allocated to a hub in V/S, there is
at least one arc going out of (entering into) S. For any given subset S ⊂ V and any i ∈ S, in the absence of any
arc (i, j) with the tail in S and the head in the complementary set, any path from i to the hub serving i entirely
lies within S. Thus, there exists no j outside S, which serves i for any choice of j ∈ V/S. On the contrary, if i
is served by a hub in V/S there is a unique path cutting S (at least once) towards the hub serving i.

Constraints (3.24) and (3.25) ensure that situations similar to Figure 4 will not occur.

4. Hyper-heuristic and VNS approaches for pHLPwR

The complexity of our problem and its computational intractability make it impractical to solve realistic size
instances. We therefore propose a hyper-heuristic and a VNS approaches aiming to find high quality solutions
for larger instances in a reasonable amount of time.

S2840 OMAR KEMMAR ET AL.

Figure 5. pHLPwR without the network structure (p = 4 clusters).

4.1. Hyper-heuristic approach

The term hyper-heuristic was first used in 1997 to describe a protocol that combines several artificial intel-
ligence methods in the context of automated theorem proving [17]. It was then employed in combinatorial
optimization [13] as heuristics to choose heuristics. In this viewpoint, a hyper-heuristic is a high-level approach
that solves hard computational search problems, given a particular problem instance and a number of low-level
heuristics. It selects and applies the most suitable low-level heuristic at every decisional milestone. The main
ingredients of our hyper-heuristic are elaborated in the sequel.

4.1.1. Initial solution

An initial solution, or more importantly a good one, empirically speaking, contributes significantly in the
success of many methods (even exact ones) and a hyper-heuristic is of no exception. In the case of this problem,
we have carried out an extensive preliminary computational experiments that confirmed again the importance
of a good quality initial solution.

A solution to this problem is characterized by (1) location of hub nodes, (2) runaway nodes location, (3)
spokes allocation, (4) hub-level, runaway-level structures, and the spoke-level network (i.e. the cycles).

One can start with a clustering problem. Figure 5 shows that for p = 4, we obtain 4 clusters, and every cluster
contains a single runaway (of course if it does not only serving a single isolated node, in which case there will be
no runaway) node and one and only one hub node. One of the most popular unsupervised clustering methods
is the well-known k-means method [28], due to its ease of implementation and efficiency. Interested readers are
referred to some of the related recent contributions including Pérez-Ortega et al. [38], Huang et al. [24], Mourelo
Ferrandez et al. [34], Todosijević et al. [45], Yahyaei et al. [47] and O’Kelly [36].

The main steps of our pHLPwR implemented k-means are described in the Algorithm 1 (k = p the number
of hubs). First, we initialize the centroids [23]. Then, we construct the clusters. Finally, we locate the hub – as
the nearest node to the centroid – and a runaway node for every cluster – chosen to be the farthest node to the
centroid. The reason is that one would expect this node to be sufficiently far from the surrounding area of the
disrupted hub node.

HUB LOCATION PROBLEM IN ROUND-TRIP SERVICE APPLICATIONS S2841

Algorithm 1: pHLPwR k-means.

1 Select the k farthest nodes as initial centroids;
2 Repeat
3 Assign every node to the closest centroid to form k clusters;
4 For each cluster recompute centroids;
5 Until convergence;
6 For each cluster select the nearest node to the centroid as a hub;
7 For each cluster select the farthest node to the centroid as a runaway node;

Once Algorithm 1 terminates, we inter-connect all the hubs (complete graph) and construct the cycles for
each cluster using a greedy constructive heuristic choosing the cheapest edge to add at every step. Our extensive
preliminary computational experiments has revealed that this method is effective and provides quality initial
solution for our hyper-heuristic.

4.1.2. Selection method

The selection procedure is the main component of a heuristic-selection hyper-heuristic. A good selection
procedure leads to a better decisions when choosing the low-level heuristic to apply and therefore finding good
solutions becomes more likely. The selection approach used in this study belongs to the class of reinforcement
learning methods (see [4]). A reinforcement learning approach is based on a scoring system. In this work we use
an on-line learning approach, each time a low-level heuristic is called, its weight value is updated dynamically;
rewarded, if the low-level improves the solution or penalized, if it worsen the solution.

We define the weight variable as in the following [15]:

wi =

(
Ni∑
1

(f in − fout)

)
/Ni. (4.1)

The weight (wi) of a low-level heuristic i is equal to the negative sum (minimization case) of the difference
in objective function values after applying the low-level heuristic i divided by the total number of times that
it has been called during the search where f in is the current objective value, fout is the objective value after
calling the low-level heuristic i and Ni is the number of times the low-level heuristic i was used. This weight
gives an on-average effectiveness of a low-level heuristic. In other terms, a low-level heuristic with a higher
value would probably return better solutions.

The low-level heuristics weights are initialized according to their performances on the initial solution. In fact,
after creating the initial solution, we let every heuristic try to improve it until meeting a stopping criteria (the
number of non-improving solutions). The equation (4.1) is used to calculate the initial weights.

It must be noted that we have also carried out extensive computational results to see if initializing with
random weights would be any better as more exploration should be introduced. However, the conclusion out
of numerous observations was that no clear pattern of impact on the performance of method – neither clearly
improving nor really deteriorating – could be found. Therefore, we have decided to not include them in this
study.

The selection procedure (Algorithm 2) chooses the low-level heuristic i with the highest weight and nci less
or equal to the parameter Rl (Rl is the maximum authorized consecutive calls) and increments the number of
consecutive calls of the low-level heuristic, i, i.e. nci (see line 11)). If Rl = 1, then the selection procedure will
select a sequence of low-level heuristics from the best to the worst.

4.1.3. Low-level heuristics

In the following we define the neighborhood structures and the set of low-level heuristics used in our hyper-
heuristic. We will also briefly explain how each of them performs:

S2842 OMAR KEMMAR ET AL.

Algorithm 2: Select-heuristic.
Input: A finite sets: W = {w1, w2, . . . , wn} of weights, Nc = {nc1, nc2, . . . , ncn} the number of consecutive calls of

each low-level heuristic and Rl the restriction on the number of consecutive calls.
Output: j = arg maxwj

1 max← −∞
2 j ← −1
3 for i← 1 to n do
4 if wi > max and nci ≤ Rl then
5 if j > −1 then
6 ncj ← 0

7 max← wi

8 j ← i

9 else
10 nci ← 0

11 ncj ← ncj + 1
12 return j

Network low-level heuristics. These heuristics tend to improve the solution without altering the membership
of nodes to the clusters.
link-hub: this low-level heuristic adds or deletes a hub edge in the hub-level network for each pair of hubs. While
adding a hub edge between two hub nodes, if not already available, does not harm the feasibility, a deletion can
cause infeasibility and disconnectedness in the hub-level network in which case the solution is discarded.
link-runaway: add and/or delete a runaway connection to get a new runaway-level network. The number of
runaway connections incident to each runaway node must not exceed 2.
new-cycle-links: for the cycle attached to the hub node k:

– Destroy the spoke-level network by removing all the spoke arcs of the cycle k.
– choose a node i as a start and use the nearest neighbor heuristic to create a solution for the traveling

salesman problem (TSP) of the nodes in the cluster and complete the tour.

Distribution low-level heuristics. These local searches try to improve every cycle without changing the
number of nodes allocated to it (swapping between nodes).
swap-cycle-nodes: for each spoke node i allocated to cycle k:

– Find the nearest node j to the node i (j allocated to cycle k).
– Swap the positions of the spokes i and j on the spoke-level network.

swap-spoke-runaway: for every spoke node, we swap this node with its corresponding runaway node such
that the spoke becomes runaway and the runaway becomes a spoke.
swap-spoke-hub: we swap every spoke with its corresponding hub such that the spoke node becomes the hub
and the hub node becomes a spoke node.
swap-different-cycle: for each spoke node i allocated to hub k:

– Find the nearest hub l to the hub k.
– Find a node among the spokes allocated to hub l, say spoke j, which is the nearest node to the spoke i.
– Swap the spoke i with the spoke j so that the spoke i takes the position of spoke j in the cycle attached to

the hub node l and the other way around.

Structure low-level heuristics. The objective is to find the best cluster composition (moving nodes among
clusters).
move-spoke-nearest-cycle: for each spoke node i allocated to hub node k:

HUB LOCATION PROBLEM IN ROUND-TRIP SERVICE APPLICATIONS S2843

– Find the nearest hub l to the hub k.
– Find a node among spokes allocated to hub l, say spoke j, which is the nearest node to the spoke i.
– Remove spoke i from cycle attached to the hub node k.
– Add the spoke node i in cycle attached to the hub node l before/after the spoke j in the spoke-level network.

move-spoke-nearest-node: this low-level heuristic finds for a given spoke node i allocated to a hub node
k, the nearest spoke node j in the whole network (not only in the nearest cycle to k as seen in the precedent
low-level heuristic). After finding the spoke node j with its corresponding hub node l:

– Removes the spoke node i from cycle attached to the hub node k.
– Add the spoke node i to cycle attached to the hub node l before/after the spoke node j in the spoke-level

network.

4.1.4. Hyper-heuristic procedure

While in meta-heuristics the search space is usually the space of solutions and the main goal is to find the best
solution, in a hyper-heuristic, the search space is the space of low-level heuristics and therefore the objective is
to find, at each step, the best low-level heuristic to apply in order to obtain the best feasible solution. Before
explaining our algorithm process we give two definitions to ease understanding.

Move acceptance strategy. The solution obtained at the end of an invocation of a low-level heuristic can
be accepted or rejected according to the move acceptance strategy being used. In the case of our algorithm, we
use a random walk acceptance criteria, where a solution is accepted regardless of its quality. This strategy adds
some noise to the search path, which avoids premature convergence to a local optimum.

Perturbation heuristic. The role of this heuristic is to prevent getting stuck in a local optima by giving
distant solutions. In other terms, the objective is to push towards more exploration to search possibly unexplored
areas in the search space rather than immediately improving the current solution.

– destroy : it partially destroys a solution. For each hub with more than n/p allocated spoke nodes, the cycle
is disconnected by removing all the corresponding spoke edges.

– reallocate : every disconnected spoke is reallocated to the nearest hub among the current hub nodes.
– construct : for each hub and its corresponding spoke nodes, spoke edges are added step by step using the

nearest neighbor heuristic in order to reconstruct a new cycle.

In order to increase the likelihood of escaping from the local optima and finding a promising solution search
space area, the perturbation heuristic accepts as input, the best-found solution rather than the latest visited
node.

Our hyper-heuristic starts with the calculation of the initial weights according to the definition seen in
Section 4.1.2. The low-level heuristic with the highest weight is designated. Subsequently, the best solution
found so far and its objective value are recorded in x′ and min, respectively. If x′ is the best solution found
during the process, it will be stored in x∗ and its objective function value in top. At every call to a low-level
heuristic i, its weight wi is updated according to (4.1). The perturbation heuristic is called d times before
reaching the stopping criteria and takes, x∗, as an entry. We set our termination criteria as the number of
consecutive non-improving moves, Nlimit, or the time limit, Tlimit. A tabu list Tl is also added. The tabu list is
a short-term memory that holds the recently visited solutions to prevent the same solutions to be reconsidered
in the near future and a possible cycling in the same search space area. The tabu tenure that provides good
results often grows with the size of the problem, that is why we have chosen n as the tabu tenure. In other
terms, a solution remains tabu for n iterations then becomes non-tabu.

One can summarize the algorithm process in seven main steps (see Algorithm 3). (1) the low-level heuristics
weights are initialized (line 2), (2) After each Nlimit/d non-improving moves (line 7) the perturbation heuristic
is called on the best-found solution (line 8), otherwise the low-level heuristic with the best performance so far,
is applied on the current solution (line 10), (3) the neighborhood is explored for the best solution, which is
not in the tabu list (line 16). The solution is then considered as current incumbent solution x′, even if it is a

S2844 OMAR KEMMAR ET AL.

Table 2. The parameters used in Algorithm 3.

Parameter Definition

d The number of perturbation heuristic calls to escape from a local optimum
Tl The tabu list
nbr iter The number of successive worsening moves
Tlimit The time limit
Nlimit The number of worsening moves tolerated
sols An array of solutions
x′ The current solution (incumbent)
x∗ The best solution found

non-improving move (line 18), (4) the incumbent solution found x′ is added to the tabu list Tl and if the size
of Tl exceeds n, the oldest solution is removed in a first-in, first-out (FIFO) scheme (line 20). (5) the weight of
the low-level heuristic is updated (line 21), (6) if the current solution improves over the best-found solution, we
update the best-found solution, x∗, (7) steps 2–7 are iterated until the termination criteria is met (line 6).

The parameters of our algorithm are presented in Table 2.

4.2. Variable neighborhood search approach

Our hyper-heuristic is a rather comprehensive and complete framework and our goal is not to present a second
metaheuristic approach as a state-of-the-art method for this problem. Our aim is to show how a combination
of components of our hyper-heuristic would perform in the absence of hyper-heuristic settings. Therefore, a
variable neighborhood search (VNS) [31] scheme perhaps makes this comparison more reasonable and can be
referred to as a comparable counterpart to our hyper-heuristic.

Let N = {N1, ..., Nkmax
} be a set of neighborhood structures. The Algorithm 4 iterates over four main

steps until the stopping criteria is met (line 6): (1) calls the Shaking heuristic with neighborhood structure
Ni (line 8), (2) performs the LocalSearch procedure (line 9), (3) updates the current solution in x∗ (line 12)
if an improvement is observed (line 11), (4) examines the subsequent neighborhood (Ni+1) if no improvements
reported (line 17).

The aim of the Shaking procedure is to change and explore other interesting search space areas in the
neighborhood Nk and to avoid the local optimum. On the other hand, the role of the LocalSearch procedure
is exploring and discovering the descent direction within neighborhood Nk to reach a local optimum. Figure 6
summarizes the VNS scheme.

For a fair comparison between the two algorithms, we have used the low-level heuristics of the hyper-heuristic
to construct the Shaking neighborhoods and the LocalSearch procedure. We considered the perturbation
operators as the Shaking neighborhoods, and the other low-level heuristics as the LocalSearch procedure (see
Sect. 4.1.3). In doing so, every solution obtained with the hyper-heuristic can be obtained by the VNS algorithm
as well. Our implemented version of VNS has the same stopping criteria as the hyper-heuristic (time limit Tlimit

or non-improving moves Nlimit).
Interested readers on the VNS applications in HLPs are referred to the recent works in the literature Dai

et al. [14], Serper and Alumur Alev [43], Rahmaniani et al. [39], Jarboui et al. [25] and Pérez et al. [37].

4.3. Cutting planes

As the proposed model is not a compact one, valid inequalities (3.24) and (3.25) need to be separated on the
fly and upon violation.

HUB LOCATION PROBLEM IN ROUND-TRIP SERVICE APPLICATIONS S2845

Algorithm 3: Hyper-heuristic.
Input: Data instance, Rl, d, Tlimit and Nlimit

Output: The best solution found
1 x′ ← Initial solution();
2 Weight initialization(x′);
3 x∗ ← x′

4 top← Eval(x∗)
5 nbr iter ← 0
6 while nbr iter ≤ Nlimit and time < Tlimit do
7 if ((nbr iter mod(Nlimit/d)) = 0) then
8 sols← Perturbation(x∗)

9 else
10 sols← select heuristic(x′)

11 x′ ← sols(0) // the first solution of the array of solutions sols
12 min← Eval(x′)
13 i← 1
14 while i ≤ nbr sols do
15 cost← Eval(sols(i))
16 if min > cost and Not tabu(Tl, sols(i)) then
17 min← cost
18 x′ ← sols(i)

19 i + +

20 Update tabu(Tl, x
′)

21 Update weights();
22 if min < top then
23 x∗ ← x′

24 top← min
25 nbr iter ← 0

26

27 nbr iter + +

28 return x*

Figure 6. VNS basic scheme.

S2846 OMAR KEMMAR ET AL.

Algorithm 4: Implemented VNS.
Input: Data, a set of neighborhood structures N = {N1, N2, . . . , Nkmax}, Nlimit and Tlimit

Output: The best solution found
1 x′ ← Initial solution();
2 top← Eval(x′)
3 x∗ ← x′

4 i← 0
5 nbr iter ← 1
6 while nbr iter ≤ Nlimit and time < Tlimit do
7 i← i mod(imax) (imax is the number of neighborhood structures)
8 x′ ← Shaking(x′, Ni)
9 x′ ← LocalSearch(x′)

10 cost← Eval(x′)
11 if cost < top then
12 x∗ ← x′

13 top← cost
14 nbr ite← 0
15 i−−
16 nbr ite← nbr ite + 1
17 i + +

18 return x*

Separation of valid inequalities (3.24) and (3.25). Let s be a dummy node, V be the set of nodes visited
and G′(V ∪ {s}, A) a directed graph. For each i establish an arc from s to every j with capacity x̄ij , if x̄ij > 0.
Then, add an arc (i, j) with capacity ȳij for ȳij > 0. Now, if we push one unit of flow from s destined to a node i,
then i must receive a volume of flow equivalent to

∑
j x̄ij . A set S ⊂ V where i ∈ S, s /∈ S defines a cut of

δ+(S)(δ−(S)) if the cut capacity is less than
∑

j x̄ij . S will deliver valid inequalities of (3.24) (3.25).

5. Computational results

Due to the confidentiality, we are only able to report our results on the instances generated based on the
well-known Australian Post (AP) dataset [19]. The fixed costs are generated based on the distance and flow to
get realistic costs as in the following (see [20]):

– Hub nodes: Fk =
(∑n

i=1

∑n
j=1,j 6=i wij/maxi 6=k dik

)
× 10e8, where maxi 6=k dik is the distance between the

most remote location to k. If this distance is a large number, the node k is far from the remaining nodes
and therefore Fk is less expensive.

– runaway nodes: Gk = 1
2

(∑n
i=1

∑n
j=1,j 6=i wij/maxi6=k dik

)
× 10e8. Gk is calculated in the same way as Fk

but slightly cheaper than hub nodes.
– Hub edges: Ikl =

(
wkl/dkl

maxi,j 6=i wij/dij

)
× 10e7. This function is based on the distance and flow to get the

importance of each edge and its cost. A high cost Ikl means that the edge k − l transits a high flow wkl

and(or) k is close to l.
– runaway edge: Tkl = 1

2

(
wkl/dkl

maxi,j 6=i wij/dij

)
× 10e7. Tkl is calculated with respect to Ikl(a runaway edge is less

expensive than a hub edge).
– Spoke edge: Skl = 1

4

(
wkl/dkl

maxi,j 6=i wij/dij

)
× 10e7. Skl is calculated with respect to Ikl (a spoke edge is less

expensive than a hub and runaway edge).

The costs were generated according to the importance of each node and edge. The more a node or a edge is
important, the higher the cost is.

HUB LOCATION PROBLEM IN ROUND-TRIP SERVICE APPLICATIONS S2847

The name of each instance is referred as nwwpxx yy zz where ww is the number of nodes, xx is the number
of hubs, yy is the hub-level discount factor α and zz is the runaway connection discount factor λ (α ≤ λ ≤ 1).
Three combinations have been taken into account, namely, (α, λ) ∈ {(0.6, 0.8), (0.8.0.9), (0.9, 1)} to avoid too
many similarities and have a better approximation of real-life cases. λ = 1 does not distinguish between the
spoke connection and a runaway connection.

The algorithms were implemented in C++ and CPLEX 12.8.0 was used as MIP solver for solving our math-
ematical model for different instances. The experiments were performed on an Intel 2.10 GHz core i7 CPU with
8 GB RAM running on Windows 10.

In the tables below, MIP-HLPwR refers to the exact branch-and-cut method (solving with CPLEX and
separating from among the exponential number of constraints), H-HLPwR stands for the hyper-heuristic method
and VNS-HLPwR refers to the prescribed VNS method.

5.1. Branch-and-cut approach

In this section, we examine only the computational behavior of the MIP model when CPLEX is being
used as a modern (equipped with callbacks) MIP solver and the exponential constraints are separated via a
IloUserCutCallback (see Sect. 4.3). The time limit was set to 86 400 s (i.e. 1 day) and the tolerance ε is equal
to 1e-6. Constraints (3.24) and (3.25) were separated at every integer node (feasible solution).

The results are reported in Table 3 where “Obj. Val.” is the objective value of the best solution found.
“NSols” represent the number of feasible solutions found; “E.T.” stands for the execution time; the column
“GAP” reports the relative gap returned by CPLEX upon termination; “Nnodes” gives the number of nodes
processed by CPLEX; “Status” reports the status of CPLEX when termination criteria is met; “best obj.”
reports the best lower bound found by CPLEX and “Ncuts” represents the number of separated sub-tour
elimination cuts.

Generally speaking, the objective value increases with the size of the instance and for the same instance size,
n, the smaller p construct an upper envelop on the objective function of instances with a higher p (see Fig. 7b).

Figure 7a shows the relation between α and λ with the computational difficulties of the problem. For the
same instance size, the smaller α and λ are, the higher is the computational time needed to prove optimality.
Indeed, the smallest execution times recorded are for α = 0.9, λ = 1 (see Tab. 3) where runaway connections
offers no advantage over the spoke edges. As we only had provably optimal solutions for up to size n = 15,
Figure 7a depicts only up to this size.

Most of the instances with less than 20 nodes were solved to optimality in less than 24 h. However, for 15–25
nodes, CPLEX often finds a feasible solution but needs more time to prove optimality. CPLEX encounters
serious difficulties when dealing with instances of more than 20 nodes – even delivering a feasible solution
remains a challenge.

We observe that the number of cuts added correlates to the number of hub nodes p. The lower the p is,
compared to the number of nodes n, the higher is the number of cuts to be separated. This sounds reasonable
since the smaller p/n is, the more nodes will sit on every cycle and as such, we may need more sub-tours to be
eliminated. For n = 15, p = 7, no cuts are added because every cycle has at most three nodes and as such, we
may not obtain sub-tours.

It must be noted that the number of sub-tour elimination separated remains reasonable.

5.2. Hyper-heuristic vs VNS

The results of the hyper-heuristic and VNS approaches are depicted in Table 4 for small size instances and
Table 5 for medium and large size instances. Again, “Obj. Val.” is the objective value of the best solution found.
“NSols” represent the number of distinct feasible solutions encountered along the search, “E.T.” stands for the
execution time, the column “GAP” in Table 4 reports the relative GAP between the best-known solution of the
hyper-heuristic (respectively best-known solution of VNS) and the best solution found by CPLEX. In Table 5

S2848 OMAR KEMMAR ET AL.

Table 3. Computational results of MIP-HLPwR.

Instance Obj. Val. NSols. E.T. (s) GAP (%) Nnodes Status Best Obj. NCuts

n10p3 0.6 0.8 77 593 660.780 10 659.868 0.000 3558 Optimal 77 593 660.780 66
n10p3 0.8 0.9 82 365 794.641 7 725.919 0.000 3826 Optimal 82 365 794.641 83

n10p3 0.9 1 85 258 929.966 14 557.875 0.000 3560 Optimal 85 258 929.966 87
n11p3 0.6 0.8 20 358 494.269 24 8293.729 0.000 16 369 Optimal 20 358 494.269 125

n11p3 0.8 0.9 21 375 615.575 11 6526.427 0.000 13 438 Optimal 21 375 615.575 98

n11p3 0.9 1 22 051 911.670 18 6646.141 0.000 15 101 Optimal 22 051 911.670 94
n11p4 0.6 0.8 17 597 082.029 10 772.829 0.000 2633 Optimal 17 597 082.029 34

n11p4 0.8 0.9 19 128 595.920 14 1049.542 0.000 3929 Optimal 19 128 595.920 29

n11p4 0.9 1 19 835 503.663 10 562.119 0.000 2391 Optimal 19 835 503.663 26
n12p4 0.6 0.8 20 492 068.237 14 10 546.571 0.000 18 470 Optimal 20 492 068.237 87

n12p4 0.8 0.9 21 780 501.640 10 6276.293 0.000 11 316 Optimal 21 780 501.640 55

n12p4 0.9 1 22 833 868.689 10 7252.798 0.000 13 666 Optimal 22 833 868.689 61
n13p5 0.6 0.8 22 572 799.697 15 13 185.484 0.000 16 054 Optimal 22 572 799.697 53

n13p5 0.8 0.9 24 523 121.813 12 10 762.899 0.000 14 012 Optimal 24 523 121.813 42
n13p5 0.9 1 25 878 687.968 8 9460.868 0.000 14 012 Optimal 25 878 687.968 64

n14p5 0.6 0.8 39 620 089.247 16 86 407.689 3.151 33 465 Feasible 38 371 289.728 79

n14p5 0.8 0.9 43 344 082.949 17 86 410.295 3.401 32 961 Feasible 41 869 544.721 108
n14p5 0.9 1 45 209 210.686 11 79 831.093 0.000 47 822 Optimal 45 209 210.686 76

n14p6 0.6 0.8 36 633 192.377 7 10 972.735 0.000 8570 Optimal 36 633 192.377 20

n14p6 0.8 0.9 40 507 279.264 11 10 087.959 0.000 8771 Optimal 40 507 279.264 24
n14p6 0.9 1 42 934 170.429 9 6991.121 0.000 7914 Optimal 42 934 170.429 24

n15p6 0.6 0.8 42 721 023.156 7 58 676.703 0.000 17 714 Optimal 42 721 023.156 47

n15p6 0.8 0.9 48 534 512.566 14 86 405.381 4.848 19 267 Feasible 46 181 503.431 59
n15p6 0.9 1 50 737 550.187 8 78 024.244 0.000 33 688 Optimal 50 737 550.187 44

n15p7 0.6 0.8 40 866 011.253 9 11 010.160 0.000 9771 Optimal 40 866 011.253 0

n15p7 0.8 0.9 45 711 471.247 8 7544.630 0.000 4825 Optimal 45 711 471.247 0
n15p7 0.9 1 48 506 492.760 10 4706.846 0.000 3577 Optimal 48 506 492.760 0

n20p6 0.6 0.8 84 052 376.665 2 86 408.736 40.104 377 Feasible 50 343 311.492 92
n20p6 0.8 0.9 91 036 839.818 6 86 410.608 32.523 318 Feasible 61 428 873.974 50

n20p6 0.9 1 94 125 937.923 6 86 411.965 26.786 642 Feasible 68 912 769.711 66

n25p7 0.6 0.8 – 0 86 400.794 ∞ 52 AbortTimeLim 47 856 545.739 0
n25p7 0.8 0.9 137 309 250.562 1 86 404.304 56.389 45 Feasible 59 881 449.529 14

n25p7 0.9 1 – 0 86 401.029 ∞ 57 AbortTimeLim 65 785 424.857 5

n30p8 0.6 0.8 – 0 86 402.557 ∞ 27 AbortTimeLim 47 775 456.176 0
n30p8 0.8 0.9 – 0 86 402.089 ∞ 23 AbortTimeLim 60 085 139.739 0

n30p8 0.9 1 – 0 86 402.542 ∞ 24 AbortTimeLim 66 130 965.810 0

n35p8 0.6 0.8 – 0 86 405.147 ∞ 8 AbortTimeLim 46 776 775.958 0
n35p8 0.8 0.9 – 0 86 417.112 ∞ 7 AbortTimeLim 58 880 661.267 0
n35p8 0.9 1 – – – – – Failed – –
n40p8 0.6 0.8 – – – – – Failed – –

n40p8 0.8 0.9 – – – – – Failed – –
n40p8 0.9 1 – – – – – Failed – –

the “GAP” column is calculated using the best-known solution of the hyper-heuristic and best-known solution
of VNS (a negative GAP means that VNS gave a better solution than the hyper-heuristic).

The time limit Tlimit was set to 600 s (10 min). For the hyper-heuristic, the parameter Rl is set to 3 (number
of consecutive call limit) and d is set to 2 (i.e. the perturbation heuristic is called two times before reaching the
stopping criterion).

The main difference between the two approaches is that in VNS, the change of neighborhood structure does
not rely on any learning mechanism and each time a neighborhood is no longer capable of improving a solution,
changing neighborhood i to the next neighborhood i + 1 is done without taking into account any information

HUB LOCATION PROBLEM IN ROUND-TRIP SERVICE APPLICATIONS S2849

Figure 7. Numerical results of the MIP. (a) MIP time. (b) Objetive value comparison.

gathering or memory usage. On the other hand, the hyper-heuristic uses a learning mechanism to allow the
overall process of algorithm to evolve with each iteration and to choose each time the best low-level heuristic
to apply.

One can conclude from Table 4 that the solutions obtained by the hyper-heuristic are in general better than
those of VNS, since VNS reaches the optimal solution only once (i.e. for n10p3 0.8 0.9) and the maximum gap
recorded among all instances is equal to 5.877%, while the hyper-heuristic fails only once in finding the optimal
solution (see n13p5 0.8 0.9) and there the gap is equal to 0.003%. The hyper-heuristic approach always finds a
solutions better than the feasible solutions returned by CPLEX and in such a case the minimal gap recorded is
equal to −41.261%.

The Table 6 elaborates on the solution structures obtained by the hyper-heuristic for medium and large size
instances where “S.N.” and “H.N.” are the smallest and highest number of nodes per cycle, respectively. The
ratio between the smallest and highest number of nodes and the average nodes per cycle (n/p) are given in
“(S.N. × p)/n” and “(H.N. × p)/n”, respectively (if (S.N. × p)/n = (H.N. × p)/n, then the number of nodes
associated with each hub is similar). The column “Hub Nodes” depicts the hub nodes obtained for each instance.
The hub level network structure given in column “H. Net” where “C” stands for a complete graph and “NC”
for incomplete graph.

Generally speaking in our obtained solutions structures (Tab. 6), there is always a hub with a high number
of spokes allocated to and a hub with a low number of spokes allocated to (no solution had the same number
of spokes for each hub). We observed that the hub-level network is rarely a complete graph and that the hub
nodes change with α and λ, which shows the impact of α and λ on the network structure.

Figure 8a shows that the computational time increases as instance size grows. On the other hand, the lower
α and λ are, the less is the computational time needed for large size instances.

The objective value for each instance of the same size should decrease with the decreasing α and λ but we
notice that for large instances this is not the case (see Fig. 8b). Knowing that the hyper-heuristic is deterministic
and as such the algorithm follows the same path at each execution, one may conclude that if we find a value
with a certain α and λ, we might find a better value with smaller α and λ but it is not really the case. As we

S2850 OMAR KEMMAR ET AL.

Table 4. Results of the hyper-heuristic and the VNS algorithms for small size instances.

H-HLPwR VNS-HLPwR
Instance Obj. Val. NSols. E.T. (s) Hyper

cplex
GAP(%)

Obj. Val. NSols. E.T. (s) VNS

CPLEX
GAP (%)

n10p3 0.6 0.8 77 593 660.780 195 474 25.483 0.000 78 951 975.770 228 597 8.596 1.750

n10p3 0.8 0.9 82 365 794.641 133 999 14.252 0.000 82 365 794.641 244 174 9.298 0.000

n10p3 0.9 1 85 258 929.966 138 029 20.347 0.000 85 496 741.889 242 701 9.220 0.278
n11p3 0.6 0.8 20 358 494.269 244 826 37.637 0.000 20 449 738.680 273 972 12.202 0.448

n11p3 0.8 0.9 21 375 615.575 285 467 43.101 0.000 21 605 841.250 283 294 12.507 1.077

n11p3 0.9 1 22 051 911.670 181 412 25.000 0.000 22 057 943.393 316 949 14.218 0.027
n11p4 0.6 0.8 17 597 082.029 139 594 20.934 0.000 17 607 279.345 291 906 12.814 0.057

n11p4 0.8 0.9 19 128 595.920 121 142 19.751 0.000 20 044 347.146 291 449 12.869 4.787

n11p4 0.9 1 19 835 503.663 168 888 24.797 0.000 20 133 884.670 309 126 13.679 1.504
n12p4 0.6 0.8 20 492 068.237 219 046 30.155 0.000 20 511 547.066 343 459 17.670 0.095

n12p4 0.8 0.9 21 780 501.640 254 423 36.231 0.000 21 875 191.009 349 674 18.175 0.434
n12p4 0.9 1 22 833 868.689 151 099 23.888 0.000 23 059 461.255 352 199 17.891 0.987

n13p5 0.6 0.8 22 572 799.697 321 806 103.566 0.000 22 573 390.712 426 627 25.768 0.002

n13p5 0.8 0.9 24 524 102.513 162 854 27.975 0.003 25 063 539.424 452 671 26.931 2.203
n13p5 0.9 1 25 878 687.968 264 994 44.231 0.000 26 122 787.882 413 235 24.779 0.943

n14p5 0.6 0.8 39 613 147.399 373 042 26.972 –0.017 40 151 760.535 252 445 17.786 1.341

n14p5 0.8 0.9 43 252 132.757 330 950 45.807 –0.212 45 891 712.452 241 370 17.015 5.877
n14p5 0.9 1 45 209 210.686 802 421 121.697 0.000 45 724 316.173 478 423 33.085 1.139

n14p6 0.6 0.8 36 633 192.842 153 804 28.315 0.000 36 924 259.216 347 141 24.675 0.794

n14p6 0.8 0.9 40 507 279.264 196 164 33.912 0.000 40 714 563.974 311 890 21.565 0.511
n14p6 0.9 1 42 934 170.429 155 273 25.361 0.000 43 386 641.062 322 208 22.180 1.053

n15p6 0.6 0.8 42 721 023.156 353 664 29.042 0.000 44 480 326.779 354 487 28.907 4.118

n15p6 0.8 0.9 48 129 799.470 239 356 26.547 –0.833 48 537 186.317 350 375 28.715 0.005
n15p6 0.9 1 50 737 550.187 221 696 25.756 0.000 50 826 302.243 335 377 27.480 0.174

n15p7 0.6 0.8 40 866 011.253 355 698 28.966 0.000 42 345 232.627 419 349 33.688 3.619
n15p7 0.8 0.9 45 711 471.247 103 437 17.140 0.000 47 162 507.343 417 507 34.280 3.174

n15p7 0.9 1 48 506 492.760 274 968 29.948 0.000 49 589 687.830 432 517 34.716 2.233

n20p6 0.6 0.8 73 507 081.315 259 064 41.472 –12.546 82 417 191.184 103 146 15.603 –1.945
n20p6 0.8 0.9 81 841 623.929 112 504 18.744 –10.100 83 359 922.804 124 391 19.141 –8.432

n20p6 0.9 1 85 614 920.755 304 312 47.851 –9.042 88 920 174.914 104 588 16.196 –5.530

n25p7 0.8 0.9 80 654058.676 133 604 38.692 –41.261 83 149 139.101 97 433 26.715 –39.443

see with the case α = 0.8 and λ = 0.9, the algorithm has more difficulties to find a good solution and got stuck
in a local optimum.

Figure 9a shows that the larger the instance size is, the more time consuming is the hyper-heuristic compared
to VNS before it terminates, which is an indication that the hyper-heuristic does not get stuck easily in local
optimum and so the mechanisms added to the hyper-heuristic to avoid the local optimum works quite well.

In terms of number of feasible solutions found, VNS is better than hyper-heuristic since in 66% of the cases
it finds more solutions due to the VNS intensification heuristic, which goes deeper on every search space area
(see Fig. 9b). However in terms of solution quality, which is an important aspect of the comparison, Figure 9c
depicts that the hyper-heuristic finds better solutions than VNS and is more reliable and stable. In fact, the
hyper-heuristic delivers good solutions on most of the instances while having found less solutions than VNS.

Table 5 gives an overview of the results of the hyper-heuristic and VNS for large solution space, where finding
a promising area containing eventually the optimal solution becomes difficult. We observe that the highest gaps
are recorded for large size instances with large solution space. This gaps are due to the fact that the hyper-
heuristic chooses the promising area to explore based on knowledge obtained from the low-level heuristic quality.
In other terms, the hyper-heuristic is smarter than VNS, which is based on no learning mechanism.

HUB LOCATION PROBLEM IN ROUND-TRIP SERVICE APPLICATIONS S2851

Table 5. Results of the hyper-heuristic and the VNS algorithms for medium and large size
instances.

H-HLPwR VNS-HLPwR
Instance Obj. Val. NSols. E.T. (s) Obj. Val. NSols. E.T. (s) Hyper

VNS
GAP
(%)

n40p4 0.6 0.8 148 138 786.090 49 401 49.286 149 117 126.105 67 801 68.441 0.660
n40p4 0.8 0.9 161 114 461.028 58 541 57.061 171 562 517.275 43 309 44.606 6.484
n40p4 0.9 1 161 968 384.722 69 170 68.254 167 445 833.970 75 164 74.924 3.381
n40p5 0.6 0.8 113 005 244.011 115 219 111.825 128 879 209.738 64 899 66.036 14.047
n40p5 0.8 0.9 131 221 540.285 121 454 115.098 139 019 009.543 73 150 73.674 5.942
n40p5 0.9 1 154 162 076.939 52 450 60.923 160 013 968.489 68 049 62.954 3.795
n40p6 0.6 0.8 103 984 445.129 55 506 54.058 106 714 188.198 62 957 63.155 2.625
n40p6 0.8 0.9 104 767 544.042 89 533 87.950 108 889 345.755 77 408 78.165 3.934
n40p6 0.9 1 11 4734 524.101 58 083 57.155 113 796 258.989 80 747 80.090 –0.817
n50p4 0.6 0.8 157 909 765.531 14 552 27.030 169 438 116.289 21 700 38.844 7.300
n50p4 0.8 0.9 159 532 981.095 13 617 25.428 171 028 682.989 19 643 34.615 7.205
n50p4 0.9 1 158 102 762.268 20 520 37.662 174 131 059.797 29 592 52.548 10.137
n50p5 0.6 0.8 134 342 531.901 22 852 42.470 137 296 304.548 26 579 48.386 2.198
n50p5 0.8 0.9 141 056 845.686 32 446 58.329 154 072 647.019 24 924 44.502 9.227
n50p5 0.9 1 143 075 031.912 90 191 156.127 143 168 823.947 106 488 186.436 0.065
n50p6 0.6 0.8 111 256 527.176 74 433 119.888 117 844 078.512 77 151 122.628 5.921
n50p6 0.8 0.9 121 089 305.695 68 729 110.447 130 724 405.366 36 941 64.917 7.957
n50p6 0.9 1 125 815 623.235 83 985 136.744 128 589 484.436 45 055 81.393 2.204
n60p4 0.6 0.8 169 002 097.262 42 159 108.108 173 947 891.806 35 096 98.594 2.926
n60p4 0.8 0.9 175 188 580.124 24 738 65.251 187 725 676.808 56 915 158.611 7.156
n60p4 0.9 1 178 425 530.893 43 249 112.677 187 685 325.418 35 681 98.582 5.189
n60p5 0.6 0.8 154 967 528.427 23 333 73.805 160 569 265.881 55 401 160.104 3.614
n60p5 0.8 0.9 162 381 946.539 73 275 210.158 157 765 154.746 51 213 151.268 –2.843
n60p5 0.9 1 166 500 564.721 43 549 131.203 167 795 253.727 39 734 116.069 0.777
n60p6 0.6 0.8 122 545 418.790 77 638 226.746 145 232 971.584 88 203 223.523 18.513
n60p6 0.8 0.9 146 113 509.668 41 377 128.693 142 914 535.634 46 197 136.241 –2.189
n60p6 0.9 1 147 703 870.562 29 562 92.513 161 694 330.738 41 292 119.069 9.471
n70p4 0.6 0.8 192 428 066.145 28 486 138.032 179 045 038.186 40 338 179.023 –6.954
n70p4 0.8 0.9 206 603 867.306 34 696 172.072 228 474 586.016 36 444 160.256 10.585
n70p4 0.9 1 224 829 414.796 28 259 130.518 274 812 800.508 25 042 108.964 22.231
n70p5 0.6 0.8 149 207 903.263 112 073 438.122 161 857 851.826 151 284 578.071 8.478
n70p5 0.8 0.9 161 817 036.066 79 393 315.656 183 353 913.235 41 039 186.520 13.309
n70p5 0.9 1 187 921 152.051 100 723 414.303 193 965 901.238 69 184 261.476 3.216
n70p6 0.6 0.8 174 772 974.482 35 851 163.751 158 446 540.981 49 174 202.502 –9.341
n70p6 0.8 0.9 171 566 552.198 39 451 197.199 188 350 564.183 46 674 214.103 9.782
n70p6 0.9 1 158 806 582.863 46 254 221.485 167 322 855.988 73 401 278.733 5.362
n80p4 0.6 0.8 202 846 715.417 41 299 283.303 191 264 990.591 59 527 372.048 –5.709
n80p4 0.8 0.9 218 864 328.032 41 299 292.682 240 718 670.313 55 967 354.896 9.985
n80p4 0.9 1 220 342 768.129 71 331 475.963 265 826 532.426 46 223 278.956 20.642
n80p5 0.6 0.8 188 885 325.674 45 660 314.367 170 681 155.371 46 211 285.240 –9.637
n80p5 0.8 0.9 180 485 726.339 65 814 440.213 199 346 133.417 41 350 275.257 10.449
n80p5 0.9 1 170 580 133.611 64 659 429.543 180 860 955.637 98 915 541.556 6.026
n80p6 0.6 0.8 183 101 479.379 26 980 170.270 187 349 115.698 58 557 350.209 2.319

S2852 OMAR KEMMAR ET AL.

Table 5. continued.

H-HLPwR VNS-HLPwR
Instance Obj. Val. NSols. E.T. (s) Obj. Val. NSols. E.T. (s) Hyper

VNS
GAP
(%)

n80p6 0.8 0.9 183 912 599.384 75 699 490.697 177 529 525.433 67 853 432.838 –3.470
n80p6 0.9 1 156 996 820.272 75 653 496.245 181 233 695.779 70 842 437.536 15.437
n90p4 0.6 0.8 202 791 891.331 41 883 360.565 217 394 590.144 40 908 331.785 7.200
n90p4 0.8 0.9 224 482 869.606 51 825 Tlimit 223 106 286.458 57 486 473.120 –0.613
n90p4 0.9 1 229 610 546.982 55 191 533.389 226 589 361.793 51 524 422.694 –1.315
n90p5 0.6 0.8 166 226 023.566 64 500 Tlimit 207 363 553.578 79 885 Tlimit 24.747
n90p5 0.8 0.9 184 094 110.772 28 865 275.663 185 995 172.129 73 340 Tlimit 1.032
n90p5 0.9 1 167 416 557.335 66 038 591.735 207 381 153.700 54 811 454.516 23.871
n90p6 0.6 0.8 165 366 131.295 64 900 Tlimit 193 071 250.058 78 046 Tlimit 16.753
n90p6 0.8 0.9 200 491 533.112 64 651 Tlimit 194 814 834.654 63 863 526.826 –2.831
n90p6 0.9 1 195 582 760.605 66 573 Tlimit 182 757 300.005 72 799 Tlimit –6.557
n100p4 0.6 0.8 214 772 996.844 52 494 Tlimit 212 171 192.914 53 987 575.176 –1.211
n100p4 0.8 0.9 267 448 010.993 59 359 Tlimit 256 225 646.356 58 265 Tlimit –4.196
n100p4 0.9 1 219 585 842.209 48 640 Tlimit 255 975 181.789 55 463 588.572 16.571
n100p5 0.6 0.8 182 589 034.595 51 399 Tlimit 207 742 381.588 46 475 518.437 13.775
n100p5 0.8 0.9 207 744 504.144 54 316 Tlimit 220 157 176.003 56 684 599.679 5.974
n100p5 0.9 1 215 090 122.749 63 343 Tlimit 216 977 957.144 52 448 545.058 0.877
n100p6 0.6 0.8 167 022 456.992 52 533 Tlimit 181 540 345.551 53 437 Tlimit 8.692
n100p6 0.8 0.9 182 849 599.132 46 595 Tlimit 185 083 903.866 55 913 Tlimit 1.221
n100p6 0.9 1 168 247 877.285 51 697 Tlimit 194 676 676.274 55 197 Tlimit 15.708

Table 6. Hyper-heuristic structures information for medium and large size instances.

Instance S.N. (S.N.× p)/n H.N. (H.N.× p)/n Hub Nodes H. Net.

n40p4 0.6 0.8 6 0.60 11 1.10 9;17;2;25 C
n40p4 0.8 0.9 3 0.30 13 1.30 18;3;11;25 NC
n40p4 0.9 1 3 0.30 17 1.70 7;27;26;25 NC
n40p5 0.6 0.8 6 0.75 10 1.25 4;19;30;28;25 NC
n40p5 0.8 0.9 5 0.62 13 1.62 1;26;17;27;34 NC
n40p5 0.9 1 4 0.50 20 2.50 1;8;17;6;9 NC
n40p6 0.6 0.8 4 0.60 10 1.50 4;19;30;36;11;2 NC
n40p6 0.8 0.9 6 0.90 8 1.20 18;12;36;26;11;19 NC
n40p6 0.9 1 5 0.75 10 1.50 10;28;35;17;11;19 NC
n50p4 0.6 0.8 7 0.56 20 1.60 6;12;13;35 NC
n50p4 0.8 0.9 8 0.64 18 1.44 23;15;13;22 NC
n50p4 0.9 1 8 0.64 16 1.28 14;12;31;22 C
n50p5 0.6 0.8 6 0.60 17 1.70 5;15;13;31;6 NC
n50p5 0.8 0.9 2 0.20 16 1.60 5;23;13;12;6 NC
n50p5 0.9 1 2 0.20 20 2.00 23;31;13;12;42 NC
n50p6 0.6 0.8 3 0.36 14 1.68 32;34;39;33;15;7 NC
n50p6 0.8 0.9 4 0.48 10 1.20 12;45;6;37;36;13 NC
n50p6 0.9 1 5 0.60 13 1.56 3;32;23;31;6;22 NC
n60p4 0.6 0.8 2 0.13 24 1.60 26;42;47;41 NC
n60p4 0.8 0.9 7 0.46 29 1.93 26;42;44;8 NC

HUB LOCATION PROBLEM IN ROUND-TRIP SERVICE APPLICATIONS S2853

Table 6. continued.

Instance S.N. (S.N.× p)/n H.N. (H.N.× p)/n Hub Nodes H. Net.

n60p4 0.9 1 8 0.53 22 1.46 14;40;1;27 NC
n60p5 0.6 0.8 7 0.58 22 1.83 13;41;7;15;24 NC
n60p5 0.8 0.9 3 0.25 27 2.25 13;1;0;14;2 NC
n60p5 0.9 1 5 0.41 24 2.00 12;1;26;3;40 NC
n60p6 0.6 0.8 8 0.80 16 1.60 29;54;6;1;41;18 NC
n60p6 0.8 0.9 2 0.20 18 1.80 14;0;6;1;13;15 NC
n60p6 0.9 1 2 0.20 17 1.70 2;26;14;1;18;15 NC
n70p4 0.6 0.8 5 0.28 30 1.71 38;48;46;21 NC
n70p4 0.8 0.9 8 0.45 35 2.00 55;48;3;31 NC
n70p4 0.9 1 9 0.51 38 2.17 10;48;53;34 C
n70p5 0.6 0.8 9 0.64 25 1.78 8;48;3;21;46 NC
n70p5 0.8 0.9 6 0.42 26 1.85 8;48;18;4;63 NC
n70p5 0.9 1 6 0.42 26 1.85 6;5;20;45;46 NC
n70p6 0.6 0.8 6 0.51 21 1.80 38;48;18;3;46;34 NC
n70p6 0.8 0.9 5 0.42 20 1.71 10;44;2;43;31;19 NC
n70p6 0.9 1 3 0.25 25 2.14 21;15;2;3;6;14 NC
n80p4 0.6 0.8 2 0.10 37 1.85 54;78;23;22 NC
n80p4 0.8 0.9 6 0.30 39 1.95 54;53;8;21 C
n80p4 0.9 1 8 0.40 39 1.95 54;71;8;7 C
n80p5 0.6 0.8 2 0.12 31 1.93 54;3;6;21;71 NC
n80p5 0.8 0.9 13 0.81 20 1.25 49;53;36;35;37 NC
n80p5 0.9 1 13 0.81 22 1.37 54;57;52;33;20 NC
n80p6 0.6 0.8 4 0.30 31 2.32 49;6;63;1;4;33 NC
n80p6 0.8 0.9 8 0.60 22 1.65 49;11;35;2;22;18 NC
n80p6 0.9 1 7 0.52 24 1.80 56;54;35;2;22;52 NC
n90p4 0.6 0.8 15 0.66 37 1.64 23;10;55;25 NC
n90p4 0.8 0.9 11 0.48 40 1.77 4;10;18;19 NC
n90p4 0.9 1 11 0.48 32 1.42 50;10;55;24 NC
n90p5 0.6 0.8 13 0.72 28 1.55 37;21;7;8;13 NC
n90p5 0.8 0.9 12 0.66 24 1.33 55;2;8;25;31 NC
n90p5 0.9 1 11 0.61 28 1.55 55;42;8;39;30 NC
n90p6 0.6 0.8 6 0.40 30 2.00 55;2;18;61;26;17 NC
n90p6 0.8 0.9 3 0.20 33 2.20 55;10;16;23;44;5 NC
n90p6 0.9 1 5 0.33 33 2.20 55;10;8;23;38;4 NC
n100p4 0.6 0.8 11 0.44 41 1.64 73;31;6;69 NC
n100p4 0.8 0.9 6 0.24 54 2.16 66;31;32;69 NC
n100p4 0.9 1 15 0.6 41 1.64 66;3;29;69 NC
n100p5 0.6 0.8 7 0.35 36 1.80 69;27;77;50;9 NC
n100p5 0.8 0.9 6 0.30 38 1.90 69;27;77;50;7 NC
n100p5 0.9 1 6 0.30 37 1.85 69;31;13;47;9 NC
n100p6 0.6 0.8 4 0.24 29 1.74 6;48;9;47;44;7 NC
n100p6 0.8 0.9 4 0.24 33 1.98 10;48;12;46;44;7 NC
n100p6 0.9 1 4 0.24 26 1.56 6;21;9;47;27;68 NC

S2854 OMAR KEMMAR ET AL.

Figure 8. Numerical results of the H-HLPwR. (a) Execution time. (b) Objective value.

Our hyper-heuristic algorithm has demonstrated its effectiveness both in solution quality and computational
time even for larger size instances when compared to comparable methods.

6. Summary and conclusion

In this study, we have introduced a new variant of the hub location problem that we referred to as p-Hub
Location Problem with Runaway. The runaway nodes introduced in this work are of special interest in service
networks based on round-trips where a set of nodes being served by one single hub node whose failure can disrupt

HUB LOCATION PROBLEM IN ROUND-TRIP SERVICE APPLICATIONS S2855

Figure 9. Numerical results comparison between the hyper-heuristic and VNS. (a) Time
comparison. (b) Number of solutions found. (c) Objective value comparison.

S2856 OMAR KEMMAR ET AL.

an important part of the supply network. Based on what is being practiced in real life, we have proposed a
mathematical model of this problem.

For the proposed mathematical model with exponential number of constraints, we provided separation rou-
tines to separate from such constraints in a branch-and-cut manner in CPLEX. Yet, due to the complexity of
the problem, CPLEX can only tackle small size instances. We therefore proposed a hyper-heuristic approach
for our problem. This approach consists of a set of low-level heuristics and a selection heuristic. The objective
of the selection heuristic is to choose the best low-level heuristic to apply at different phases in order to find the
best solutions. Our selection heuristic is guided by a reinforcement learning method based on a scoring system.
We also improved the efficiency of our hyper-heuristic by adding a powerful perturbation heuristic and a tabu
list. In order to be as close as possible to a fair comparison of the hyper-heuristic results, we proposed a VNS
meta-heuristic implemented using the same hyper-heuristic low-level heuristics and components.

Our computational experiments confirm that whenever the optimal solution is known, the hyper-heuristic is
almost always able to find it in much less computational time. On the other hand, the VNS approach, which
inherits the same local search methods, seldom finds an optimal solution. The two approaches find feasible
solutions in a reasonable amount of time but the absolute superiority remains with hyper-heuristic both for
quality and computational time.

Further work directions include polyhedral analysis, identifying some tightening valid inequalities to improve
the polyhedral description and primal decompositions. Furthermore, as the hyper-heuristic shown to be promis-
ing, more enhanced learning mechanisms, designing a richer portfolio of low-level heuristics and more sophisti-
cated selection methods deserve more attention.

Acknowledgements. The authors would like to thank the Directorate General of Scientific Research and Technological
Development (DGRSDT), Ministry of Higher Education and Scientific Research for their support in this work. In addition,
work of last author has been supported by the PGMO, the Gaspard Monge Program for Optimisation and Operational
Research in the framework of BENMIP project.

References

[1] S.A. Alumur, H. Yaman and B.Y. Kara, Hierarchical multimodal hub location problem with time-definite deliveries. Transp.
Res. Part E: Logistics Transp. Rev. 48 (2012) 1107–1120.

[2] N. Azizi, Managing facility disruption in hub-and-spoke networks: formulations and efficient solution methods. Ann. Oper.
Res. 272 (2019) 159–185.

[3] O. Berman, Z. Drezner and G.O. Wesolowsky, The transfer point location problem. Eur. J. Oper. Res. 179 (2007) 978–989.

[4] E.K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan and R. Qu, Hyper-heuristics: a survey of the state of
the art. J. Oper. Res. Soc. 64 (2013) 1695–1724.

[5] J.F. Campbell, Location and allocation for distribution systems with transshipments and transportion economies of scale. Ann.
Oper. Res. 40 (1992) 77–99.

[6] J.F. Campbell, Integer programming formulations of discrete hub location problems. Eur. J. Oper. Res. 72 (1994) 387–405.

[7] S.R. Cardoso, A.P. Barbosa-Póvoa, S. Relvas and A.Q. Novais, Resilience metrics in the assessment of complex supply-chains
performance operating under demand uncertainty. Omega 56 (2015) 53–73.

[8] G. Carello, F.D. Croce, M. Ghirardi and R. Tadei, Solving the hub location problem in telecommunication network design:
a local search approach. Networks 44 (2004) 94–105.

[9] P. Carroll, B. Fortz, M. Labbé and S. McGarraghy, Improved formulations for the ring spur assignment problem, in Network
Optimization. INOC 2011, edited by J. Pahl, T. Reiners and S. Voß. Vol. 6701 of Lecture Notes in Computer Science. Springer,
Berlin-Heidelberg (2011) 24–36.

[10] S. Çetiner, C. Sepil and H. Süral, Hubbing and routing in postal delivery systems. Ann. Oper. Res. 181 (2010) 109–124.

[11] S. Chaharsooghi, F. Momayezi and N. Ghaffarinasab, An adaptive large neighborhood search heuristic for solving the reliable
multiple allocation hub location problem under hub disruptions. Int. J. Ind. Eng. Comput. 8 (2016) 191–202.

[12] I. Contreras, M. Tanash and N. Vidyarthi, Exact and heuristic approaches for the cycle hub location problem. Ann. Oper.
Res. 258 (2017) 655–677.

[13] P.I. Cowling, G. Kendall and E. Soubeiga, A hyperheuristic approach to scheduling a sales summit. In: Practice and Theory
of Automated Timetabling III, PATAT ’00. Springer (2001) 176–190.

[14] W. Dai, J. Zhang, X. Sun and S. Wandelt, Hubbi: iterative network design for incomplete hub location problems. Comput.
Oper. Res. 104 (2019) 394–414.

[15] K. Danach, Hyperheuristics in Logistics. Ph.D. thesis, Ecole Centrale de Lille (2016).

HUB LOCATION PROBLEM IN ROUND-TRIP SERVICE APPLICATIONS S2857

[16] K. Danach, S. Gelareh and R. Neamatian Monemi, The capacitated single-allocation p-hub location routing problem: a
lagrangian relaxation and a hyper-heuristic approach. EURO J. Transp. Logistics. 8 (2019) 597–631.

[17] J. Denzinger and M. Fuchs, High performance ATP systems by combining several AI methods. In: Vol. 1 of IJCAI’97.
Proceedings of the 15th International Joint Conference on Artificial Intelligence. Morgan Kaufmann Publishers Inc. (1997)
102–107.

[18] J. Ebery, M. Krishnamoorthy, A. Ernst, and N. Boland, The capacitated multiple allocation hub location problem: formulations
and algorithms. Eur. J. Oper. Res. 120 (2000) 614–631.

[19] A.T. Ernst and M. Krishnamoorthy, Efficient algorithms for the uncapacitated single allocation p-hub median problem. Location
Sci. 4 (1996) 139–154.

[20] S. Gelareh and S. Nickel, Hub location problems in transportation networks. Transp. Res. Part E: Logistics Transp. Rev. 47
(2011) 1092–1111.

[21] S. Gelareh, N. Maculan, P. Mahey and R.N. Monemi, Hub-and-spoke network design and fleet deployment for string planning
of liner shipping. Appl. Math. Model. 37 (2013) 3307–3321.

[22] S. Gelareh, R. Neamatian Monemic and F. Semet, Capacitated bounded cardinality hub routing problem: model and solution
algorithm. Technical report Preprint arXiv:1705.07985 (2017).

[23] Z. He, Farthest-point heuristic based initialization methods for k-modes clustering. CoRR, abs/cs/0610043 (2006).

[24] D. Huang, Z. Liu, X. Fu and P. Blythe, Multimodal transit network design in a hub-and-spoke network framework. Transp.
A: Transp. Sci. 14 (2018) 706–35.

[25] B. Jarboui, H. Derbel, S. Hanafi and N. Mladenovic, Variable neighborhood search for location routing. Comput. Oper. Res.
40 (2013) 47–57.

[26] H. Kim and M. O’Kelly, Reliable p-hub location problems in telecommunication networks. Geogr. Anal. 41 (2009) 283–306.

[27] M.J. Kuby and R.G. Gray, The hub network design problem with stopovers and feeders: the case of federal express. Transp.
Res. Part A: Policy Practice 27 (1993) 1–12.

[28] J.B. MacQueen, Some methods for classification and analysis of multivariate observations. In: Vol. 1 of Proceedings of the fifth
Berkeley Symposium on Mathematical Statistics and Probability. University of California Press (1967) 281–297.

[29] E. Martins de Sá, I. Contreras and J.-F. Cordeau, Exact and heuristic algorithms for the design of hub networks with multiple
lines. Eur. J. Oper. Res. 246 (2015) 186–198.

[30] E. Martins de Sá, I. Contreras, J.-F. Cordeau, R. Saraiva de Camargo and G. de Miranda, The hub line location problem.
Transp. Sci. 49 (2015) 500–518.

[31] N. Mladenović and P. Hansen, Variable neighborhood search. Comput. Oper. Res. 24 (1997) 1097–1100.

[32] M. Mohammadi, R. Tavakkoli-Moghaddam, A. Siadat and Y. Rahimi, A game-based meta-heuristic for a fuzzy bi-objective
reliable hub location problem. Eng. App. Artif. Intel. 50 (2016) 1–19.

[33] R.N. Monemi and S. Gelareh, The ring spur assignment problem: new formulation, valid inequalities and a branch-and-cut
approach. Comput. Oper. Res. 88 (2017) 91–102.

[34] S. Mourelo Ferrandez, T. Harbison, T. Weber, R. Sturges and R. Rich, Optimization of a truck-drone in tandem delivery
network using k-means and genetic algorithm. J. Ind. Eng. Manage. 9 (2016) 374.

[35] M. O’Kelly, Hub facility location with fixed costs. Papers Regional Sci. 71 (1992) 293–306.

[36] M. O’Kelly, A clustering approach to the planar hub location problem. Ann. Oper. Res. 40 (1993) 339–353.

[37] M.P. Pérez, F.A. Rod́ıguez and J.M. Moreno-Vega, A hybrid VNS-path relinking for the p-hub median problem. IMA J.
Manage. Math. 18 (2007) 157–171.

[38] J. Pérez-Ortega, N.A.-O. Nelva, A. Vega-Villalobos, R. Pazos-Rangel, C. Zavala-Diaz and A. Martinez-Rebollar, The K-means
algorithm evolution, edited by K. Sud, P. Erdogmus and S. Kadry. In: Introduction to Data Science and Machine Learning.
IntechOpen, Rijeka (2020).

[39] R. Rahmaniani, G. Rahmaniani and A. Jabbarzadeh, Variable neighborhood search based evolutionary algorithm and several
approximations for balanced location-allocation design problem. Int. J. Adv. Manuf. Technol. 72 (2014) 145–159.

[40] I. Rodriguez-Martin, J.J. Salazar González and H. Yaman, A branch-and-cut algorithm for the hub location and routing
problem. Comput. Oper. Res. 50 (2014) 161–174.

[41] I. Rodriguez-Martin, J.J. Salazar González and H. Yaman, The ring k-rings network design problem: model and branch-and-cut
algorithm. Networks 68 (2016) 130–140.

[42] B. Rostami, N. Kämmerling, C. Buchheim and U. Clausen, Reliable single allocation hub location problem under hub break-
downs. Comput. Oper. Res. 96 (2018) 15–29.

[43] E. Serper and S. Alumur Alev, The design of capacitated intermodal hub networks with different vehicle types. Transp. Res.
Part B: Methodol. 86 (2016) 51–65.

[44] D. Skorin-Kapov, J. Skorin-Kapov and M. O’Kelly, Tight linear programming relaxations of uncapacitated p-hub median
problems. Eur. J. Oper. Res. 94 (1996) 582–593.

[45] R. Todosijević, D. Urosevic, N. Mladenovic and S. Hanafi, A general variable neighborhood search for solving the uncapacitated
r-allocation p-hub median problem. Optim. Lett. 11(2017) 1109-1121.

[46] UNCTAD, Review of maritime transport. In: United Nations Conference on Trade and Development, New York and Geneva
(2018).

[47] M.Yahyaei, M. Bashiri and Y. Garmeyi, Multicriteria logistic hub location by network segmentation under criteria weights
uncertainty. Int. J. Eng. Trans. B: App. 27 (2014) 1205–1214.

https://arxiv.org/abs/1705.07985

S2858 OMAR KEMMAR ET AL.

[48] M. Yahyaei, M. Bashiri and M. Randall, A model for a reliable single allocation hub network design under massive disruption.
Appl. Soft Comput. 82 (2019) 105561.

[49] H. Yaman, B.Y. Kara and B. Tansel, The latest arrival hub location problem for cargo delivery systems with stopovers. Transp.
Res. Part B: Methodol. 41 (2007) 906–919.

[50] K. Yang, Y. Liu and G. Yang, An improved hybrid particle swarm optimization algorithm for fuzzy p-hub center problem.
Comput. Ind. Eng. 64 (2013) 133–142.

[51] M. Zhalechian, S.A. Torabi and M. Mohammadi, Hub-and-spoke network design under operational and disruption risks. Transp.
Res. Part E: Logistics Transp. Rev. 109 (2018) 20–43.

[52] W. Zhong, Z. Juan, F. Zong and H. Su, Hierarchical hub location model and hybrid algorithm for integration of urban and
rural public transport. Int. J. Distr. Sensor Netw. 14 (2018).

	Introduction
	Liner shipping industry.
	Distribution of humanitarian aids.

	Literature review
	Contribution and scope

	Problem statement
	Mixed-integer linear programming formulations
	Hyper-heuristic and VNS approaches for pHLPwR
	Hyper-heuristic approach
	Initial solution
	Selection method
	Low-level heuristics
	Network low-level heuristics.
	Distribution low-level heuristics.
	Structure low-level heuristics.

	Hyper-heuristic procedure
	Move acceptance strategy.
	Perturbation heuristic.

	Variable neighborhood search approach
	Cutting planes
	Separation of valid inequalities (3.24) and (3.25).

	Computational results
	Branch-and-cut approach
	Hyper-heuristic vs VNS

	Summary and conclusion
	References

