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MAXIMUM LIKELIHOOD ESTIMATION IN LOCATION-SCALE FAMILIES
USING VARIED L RANKED SET SAMPLING

AMER I. AL-OMARTI*

Abstract. Recently, a generalized ranked set sampling (RSS) scheme has been introduced which
encompasses several existing RSS schemes, namely varied L RSS (VLRSS), and it provides more precise
estimators of the population mean than the estimators with the traditional simple random sampling
(SRS) and RSS schemes. In this paper, we extend the work and consider the maximum likelihood
estimators (MLEs) of the location and scale parameters when sampling from a location-scale family of
distributions. In order to give more insight into the performance of VLRSS with respect to SRS and
RSS schemes, the asymptotic relative precisions of the MLEs using VLRSS relative to that using SRS
and RSS are compared for some usual location-scale distributions. It turns out that the MLEs with
VLRSS are more precise than those with the existing sampling schemes.

Mathematics Subject Classification. 62D05.

Received August 2, 2020. Accepted October 28, 2020.

1. INTRODUCTION

In many agricultural, biological, environmental and ecological studies, the main focus is on the development
of cost-effective, well-designed and efficient sampling schemes that could help us in achieving observational
economy. The traditional ranked set sampling (RSS) method is one of those cost-effective sampling methods
that can help us in accomplishing such objectives at an affordable cost. In most of the environmental, biomedical
and ecological studies, there are situations where taking the actual measurement is costly, destructive and time-
consuming whereas ranking a small set of selected units is relatively easy and reliable. For example, hazardous
waste sites with different contamination levels can be ranked by a visual inspection of soil discoloration but
actual measurements of toxic chemical is expensive and time-consuming.

The RSS scheme was first introduced by Mclntyre [19] for estimating mean pasture and forage yields. The
mathematical background of the RSS scheme was developed by Takahasi and Wakimoto [25]. They proved that
the sample mean with RSS is an unbiased estimator of the population mean, and it is more efficient than the
sample mean based on simple random sampling (SRS). In a later study, Dell and Clutter [11] further proved
that, despite the presence of ranking errors, the RSS mean still remains an unbiased estimator of the population
mean, and it is at least as efficient as the mean estimator with SRS. In the last decades, there have been new
advancements and improvements in the traditional RSS scheme. Samawi et al. [22] and Muttlak [20] suggested
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extreme RSS (ERSS) and median RSS (MRSS) schemes for estimating the population mean, respectively.
A generalized RSS scheme was suggested by Al-Naseer [1] that is based on the idea of L moments, namely
L RSS (LRSS), for estimating the population mean. The LRSS scheme encompasses several existing RSS
schemes, including RSS, MRSS, quartile RSS schemes. Jemain et al. [17,18] suggested multistage extreme and
median ranked set samples for estimating the population mean, respectively. Al-Omari and Raqab [6] proposed
truncation-based RSS (TBRSS) for estimating the population mean and median. Haq et al. [13] proposed partial
RSS (PRSS) scheme for estimating the population mean, median and variance. The PRSS scheme is a cost-
efficient alternative to the RSS scheme. Recently, Haq et al. [15] suggested another variation of the RSS scheme,
namely varied LRSS (VLRSS), that encompasses several existing RSS schemes. The VLRSS scheme is not only
a cost-efficient alternative to the traditional RSS scheme but it also provides a more precise estimator of the
population mean than those with the existing RSS schemes. Haq et al. [15] considered the VLRSS Al-Omari and
Al-Nasser [5] suggested ratio estimation using multistage median ranked set sampling. Al-Omari and Al-Nasser
[7] considered the problem of goodness of fit tests for logistic distribution based on Phi-divergence. Zamanzade
and Al-Omari [26] suggested a new modification of ranked set sampling for estimating the population mean
and variance. Recently, Al-Nasser and Al-Omari [2] introduced the minimax ranked set sampling method for
estimating the population mean. Haq and Al-Omari [12] proposed a new Shewhart control chart for monitoring
process mean using partially ordered judgment subset sampling. Al-Omari [4] investigated the mean estimation
using modified robust extreme ranked set sampling method. Zamanzade and Mahdizadeh [27] used the ranked
set sampling method with extreme ranks in estimating the population proportion. Al-Omari et al. [8] studied
the estimation of the stress-strength reliability for exponentiated Pareto distribution using median and ranked
set sampling methods. Rui et al. [21] considered ranked set sampling design for estimating the parameter of the
log-extended exponential-geometric distribution. Samuh et al. [23] investigated the estimation of the parameters
of the new Weibull-Pareto distribution using ranked set sampling. Haq et al. [16] suggested a new modification
of the RSS called as paired double ranked set sampling. Al-Nasser et al. [3] suggested extreme ranked repetitive
sampling control charts and Haq et al. [14] proposed mixed ranked set sampling method.

The VLRSS scheme is as follows. Select the value of the VLRSS coefficient k = [ma] such that 0 < o < 0.5,
where [t] is a largest integer value less than or equal to ¢, and m is the set size. Identify 2km; units from the
target population, and partition these units into 2k sets, each of size m units. Rank the units within each set
with respect to the study variable or by an inexpensive method. It is also possible to rank the values of the study
variable by using information on the ranks of the auxiliary variable provided there exists sufficient correlation
between the study and auxiliary variables. Select the vth and (m; — v + 1)th smallest ranked units from the
first and last k sets, respectively. In order to select the remaining (m — 2k) units, identify m(m — 2k) units from
the target population. Randomly partition these units into m — 2k sets, each of size m units. Then select the
1th smallest ranked unit from the (i + k)th set for i = k+ 1,...,m — k. This completes one cycle of a varied L
ranked set sample of size m. The whole procedure can be repeated r times to get a varied ranked set sample
of size m with total sample size n = mr units. Note here that v is a positive integer, i.e., v = 1,2,...,[m1/2],
and m; > m or m; < m depending on the time, cost- or budget-constraints. It is interesting to note that the
traditional RSS, ERSS, MRSS, LRSS, TBRSS, and PRSS schemes are special cases of the VLRSS schemes. For
more details we refer to Haq et al. [15].

In recent years, there have been a considerable research on the maximum likelihood estimators (MLESs) of
the location and scale parameters under the RSS schemes. Stokes [24] examined both maximum likelihood and
best linear unbiased estimator of the location and scale parameters for a specific family of distributions using
RSS. A modified MLE (MMLE) using RSS for estimating general parameters of a location-scale distribution
was suggested by Zheng and Al-Saleh [28]. Balci et al. [9] derived the MMLESs for the population mean and
variance under RSS and showed their superiority over the usual RSS estimators. Chen et al. [10] considered
MLE of the scale parameter of a scale family of distributions using moving extremes RSS (MERSS) scheme.
They showed that the MLE based on MERSS is considerably better than that based on SRS.
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In this paper, we extend the work on VLRSS scheme and consider the MLEs of the location and scale
parameters when sampling from a location-scale family of distributions. The MLEs using VLRSS are compared
with the MLEs based on SRS and RSS schemes.

The rest of the paper is organized as follows. In Section 2, we consider the MLEs using VLRSS, and also
derive the corresponding Fisher information matrices. A numerical study is conducted in Section 3 in order to
gain insight into the performances of the proposed and existing MLEs. Finally, Section 4 concludes the paper.

2. MAXIMUM LIKELIHOOD ESTIMATION

In this section, we consider the MLEs for the unknown parameters (location and scale) of a location-scale
family of distributions under the VLRSS scheme.

Let X1, X5, ..., X, be a random sample of size n from a location-scale family of distributions with probability
density function (PDF) (1/0)f ((x — p)/o) and cumulative distribution function (CDF) F ((x — p)/o), where
1 and o are the location and scale parameters, respectively. The likelihood function under SRS is

L:L_Hf(zi)? (2.1)

where Z; = (X; — p)/o.
From equation (2.1) the log-likelihood function is

In(L) = —nln(o) + Zln f(Z). (2.2)

Let X(1:n), X(2:n),- - -» X(n:n) be the ordered statistics obtained from a simple random sample of size n. Then
the PDF and CDF of the ith order statistic X(;.,)(1 < i < n) are respectively, given by

0 (Zum) = sy (F G}~ 0= F (Zan)} ™ 1 (2. 23)
6 (Zum) = 32 () AF (Zam)} {1~ F (2™ 2

where Z(zn) = (X(zn) - ‘LL)/O'
The likelihood function under the VLRSS scheme is defined as

m—k
H {Hg z(v ml)] H g z(ml —v+1: m1)j) H g (Zi+k(i:m)j)} ; (25)

j=1 i=k-+1 i=k+1

where Zyeim+); = (Xjem=); — p)/o for v* = v or v* = m; —v + 1 and m* = my or m* = m.
Here, Xj(y=.m+); is the v*th order statistic from the ith sample of size m* in the jth cycle, i.e.,
X’L(’U m*) =0 th mln{Xllj,Xigj,...,Xim*j}.

Using equation (2.5), the log-likelihood function is

2k
1 Z {Z In g z(v m1) Z In g z(ml —v+1imq)j Z In g z+k(7, m)j )} . (26)

j=1 i=k+1 i=k+1
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Note here that for every fixed ¢ and j, Zi(v*:m=)j and Z(p*m>) are identically distributed, i.e., Zi(v*:m=)j 4
Z(y+.m+)- Using equations (2.3) and (2.4), equation (2.6) can be simplified as

r k
In(L*) = ¢ — mrin(o) + Z Z {(w =D F (Zi(yimy);) + (m1 —0)In {1 = F (Ziw:my);) }

j=1i=1
r 2k
+1n f (Zi(v:ml)j)} + Z Z {(ml - ’U)hl F (Zi(mlfv%»l:ml)j)
j=1i=k+1

+ (U - 1)111 {1 - F (Zi(mlf'qul:ml)j)} +1In f (Zi(mlf'qul:ml)j)}
r m—k
+3° 3 A= F (Zigamy;) + (m = {1 = F (Zigamy;) } + 10 f (Zigmys) }> - (27)

j=1i=k+1

where C' is a constant—independent of 1 and o.

2.1. One parameter families

Suppose that the scale parameter ¢ is known. Then the MLEs of p under SRS and VLRSS schemes, denoted
by fisrs and fiyprss, are the solutions of the following equations, respectively,

dIn(L) _ 1~ f1(2Z)
-5 =0 2.8
B az;ﬂ%) (2.8)
and
0 In(L*) 1< (1) (2) 3)
T = - Z {—(U — 1)Ai(v:m1)j + (my — U)Ai('u:ml)j — Ai(v:ml)j}
j=1i=1
1 T 2k W . o
1 2 3
+; {7(m1 B U)Ai(ml_v"'l:ml)j +(v- 1)Ai(m1—v+1:m1)j B Ai(m1—v+l:m1)j}
j=1i=k+1
1 r m—k W . "
. 1 . 2 3
+E {_(Z - I)AiJrk(i:m)j + (m— Z)AiJrk(i:m)j - Ai+k(i:m)j} =0, (2.9)
j=1li=k+1
where
A0 _ S i)

i(tim*)j — m’

@ _ S (Giemy)
itm )i | _p (Zi(t:m*)j) ’

a® S Fim),
W f (Zitme)s)

For the probability distributions satisfying the condition

o [ xT—p [0 T—
i (50 [t (557

it is well-known that the Fisher information about p contained in a simple random sample of size n can be

obtained as

Isps(p) = —Ez (52(;2(2@) ,
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where Ez(-) is the mathematical expectation with respect to Z. Similarly, under the VLRSS scheme, we have
0?In(L*)
I - g, (=221
vLRss (1) z ( N

Thus we again differentiate equations (2.8) and (2.9) to obtain

. n F(Z)\?
Isps(p) = ;EZ (f(Z)) (2.10)
and
Founss(t) = By [~r(o = DAD, o (my —0)AD), -~ AC
VLRSS\H) = 2 Z v i(v: m1)j+ M1 = V) (pimy)y T 1(71 mi)j
Tk @) (5) (©)
+ ;EZ |:_(m1 - U)Ai(v:ml—v+1)j + (U - 1)Ai('u:m1—v+1)j - Ai(v:ml—v-&-l)j}
m—k
r : (4) (5) (6)
+ ? Z Ly |:_(Z - 1)Ai(i:m7i+1)j + <m - Z)Az(z m—i+1)j Az (:m— z+1)]:| (211)
i=k+1
where
am L (Ziggm=);) (A(l) _)2
i(t:m*)j ja (Zi(t:m,*)j) i(tim*)j

! Zz m*)j 2
Wy = T 1 (4

W3 T TF Gyeyy) |V

©  _ " Giwmi) (a3 )2

Ai(t‘m*) T Ai(t‘m*) j '

M f (Zieme ) I

The asymptotic relative precision (RP) of jivrrss with respect to fisrs is given by

) R . I3
lim RP({virss, fisrs) = Ronss(#)

" ) (2.12)
=00 I3Rs ()

which turns out to be independent of r and o.

Now suppose that p is known, and we wish to estimate o by the maximum likelihood method. Then the
MLEs of ¢ under SRS and VLRSS schemes, denoted by dsgs and évyrrss, are the solutions of the following
equations, respectively,

d In(L) no 1= Zif (Zs)
L= Y1 =0 2.13
0o o o ; f(Z) (2.13)
and
8 In(L*) 1 1) @) 3)
1 2 3
T S DBy + 0B = B )
j=11:=1
T 2k
1 (1) 2) (3)
+O’ Z { ml v Bz (vimy—v+1)j + ( )Bi(v mi—v+1)j Bi(v:mlfv%»l)j}
j=1li=k+1
r m—k
1 2 ®3) -
+; { H—k(z m)j + ( >BZ+/€(1 :m)j Bi-l—k(i:m)j} =0, (214)
Jj=1li=k+1
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TABLE 1. Asymptotic RP of fiy,rss with respect to jisgs for N(u,1).

m=2and k=0

1.4805
m=3and k=1
\mp 1 2 3 4 5 6 7 8 9 10

v
1 1.4097 1.7301 1.9611 2.1449 2.2987 2.4315 2.5487 2.6538 2.7491 2.8365
2 —_— 1.7301 2.2292 2.5968 2.8955 3.1499 3.3729 3.5722 3.7528 3.9181
3 —_— —_— 1.9611 2.5968 3.0677 3.4532 3.7843 4.0768 4.3399 4.5798
4 2.1449 2.8955 3.4532 3.9113 4.3062 4.6565 4.9728
5 2.2987 3.1499 3.7843 4.3062 4.7570 5.1577
m=4and k=1

v\mi 1 2 3 4 5 6 7 8 9 10

1 1.8903 2.1306 2.3038 2.4416 2.5570 2.6566 2.7445 2.8233 2.8948 2.9603
2 2.1306 2.5049 2.7806 3.0046 3.1954 3.3627 3.5121 3.6475 3.7715
3 —_— 2.3038 2.7806 3.1337 3.4229 3.6712 3.8906 4.0879 4.2678
4
5

2.4416 3.0046 3.4229 3.7665 4.0627 4.3253 4.5626
2.5570 3.1954 3.6712 4.0627 4.4008 4.7013
m=>5and k=1

v\mp 1 2 3 4 5 6 7 8 9 10

1 2.3888 2.5810 2.7196 2.8299 2.9222 3.0018 3.0722 3.1352 3.1924 3.2449
2 . 2.5810 2.8805 3.1010 3.2802 3.4329 3.5667 3.6863 3.7946 3.8938
3 E— E— 2.7196 3.1010 3.3836 3.6149 3.8136 3.9890 4.1469 4.2908
4
5

2.8299 3.2802 3.6149 3.8897 4.1267 4.3368 4.5267
2.9222  3.4329 3.8136 4.1267 4.3972 4.6376
m=>5and k=2

v\mg 1 2 3 4 5 6 7 8 9 10

1 1.4974 1.8818 2.1590 2.3795 2.5641 2.7235 2.8641 2.9902 3.1046 3.2095
2 —_ 1.8818 2.4808 2.9218 3.2802 3.5856 3.8532 4.0924 4.3090 4.5074
3 —_— —_— 2.1590 2.9218 3.4869 3.9496 4.3469 4.6978 5.0136 5.3014
4
5

2.3795 3.2802 3.9496 4.4993 4.9732 5.3934 5.7731
2.5641 3.5856 4.3469 4.9732 5.5141 5.9950

where
Bi((lt):m*)j - i(t:m*)jA’E(lt):m*)jﬂ
Bi)er; = Zittmo i Al

The Fisher information about ¢ contained in a simple random sample of size n can be obtained as

Tinsto) = Bz ()

Similarly, under the VLRSS scheme, we have

. 9?In(L*
Krss(o) = —Ez <&,(2)> ’

Thus we again differentiate equations (2.13) and (2.14) to obtain

Isps(o) = %Ez {(fo(/Z(Z))> - 1} (2.15)



and

where
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TABLE 2. Asymptotic RP of fiy,rss with respect to figrs for Logistic(u, 1).

m=2and k=0

1.5000
m=3and k=1
v\mi 1 2 3 4 5 6 7 8 9 10
1 1.4667 1.8000 2.0000 2.1333 2.2286 2.3000 2.3556 2.4000 2.4364 2.4667
2 — 1.8000 2.4000 2.8000 3.0857 3.3000 3.4667 3.6000 3.7091  3.8000
3 — — 2.0000 2.8000 3.3714 3.8000 4.1333 4.4000 4.6182 4.8000
4 2.1333 3.0857 3.8000 4.3556 4.8000 5.1636  5.4667
5 2.2286 3.3000 4.1333 4.8000 5.3455  5.8000
m=4and k=1
v\mi 1 2 3 4 5 6 7 8 9 10
1 2.0000 2.2500 2.4000 2.5000 2.5714 2.6250 2.6667 2.7000 2.7273 2.7500
2 — 2.2500 2.7000 3.0000 3.2143 3.3750 3.5000 3.6000 3.6818 3.7500
3 — — 2.4000 3.0000 3.4286 3.7500 4.0000 4.2000 4.3636  4.5000
4 2.5000 3.2143 3.7500 4.1667 4.5000 4.7727 5.0000
5 2.5714 3.3750 4.0000 4.5000 4.9091 5.2500
m=>5and k=1
v\mp 1 2 3 4 5 6 7 8 9 10
1 2.5429 2.7429 2.8629 2.9429 3.0000 3.0429 3.0762 3.1029 3.1247 3.1429
2 — 2.7429 3.1029 3.3429 3.5143 3.6429 3.7429 3.8229 3.8883 3.9429
3 — — 2.8629 3.3429 3.6857 3.9429 4.1429 4.3029 4.4338 4.5429
4 2.9429 3.5143 3.9429 4.2762 4.5429 4.7610 4.9429
5 3.0000 3.6429 4.1429 4.5429 4.8701 5.1429
m=2>5and k=2
v\mg 1 2 3 4 5 6 7 8 9 10
1 1.5714 1.9714 2.2114 23714 2.4857 2.5714 2.6381 2.6914 2.7351 2.7714
2 — 1.9714 2.6914 3.1714 3.5143 3.7714 3.9714 4.1314 4.2623 4.3714
3 — — 2.2114  3.1714 3.8571 4.3714 4.7714 5.0914 5.3532 5.5714
4 2.3714 3.5143 4.3714 5.0381 5.5714 6.0078 6.3714
5 2.4857 3.7714 47714 5.5714  6.2260 6.7714
k
Rprss(o) = EEZ [ (v — 1)02((1v m1)j + (m1 — ’U)CZ((Zv);ml)j - Ci((i);ml)j]
k 1 3
+7EZ |:—’I"(m1 - U)Ci((g:mlftwkl)j + ( )Cz((v :mi—v+1)j T‘Ci((v):mlfv+l)j:|
» Z Bz [~ = DOty + 1= D~ C i

1=k-+1

2Zitmey A BY ’
+ i(t:m*) tm*)] i(tim*)j ’

72 f/(Zz(tm *)j )
)j i(t:m )F<Zz(t m*)j)
/
72 f (Zz(tm*)j)

f/(Z(tm)j)

)j — Titm) f(Zl(t m*)j)

+2Zim) AL

i(t:m*)j

2
()
(t m*)j (Bl(t m*)j) ’

2
(3)
- (Bi(t:m*)j> :

52765

(2.16)
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TABLE 3. Asymptotic RP of 6virss with respect to 6grs for N(0,02).

m=2and k=0

1.1350
m=3and k=1
\mp 1 2 3 4 5 6 7 8 9 10

v

1 0.9944 1.0844 1.2701 1.4845 1.7074 1.9308 2.1513 2.3673 2.5782 2.7836
2 —_— 1.0844 0.9832 1.0445 1.1868 1.3733 1.5850 1.8115 2.0465 2.2861
3 e o 1.2701 1.0445 0.9841 1.0295 1.1418 1.2980 1.4839 1.6904
4 1.4845 1.1868 1.0295 0.9856 1.0214 1.1137 1.2466
5 1.7074 1.3733 1.1418 1.0214 0.9868 1.0164
m=4and k=1

v\mi 1 2 3 4 5 6 7 8 9 10

1 1.0376 1.1051 1.2443 1.4051 1.5723 1.7399 1.9052 2.0673 2.2254 2.3794
2 1.1051 1.0292 1.0751 1.1819 1.3217 1.4805 1.6504 1.8266 2.0063
3 — — 1.2443 1.0751 1.0298 1.0638 1.1481 1.2652 1.4047 1.5595
4
5

1.4051 1.1819 1.0638 1.0309 1.0578 1.1270 1.2267
1.5723 1.3217 1.1481 1.0578 1.0319 1.0541
m=>5and k=1

v\mp 1 2 3 4 5 6 7 8 9 10

1 1.1124 1.1664 1.2778 1.4064 1.5401 1.6742 1.8065 1.9361 2.0626 2.1859
2 — 1.1664 1.1056 1.1424 1.2278 1.3397 1.4667 1.6026 1.7436 1.8874
3 E— E— 1.2778 1.1424 1.1062 1.1334 1.2008 1.2945 1.4061 1.5300
4
5

1.4064 1.2278 1.1334 1.1071 1.1286 1.1839 1.2637
1.5401 1.3397 1.2008 1.1286 1.1078 1.1256
m=>5and k=2

v\mg 1 2 3 4 5 6 7 8 9 10

1 0.9969 1.1049 1.3277 1.5850 1.8525 2.1206 2.3852 2.6444 2.8974 3.1439
2 E— 1.1049 0.9835 1.0570 1.2278 1.4516 1.7056 1.9774 2.2594 2.5469
3 —_— —_— 1.3277 1.0570 0.9845 1.0390 1.1737 1.3612 1.5843 1.8321
4
5

1.5850 1.2278 1.0390 0.9863 1.0294 1.1400 1.2995
1.8525 1.4516 1.1737 1.0294 0.9878 1.0233

The asymptotic RP of 6yyrss with respect to dsrs is given by

. R R I o
lim RP(UVLRSSaUSRS) = \I/E:LS() (217)
el Srs(o)

which also turns out to be independent of r and o.

2.2. Two-parameter families

In order to compare the MLEs of x4 and ¢ under both SRS and VLRSS schemes simultaneously, the Fisher
information matrices I§gg (i, o) and Iy rss(p, o) are to be compared, given by

* _ | f8rs(m) Igrs(n,0)
Tns(0) = [IékRs(N»U) Igrs(0)
Lrirss (1) I\*/LRSS(M’U):| ’ (2.18)

Iyirss (i, 0) = [R?LRSS(H»U) Iyirss(@



where

and
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TABLE 4. Asymptotic RP of yirss with respect to dsrs for Logistic(0, o).

m=2and k=0

1.1503
m=3and k=1
v\mi 1 2 3 4 5 6 7 8 9 10
1 1.0471 1.1473 1.3007 1.4806 1.6702 1.8610 2.0488 2.2316 2.4087 2.5798
2 1.1473  1.1412 1.2149 1.3563 1.5400 1.7486 1.9708 2.1999 2.4315
3 — — 1.3007 1.2149 1.1869 1.2436 1.3654 1.5328 1.7312 1.9504
4 1.4806 1.3563 1.2436 1.2135 1.2594 1.3647 1.5146
5 1.6702 1.5400 1.3654 1.2594 1.2309 1.2693
m=4and k=1
v\mi 1 2 3 4 5 6 7 8 9 10
1 1.1258 1.2010 1.3161 1.4510 1.5932 1.7363 1.8771 2.0143 2.1471 2.2754
2 — 1.2010 1.1965 1.2517 1.3578 1.4956 1.6520 1.8187 1.9905 2.1641
3 E— 1.3161 1.2517 1.2307 1.2732 1.3646 1.4901 1.6389 1.8033
4 1.4510 1.3578 1.2732 1.2507 1.2851 1.3641 1.4765
5 1.5932 1.4956 1.3646 1.2851 1.2637 1.2925
m=>5and k=1
v\mp 1 2 3 4 5 6 7 8 9 10
1 1.2275 1.2876 1.3796 1.4876 1.6014 1.7158 1.8285 1.9382 2.0445 2.1471
2 — 1.2876 1.2840 1.3281 1.4130 1.5232 1.6484 1.7817 1.9192 2.0581
3 E— E— 1.3796 1.3281 1.3113 1.3454 1.4185 1.5189 1.6379 1.7694
4 1.4876 1.4130 1.3454 1.3273 1.3548 1.4180 1.5080
5 1.6014 1.5232 1.4185 1.3548 1.3377 1.3608
m=>5and k=2
v\mg 1 2 3 4 5 6 7 8 9 10
1 1.0419 1.1622 1.3463 1.5622 1.7897 2.0186 2.2440 2.4634 2.6759 2.8812
2 E— 1.1622 1.1549 1.2433 1.4130 1.6335 1.8837 2.1505 2.4254 2.7032
3 —_— —_— 1.3463 1.2433 1.2097 1.2778 1.4239 1.6248 1.8629 2.1259
4 1.5622 1.4130 1.2778 1.2417 1.2967 1.4231 1.6030
5 1.7897 1.6335 1.4239 1.2967 1.2625 1.3086
02In(L
Isps(p,0) = —Ez (808(u)> )
0?In(L*
Lrngss(ms0) = —Ez <30§9M)>
After some simplifications, we obtain
n "(Z)\?
Iigs(p,0) = ;Ez {Zi (J; ((Z:))> }
k
Lprss(p,0) = ;EZ {—r(v — 1)D§(13:m1)j + (my — ’U)Dz((?:ml)j — rDl(?z:ml)j}

k
+ 3By [~(m1 — ) D)
ag

i(vimy—v+1

m—k
+5 Y Bz [-(i-1D
i=k+1

(1) + (m— i)D(Q)

i+k(i:m)j

,; +@=1DY)

i(vimi—v+1)j

i+k(i:m)j

(3)

(3)
i+k(i:m)j

}

Di(v:ml—v+1)j:|

52767

(2.19)

(2.20)
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TABLE 5. Asymptotic RP of dyirss with respect to dyirss for Exponential(o).

m=2and k=0

1.4041
m=3and k=1
\mp 1 2 3 4 5 6 7 8 9 10

v
1 1.3082 1.5776 1.8082 2.0119 2.1956 2.3635 2.5187 2.6633 2.7990 2.9269
2 —_— 1.5776  1.9247 2.2210 2.4900 2.7391 2.9722 3.1918 3.3999 3.5977
3 e o 1.8082 2.2210 2.5582 2.8632 3.1477 3.4164 3.6721 3.9166
4 2.0119 2.4900 2.8632 3.1956 3.5048 3.7975 4.0773
5 2.1956 2.7391 3.1477 3.5048 3.8344 4.1460
m=4and k=1

v\mi 1 2 3 4 5 6 7 8 9 10

1 1.6846 1.8866 2.0596 2.2123 2.3501 2.4760 2.5924 2.7009 2.8026 2.8986
2 1.8866 2.1469 2.3691 2.5709 2.7577 2.9325 3.0973 3.2533 3.4017
3 — — 2.0596 2.3691 2.6221 2.8508 3.0641 3.2657 3.4575 3.6408
4
5

2.2123 2.5709 2.8508 3.1001 3.3320 3.5516 3.7614
2.3501 2.7577 3.0641 3.3320 3.5792 3.8129
m=>5and k=1

v\mp 1 2 3 4 5 6 7 8 9 10

1 2.0840 2.2457 2.3840 2.5063 2.6165 2.7172 2.8103 2.8971 2.9785 3.0553
2 — 2.2457 2.4539 2.6317 2.7931 2.9426 3.0824 3.2142 3.3390 3.4578
3 E— E— 2.3840 2.6317 2.8340 3.0170 3.1877 3.3490 3.5024 3.6491
4
5

2.5063 2.7931 3.0170 3.2165 3.4020 3.5776 3.7455
2.6165 2.9426 3.1877 3.4020 3.5998 3.7867
m=>5and k=2

v\mg 1 2 3 4 5 6 7 8 9 10

1 1.3750 1.6983 1.9750 2.2194 2.4398 2.6413 2.8276 3.0011 3.1639 3.3174
2 —_ 1.6983 2.1147 2.4703 2.7931 3.0920 3.3718 3.6353 3.8850 4.1224
3 —_— —_— 1.9750 2.4703 2.8750 3.2410 3.5823 3.9048 4.2117 4.5050
4
5

2.2194 27931  3.2410 3.6399 4.0109 4.3622 4.6979
2.4398 3.0920 3.5823 4.0109 4.4065 4.7803

where
z((lt):m*)j = Az('(lt):m*)j + Zi(t:m*)jAz('?t):m*)j’
DZ((Zt):m*)j = Az(’(Qt):m*)j + Zi(t5m*)jAz(’(51t):m*)j’
Difimers = Aty + Zittm3Aime
(2.21)
The RP of Igrg(u, o) with respect to Iy res(i, o) is given by
RP (I nss (1. 0), T 1, 0)) = e crsis(4:) (2.22)

~ Det (IyLpss(1,0))
where Det(-) denotes the determinant of (-).
3. NUMERICAL COMPARISONS

In this section, we compare the RPs of the MLEs obtained under SRS and VLRSS schemes. The results
of the Section 2 are applied to the normal, logistic and exponential distributions. The numerical values of the
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TABLE 6. Asymptotic RP of (fivLrss, 6vLrss)’ With respect to (fisrs, srs)’ for N(u,0?).

m=2and k=0

1.6805
m=3and k=1
\mip 1 2 3 4 5 6 7 8 9 10

v
1 1.4019 1.8762 2.4907 3.1840 3.9247 4.6948 5.4831 6.2824 7.0877 7.8956
2 — 1.8762 2.1918 2.7123 3.4364 4.3257 5.3462 6.4711 7.6800 8.9570
3 —_— 2.4907 2.7123 3.0189 3.5550 4.3209 5.2916 6.4401 7.7416
4 3.1840 3.4364 3.5550 3.8550 4.3986 5.1857 6.1992
5 3.9247 4.3257 4.3209 4.3986 4.6945 5.2425
m=4and k=1

v\mi 1 2 3 4 5 6 7 8 9 10

1 1.9613 2.3544 2.8666 3.4307 4.0203 4.6221 5.2289 5.8365 6.4420 7.0439
2 e 2.3544  2.5780 2.9894 3.5510 4.2234 4.9785 5.7964 6.6627 7.5668
3 — — 2.8666 2.9894 3.2272 3.6414 4.2149 4.9225 5.7422 6.6558
4
5

3.4307 3.5510 3.6414 3.8830 4.2976 4.8746 5.5970
4.0203 4.2234 4.2149 4.2976 4.5411 4.9555
m=>5and k=1

v\mi 1 2 3 4 5 6 7 8 9 10

1 2.65672 3.0104 3.4750 3.9799 4.5005 5.0257 5.5499 6.0702 6.5848 7.0928
2 —_— 3.0104 3.1848 3.5426 4.0275 4.5990 5.2314 5.9077 6.6163 7.3490
3 E— E— 3.4750 3.5426  3.7428 4.0971 4.5793 5.1639 5.8308 6.5648
4
5

3.9799 4.0275 4.0971 4.3062 4.6573 5.1345 5.7203
4.5005 4.5990 4.5793 4.6573 4.8713 5.2200
m=>5and k=2

v\mi 1 2 3 4 5 6 7 8 9 10

1 1.4927 2.0793 2.8665 3.7715 4.7499 5.7754 6.8315 7.9074 8.9954 10.0903
2 — 2.0793 2.4398 3.0884 4.0275 5.2047 6.5722 8.0923 9.7358 11.4798
3 —_— 2.8665 3.0884 3.4329 4.1035 5.1021 6.3947 7.9431 9.7127
4
5

3.7715  4.0275 4.1035 4.4378 5.1192 6.1486 7.5024
4.7499  5.2047 5.1021 5.1192 5.4471 6.1349

asymptotic RPs of the MLEs based on VLRSS with respect to the MLEs based on SRS are computed using
numerical integration in Mathematica 8.0, and are given in Tables 1-6. Various values of the sample sizes m,
my and v are considered.

Based on Tables 1-6, the following remarks can be concluded:

— From Tables 1 and 2, for estimating the population mean of the normal and logistic distributions using
VLRSS and SRS, it can be seen that the RP values are increasing as the values of m; and v are increasing.
As an example, for estimating the mean of the normal distribution, when m; = 1 and 10, the RP values are
1.4097 and 2.8365, respectively when v = 1. Also, when m; =9, v = 1 and 5, the RP values are 2.7491 and
4.7570, respectively.

— Tables 1 and 2, indicate that all values of the RPs are greater than one. This shows that the MLEs of the
location parameter p with VLRSS are more precise than those obtained with SRS. It is also observed that
the MLEs under VLRSS turn out to be at least as efficient as the MLE with RSS when m; > m.

— When estimating the standard deviation of the normal distribution, Table 3 revealed that the RP is increasing
as mq values are increasing for fixed v, while it is decreasing as v and m values are increasing for fixed m;y
and k. On the other hand, when estimating the scale parameter ¢ of normal and logistic distributions, from
Tables 3 and 4 it is observed that, in most of the cases, the MLEs under VLRSS are more efficient that the
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MLEs with SRS. Similarly, for all sample sizes considered here, the MLEs with VLRSS also dominate the
MLESs based on RSS when mq > m and v = 1.

— Generally, we can say that the VLRSS is more efficient is estimating the location parameter than the scale
parameter of the normal distribution for the same sample sizes. The same thing can be concluded for the
case of the logistic distribution.

— For the case of one parameter as the scale parameter of the exponential distribution, a similar trend is
observed in Table 5 as was seen in Tables 1 and 2. However, Table 5 shows that the RP values are increasing
in m; for the same v and m and also it is increasing as v values are increasing for fixed m;. For illustration
consider the case of v = 3 with m; = 3 and 8, the RP values are 2.0596 and 3.2567, respectively when
m = 4. Also, the RP values are changing in k for the same value of m. For example, when m = 5, v = 2,
my = 4, the RP values are 2.6317 when k = 1 as compared to 2.4703 for k = 2.

— In Table 6 the RPs are given when both parameters are unknown. It is worth mentioning here that the
VLRSS-based MLEs outperform the MLEs based on the RSS scheme when m; > m.

4. CONCLUSION

In this paper, we have obtained the MLEs of the location and scale parameters of a location-scale family
of distributions under the VLRSS schemes. The MLEs with the VLRSS have been compared with the MLEs
obtained under SRS and RSS schemes for some usual location-scale distributions. It turns out that with reason-
able assumptions the MLEs under VLRSS are more precise than those obtained with SRS and RSS schemes.
Thus we recommend the use of the proposed MLEs for efficient estimation of the location and scale parameters
when sampling from a known location-scale family of distributions.

Acknowledgements. The author is grateful to the Editor and the anonymous referees for many of their valuable comments
and suggestions which lead to this improved version of the paper.
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