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CONSIGNMENT STOCK POLICY IN AN INTEGRATED VENDOR-BUYER
MODEL FOR DETERIORATING ITEM WITH STOCK DEPENDENT DEMAND

UNDER BUYER’S SPACE LIMITATION

Nabin Sen1, Sudarshan Bardhan2,∗ and Bibhas Chandra Giri3

Abstract. In this paper, a single-vendor single-buyer integrated inventory model for a deteriorating
item with consignment stock policy is developed, assuming that the market demand is stock dependent
and there is space limitation on the buyer’s storage capacity. Both equal and unequal shipments from
the vendor to the buyer are considered. The effects of the buyer’s space capacity on the average
cost, shipment size, and production batch are studied through numerical example. It is deduced that
production rate is the key factor to determine whether to use equal or unequal shipment strategy.
Sensitivity analysis is carried out to establish the robustness of the solutions of the models developed.
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1. Introduction

Warehouse space limitation of a channel member has significant impact on the average cost and optimal
decisions of a supply chain. To overcome this problem, channel members often use rented warehouse. Ghiami
et al. [19] studied inventory models with/without rented warehouse and showed that rented warehouse of the
buyer enhances the total cost of inventory. In consignment stock (CS) policy, the vendor manufactures the
product and stores it at the buyer’s warehouse with an agreement that the buyer need not to pay to the vendor
until the items are sold in the market. Furthermore, the vendor remains the owner of the product until it is
consumed, the inventory holding cost being carried by the buyer although. According to Sarker [42], this business
strategy is particularly effective where the customer demand depends largely on stock display or variety of the
product (e.g. clothing and furniture stores, bookstores, sports equipments and musical instrument stores, etc.).
In vendor managed inventory (VMI) policy, the vendor controls the buyer’s inventory and takes decision to
manage the replenishment policy. Gümüs et al. [22] proved that the combination of VMI policy and CS policy
is better than VMI policy or CS policy alone for business houses to minimize the effective cost or maximize the
profit. Under VMI-CS policy, the vendor has to bear the responsibilities of scrapping unsold or expired products,
stock level management, and periodic inventory review; he has all the information related to customer demand,
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shipment schedule, production run time, etc. so that he may store the product at the buyer’s warehouse as
much as possible. However, joint determination of shipment size as well as scheduling time in an integrated
vendor-buyer model is often complicated but worth studying since these decisions under VMI-CS policy can
significantly reduce the average cost of the integrated inventory system.

Market demand has been one of the primary concerns of decision makers as well as practitioners over decades.
Researchers have assumed different kinds of demand pattern to reflect real world scenario under different
conditions. On-hand stock display is one among various parameters which affect market demand. Empirical
evidence of the dependence of demand on inventory of specific products has been provided by Wolfe [51], Silver
and Peterson [45], and Koschat [32]. Assuming that the presence of greater quantity of an item in stock tends
to attract more customers, numerous theoretical models have been developed till today [59]. In practice, stock-
dependent demand is observed for many items such as fashion apparel, electronic items, etc. in supermarkets
and convenience stores.

Deterioration is broadly defined as decay, damage, spoilage, evaporation, obsolescence, pilferage, and loss of
entity or loss of marginal value of a commodity that results in decreasing usefulness from the original [50]. The
deterioration of goods is a common phenomenon. Therefore, study of deteriorating inventory systems is very
important as resulting losses due to deterioration cannot be neglected. Deterioration can be broadly classified
into two categories: (a) perishability or fixed life period – when an item may be retained in stock for a fixed
period of time with no loss in utility, but it becomes obsolete thereafter, and (b) continuous decay – when an
item continuously loses its quality over time, usually measured as a fixed fraction of the on-hand stock, resulting
in exponentially reduced utility. Products such as medicine, cosmetics, packaged foods, etc. carry an expiry date,
whereas vegetables, fruits, flowers, radioactive materials, fuels, volatile liquids such as alcohol and gasoline, etc.
deteriorate day-by-day as time goes on [38]. As reported by Cohen [13], Zyl [60] was one of the early researchers
who studied deteriorating inventory.

Sajadieh et al. [41] proposed an integrated vendor-buyer model, where the buyer receives the shipped batch in
the warehouse and a smaller lot in the display area. They showed that the total system profit can be maximized
by joint determination of the vendor’s production batch size, the buyer’s warehouse ordering lot size and the
replenished quantity from the buyer’s warehouse to the display area. The idea of such a three-layer inventory
system is very much realistic, since it is indeed an usual practice by the buyers to have a display area apart from
the warehouse. In this paper, we aim to extend the above model in a VMI-CS scenario. It would be interesting
to decide optimal shipment strategy of the vendor in terms of shipment size (equal or unequal), or even would
be better if an optimal shipment ratio is determined. We consider a single-vendor single-buyer integrated model
in which the storage of the buyer consists of back-office storage along with separate display area. Assuming the
market demand to be stock dependent, the proposed model is developed and analyzed aiming at minimizing
the average total cost. Two scenarios depending on the shipment size (equal or unequal) from the vendor to the
buyer are investigated, and numerical results are compared to determine possible superiority of one model over
the other. The effects of the buyer’s space capacity on the average cost, shipment size, and production batch
are also studied.

Rest of the paper is organized as follows. Relevant literature is reviewed and contribution of the present
work is highlighted in Section 2. Section 3 presents notations and assumptions used to develop the proposed
models. Mathematical models are developed in Section 4. The models are illustrated with the help of a numerical
example in Section 5. Finally, Section 6 draws the conclusion and indicates future research directions.

2. Literature review

In this section, we primarily focus on the review of inventory literature which deals with consignment stock
policy. We study the relevant research works in the following domains: deterioration, stock dependent demand,
and warehouse space limitation – which would pave the bridge between the existing literature and the present
work.
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Consignment stocking policy

Braglia and Zavanella [7] were the first to propose a consignment inventory model for solving the joint eco-
nomic lot size (JELS) problem, followed by Zanoni and Grubbstrom [55]. Valentini and Zavanella [47] described
the technique, underlining the CS policy’s potential benefits and pitfalls. Wang et al. [48] studied the consign-
ment stock policy with revenue sharing contract, and showed how the channel performance critically depends on
demand price elasticity and the buyer’s share of channel cost. Gümüs et al. [22] discussed the impacts of consign-
ment inventory and vendor-managed inventory (VMI) for a two-level supply chain. Zavanella and Zanoni [58]
showed that the consignment stock policy works better than uncoordinated optimization one for an industrial
case of a single-vendor and multi-buyer productive situation. Li et al. [37] developed a supply chain model under
a CS policy with revenue sharing contract, and analyzed how the system parameters impact the optimal supply
chain decisions and supply chain performance. Chen et al. [12] formulated the profit maximization problem and
carried out equilibrium analysis under cooperative and non-cooperative settings for consignment and VMI poli-
cies in a distribution system. Ru and Wang [40] addressed the issue of appropriate controller of inventory in the
supply chain under consignment contract. Battini et al. [4] dealt with a multi-echelon inventory system in which
a single vendor supplies an item to multiple buyers considering space constraints in clients’ plant warehouse,
stock-out risk due to the variability of consumption, and obsolescence risk for the materials stored. Adida and
Ratisoontorn [1] investigated how competition among retailers influences the supply chain decisions and profits
under different consignment arrangements. Zanoni et al. [57] considered VMI under consignment with learning
and forgetting effects. Wang et al. [49] addressed a single-manufacturer single-buyer supply chain problem for a
single deteriorating product under consignment stock policy. Braglia et al. [8] proposed a relationship between
the vendor and the buyer in a win-win situation with fixed-batch manufacturing process. Bylka [10] proposed
non cooperative consignment stock strategies in supply chain. A single-vendor multi-retailer supply chain oper-
ating under a VMI contract was investigated by Hariga et al. [23]. Jaber et al. [30] extended the production,
remanufacturing and waste disposal two-level supply chain model with CS policy as a coordination mechanism.
Hu et al. [28] showed how the cost of the supply chain is affected by return policy under consignment stock
policy. Braglia et al. [9] discussed safety stock management in a single-vendor single-buyer supply chain model
with VMI under consignment agreement. Lee and Cho [33] designed a VMI contract with CS and stock-out cost
sharing between a supplier and a retailer in a (Q, r) inventory system. Khan et al. [31] discussed an integrated
vendor-buyer model for determining the optimal inventory policy accounting for quality inspection errors at the
buyer’s end and learning in the production at the vendor’s end. Bazan et al. [5] introduced various managerial
decisions pertaining to imperfect items, specifically reworking items and applying minor set-ups for restoration.
They showed that imperfect items with CS increases batch size and reduces the number of batch shipments per
cycle. Zahran et al. [54] studied the payment schemes for a two-level consignment stock supply chain system,
and established that frequent and equal payments is better. Sarker [42] presented an extensive review on CS
inventory models. Hariga et al. [25] considered integrated economic and environmental models for a one-vendor
one-buyer supply chain problem under vendor managed consignment inventory arrangement in order to study
the impacts of two carbon reduction policies (carbon cap and carbon tax policies) on supply chain wide costs
and carbon emissions. Hu et al. [27] investigated the supply chain coordination under VMI-CS contract with
wholesale price constraint and fairness consideration. Ben-Daya et al. [6] considered the environment-friendly
approach of remanufacturing, in the context of a two-stage closed-loop supply chain comprised of a single vendor
and multi-buyers where all parties involved operate under a centralized consignment stock agreement. Gharaei
et al. [15] addressed an integrated multi-product, multi-buyer supply chain having real stochastic constraints
under penalty, green, and quality control policies, differentiating between the holding costs for financial and non-
financial components. They developed an outer approximation with equality relaxation and augmented penalty
algorithm to determine the optimal batch-sizing policy. Uthayakumar and Ganesh Kumar [46] used Genetic
Algorithm to solve the constrained mixed integer non-linear programming problem developed while studying
five different stock control policies in supply chain management. Related research in this field may be found in
[14,16–18].
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Deterioration

Persona et al. [39] were the first to take into account the effect of obsolescence in a consignment inventory
model. Battini et al. [3] made an extension of the model developed by Persona et al. [39] considering new critical
factors in industrial environments such as stock-out risk due to demand variability and obsolescence risk for the
perishable materials. The model proposed by Battini et al. [4] was another extension of the model developed by
Persona et al. [39], which dealt with a multi-echelon inventory system in which one vendor supplies a particular
item to multiple buyers. Wang et al. [49] studied the effect of warehouse space limitation on deteriorating
inventory under consignment stock policy. Hemmati et al. [26] presented a single-vendor single-buyer coordinated
model with VMI-CS agreement for a deteriorating item under stock- and price-dependent demand.

Stock dependent demand

Inventory model with stock dependent demand under consignment stock policy is scarce. Giri and Bardhan
[20] were the first to incorporate the idea of stock dependent demand in a JELS model. Zanoni and Jaber [56]
investigated and compared different policies for CS with stock-dependent demand. Lee et al. [36] compared
forward and backward stocking policies under consignment stock and stock dependent demand. Recently Sen
et al. [43] studied the impact of consignment stock policy on supply chain with stock dependent demand and
warehouse space limitation on both the vendor and the buyer.

Space limitation

Lee and Wang [35] first considered warehouse space limitation of the buyer in a consignment stocking model,
and studied the impact of space constraint on the manufacturer’s total cost. Huang and Chen [29] made an
attempt to solve two reduced models given in Braglia and Zavanella [7]. Battini et al. [3] extended the work
of Braglia and Zavanella [7] by considering the buyer’s space limitation as well as relaxing the assumption
of deterministic demand. Yi and Sarker [52] provided a procedure to solve the generalized CS-k model using
hybrid meta-heuristic algorithm. Yi and Sarkar [53] studied another model considering consignment stock policy,
space limitation and controllable lead time. Hariga et al. [24] studied a vendor managed inventory model
with unequal shipment frequencies having storage capacity limitation under different demand rates arriving at
multiple retailers. Giri and Bardhan [20] developed a JELS model with stock dependent demand under space
constraint of the buyer. Considering stock-out cost sharing, Lee et al. [34] examined supply chain coordination
problem in VMI with constant demand under limited storage capacity. Shekarabi et al. [44] modeled a lot-sizing
problem for an integrated multi-level multi-wholesaler supply chain under limited warehouse space.

Unequal shipment size

Bylka [10] proposed non-cooperative consignment stock strategies in supply chain, where two different sizes
of shipment batch were considered. The similar idea was also applied by Bylka and Górny [11] who showed
that a generalized CS performs better than the classical one. Giri et al. [21] developed an inventory model with
unequal shipments under imperfect production process, and compared the results of two cases depending on
whether rework is done or not.

Motivation of the current research

While surveying the existing literature, it has been found that research incorporating the idea of unequal
shipments in VMI-CS policy is scarce. Although a few researchers did incorporate the concept of unequal
shipments, they didn’t derive the optimal shipment ratio which appears worth examining under some realistic
business scenarios. In this paper, we extend the model proposed by Sajadieh et al. [41] in a VMI-CS scenario
under unequal shipment policy. We also consider space limitation for both the vendor and the buyer. We
prefer to study stock-dependent demand pattern, and include the consideration of deterioration of the on-
hand inventory. Although Braglia and Zavanella [7] and Sajadieh [41] considered zero-inventory reordering
level at the display area, we relax this constraint in this paper, following Zanoni and Jaber [56]. Till date, no
study has been conducted to simultaneously consider stock dependent demand, consignment inventory policy,
deteriorating effect, and warehouse space constraints in a three-level supply chain where the buyer has two
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Table 1. Notations.

P : constant production rate of the vendor (units/year)
α1 : constant rate of deterioration at the vendor’s warehouse
β : constant rate of deterioration at the buyer’s warehouse
δ : constant deterioration rate at the buyer’s display area
λ : scaling constant to determine the shipment size
hv : unit holding cost at the vendor’s warehouse ($/unit/year)
hb : unit holding cost at the buyer’s warehouse ($/unit/year)
hd : unit holding cost at the buyer’s display area ($/unit/year)
q : replenishment batch size from the buyer’s warehouse to

the buyer’s display area (units/replenishment)
x : constant buffer stock at the display area
Ib(t) : buyer’s warehouse inventory level at time t
Iv(t) : vendor’s inventory level at time t
Ibd(t) : buyer’s display area inventory level at time t
Sv : setup cost of the vendor per cycle ($/setup)
Sb : ordering cost of the buyer per cycle ($/order)
cd : per unit deterioration cost ($/unit/year)
Wbmax : maximum capacity at the buyer’s warehouse (in units)
ti : time length to produce λi−1Q quantity of items
T : length of the business cycle (in years)
TCB : total cost of the buyer in a business cycle
TCV : total cost of the vendor in a business cycle
AC : average cost for the integrated system
n : total number of shipments in a cycle, a decision variable
m : number of unequal shipments
Td : time to sell q quantity of the product in the display area

separate storage areas – the main warehouse and the display area. The contribution of the present work with
respect to the existing literature is three-fold. Firstly, this is the first attempt towards finding optimal shipment
ratio in an unequal shipment scenario under VMI-CS strategy. Secondly, this is also the first work considering
space limitation for both the channel members under stock dependent demand scenario. Finally, deterioration
of stored items is considered in each of the three inventories.

3. Notations and assumptions

The following notations are used throughout the paper while developing and analyzing the proposed model:

Assumptions

The following assumptions are made to develop the proposed model:

(1) A two-echelon supply chain problem with one vendor and one buyer (i.e. a bilateral monopoly) under stock
dependent demand is considered. The demand rate is assumed to be of the form D(t) = αIβ(t), α > 0,
0 ≤ β < 1, where I(t) denotes the inventory level of the buyer at time t. Some of the advantages of this
kind of demand pattern, as mentioned in Baker and Urban [2], are diminishing returns (marginal increase
in demand rate will decrease for larger values of inventory level), richness (good approximate demand in
many practical situations), and intrinsic linearity (linear regression can be used for parameter estimation
after taking logarithm).

(2) The stock is subject to deterioration, the rates being different at different echelons.
(3) The production rate is higher than the demand rate.
(4) Shortages are not allowed.
(5) Lead time is zero.
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4. The model

In this section, we develop two models M1 and M2. In model M1, the buyer receives the ordered quantity from
the vendor in unequal shipments where consecutive shipment sizes bear a predetermined ratio λ. In model M2,
the successive shipments from the vendor to the buyer’s warehouse are equal. Clearly, M2 is a special case of
M1 with λ = 1.

4.1. Model M1

A graphical representation of model M1 is shown in Figure 1.
We first calculate the total inventory of the vendor in a cycle, followed by the total cost of the vendor. The

following differential equation governs the inventory level of the vendor at any time t.

dIv(t)
dt

= P − α1Iv(t) with Iv(0) = 0.

The solution of the above differential equation is obtained as

Iv(t) =
P

α1

(
1− e−α1t

)
, 0 ≤ t ≤ t1.

Since Iv(t1) = Q, we obtain

Q =
P

α1

(
1− e−α1t1

)
. (4.1)

According to our assumption, the vendor delivers to the buyer in unequal shipments. Let the first shipment size
be Q and the successive shipment sizes be Q, λQ, λ2Q, . . . , λm−1Q, where m denotes the number of shipments
within a business cycle T . Then, in view of the definition of ti mentioned in Table 1, we may at once derive the
following:

λi−1Q =
P

α1

(
1− e−α1ti

)
, i = 1, 2, 3, . . . ,m,

or, ti = − 1
α1

ln
(

1− α1λ
i−1Q

P

)
·

Using (4.1), we get each ti as function of t1 only:

ti = − 1
α1

ln
(
1− λi−1 + λi−1e−α1t1

)
. (4.2)

From above, the total production run time is obtained as

t1 + t2 + t3 + · · ·+ tm = t1 −
1
α1

m−1∑
i=1

ln
(
1− λi + λie−α1t1

)
.

The total quantity shipped from the vendor to the buyer in a cycle is given by

Q+ λQ+ λ2Q+ λ3Q+ · · ·+ λm−1Q =
P

α1
− P

α1
e−α1t1 +

P

α1
− P

α1
e−α1t2 + · · ·+ P

α1
− P

α1
e−α1tm .

Simplifying, we get

e−α1t1 + e−α1t2 + e−α1t3 + · · ·+ e−α1tm = m− α1Q

P

(
λm − 1
λ− 1

)
· (4.3)
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Figure 1. Graphical representation of model M1.
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The total inventory held by the vendor in a cycle is obtained as (see Appendix A for detailed calculation)

P1 =
P

α2
1

[
m−

(
1− e−α1t1

)(λm − 1
λ− 1

)]
+
P

α1

[
t1 −

1
α1

m−1∑
i=1

ln
(
1− λi + λie−α1t1

)]
− mP

α2
1

·

To calculate the total inventory cost associated with the buyer, we calculate costs associated with the warehouse
and the display area separately. The inventory level of the buyer’s warehouse at time t is governed by the
differential equation dIb(t)

dt = −βIb(t) with Ib(0) = Q− q, from which we get

Ib(t) = (Q− q) e−βt, 0 ≤ t ≤ Td. (4.4)

At t = Td, the inventory level is Ib(Td) = (Q− q) e−βTd − q.
Also, at the nth1 shipment of q quantity from the buyer’s warehouse to the buyer’s display area, the vendor

transfers λQ quantity to the buyer’s warehouse. The inventory level in the interval (n1 − 1)Td ≤ t ≤ n1Td is
Ib(t) =

(
Q−

∑n1−1
i=0 qeiβTd

)
e−βt. Also, we have

Ib(t) =

(
Q−

n1∑
i=0

qeiβTd + λQen1βTd

)
e−βt, n1Td ≤ t ≤ (n1 + 1)Td.

In a similar way, shipment of λ2Q quantity from the vendor to the buyer’s warehouse takes place at (n1 +n2)th

shipment of q quantity from the warehouse to the display area.
Generalizing the process, we deduce that the last shipment of size λ(m−1)Q is shipped by the vendor at

(n1 + n2 + · · · + nm−1)th shipment of q quantity to the display area. The inventory level for the time interval∑m−1
j=1 njTd ≤ t ≤

(∑m−1
j=1 nj + 1

)
Td is derived as

Ib(t) =

Q−
∑m−1
j=1 nj∑
i=0

qeiβTd +
m−1∑
j=1

λje
∑j
k=1 nkβTd

 e−βt.

Inventory level reaches its maximum storage capacity Wbmax at time point
∑m−1
j=1 njTd when the vendor stops

the production, from which we have

Ib

(
m−1∑
i=0

niTd

)
= Wbmax =

Q−
∑m−1
j=1 nj∑
i=0

qeiβTd +Q

m−1∑
j=1

λje
∑j
k=1 nkβTd

 e−β
∑m−1
j=1 njTd . (4.5)

Proposition 4.1. niTd = ti+1; ni can be expressed as

ni = − 1
α1Td

ln
(
1− λi + λie−α1t1

)
i = 1, 2, 3 . . . ,m− 1, ni ∈ N.

Proposition 4.2. The value of ni given in Proposition 4.1 is well defined for any value of λ.

Since the buyer ships the product in
(
n−

∑m−1
i=1 ni

)
number of batches from the warehouse to the display

area after reaching the maximum storage capacity at his warehouse, the inventory level of the buyer’s warehouse
in the interval iTd ≤ t ≤ (i+ 1)Td is given by

Ib(t) =

Wbmax − q
i∑

j=1

ejβTd

 e−βt, i = 0, 1, . . . ,

n− m−1∑
j=1

nj − 2

 .
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Total inventory held at the buyer’s warehouse = W1 = W11 +W12, where

W11 =
1
β

Q−Qe−∑m−1
j=1 njβTd − q

m−1∑
j=1

nj + q

∑m−1
j=1 nj∑
i=1

e−iβTd + λQ

(
λm−2 − 1
λ− 1

)
+

1
β

(
λQe−

∑m−1
j=1 njβTd

m−2∑
l=1

λl−1e
∑l
j=1 njβTd

)
,

which is the total inventory held during production time, and

W12 =
1
β

Wbmax −Wbmaxe
−(n−∑m−1

j=1 nj−1)βTd + qe−βTd
(n−∑m−1

j=1 nj−3)∑
i=0

e−iβTd −

n− m−1∑
j=1

nj − 2

 q

 ,

which is the total inventory for the rest of the period. We refer the readers to Appendices B and C for detailed
calculations.

Our next aim is to calculate the total inventory of the buyer’s display area where the demand is stock
dependent and items in inventory deteriorate with time. The inventory level at any time t in the interval [0, Td]
is governed by the differential equation

dIbd(t)
dt

= −αIβ1
bd (t)− δIbd(t), with Ibd(0) = q + x.

Solving, we get

Ibd(t) =
[
−α
δ

+
(α
δ

+ (q + x)1−β1

)
e−δ(1−β1)t

] 1
1−β1

, t ∈ [0, Td] . (4.6)

Further, using Ibd(Td) = x, we get

Td =
1

δ (1− β1)
ln
(
α+ δ(q + x)1−β1

α+ δx1−β1

)
· (4.7)

Using Maclaurin series and approximating, equation (4.6) takes the form

Ibd(t) =
[
−α
δ

+
(α
δ

+ (q + x)1−β1
)

(1− δ (1− β1) t)
] 1

1−β1
.

Total inventory P2 in the display area is thus obtained as

P2 = n

∫ Td

0

Ibd(t)dt

= n

∫ Td

0

[
−α
δ

+
(α
δ

+ (q + x)1−β1
)

(1− δ (1− β1) t)
] 1

1−β1 dt

=
n

(2− β1)
(
α+ δ (q + x)1−β1

) [(q + x)2−β1 −
[
−α
δ

+
(α
δ

+ (q + x)1−β1
)

(1− δ (1− β1)Td)
] 2−β1

1−β1

]
.

We refer the readers to Appendix D for detailed calculation.
Since the deterioration is considered in the buyer’s warehouse as well as in the display area, we need to

calculate the amount of deteriorated items in order to determine the deterioration cost associated with the
buyer. The amount of deteriorated items in the buyer’s warehouse is

(∑m−1
i=0 λiQ−W1

)
.
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The amount of sold items P3 in the display area is

P3 =
nα[

α+ δ (q + x)1−β1
] [(q + x)−

{
−α
δ

+
(α
δ

+ (q + x)1−β1
)

(1− δ (1− β1)Td)
} 1

1−β1

]
,

so that the amount of deteriorated items at the buyer’s custody is
[(∑m−1

i=0 λiQ−W1

)
+ (nq − P3)

]
. We refer

the readers to Appendix E for detailed calculation.
The total holding cost for the buyer is, therefore, HCB = hbW1 + hdP2.
The total cost at the buyer’s side is obtained as the sum of ordering cost, holding cost and deterioration cost,

i.e., TCB = Sb + hbW1 + hdP2 + cd

[(∑m−1
i=0 λiQ−W1

)
+ (nq − P3)

]
.

The total holding cost on the vendor side is hvP1.
The amount of deteriorated items may be obtained from the difference between produced and delivered

quantities, which is
[
P
∑m
i=1 ti −

∑m−1
i=0 λiQ

]
.

The total cost of the vendor is the sum of set-up cost, holding cost, and deterioration cost, i.e.
TCV = Sv + hvP1 + cd

[
P
∑m
i=1 ti −

∑m−1
i=0 λiQ

]
.

The average cost for the integrated system is thus obtained as AC(t1,m, n, Td) = 1
T (TCB + TCV), where

T = nTd.

It is clear from equations (4.1) and (4.2), and Proposition 4.1 that Q, tis and nis depend solely on t1. Also,
equation (4.3) is an identity involving m and ti, and equation (4.5) is a constraint on the objective function
AC. The objective is then to Minimize AC(t1,m, n, Td) subject to equations (4.1), (4.2), (4.3), (4.5), and (4.7);
m and n both are positive integers, and m ≥ 2.

Due to complicated form of the objective function, it is not possible to prove the convexity of the objective
function analytically.

4.2. Model M2

The graphical representation of model M2 is shown in Figure 2.
Here a particular case of the previous model is exclusively studied where all the shipment sizes are equal, i.e.

λ = 1. Consequently the time lengths ti’s are equal and we take ti = tp, for all i. Proceeding similarly as in M1,
we obtain

Iv(t) =
P

α1
− P

α1
e−α1t, 0 ≤ t ≤ tp

and Q =
P

α1

(
1− e−α1tp

)
.

Since there are m regular shipments in M2, the total inventory (P
′

1) on the vendor side during one complete
cycle is determined as

P
′

1 = m

∫ tp

0

Iv(t)dt

= m

{
Ptp
α1

+
P

α2
1

(
e−α1tp − 1

)}
.

Next, we calculate the total inventory W
′

1 held at the buyer’s warehouse. The buyer’s warehouse space is
completely utilized as soon as he receives the mth shipment from the vendor. The next shipment of size q is
received from the vendor at the time of nth

1 shipment from warehouse to the display area, and this is continued
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Figure 2. Graphical representation of model M2.
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on regular basis until the warehouse is completely utilized. The buyer’s inventory level at any time t is governed
by the differential equation dIb(t)

dt = −βIb(t) with Ib(0) = Q− q, from which we get

Ib(t) = (Q− q) e−βt, t ∈ [0, Td] .

Let I−b (iTd) and I+
b (iTd) be the inventory levels of the buyer’s warehouse right before and after delivery

of batch size q at time iTd, i = 1, 2, . . . , n, respectively. The inventory at iTd can then be expressed as
I+
b (iTd) = I−b (iTd) + q.

The inventory level in the interval [iTd, (i+ 1)Td], i = 0, 1, 2, . . . , n1 − 1 is
Ib(t) =

(
Q− q

∑i
j=0 e

jβTd
)
e−βt.

The inventory level in [n1Td, (n1 + 1)Td] is thus Ib(t) =
(
Q
(
1 + en1βTd

)
− q

∑n1
i=0 e

iβTd
)
e−βt.

Generalizing the above idea of regular shipment at a fixed time interval, the inventory level of the buyer’s
warehouse at any time t in the interval [(m− 1)n1]Td ≤ t ≤ [(m− 1)n1 + 1]Td is obtained as

Ib(t) =

Qm−1∑
i=0

ein1βTd − q
(m−1)n1∑
i=0

eiβTd

 e−βt.
Since the buyer’s warehouse space capacity Wbmax is fully utilized at the time (m − 1)n1Td, Wbmax can be
expressed as

Wbmax =

Qm−1∑
i=0

ein1βTd − q
(m−1)n1∑
i=0

eiβTd

 e−(m−1)n1βTd . (4.8)

To calculate the inventory level in the next part of the warehouse, we rename the time point (m − 1)n1Td as
t = 0. In this part, the buyer ships q quantity to the display area for n− (m− 1)n1 times. The inventory level
at any time t in the interval [(i− 1)Td ≤ t ≤ iTd] is given by

Ib(t) =

Wbmax − q
i−1∑
j=1

ejβTd

 e−βt, i = 1, 2, . . . , (n− (m− 1)n1 − 1). (4.9)

The inventory level at the time point (n− (m− 1)n1 − 1)Td is q. Using this, we get

Wbmax = q

n−(m−1)n1−1∑
i=1

eiβTd . (4.10)

Next, we calculate the total inventory W ′1 in the buyer’s warehouse. W ′1 comprises of two parts W ′11 and W ′12,
where the first part denotes the total inventory in the interval [0, (m− 1)n1Td], and second part denotes the
total inventory in the interval [0, (n− (m− 1)n1)Td]. Explicit expressions for W ′11 and W ′12 are given by

W
′

11 =
1
β

(m− 1)Q−Qe−(m−1)n1βTd

m−2∑
i=o

ein1βT−d − (m− 1)q + q

(m−1)n1∑
(i=1)

e−iβTd

 , and

W
′

12 =
1
β
Wbmax

[
1− e−(n−(m−1)n1−1)βTd

]
+

1
β

q n−(m−1)n1−2∑
i=1

eiβTd − (n− (m− 1)n1 − 2)q

 .
The readers are referred to Appendices F and G for detailed calculations.
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Figure 3. Changes in average costs with varying capacity of the buyer’s warehouse and pro-
duction rate. (a) Model M1. (b) Model M2.

The inventory level at the buyer’s display area at any time t in the interval [0, Td] is governed by the differential
equation

dIbd(t)
dt

= −αIβ1
bd (t)− δIbd(t), with Ibd(0) = q + x.

The total cost on the buyer’s side is obtained as the sum of ordering cost, holding cost and deterioration cost,
i.e., TCB = Sb + hbW

′

1 + hdP2 + cd

[(
mQ−W ′

1

)
+ (nq − P3)

]
.

The total cost on the vendor side is the sum of set-up cost, holding cost, and deterioration cost, i.e.
TCV = sv + hvP

′

1 + cd [mPtp −mQ].
The joint total cost of the vendor-buyer system is TC = TCB + TCV. Our objective is

Minimize AC = TC
T , subject to tp > 0, and Td > 0, where n,m are integers, and T = nTd.

5. Numerical illustration

In this section, we demonstrate the proposed models and exhibit managerial insights through numerical
illustration. The following parameter-values are considered: P = 3500, α1 = 0.05, β = 0.05, δ = 0.05, hb = 5,
hd = 5, hv = 5, x = 90, Sb = 25, Sv = 3000, cd = 3, Wbmax = 400, α = 100, β1 = 0.3, in appropriate
units. It is observed that, for a wide range of parameter-values, both the models continue to produce feasible
optimal results, establishing the stability of the solution of the system under consideration. The sensitivity
analysis provides important managerial insights while determining optimal decisions of the developed models
for different inputs. The findings along with managerial insights drawn from the Figures 3–8 are summarized
below.

– Figure 3 depicts that, for each pre-specified production rate, the cost function follows a convex pattern,
establishing that there is an optimum space capacity to be used by the buyer for both equal and unequal
shipment strategies. Keeping in mind that the model is developed utilizing the entire space available for the
buyer, it may be concluded that managers should not blindly plan for utilizing capacity whatever is available
to them. The proposed model is applicable only when the available space is lesser than the optimum one, for
otherwise the storage of more finished products with higher total holding cost would increase the average
cost. In general, managers should simulate production strategy for an initial pre-specified space limit to be
used, and keep on increasing space limit as long as it results in lesser average cost, and stop when the average
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cost starts increasing; if the average cost keeps on reducing, then only it would be wise to utilize the entire
space.

– When the production rate is sufficiently low, unequal shipment strategy with diminishing shipment sizes
(i.e. λ < 1) would be beneficial to business managers. However, if the rate goes beyond a threshold level
(P = 2450 in Fig. 4a), equal shipment strategy should be adopted. Figure 6 exhibits that this observation
is valid even for a wide range of space limitation.

– Figure 5a shows that a faster production rate compels managers to store more items for longer period of time
thereby increasing the average cost. Under such a situation, production process has to be stopped after a
comparatively shorter production run time (Fig. 5b). A larger amount of deteriorated items also plays partial
role in enhancing the average cost. Managers should invest in reducing production rate if it is controllable at
all. Figure 5a also allows us to determine the optimum space capacity as 450 under equal shipment strategy
for specific parameter-values as mentioned. Also, a higher value of λ compels to run production for a longer
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time in model M1, and so does higher storage capacity. The findings from Figures 4b and 5b are thus quite
obvious.

– Figure 7a exhibits that the ratio hb/hv has a positive effect on the average cost. Managers should realign
their strategies to store the produced items in the vendor’s inventory for longer period of time rather than
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quickly delivering those to the buyer’s inventory, so that the average inventory holding at the buyer’s side is
reduced. With higher holding cost ratio, managers should try to store lesser amount of product, resulting in
shorter production run time, cycle time and replenishment time in general which is evident from Figure 7b. It
is also observed that, with increasing shipment size, managers should reduce production run time to reduce
cost. However, it needs more time to complete a business cycle as well as finish the stock at the display area
with equal shipment strategy than an unequal one. Similar observations can be made from Figure 8 with an
additional one being that the change in the ratio hd/hb has almost no effect on production run time under
unequal shipment strategy.

6. Conclusion

This paper considers a vendor-buyer integrated inventory system for deteriorating items with consignment
stocking where the buyer’s inventory is extended over warehouse area and display area, and its warehouse is
capacity constrained. Although the complexity of the model restrained us from obtaining any analytical result,
sensitivity analysis through numerical simulation did enable us to exhibit the applicability of the model as well
as draw a few valuable insights for the business managers. The present work corroborates with the observations
made by Wang et al. [49] regarding utilization of space capacity available at the buyer. Further, we establish
that the choice of consecutive shipment sizes (whether it should be equal or unequal) depends on the production
rate. Till date, a few researchers like Bylka and Górny [14] and Giri et al. [27] have established the superiority
of unequal shipment strategy under certain business scenario, but to the best of our knowledge, no attempt
has been made to identify when one shipment strategy outperforms the other. In this direction, our finding
is worth mentioning. However, the model has a few limitations too which could be overcome. The present
work may be extended in a number of ways. One can consider the demand pattern to be dependent on some
other parameters such as price, sales effort, etc. Under price dependent demand scenario, presence of multiple
retailers and competition among them would be a challenging but interesting issue to study. Consideration of
imperfect production process and possible rework may also be studied to derive condition when it would be
indeed beneficial to go for rework. One may also consider the issue of controllable lead time on this model to
represent more general situation. Investment in preservation technology to reduce spoilage is also an interesting
issue in today’s highly competitive market, which may also be addressed. The model may further be generalized
by adding a stochastic component in the demand to represent real-life scenario, and maximizing the expected
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profit of the system. Consideration of a risk-averse retailer will further make the model complicated as well as
interesting to be studied.
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[
−α
δ

+
(α
δ

+ (q + x)1−β1
)

(1− δ (1− β1) t)
] 1

1−β1 dt.
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Substituting u =
[
−αδ +

(
α
δ + (q + x)1−β1

)
(1− δ (1− β1) t)

] 1
1−β1 , we get

P2 = −n
∫

u1−β1

α+ δ (q + x)1−β1
du

= − nu2−β1

(2− β1)
(
α+ δ (q + x)1−β1

)
= − n

(2− β1)
(
α+ δ (q + x)1−β1

) [[−α
δ

+
(α
δ

+ (q + x)1−β1
)

(1− δ (1− β1) t)
] 2−β1

1−β1

]Td
0

=
n

(2− β1)
(
α+ δ (q + x)1−β1

) [(q + x)2−β1 −
[
−α
δ

+
(α
δ

+ (q + x)1−β1
)

(1− δ (1− β1)Td)
] 2−β1

1−β1

]
.

Appendix E.

P3 = n
∫ Td
0

αIβ1
bd (t)dt = n

∫ Td
0

α
[
−αδ +

(
α
δ + (q + x)1−β1

)
(1− δ (1− β1) t)

] β1
1−β1 dt.

Substituting u =
[
−αδ +

(
α
δ + (q + x)1−β1

)
(1− δ (1− β1) t)

] 1
1−β1 , we get

P3 = nα

[α+δ(q+x)1−β1 ]

[
(q + x)−

{
−αδ +

(
α
δ + (q + x)1−β1

)
(1− δ (1− β1)Td)

} 1
1−β1

]
.

Appendix F.

W
′

11 =
∫ Td

0

Ib(t)dt+
∫ 2Td

Td

Ib(t)dt+ · · ·+
∫ n1Td

(n1−1)Td

Ib(t)dt+ · · ·+
∫ (m−1)n1Td

(m−2)n1Td

Ib(t)dt

=
∫ Td

0

(Q− q) e−βtdt+
∫ 2Td

Td

(
Q− q − qeβTd

)
e−βtdt+ · · ·

+
∫ n1Td

(n1−1)Td

(
Q− q

n1−1∑
i=0

eiβTd

)
e−βtdt+

∫ (n1+1)Td

n1Td

(
Q(1 + en1βTd)− q

n1∑
i=0

eiβTd

)
e−βtdt

+ · · ·+
∫ 2n1Td

(2n1−1)Td

(
Q(1 + en1βTd)− q

2n1−1∑
i=0

eiβTd

)
e−βtdt

+
∫ (2n1+1)Td

2n1Td

(
Q

2∑
i=0

ein1βTd − q
2n1∑
i=0

eiβTd

)
e−βtdt

+ · · ·+
∫ (m−1)n1Td

((m−1)n1−1)Td

Qm−2∑
i=0

ein1βTd − q
(m−1)n1−1∑

i=0

eiβTd

 e−βtdt

= − 1
β

[
(Q− q) e−βt

]Td
0
− 1
β

[(
Q− q − qeβTd

)
e−βt

]2Td
Td
− · · ·

− 1
β

[(
Q− q

n1−1∑
i=0

eiβTd

)
e−βt

]n1Td

(n1−1)Td

− 1
β

[(
Q(1 + en1βTd)− q

n1∑
i=0

eiβTd

)
e−βt

](n1+1)Td

n1Td
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− 1
β

[(
Q(1 + en1βTd)− q

2n1−1∑
i=0

eiβTd

)
e−βt

]2n1Td

(2n1−1)Td

− 1
β

[(
Q

2∑
i=0

ein1βTd − q
2n1∑
i=0

eiβTd

)
e−βt

](2n1+1)Td

2n1Td

− · · ·

− 1
β

Qm−2∑
i=0

ein1βTd − q
(m−1)n1−1∑

i=0

eiβTd

 e−βt

(m−1)n1Td

((m−1)n1−1)Td

=
1
β

(m− 1)Q−Qe−(m−1)n1βTd

m−2∑
i=o

ein1βT−d − (m− 1)q + q

(m−1)n1∑
(i=1)

e−iβTd

 .

Appendix G.

W
′

12 =
∫ Td

0

Ib(t)dt+
∫ 2Td

Td

Ib(t)dt+ · · ·+
∫ (n−(m−1)n1−2)Td

(n−(m−1)n1−3)Td

Ib(t)dt+
∫ (n−(m−1)n1−1)Td

(n−(m−1)n1−2)Td

Ib(t)dt

=
∫ Td

0

Wbmaxe
−βtdt+

∫ 2Td

Td

(
Wbmax − qeβTd

)
e−βtdt+ · · ·

+
∫ (n−(m−1)n1−1)Td

(n−(m−1)n1−2)Td

Wbmax − q
n−(m−1)n1−2∑

i=1

eiβTd

 e−βtdt

= − 1
β

[
Wbmaxe

−βt]Td
0
− 1
β

[(
Wbmax − qeβTd

)
e−βt

]2Td
Td
− · · ·

− 1
β

Wbmax − q
n−(m−1)n1−2∑

i=1

eiβTd

 e−βt

(n−(m−1)n1−1)Td

(n−(m−1)n1−2)Td

=
1
β
Wbmax

[
1− e−(n−(m−1)n1−1)βTd

]
+

1
β

q n−(m−1)n1−2∑
i=1

eiβTd − (n− (m− 1)n1 − 2)q

 .
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