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TRANSIENT ANALYSIS OF A SINGLE SERVER QUEUEING SYSTEM WITH
INFINITE BUFFER

HuixiaA Huo, HouBAO XU*, ZHUOQIAN CHEN AND THET THET WIN

Abstract. As a typical single server queueing system, computer integrated manufacturing system
(CIMS) has been widely used in the field of intelligent manufacturing. However, how to derive its
instantaneous index is still an important issue. This paper investigates the transient behavior of the
CIMS with spectral method. By constructing an asymptotic system and analyzing the spectral dis-
tribution, we derive the explicit transient solution of the asymptotic system. Trotter—Kato theorem is
used to prove that the transient solution of the CIMS is just the limitation of explicit transient solution
of the asymptotic system. At the end of the paper, numerical examples are shown to illustrate the
effectiveness of the proposed approximation.
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1. INTRODUCTION

Computer integrated manufacturing system (CIMS) is a new technology manufacturing system formed by
combining computer technology with production. As a typical single server tandem queueing system, CIMS
became a hot spot in the development of manufacturing industry in the early 1980s [22], and has been widely
used in industry 4.0 with the theme of digitization, smart factories or Internet of Things [35,36].

Single server tandem queueing system with finite buffer is commonly seen in practical systems, due to space
or process constraints. Shu [34] obtained a work flow balance theorem based on system reliability theory and
gave some indexes of system reliability. Sericola [31] derived a procedure for the computation of the stationary
buffer content and the stationary overflow probability. Xu and Hu [39] used the Trotter—Kato theorem to ana-
lyze the approximation of a dynamic system consisting of two machines separated by a finite storage buffer.
Wu and Zhao [37] studied the properties of tandem queues with a finite buffer capacity and non-overlapping
service times subject to time-based preemptive breakdowns. Cruz et al. [9] improved the Multi-objective per-
formance of general finite single-server queueing networks by using a mixed methodology. Afroun et al. [1] used
Q-matrix method to analyze and evaluate the performance of M/M/1/N queueing models with multiple vaca-
tions, Bernoulli feedback, balking, reneging and retention of the impatient customers, and the possibility of
a server breakdown and repair. The inverse Laplace transform method and the generation function method
are two common methods to solve the transient behavior of the finite buffer. Braband [3] presented transient
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solutions for a mathematical model of statistical multiplexing by inverse Laplace transform method. In Sharma
et al. [33], the transient analysis of a single server Markovian queueing model having customers impatience with
threshold is performed by using probability generating function technique. In addition, Sericola [30] deduced
the transient solution of the flow field model based on the recursive relationship.

Single server tandem queueing system with infinite buffer has been extensively analyzed in several papers.
Fleming and Simon [10] illustrated the method of generating closed-form analytic approximations for the sojourn
time distribution of the M/M/1 queue with Bernoulli feedback, the M/M/1 processor sharing queue, a priority
queue with feedback and the M/E(k)/1 queue. Golovko et al. [13] studied the queueing system with infinite
buffer, single server and exponential service, and proved the existence and uniqueness of the stationary queuing
system model and the stability of the non-stationary queueing system model. Ghosh and Park [12] addressed
a rate control problem associated with a single server tandem Markovian queueing system and considered an
infinite horizon cost minimization problem. Chaudhry et al. [6] analyzed an infinite-buffer single-server queue
with renewal input and Markovian service process. Zhang et al. [40] proposed a rate iteration method embedded
with a generalized extension method to model an open universal queueing network with blocking and feedback.
Pradhan and Gupta [28] considered an infinite-buffer batch-service queue with Markovian arrival process and
obtained a bivariate vector generating function. However, the transient behavior with infinite buffer is rarely
discussed. Some references focus on studying the steady-state solution with infinite buffer [4,7,29]. Barbot
and Sericola [2] gave an infinite-capacity buffer receiving fluid and obtained the joint stationary distribution of
the buffer level by generating function. Using semigroup theory, Gupur and Li [14] proved that 0 is a simple
eigenvalue of the system operator, Liu et al. [24] derived the steady-state solution of the system, Gupur et al.
[15] and Huang [16] proved that the transient solution of the CIMS, as a typical single server tandem queueing
system, is converges asymptotically to its steady-state solution.

Though the steady-state analysis provides some important information about the CIMS, the steady-state
solution does not provide enough information about system performance. Transient analysis especially explicit
transient solution is of great value for understanding transient behavior [11,18]. For the transient analysis of
M/M/1 queueing system, Krinik [19] presented a Taylor series method for determining the transient proba-
bilities of the classical single server queueing System, Leguesdron et al. [21] proposed a new method based on
normalization technique and generation function to solve transient probability of M/M/1 queueing system, Seri-
cola et al. [32] obtained the transient solution of a fluid queue driven by an M/M/1 queue in terms of a modified
Bessel function of the first kind by employing continued fraction methodology. However, in the transient analysis
of the system, in addition to obtain the transient solution, another notable problem is the rate at which the
transient solution converges to the steady-state solution. As an effective method to solve such problems, spec-
tral distribution can not only obtain the transient solution based on the matrix decomposition, but also derive
the convergence rate of the transient solution by estimating the range of eigenvalues. On the other hand, as a
useful tool for studying the convergence of numerical approximation, the Trotter—-Kato theorem is a projection
method, which can flexibly cover various approximation schemes for infinite dimensional systems [17]. So in this
paper, spectral distribution and Trotter—Kato theorem are used to investigate the explicit transient behavior of
the CIMS with infinite buffer.

The rest of the paper is organized as follows: Section 2 describes the CIMS and transforms the system into
an abstract Cauchy problem. It is difficult to obtain the explicit transient solution of the CIMS. To solve
such problem, we construct an asymptotic system and obtain the explicit transient solution of such system in
Section 3. Section 4 proves that the solution of the CIMS is the limitation of transient solution of the asymptotic
system. Moreover, the convergence of transient solution of the CIMS is presented. The numerical examples of
the proposed approximation are shown in Section 5. Section 6 concludes the paper.

2. MODEL DESCRIPTION

In this section, we will describe the CIMS and transform the system into an abstract Cauchy problem by
choosing a suitable state space and defining operator.
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FIGURE 1. Behavior of the CIMS.
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FIGURE 2. State transition diagram of the CIMS.

To better understand the CIMS, we briefly introduce the concepts of Tandem queueing system and Bernoulli
feedback. Tandem queueing system is a basic structure of queueing networks in which all stations are dependent.
It can be divided into a single server tandem queueing system and multiple servers tandem queueing system.
Bernoulli feedback means that after each service, the workpiece will leave with a certain probability, and imme-
diately feedback to wait for the next service with a certain probability, where the sum of these two probabilities
is equal to 1.

Consider the CIMS consisting of two machines separated by a buffer just like shown in Figure 1. Workpieces
enter machine 1 from outside of the system. After being processed by machine 1, a workpiece will directly go
to the buffer with probability 7;, or it will be reprocessed by machine 1 with probability 1 — ;. A workpiece
will enter machine 2 from the buffer. After being operated on machine 2, a workpiece will exit the system with
probability 72, otherwise it will be reprocessed by machine 2 with probability 1 — 72. Therefore, the CIMS can
be regarded as a single server tandem queueing system with infinite buffer and Bernoulli feedbacks.

In this paper, we assume that machine 1 and machine 2 execute these workpieces one by one and the number
of workpieces in the system can be infinity. The number of workpieces is the sum of workpieces in the both
machines and in the buffer. The processing rates of machine 1 and machine 2 are A and p(A > 0,u > 0)
respectively. It is reasonable to assume that % < 1, which conforms to the actual background [38].

The fluid flow model for buffer behavior analysis, which can be regarded as a generalization of the birth and
death process model, has been discussed by [8,25]. Let pg(t) denotes the probability that machine 1 is processing
a workpiece at time ¢ and there is no workpiece in the buffer or machine 2. Let p;(¢)(i = 1,2, 3, ...) denote the
probability that at time ¢ both machines are busy and there are ¢ — 1 workpieces in the buffer. Then the state
transition process of the CIMS can be considered as an M/M/1 queueing system, as shown in Figure 2.

As a typical single server queueing system, the CIMS can be governed by a group of equations by probabilistic
arguments [23]:

{ dpgit(t) = —Amipo(t) + pnapi(t)

dp&i}(t) = Mpn—1(t) — (A1 + pn2)pn(t) + pneprsa(t), n>1

with initial value:
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oo
Let the state space X = ! = {ﬁ: (o, 1, P2, - )T D2 | pn < oo} and define operator A: X — X as

n=0
—Am un2
At —(Am + pn2) Hn2
A= =Gt ) o . 23

A — (A + pum2) pne

The domain of A is D(A) = X. Therefore, the system (2.1) and (2.2) can be expressed as an Abstract Cauchy
Problem in X:

O
G =Ap(t) (2.4)
p(0) = (1,0,0,...)7
where §(t) = (po(t), p1(t), p2(t), . ..)T. The steady-state solution of the system is
2 3 T
5= pn2 = A Ay pn2 — A (>\771> 2 — A </\m) B2 — A (2.5)
pnz e opnz o\ e pnz A\ e p ’

which derived by Liu et al. [24].

3. ASYMPTOTIC SYSTEM

In order to study the transient behavior of the CIMS (2.4), we construct an asymptotic system as follows,

()
gl = A (3.1
7™ (0) = (1,0,0,...,0)T
where A (n =0,1,2,...) is a matrix with dimensions (n + 1) x (n + 1),
—Am 112
A=A+ ) e
A — A —(AU% + 1n2) WI? ) (3.2)

Ay —(Any 4+ pm2)  pme
Am — 2

Matrix A(™ in (3.2) is obviously a linear bounded operator, it can generate uniformly continuous semigroup
T(™)(t) [27]. The transient solution of the asymptotic system (3.1) is

F(E) = T 0F(0) = exp (£4™) 57(0), (3.3)

T
where p() = (p§"” (1), p{" (1), p5" (8),., V(1))

3.1. The eigenvalue distribution of A(™)

In this subsection, in order to obtain the explicit transient solution of the asymptotic system (3.1), we will
discuss the eigenvalue distribution of the asymptotic system operator A for fixed n.
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Characteristic polynomials of A is ¢, (&) =| €I — A™) |, that is

§+Am — 2
= &4 A+ pne — e
-2 + My + g —
$n(8) = M S A e e . (3.4)

—>\771 £+ Anl +pune —pmne
—Am &+ uno

By expanding the determinant (3.4), we can obtain the recurrence relation

Dnl§) — (€ + A1+ pn2)pn—1(8) + Aumn2én—2(§) =0, (3.5)
which is valid for n > 1 if we define ¢_1(§) = 0, ¢o(&) = &.
For simplicity, we define the roots of ¢,,(£) = 0 by a(") g"), PN asln). Then we have the following theorem.
Theorem 3.1. aﬁ")(r =0,1,2,...,n) is the simple eigenvalue of A"™ and
0= oz(()n) = aén_l) > agn) > agn 1) - > afﬁ) (" 1) > a(")
Proof. We observe that
$-1(§) =0
Po(§) =¢ (3.6)
$1(§) = &(§ + A1 + png2)

(&) — (§+ M+ pn2)dn—1(§) + Aumnzdn—2(§) = 0(n > 2)

implies that for any given number £ > 0, we have ¢x(§) > 0.

Since ¢o(€) = &, the unique root of ¢o(§) =0 is a(o) = 0.

Let ¢1(§) = &(§+ Am + pum2) = 0, ¢2(§) = (£ + /\771 + un2)¢1(§) — Aumnago(§) = 0 and ¢3(§) = (£ + Any +
p2)$2(§) — Az (§), we obtain

ag’! =0, o) = =\ + ) <
al) =0, (2) — (A1 + pn2) + / Apmnz <0, a§2) = —(Am + pn2) — v/ Aumnz <0,
(3) = 07 (3) ()‘771 + MnQ + 2\/ )\,ulrlan > al 9

(2) O _ (i + ) < o, al®) =

< ay (2)

—(Am + pnz) = 2/ Apmnz < ay”.
Substitute al(-l)(i =0,1) into ¢2(§) and 041(2)(1' =0,1,2) into ¢3(§), we have

o2 (a(()l)> =0, ¢ (a§1)> = Aumina (A1 + pnz) > 0.
%3 (O“()Q)) =0, ¢ (0552)) >0, ¢3 ( (2)) <0.

By repeating the above procedure, suppose sgn¢>n( 5«" 1)) = (=1)"*!, the roots of ¢,(£) = 0 can be

described as Figure 3,
The roots of ¢, (§) =0 are

n n rm
g =0, al™ = (i + ) + 2y Aummpeos == (r = 1,2,...,m), (3.7)
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FIGURE 3. The roots of ¢,(§) = 0.

then
—(An1 + pma) — 24/ Az < al™ < —(np + pm2) + 2/ M (r = 1,2, ,n)
and

| — ™ > = + ) + 28/ M.

Thus 0 is the simple eigenvalue of A for any given n.
Moreover, we can deduce that

n

6u(&) = I (¢~ 1)

r=0

(n) (n)

where 0 > a7 7 > ay ()

> > a0 and

0=0al" =al" >a>a"V > 50 5 a7 s ),

3.2. The explicit transient solution

In order to obtain the explicit transient solution of the asymptotic system (3.1), we need to calculate
exp (tA(”)). The exponential of a matrix can be calculated in a variety of ways [26], mainly including Taylor
series, Padé approximation, ordinary differential equation method, matrix decomposition method. However,
Taylor series and Padé approximation are only suitable for smaller matrices. The primary disadvantage of ordi-
nary differential equation method is a relatively high cost in computer time. The matrix decomposition method
is especially used for some matrices with special structures. From the properties of eigenvalues of operator A(™)
in Theorem 3.1, we use the eigenvector decomposition in matrix decomposition method to solve exp (tA(”)).

For convenience, let exp (tA™) = {Cy;(t)}o<i j<n. To compute {C;;(t) }o<i j<n, We construct non-zero vectors

o = (2 a e e = (5 )

satisfying
) (a1t — A — 0

(10 a0) (5 =0

where r =0,1,2,...,n.
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After some elementary calculations, we derive that if » = 0, aS.”> =0,

o =(1,1,1,...,1

W &)

0 e’ \pma ) T e
n+1

n v _(2m

i) _ y" = Z )" (unz)
0 2 1 dm
=0 2

T 7

(yé>) o) (=) (32)

n+1

dg (i, §) = =

(n) +
% K12 (1 - (% )

and if r=1,2,3,...,n
2" = (1, Aimwo (af). (M%)le (af) ﬁw (a&’”))

= (L (o) oz () s ot (o)

where
al™ 4+ A —pns
Aol gyt s —pmy
o (a&”)):
~ip o™+ Xy + — e
—\n at™ + i+ pn
is a matrix with dimensions (k+ 1) x (k+ 1), k =0,1,2,...,n and satisfies the recurrence relation

Ui, (045")) - ( M) 4 i +,U772) Pr—1 ( )) + A m2dr—2 ( )> =0,

which is valid for k¥ > 1 if we define
A (a) =10 v () =al

Let

52801

(3.10)

(3.11)

(3.12)
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The matrices (3.12) have the property that
J2 = Jp, Jpds = 0(r # s).
Then the element in row ¢ and column j of J, is

B (n)
d{(i, j) = (z:) (Ml) wl(;(rg SLRIC )(ng’,an).

Since A™ is a (n41) x (n+ 1) matrix with distinct eigenvalues, then with the spectral resolution [5,20], we
deduce

Cij(t) = zn:exp (tal™) d G, 5)
r=0

= exp (ta(()n)) d(()") (1,7) + i exp (taf“")) d™ (i, 5)

r=1

) G () e ) o)

oi)
_ (kg2 — Amy) (2:%)11 . Zn: exp (tozgn)> (ﬁ)z ()\771 )(n;/’z 1 ( )%f ( )>. (3.13)
12 (1 - (%) ) ! "

According to (3.3), we can derive the explicit transient solution of the asymptotic system

T
P ) = exp (1) 570) = (667 (0.0 (.85 (0),-.p (1)

where

(s — ) (B2 )

B n exp( (n)) (#nz) Vi- 1( (”)>
p ()= o (1 B (m)n-&-l) +; o
_ (k2 = Am) (%)l +ieXp( (n)) (Mz) Vi 1( n)). (3.14)

U2 (1 a (2:7];)7”1) ! E (Aunmz {wv ! ( ar ))}2

4. TRANSIENT SOLUTION ANALYSIS

In this section, we use the Trotter—Kato theorem, which is flexible enough to cover various approximation
schemes for infinite dimensional systems, to derive transient solution for the CIMS (2.4).

4.1. The Trotter—Kato theorem

Before we present the Trotter-Kato theorem, we introduce the following concepts: A € G(M,w,X),
M > l,w € R, means that A is the infinitesimal generator of a Cp-semigroup T'(t),t > 0, satisfying
IT(t)|| < M -exp(wt),t > 0; p(A) denote the resolvent set of A.
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Theorem 4.1 (Trotter—-Kato Theorem [27]). Let X and X,, be Banach spaces with norm |||, || ||n,n = 1,2,...,
respectively, assume that A € G(M,w,X),A(") € G(M,w,X,,),M > 1,w € R and for each n = 1,2, ..., there
exist bounded linear operators P, : X — X, and E,, : X,, — X satisfying:

(a1) ||Pnll € My, ||Enll < My, where My and My are independent of n.
(a2) [|EnPpz — || — 0,m — 00, for all z € X.
(as) PoE, = 1I,, where I, is the identity operator on X,,.

Let T(t) and T™(t) be the semigroups generated by A and A™ on X and X,,, respectively. Then the following
statements are equivalent:

(A1) There exists a Ao € p(A) N () p (A™) such that, for all z € X,

n=1

1
Py — (Mol —A) 'zl -0, n— .

HEn (Aoln - A<">)

(A2) For everyx € X andt >0,
HEnT(") (t)Ppx — T(t)x” —0, n—oo

uniformly on bounded t-intervals.

In order to apply the Trotter—Kato theorem, it is difficult to verify the resolvent convergence (A;). To
overcome such difficulty, Ito and Kapple [17] indicated that (A1) can be proved by the following theorem.

Theorem 4.2. Let the assumptions of Theorem 4.1 be satisfied. Then statement (A1) of Theorem 4.1 is equiv-
alent to (az) and the following two statements:

(C1) There ezists a subset D C D(A) such that D = X and (Aol — A)D = X for a \g > w.
(Cy) For all x € D there exist a sequence (Tp)nen with (Zn)nen € D(AM™) such that

lim FE,Z, =,
n—oo

and
lim E,A™z, = Az.

n—00

The proofs of Theorems 4.1 and 4.2 are shown in [39] and [17] respectively. In view of the Trotter—Kato
theorem, the convergence (in an appropriate sense) of the resolvent is equivalent to the convergence of the
corresponding semigroup.

4.2. Transient solution of the CIMS

The equation (3.14) will be used to construct solutions p;(t)(: = 0,1,2,...) of the CIMS (2.4) based on the
limiting process, which just reflects the convergence of the semigroups of the Trotter—Kato theorem. So for fixed
to > 0, we can obtain the transient solution of the CIMS in ¢-intervals [0, ¢o] by equation (3.14).

Since the eigenvalues of the matrix A are of the form

ag” = 0,a" = =M + img) + 2/ Arpzcosw (™ (41)
(n) _ rx_

where w; = (r=1,2,...,n).

2
n+1
Put aS”) into Yy aﬁ”)), (k=1,2,3,...,n), we get

/N
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According to (3.11), we have

n+1
(n) 1- (ﬁ)
) = —oL

_ A

K12
1 a™(n+1
g = Lo mED o
A 25in2w£”)
Let Aw(™ = wﬁ)l — Wi = 1, then we get the following results
1 25inw\")
= /\mL“(J)Aw(”), (r=1,2,3,...).
ern Tr(_arn )

For the operator A(™, we define o(™)(z) as follows: ¢(™ () is to be a non-decreasing step function, defined
for —oo < < oo, with discontinuities 9(7170 at z = Ozs«")(r =0,1,...,n) and o™ (0) = 0.
Explicitly, o™ (z) is given by

0, T > aén)
a(")( )= —(Kln) + egl") + -+ 0;@), 047(3_)1 <z< a&n), (r=0,1,...,n—1) (4.2)
(Wl,,)-i-@;n)"‘r ..+9$1n))7 -'L'<O[5Ln)
As n — oo, let
w=lim w™,
n—oo
we have
1 0, Ay 2 i)
op= lim —— =14 1 5 (4.3)
n—00 (() ) {217217 A < iz
do(z) = A 2w o 0<w<m)
o(x) = Ampm——— ™
m m(—z) >
and the second part of (3.14) can be expressed as an integral, that is
5o () (38) v () () [ vowentiow, (=01.2,...m
=|— i—1(x)exp(txr)do(x), (2=0,1,2,...,n).
— o™ ) Jos
So the transient solution of the CIMS (¢ € [0,t0]) is p(t) = (po(t), p1(t), p2(t),...)T, where
pi(t) = lim pl(-n) (t)
n—oo
VN EYAY 1\ [°
i () () [ @)
M2 K12 K112 —0
“ o (Am)' 2 A 2
R () ey v pm)0) (G2 ) (=002 m), (0)
Hne 2y ™ K2

in which

™ (s i+ D) — X . .
U, :/ M (sinw) (sin(i + 1w) — /My (sinw) (siniw) exp(2+/ Aun natcosw)dw.
0

— (A1 + pn2) + 23/ Apninacosw
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Moreover, if we let ¢ tends to infinity in (4.4), we have,

7= (051,05, )7
where )
- A A\’
i = Jim o) = A () (4.5
t—00 P I2yp
which just satisfies equation (2.5) and
lim p{"" = pf,
* - Ay !
where pi") _ m)(“”) ,(0=0,1,2,...,n) is derived from equation (3.14) by letting ¢ — oo in pgn) (t).

~(am
”772(1 (ufm)

Therefore, as t tends to infinity, the Trotter—Kato theorem still applies to the transient solution of the CIMS.

4.3. Convergence analysis

Equation (4.1) yields that

—(Nn 4 ) — 20/ Aamina < ol < — (g + pmz) + 29/ M. (4.6)

The spectral interval in (4.6) is independent of n. As a result, the transient solution of the CIMS converges
exponentially to its steady-state solution as shown in the following Theorem.

Theorem 4.3. The transient solution of the system (2.4) converges exponentially to its steady-state solution.
That is

where w = (Any + unz) — 2/ Apumne > 0.

5. NUMERICAL EXAMPLES

In this section, some numerical examples are presented to illustrate the effectiveness of the proposed approx-
imation method.

First, we will verify that the asymptotic system constructed in this paper is feasible.

To simplicity the simulation and satisfy % < 1, we assume A = 0.6,71; = 0.4, u = 0.8, 72 = 0.6. By equations
(3.14) and (4.4), we can get the explicit transient solution 5™ (£) = (p{™ (£), p{™ (£), p5 (1), ..., p' (1)) of the
asymptotic system and the transient solution p(t) = (po(t), p1(t), p2(t),...)T of the CIMS, where the transient
behaviors of pél)(t), pég)(t)7 1085)@)7 po(t)(péoo)(t)) are depicted in Figure 4.

In Figure 4, the explicit transient solution of the asymptotic system tends to the transient solution of the
CIMS with n increasing. Figure 5 shows the transient behaviors p;(t),7 = 0,1, 2, 3 of the CIMS. Notice that with
the increase of time ¢, the transient solution of the CIMS tends to the steady-state solution (%, %, %, 1—16, e
that satisfies equation (4.5), which reflects the validity of the Theorem 4.3. Therefore, the asymptotic system
constructed in this paper is feasible.

Second, we will show the effect of the system parameters 7;,7 = 1,2 on the behavior of the CIMS.

po(t) denotes the probability that machine 1 is processing a workpiece at time ¢ and there is no workpiece
in the buffer or machine 2. With the change of probabilities n;,i = 1,2, the curves of py(t) are provided in
Figures 6 and 7. It is obvious that pg(t) are decreasing to a steady-state solution, but the steady-state solution
will vary with different 1; and 7. Moreover, the steady-state solution decreases with the increase of n; and
increases with the increase of 7.

For A = 0.6, x = 0.8,¢t = 100, Figure 8 is the three-dimensional diagram of 1, 72 and p(100). From Figure 8,
we can find the relationship between py(100) and 71, 72, namely pp(100) decreases as 1) increases while pg(100)
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F1GURE 5. Transient behaviors of the CIMS with A = 0.6,7; = 0.4, u = 0.8, 72 = 0.6.

increases as 72 increases. We can also deduce that the steady-state solution of po(t) will decreases with the
increase of 17 and increases with the increase of 75.

Finally, we will consider the behavior of the CIMS without Bernoulli feedbacks (7, = 12 = 1).

Figure 9 illustrates the transient behaviors p;(t),7 = 0,1, 2,3 of the CIMS without Bernoulli feedbacks. We
can see that the transient solution of the CIMS without Bernoulli feedbacks tends to its steady-state solution

(1,3, 2,25 )T that satisfies equation (4.5).
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FIGURE 6. po(t) with the change of 7.
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FIGURE 7. po(t) with the change of 7.

6. CONCLUSION

Transient analysis, including the transient solution and the convergence rate of the transient solution, is of
great value in understanding system performance. This paper discussed the transient behavior of a typical single
server queueing system with infinite buffer, namely CIMS, by spectral distribution method. We have derived
the transient solution of the CIMS, which is the limitation of the explicit transient solution of the constructed
asymptotic system with the method of difference scheme by Trotter—-Kato theorem. Furthermore, we have proved
that in the CIMS the transient solution converged to the steady-state solution exponentially with exponential
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FIGURE 9. Transient solution of the CIMS with A = 0.6, = 0.8, =12 = 1.

bound —w = —(An1 + un2) + 24/ Auninz. Numerical examples are also given to illustrate the validity of the
proposed approximation in the paper.
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