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SCHEDULING WITH POSITION-DEPENDENT WEIGHTS, DUE-DATE
ASSIGNMENT AND PAST-SEQUENCE-DEPENDENT SETUP TIMES

Li-Yan Wang1, Xue Huang1, Wei-Wei Liu2,∗, Yu-Bin Wu1 and Ji-Bo Wang1

Abstract. In this study, we consider single-machine scheduling problems with past-sequence-
dependent (denoted by psd) setup times in which the setup times of jobs are proportional to the length
of already processed jobs. Under common (CON) and slack (SLK) due-date assignment methods, we
prove that the weighted sum of earliness, tardiness and due-date minimization remains polynomially
solvable. We also give some extensions for the scheduling problems with psd setup times.
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1. Introduction

In many realistic scheduling problems, the setup times (costs) of jobs (tasks) are either sequence indepen-
dent or sequence dependent [1, 2]. On the other hand, Koulamas and Kyparisis [16] introduced past-sequence-
dependent (psd) setup times for single-machine scheduling, i.e., the setup time of a job is dependent on all already
scheduled jobs. Using the three-field notation (see [12]), they proved that the scheduling problem 1|psd|Z remains
polynomially solvable, where Z ∈ {Cmax,

∑n
i=1 Ci,

∑n
i=1

∑n
j=i |Cj−Ci|, λ

∑n
i=1 Ci+(1−λ)

∑n
i=1

∑n
j=i |Cj−Ci|},

0 ≤ λ ≤ 1, Cmax = max{Ci|j = 1, 2, . . . , n} is the makespan (Ci is the completion time of job Ji),
∑n
i=1 Ci is the

total completion time, TADC =
∑n
i=1

∑n
j=i |Cj−Ci| is the total absolute differences in completion times. Biskup

and Herrmann [4] considered single-machine scheduling problems with psd setup times and due dates. They
showed that the problem 1|psd|

∑n
i=1 Li can be solved by the SPT (Smallest Processing Time first) rule, where

Li = Ci−di is the lateness of job Ji, and di is the due-date of job Ji. If processing times and due dates are agree-
able, they proved that the problem 1|psd|Z (Z ∈ {

∑n
i=1 Ti, Lmax, Tmax}) can be solved in O(n log n) time, where

Ti = max{0, Ci − di} is the tardiness of job Ji, Lmax = max{Li} is maximum lateness, and Tmax = max{Ti} is
maximum tardiness. If a non-restrictive common due-date dopt is given, Biskup and Herrmann [4] also proved
that the problem 1|psd, di = dopt|Z (Z ∈ {

∑n
i=1(Ei + Ti),

∑n
i=1(αEi + βTi + ηd),

∑n
i=1(αEi + βTi + ζCi)})

can be solved in polynomial time, where Ei = max{0, d− Ci} is the earliness of job Ji, and α, β, η, ζ are given
constants. Koulamas and Kyparisis [17] proved that the problem 1|psd|Z (Z ∈ {Lmax, Tmax,

∑n
i=1 Ui}, where

Ui = 1 if Ci > di, otherwise Ui = 0) can be solved in O(n2) time. They also proposed solution algorithms to
solve the problem 1|psd|Z (Z ∈ {

∑n
i=1 wiTi,

∑n
i=1 wiUi,

∑n
i=1 wi(Ei + Ti)}), where wi is the weight of job Ji.
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Numerous researchers have considered psd setup times and additional factors such as learning and/or dete-
rioration effects. Cheng et al. [7] investigated single-machine scheduling problems with deteriorating jobs and
psd setup times. Kuo and Yang [18], Wang [28], Wang et al. [33], Wang and Wang [31], Kuo et al. [19], Hsu
et al. [14], Mani et al. [25], Wang and Li [29], and Soroush [26] examined single-machine scheduling with psd
setup times and job-independent (job-dependent) learning effects. Cheng et al. [6], Huang et al. [15], and Wang
and Wang [32] studied scheduling problems with deteriorating jobs and learning effects.

For scheduling problems and models, due-date assignment methods have drawn increasing attention
[8, 10, 11, 21, 38], i.e., jobs are to be completed neither too early nor too late. Brucker [5], Liu et al. [22], and
Wang et al. [35] researched single-machine scheduling with due-date assignment and position-dependent weights,
i.e., the weight is not related to the job but to the position in which the job is scheduled. Brucker [5] consid-
ered the common (CON) due-date assignment with position-dependent weights. Liu et al. [22] dealt with the
slack (SLK) due-date assignment with position-dependent weights. Wang et al. [35] scrutinized CON and SLK
due-date assignment methods with learning effects and resource allocation. Under position-dependent weights,
they proved that several scheduling problems can be solved in polynomial time. “The scheduling problem with
psd setup times has many real-world applications. For example, consider the scheduling problem of a high-tech
manufacturing environment in which a batch of jobs consisting of a group of electronic components needs to be
mounted on an IC board” [16]. This paper extends the results of Brucker [5], Liu et al. [22], and Wang et al.
[35], by revisiting psd setup times.

The remaining part of this study is organized as follows. Section 2 formulates the scheduling model. In
Sections 3 and 4, we consider CON and SLK due-date assignment problems, respectively. In Section 5, we
expound upon the work. Last section presents our conclusions.

2. Formulation

Considering a single-machine, on which there are n jobs J = {J1, J2, . . . , Jn} waiting for processing. It is
assumed that all the jobs are available at time zero, and preemption (the machine and jobs) is not allowed. Let
si be the psd setup time of job Ji and pi be the processing time of job Ji. We assume that the psd setup time
of job Jρ(i) is given as follows:

sρ(1) = 0 and sρ(i) = γ

i−1∑
h=1

pρ(h), (2.1)

where ρ(i) is some job scheduled in the ith position in a sequence ρ, γ ≥ 0 is a normalizing constant, and
total processing requirement of job Jρ(i) is γ

∑i−1
h=1 pρ(h) + pρ(i). For a given sequence ρ, let Ci = Cρ(i) be the

completion time of job Ji, by a mathematical induction, we have

Cρ(i) =
i∑

j=1

(sρ(j) + pρ(j))

=
i∑

j=1

pρ(j) +
i∑

j=1

sρ(j)

=
i∑

j=1

pρ(j) +
i∑

j=1

(
γ

j−1∑
h=1

pρ(h)

)

=
i∑

j=1

pρ(j) + γ

i∑
j=1

j−1∑
h=1

pρ(h)
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=
i∑

j=1

pρ(j) + γ

i∑
j=1

(i− j)pρ(j)

=
i∑

j=1

(1 + γ(i− j)) pρ(j). (2.2)

3. Common due-date assignment

For the common (CON) due-date assignment, we have di = dopt, i = 1, 2, . . . , n, where dopt is a decision
variable. The problem is to determine dopt and a sequence of jobs such that the following total cost is minimized:

n∑
i=1

ωi|Lρ(i)|+ ω0dopt =
n∑
i=1

ωi|Cρ(i) − dopt|+ ω0dopt, (3.1)

where ωi (i = 0, 1, 2, . . . , n) is the non-negative weight of ith position in a sequence (i.e., the position-dependent
weights), and Li = Ci − di is lateness of job Ji. Using the three-field notation (see [12]), the problem can be
denoted as 1 |psd,CON, dopt|

∑n
i=1 ωi|Lρ(i)|+ ω0dopt, where 1 denotes a single-machine.

Obviously, for an optimal sequence of the problem 1 |psd,CON, dopt|
∑n
i=1 ωi|Lρ(i)| + ω0dopt, there exists

no-idle time between the processing of jobs and the first job starts at time zero (see Brucker [5], Lem. 7.1).
Now, we introduce a dummy job J0, where its processing time is p0 = 0 and weight is ω0. Obviously, the job

J0 is always scheduled at time 0, yielding

n∑
i=1

ωi|Cρ(i) − dopt|+ ω0dopt =
n∑
i=0

ωi|Cρ(i) − dopt|,

and an optimal sequence is given by ρ = [ρ(0), ρ(1), . . . , ρ(n)], where ρ(0) = 0.

Lemma 3.1. For a given sequence ρ = [ρ(0), ρ(1), . . . , ρ(n)] of the problem 1 |psd,CON, dopt|
∑n
i=1 ωi|Lρ(i)|

+ω0dopt, dopt = Cρ(k) =
∑k
i=1 (1 + γ(k − i)) pρ(i), where k is a median for the sequence ω0, ω1, . . . , ωn,

k−1∑
i=0

ωi ≤
n∑
i=k

ωi and
k∑
i=0

ωi ≥
n∑

i=k+1

ωi. (3.2)

Proof. Let Cρ(k) < dopt < Cρ(k+1), we have

Z =
k∑
i=1

ωi(dopt − Cρ(i)) +
n∑

i=k+1

ωi(Cρ(i) − dopt) + ω0dopt.

When dopt = Cρ(k) and dopt = Cρ(k+1), we have

Z1 =
k∑
i=1

ωi(Cρ(k) − Cρ(i)) +
n∑

i=k+1

ωi(Cρ(i) − Cρ(k)) + ω0Cρ(k),

Z2 =
k+1∑
i=1

ωi(Cρ(k+1) − Cρ(i)) +
n∑

i=k+2

ωi(Cρ(i) − Cρ(k+1)) + ω0Cρ(k+1),

Z − Z1 =
k∑
i=1

ωi(dopt − Cρ(i) − Cρ(k) + Cρ(i)) +
n∑

i=k+1

ωi(Cρ(i) − dopt − Cρ(i) + Cρ(k)) + ω0(dopt − Cρ(k))
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=
k∑
i=1

ωi(dopt − Cρ(k)) +
n∑

i=k+1

ωi(Cρ(k) − dopt) + ω0(dopt − Cρ(k))

=

(
k∑
i=0

ωi −
n∑

i=k+1

ωi

)(
dopt − Cρ(k)

)
and

Z − Z2 =
k∑
i=1

ωi(dopt − Cρ(i) − Cρ(k+1) + Cρ(i)) +
n∑

i=k+1

ωi(Cρ(i) − dopt − Cρ(i) + Cρ(k+1)) + ω0(dopt − Cρ(k+1))

=
k∑
i=1

ωi(dopt − Cρ(k+1)) +
n∑

i=k+1

ωi(Cρ(k+1) − dopt) + ω0(dopt − Cρ(k+1))

=

(
k∑
i=0

ωi −
n∑

i=k+1

ωi

)(
dopt − Cρ(k+1)

)
.

When
k∑
i=0

ωi −
n∑

i=k+1

ωi ≥ 0

(
k∑
i=0

ωi −
n∑

i=k+1

ωi ≤ 0

)
, we have Z1 ≤ Z (Z2 ≤ Z), then dopt = Cρ(k)

(dopt = Cρ(k+1)), i.e., dopt is equal to the completion time of some job.

From the above analysis, when dopt = Cρ(k), it follows that
k∑
i=0

ωi −
n∑

i=k+1

ωi ≥ 0. When dopt = Cρ(k+1),

we have
k∑
i=0

ωi −
n∑

i=k+1

ωi ≤ 0, i.e., if dopt = Cρ(k), we have
k−1∑
i=0

ωi −
n∑
i=k

ωi ≤ 0.

In summary, when dopt = Cρ(k), we have
k−1∑
i=0

ωi ≤
n∑
i=k

ωi and
k∑
i=0

ωi ≥
n∑

i=k+1

ωi. �

Remark. The properties of Lemma 3.1 is the same as Brucker [5].

Lemma 3.2. For a given sequence ρ = [ρ(0), ρ(1), . . . , ρ(n)] of the problem 1 |psd,CON, dopt|
∑n
i=1 ωi|Lρ(i)|

+ω0dopt, the optimal total cost can be written as:

n∑
i=1

ωi|Lρ(i)|+ ω0dopt =
n∑
i=1

ωi|Cρ(i) − dopt|+ ω0dopt =
n∑
i=1

θipρ(i), (3.3)

where

θi =


i−1∑
v=0

(1 + γ (k − i))ωv +
k∑
v=i

γ (k − v)ωv +
n∑

v=k+1

γ (v − k)ωv, for i = 1, 2, . . . , k;
n∑
v=i

(1 + (v − k − 1) γ)ωv, for i = k + 1, k + 2, . . . , n.
(3.4)

Proof. From Lemma 3.1 and equation (2.2), we have dopt = Cρ(k) and Cρ(i) =
∑i
j=1 (1 + γ(i− j)) pρ(j), hence

n∑
i=1

ωi|Lρ(i)|+ ω0dopt

= ω0Cρ(k) +
k∑
i=1

ωi(Cρ(k) − Cρ(i)) +
n∑

i=k+1

ωi(Cρ(i) − Cρ(k))
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=
k∑
i=0

ωi

i∑
v=1

γ(k − i)pρ(v) +
k∑
i=0

ωi

k∑
v=i+1

(1 + γ(k − v))pρ(v)

+
n∑

i=k+1

ωi

k∑
v=1

γ (i− k) pρ(v) +
n∑

i=k+1

ωi

i∑
v=k+1

(1 + γ(i− v))pρ(v)

=
k∑
v=1

pρ(v)

(
v−1∑
i=0

(1 + γ (k − v))ωi +
k∑
i=v

γ (k − i)ωi +
n∑

i=k+1

γ (i− k)ωi

)

+
n∑

v=k+1

pρ(v)

(
n∑
i=v

(1 + (i− v) γ)ωi

)

=
n∑
i=1

θipρ(i),

where

θi =


i−1∑
v=0

(1 + γ (k − i))ωv +
k∑
v=i

γ (k − v)ωv +
n∑

v=k+1

γ (v − k)ωv, for i = 1, 2, . . . , k;
n∑
v=i

(1 + (v − k − 1) γ)ωv, for i = k + 1, k + 2 . . . , n.

�

Lemma 3.3 ([13]). “The sum of products
∑n
i=1 xiyi is minimized if sequence x1, x2, . . . , xn is ordered non-

decreasingly and sequence y1, y2, . . . , yn is ordered nonincreasingly or vice versa, and it is maximized if the
sequences are ordered in the same way.”

The term (3.3) can be minimized by Lemma 3.3, hence the 1 |psd,CON, dopt|
∑n
i=1 ωi|Lρ(i)|+ω0dopt problem

can be solved by the following algorithm:

Algorithm 3.4. Step 1. By Lemma 3.1, calculate k.
Step 2. By using Lemma 3.3 (let xi = pi, yi = θi, see (3.4)) to determine the optimal job sequence.
Step 3. Set dopt = Cρ(k) =

∑k
i=1 (1 + γ(k − i)) pρ(i).

Theorem 3.5. Algorithm 3.4 solves the problem 1 |psd,CON, dopt|
∑n
i=1 ωi|Lρ(i)|+ ω0dopt in O(n log n) time.

Proof. The correctness of Algorithm 3.4 follows from Lemmas 3.1–3.3. Steps 1 and 3 can be performed in linear
time O(n), and Step 2 requires O(n log n) time. Thus, the overall computational complexity of Algorithm 3.4
is O(n log n). �

The following example is used to illustrate Algorithm 3.4 for the 1 |psd,CON, dopt|
∑n
i=1 ωi|Lρ(i)| +ω0dopt

problem.

Example 3.6. Consider n = 8, γ = 0.5: the processing times are p1 = 7, p2 = 5, p3 = 6, p4 = 9, p5 = 10,
p6 = 3, p7 = 8, p8 = 11; the position-dependent weights are ω0 = 4, ω1 = 2, ω2 = 3, ω3 = 5, ω4 = 1, ω5 = 8,
ω6 = 7, ω7 = 6, ω8 = 9.

By Algorithm 3.4, according to Lemma 3.1, k = 5. From Lemma 3.2, we have θ1 = 49, θ2 = 48,
θ3 = 46.5, θ4 = 44.5, θ5 = 38, θ6 = 34, θ7 = 27, θ8 = 18. From Lemma 3.3, the optimal sequence is
ρ = [J6, J2, J3, J1, J7, J4, J5, J8], dopt = Cρ(5) =

∑5
j=1 (1 + 0.5 ∗ (5− j)) pρ(j) = 52, and

∑n
i=1 ωi|Lρ(i)| +

ω0dopt = 2055.5.
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4. Slack due-date assignment

For the slack (SLK) due date assignment, we have di = si + pi + qopt, where qopt is a decision variable. The
problem is to determine qopt and a sequence of jobs such that the following cost is minimized:

n∑
i=1

ωi|Lρ(i)|+ ω0qopt =
n∑
i=1

ωi|Cρ(i) − dρ(i)|+ ω0qopt. (4.1)

Using the three-field notation, the problem can be denoted as 1 |psd,SLK, qopt|
∑n
i=1 ωi|Lρ(i)|+ ω0qopt.

Obviously, for an optimal sequence of the problem 1 |psd,SLK, qopt|
∑n
i=1 ωi|Lρ(i)|+ω0qopt, there exists no-idle

time between the processing of jobs, and the first job starts at time zero (see [22]).
Similar to Section 3, we introduce a dummy job J0 (its processing time p0 = 0 and weight ω0) which is always

scheduled at time 0, then
n∑
i=1

ωi|Cρ(i) − dρ(i)|+ ω0qopt =
n∑
i=0

ωi|Cρ(i) − dρ(i)|,

and an optimal sequence is given by ρ = [ρ(0), ρ(1), . . . , ρ(n)], where ρ(0) = 0.

Lemma 4.1. If Cρ(i) ≥ dρ(i) then Cρ(i+1) ≥ dρ(i+1), and if Cρ(i) ≤ dρ(i) then Cρ(i−1) ≤ dρ(i−1).

Proof. If Cρ(i) ≥ dρ(i) = sρ(i) + pρ(i) + qopt ≥ qopt, then Cρ(i+1) = Cρ(i) + sρ(i) + pρ(i) ≥ dρ(i) + sρ(i) + pρ(i) ≥
qopt + sρ(i) + pρ(i) = dρ(i+1).

If Cρ(i) ≤ dρ(i), then Cρ(i−1) + sρ(i) + pρ(i) ≤ sρ(i) + pρ(i) + qopt, Cρ(i−1) ≤ qopt ≤ sρ(i−1) + pρ(i−1) + qopt=
dρ(i−1). �

Lemma 4.2. For a given sequence ρ = [ρ(0), ρ(1), . . . , ρ(n)] of the problem 1 |psd,SLK, qopt|
∑n
i=1 ωi|Lρ(i)|

+ω0qopt, qopt = Cρ(l) =
∑l
i=1 (1 + γ(l − i)) pρ(i), where l is a median for the sequence ω0, ω1, . . . , ωn,

l∑
i=0

ωi ≤
n∑

i=l+1

ωi and
l+1∑
i=0

ωi ≥
n∑

i=l+2

ωi. (4.2)

Proof. Define Cρ(l) < qopt < Cρ(l+1), then Cρ(l) + sρ(l+1) +pρ(l+1) < qopt + sρ(l+1) +pρ(l+1) < Cρ(l+1) + sρ(l+1) +
pρ(l+1), we have Cρ(l+1) < dρ(l+1). Since Cρ(l) + sρ(l+2) + pρ(l+2) < qopt + sρ(l+2) + pρ(l+2) < Cρ(l+1) + sρ(l+2) +
pρ(l+2), it follows that dρ(l+2) < Cρ(l+2). From Lemma 4.1, we have

Z =
l+1∑
i=1

ωi(dρ(i) − Cρ(i)) +
n∑

i=l+2

ωi(Cρ(i) − dρ(i)) + ω0qopt

=
l+1∑
i=1

ωi(sρ(i) + pρ(i) + qopt − Cρ(i)) +
n∑

i=l+2

ωi(Cρ(i) − sρ(i) − pρ(i) − qopt) + ω0qopt.

When qopt = Cρ(l), then dρ(i) = sσ(i) + pσ(i) + Cρ(l),

Z1 =
l+1∑
i=1

ωi(sρ(i) + pρ(i) + Cρ(l) − Cρ(i)) +
n∑

i=l+2

ωi(Cρ(i) − sρ(i) − pρ(i) − Cρ(l)) + ω0Cρ(l).

When qopt = Cρ(l+1), then dρ(i) = sρ(i) + pρ(i) + Cρ(l+1),

Z2 =
l+1∑
i=1

ωi(sρ(i) + pρ(i) + Cρ(l+1) − Cρ(i)) +
n∑

i=l+2

ωi(Cρ(i) − sρ(i) − pρ(i) − Cρ(l+1)) + ω0Cρ(l+1).
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Z − Z1 =
l+1∑
i=1

ωi(qopt − Cρ(l)) +
n∑

i=l+2

ωi(Cρ(l) − qopt) + ω0(qopt − Cρ(l))

=

(
l+1∑
i=0

ωi −
n∑

i=l+2

ωi

)(
qopt − Cρ(l)

)
,

Z − Z2 =
l+1∑
i=1

ωi(qopt − Cσ(l+1)) +
n∑

i=l+2

ωi(Cρ(l+1) − qopt) + ω0(qopt − Cσ(l+1))

=

(
l+1∑
i=0

ωi −
n∑

i=l+2

ωi

)(
qopt − Cρ(l+1)

)
.

When
l+1∑
i=0

ωi −
n∑

i=l+2

ωi ≥ 0

(
l+1∑
i=0

ωi −
n∑

i=l+2

ωi ≤ 0

)
, Z1 ≤ Z (Z2 ≤ Z), then qopt = Cρ(l) (qopt = Cρ(l+1)),

i.e., qopt is equal to the completion time of some job.

From the above analysis, when qopt = Cρ(l), it follows that
l+1∑
i=0

ωi −
n∑

i=l+2

ωi ≥ 0. When qopt = Cρ(l+1),

it follows that
l+1∑
i=0

ωi −
n∑

i=l+2

ωi ≤ 0, so, when qopt = Cρ(l), it follows that
l∑
i=0

ωi −
n∑

i=l+1

ωi ≤ 0.

In summary, when qopt = Cρ(l), we have
l∑
i=0

ωi ≤
n∑

i=l+1

ωi and
l+1∑
i=0

ωi ≥
n∑

i=l+2

ωi. �

Remark. The properties of Lemmas 4.1 and 4.2 is the same as Liu et al. [22].

Lemma 4.3. For the problem 1 |psd,SLK, qopt|
∑n
i=1 ωi|Lρ(i)|+ω0qopt, the optimal total cost can be written as:

n∑
i=1

ωi|Lρ(i)|+ ω0qopt =
n∑
i=1

ωi|Cρ(i) − dρ(i)|+ ω0qopt =
n∑
i=1

θipρ(i), (4.3)

where

θi =



i∑
v=0

(1 + γ (l − i))ωv +
l+1∑

v=i+1

γ (l − v + 1)ωv

+
n∑

v=l+2

γ (v − l − 1)ωv, for i = 1, 2, . . . , l;
n∑

v=i+1

(1 + (v − l − 2) γ)ωv, for i = l + 1, l + 2, . . . , n− 1;

0, for i = n.

(4.4)

Proof. Let ρ = [ρ(0), ρ(1), . . . , ρ(n)] and qopt = Cσ(l) be an optimal solution such that equation (4.2) can be
satisfied, we have

n∑
i=1

ωi|Lρ(i)|+ ω0qopt

= ω0Cρ(l) +
l+1∑
i=1

ωi(Cρ(l) − Cρ(i)) +
n∑

i=l+2

ωi(Cρ(i) − Cρ(l))

=
l+1∑
i=0

ωi

i−1∑
v=1

γ(l − i+ 1)pρ(v) +
l+1∑
i=0

ωi

l∑
v=i

(1 + γ(l − v))pρ(v)
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+
n∑

i=l+2

ωi

l∑
v=1

γ(i− l − 1)pρ(v) +
n∑

i=l+2

ωi

i−1∑
v=l+1

(1 + γ(i− v − 1))pρ(v)

=
l∑

v=1

pρ(v)

(
v∑
i=0

(1 + γ (l − v))ωi +
l+1∑

i=v+1

γ (l − i+ 1)ωi +
n∑

i=l+2

γ (i− l − 1)ωi

)

+
n−1∑
v=l+1

pρ(v)

(
n∑

i=v+1

(1 + (i− v − 1) γ)ωi

)

=
n∑
i=1

θipρ(i),

where

θi =



i∑
v=0

(1 + γ (l − i))ωv +
l+1∑

v=i+1

γ (l − v + 1)ωv

+
n∑

v=l+2

γ (v − l − 1)ωv, for i = 1, 2, . . . , l;
n∑

v=i+1

(1 + (v − l − 2) γ)ωv, for i = l + 1, l + 2, . . . , n− 1;

0, for i = n.

�

The term (4.3) can be minimized by Lemma 3.3; hence the 1 |psd,SLK, qopt|
∑n
i=1 ωi|Lρ(i)|+ω0qopt problem

can be solved by the following algorithm:

Algorithm 4.4. Step 1. By Lemma 4.2, calculate l.
Step 2. By using Lemma 3.3 (let xi = pi, yi = θi (see (4.4))) to determine the optimal job sequence.
Step 3. Set qopt = Cρ(l) =

∑l
i=1 (1 + γ(l − i)) pρ(i).

Theorem 4.5. Algorithm 4.4 solves the problem 1 |psd,SLK, qopt|
∑n
i=1 ωi|Lρ(i)|+ ω0qopt in O(n log n) time.

Proof. Similar to the proof of Theorem 3.5. �

The following example is used to illustrate Algorithm 4.4 for the problem 1 |psd,SLK, qopt|
∑n
i=1 ωi|Lρ(i)|+

ω0qopt.

Example 4.6. The input data in this example is the same as in Example 3.6.

By Algorithm 4.4, according to Lemma 4.2, l = 4. From Lemma 4.3, we have θ1 = 48, θ2 = 46.5,
θ3 = 44.5, θ4 = 38, θ5 = 34, θ6 = 27, θ7 = 18, θ8 = 0. From Lemma 3.3, the optimal sequence is
ρ = [J6, J2, J3, J1, J7, J4, J5, J8], qopt = Cρ(4) =

∑4
j=1 (1 + 0.5 ∗ (4− j)) pρ(j) = 33.5, and

∑n
i=1 ωi|Lρ(i)| +

ω0qopt = 1604.5.

5. Extensions

5.1. Truncated job-dependent learning effect

In this subsection, the proposed model is extended by the introduction of truncated job-dependent learning
effect [3, 23, 24, 27, 34, 36, 37], i.e., if job Ji is scheduled in the rth position in a sequence, its actual processing
time is given by

pAi = pi max{rai , b}, i, r = 1, . . . , n, (5.1)
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where ai ≤ 0 is the job-dependent learning effect, and b is a truncation parameter (0 < b < 1). The psd setup
time of job Jρ(i) is sρ(i) = γ

∑i−1
h=1 p

A
ρ(h). For the SLK due-date assignment, di = si + pAi + qopt.

Obviously, Lemmas 3.1, 3.2, 4.1 and 4.2 still hold when truncated job-dependent learning effect is introduced.
Similar to the above analysis, we have

n∑
i=1

ωi|Lρ(i)|+ ω0dopt/qopt =
n∑
i=1

θip
A
ρ(i) =

n∑
i=1

θipρ(i) max{raρ(i) , b}, (5.2)

where, for the CON due-date assignment, θi (i = 1, 2, . . . , n) is given by (3.4); for the SLK due-date assignment,
θi (i = 1, 2, . . . , n) is given by (4.4).

Let

xir =
{

1, if job Ji is assigned to the rth position,
0, otherwise.

Then, we can formulate the sequence of the problem 1 |psd,CON/SLK, dopt/qopt|
∑n
i=1 ωi|Lρ(i)| + ω0dopt/qopt

as the following assignment problem:

Min
n∑
i=1

n∑
r=1

θrpi max{rai , b}xir (5.3)

s.t.
n∑
i=1

xir = 1, r = 1, . . . , n (5.4)

n∑
r=1

xir = 1, i = 1, . . . , n (5.5)

xir = {0, 1} . (5.6)

Based on the above analysis, the problem 1
∣∣psd,CON/SLK, dopt/qopt, p

A
i = pi max{rai , b}

∣∣ ∑n
i=1 ωi|Lρ(i)|+

ω0dopt/qopt can be solved by the following algorithm:

Algorithm 5.1. Step 1. For the CON due-date assignment, by using Lemma 3.1, calculate k; For the SLK
due-date assignment, by using Lemma 4.2, calculate l.

Step 2. Solve the assignment problem (5.3) to (5.6) to determine the optimal sequence.
Step 3. Calculate dopt = Cρ(k) =

∑k
i=1 (1 + γ(k − i)) pAρ(i), qopt = Cρ(l) =

∑l
i=1 (1 + γ(l − i)) pAρ(i).

Based on the above analysis, we have

Theorem 5.2. The problem 1
∣∣psd,CON/SLK, dopt/qopt, p

A
i = pi max{rai , b}

∣∣∑n
i=1 ωi|Lρ(i)|+ω0dopt/qopt can

be solved by Algorithm 5.1 in O(n3) time.

The following example is only used to illustrate Algorithm 5.1 for the problem
1
∣∣psd,CON, dopt, p

A
i = pi max{rai , b}

∣∣∑n
i=1 ωi|Lρ(i)|+ ω0dopt.

Example 5.3. Consider n = 8, γ = 0.5, b = 0.6: the processing times are p1 = 7, p2 = 5, p3 = 6, p4 = 9,
p5 = 10, p6 = 3, p7 = 8, p8 = 11; the position-dependent weights are ω0 = 4, ω1 = 2, ω2 = 3, ω3 = 5, ω4 = 1,
ω5 = 8, ω6 = 7, ω7 = 6, ω8 = 9 and job-dependent learning effects are a1 = −0.27, a2 = −0.25, a3 = −0.3,
a4 = −0.29, a5 = −0.32, a6 = −0.33, a7 = −0.28, a8 = −0.31.

By Algorithm 5.1 and Example 3.6, we have k = 5, and θ1 = 49, θ2 = 48, θ3 = 46.5, θ4 = 44.5, θ5 = 38,
θ6 = 34, θ7 = 27, θ8 = 18. The values θrpi max{rai , b} are given in Table 1. The costs of solution for the assign-
ment problem (5.3–5.6) are given in bold in Table 1 and the optimal sequence is ρ = [J6, J2, J3, J1, J5, J7, J4, J8],
dopt = Cρ(5) =

∑5
j=1 (1 + 0.5 ∗ (5− j)) pρ(j) = 41.08366, and

∑n
i=1 ωi|Lρ(i)|+ ω0dopt = 1421.016.
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Table 1. Values θrpi max{rai , b}.

Ji \ r r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8

J1 343.0000 278.6514 241.9515 214.2406 172.2502 146.7155 113.4000 75.60000
J2 245.0000 201.8151 176.6618 157.3313 127.0607 108.6203 82.99640 54.00000
J3 294.0000 233.9287 200.6632 176.1543 140.6837 122.4000 97.20000 64.80000
J4 441.0000 353.3337 304.3199 267.9200 214.4494 183.6000 145.8000 97.20000
J5 490.0000 384.5135 327.1705 285.5623 228.0000 204.0000 162.0000 108.0000
J6 147.0000 114.5573 97.07875 84.48925 68.40000 61.20000 48.60000 32.40000
J7 392.0000 316.2590 273.4947 241.4756 193.7144 164.6973 129.6000 86.40000
J8 539.0000 425.9068 363.8631 318.5034 253.8023 224.4000 178.2000 118.8000

For a special case: ai = a, we have:

n∑
i=1

ωi|Lρ(i)|+ ω0dopt/qopt =
n∑
i=1

θip
A
ρ(i) =

n∑
i=1

θipρ(i) max{ra, b}. (5.7)

Obviously, the minimization of term (5.7) can be obtained by Lemma 3.3 (i.e., xi = pi, yi = θi max{ia, b}),
hence, we have the following result:

Theorem 5.4. The problem 1
∣∣psd,CON/SLK, dopt/qopt, p

A
i = pi max{ra, b}

∣∣∑n
i=1 ωi|Lρ(i)| + ω0dopt/qopt can

be solved in O(nlogn) time.

5.2. Deteriorating jobs

In this subsection, we introduce deteriorating jobs [9, 30] to the scheduling, i.e., the actual processing time
of job Ji is given by

pAi = pi + ct, i = 1, . . . , n, (5.8)

where c ≥ 0 is the deterioration rate, and t is its starting time.
Clearly, Lemmas 3.1, 3.2, 4.1 and 4.2 still hold when deteriorating jobs are introduced. Similar to the above

analysis, we have

n∑
i=1

ωi|Lρ(i)|+ ω0dopt/qopt =
n∑
i=1

θip
A
ρ(i) =

n∑
i=1

∆ipσ(i), (5.9)

where

∆1 = θ1 + cθ2 + c(1 + c)θ3 + . . .+ c(1 + c)n−2θn

∆2 = θ2 + cθ3 + c(1 + c)θ4 + . . .+ c(1 + c)n−3θn

∆3 = θ3 + cθ4 + c(1 + c)θ5 + . . .+ c(1 + c)n−4θn

. . .

∆n−1 = θn−1 + cθn

∆n = θn, (5.10)

where, for the CON due-date assignment, θi (i = 1, 2, . . . , n) is given by (3.4); for the SLK due-date assignment,
θi (i = 1, 2, . . . , n) is given by (4.4).

Obviously, the minimization of term (5.9) can be obtained by Lemma 3.3 (i.e., xi = pi, yi = ∆i), thus
yielding the following result.
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Table 2. Scheduling problems with the psd setup times.

Problem Complexity Ref.

1 |psd, CON, dopt|
∑n
i=1 ωi|Lρ(i)| + ω0dopt O(n log n) Theorem 3.5

1 |psd, SLK, qopt|
∑n
i=1 ωi|Lρ(i)| + ω0qopt O(n log n) Theorem 4.5

1
∣∣psd, CON, qopt, p

A
i = pi max{rai , b}

∣∣∑n
i=1 ωi|Lρ(i)| + ω0dopt O(n3) Theorem 5.2

1
∣∣psd, SLK, qopt, p

A
i = pi max{rai , b}

∣∣∑n
i=1 ωi|Lρ(i)| + ω0qopt O(n3) Theorem 5.2

1
∣∣psd, CON, qopt, p

A
i = pi max{ra, b}

∣∣∑n
i=1 ωi|Lρ(i)| + ω0dopt O(n log n) Theorem 5.4

1
∣∣psd, SLK, qopt, p

A
i = pi max{ra, b}

∣∣∑n
i=1 ωi|Lρ(i)| + ω0qopt O(n log n) Theorem 5.4

1 |psd, CON, dopt, pi + ct|
∑n
i=1 ωi|Lρ(i)| + ω0dopt O(n log n) Theorem 5.5

1 |psd, SLK, qopt, pi + ct|
∑n
i=1 ωi|Lρ(i)| + ω0qopt O(n log n) Theorem 5.5

Theorem 5.5. The problem 1
∣∣psd,CON/SLK, dopt/qopt, p

A
i = pi + ct

∣∣∑n
i=1 ωi|Lρ(i)| + ω0dopt/qopt can be

solved in O(nlogn) time.

The following example is only used to illustrate Algorithm 3.4 for the problem
1
∣∣psd,CON, dopt, p

A
i = pi + ct

∣∣∑n
i=1 ωi|Lρ(i)|+ ω0dopt.

Example 5.6. The input data in this example is the same as in Example 3.6 except that c = 0.1.

By Algorithm 3.4 and Example 3.6, we have k = 5, and θ1 = 49, θ2 = 48, θ3 = 46.5, θ4 = 44.5,
θ5 = 38, θ6 = 34, θ7 = 27, θ8 = 18. From (5.10), we have ∆1 = 81.87243,∆2 = 73.52039,∆3 = 65.47308,
∆4 = 57.70280,∆5 = 46.54800,∆6 = 38.68000,∆7 = 28.80000,∆8 = 18. From Lemma 3.3, the optimal
sequence is ρ = [J6, J2, J3, J1, J7, J4, J5, J8], dopt = Cρ(5) =

∑5
j=1 (1 + 0.5 ∗ (5− j)) pAρ(j) = 59.04380, and∑n

i=1 ωi|Lρ(i)|+ ω0dopt = 2616.481.

6. Conclusions

In this paper, we considered single-machine scheduling problems with psd setup times and position-dependent
weights. Under the CON and SLK due-date assignment methods, we proved that a non-regular objective function
minimization can be solved in O(n log n) time (see Tab. 2). Further research may study other non-regular
objective functions (such as the due-window assignment, Liman et al. [20], Zhang and Wang [39], and Zhang
et al. [40]). In addition, multi-machine problems with the psd setup times are also interesting issues.

Acknowledgements. This work was supported by the Natural Science Foundation of Liaoning Province, China (2020-MS-
233).

References

[1] A. Allahverdi, The third comprehensive survey on scheduling problems with setup times/costs. Eur. J. Oper. Res. 246 (2015)
345–378.

[2] A. Allahverdi, C.T. Ng, T.C.E. Cheng and M.Y. Kovalyov, A survey of scheduling problems with setup times or costs. Eur.
J. Oper. Res. 187 (2008) 985–1032.

[3] D. Biskup, A state-of-the-art review on scheduling with learning effects. Eur. J. Oper. Res. 188 (2008) 315–329.

[4] D. Biskup and J. Herrmann, Single-machine scheduling against due dates with past-sequence-dependent setup times. Eur. J.
Oper. Res. 191 (2008) 587–592.

[5] P. Brucker, Scheduling Algorithms, 3rd edition. Springer, Berlin-Heidelberg (2001).

[6] T.C.E. Cheng, W.-C. Lee and C.-C. Wu, Scheduling problems with deteriorating jobs and learning effects including proportional
setup times. Comput. Ind. Eng. 58 (2010) 326–331.

[7] T.C.E. Cheng, W.-C. Lee and C.-C. Wu, Single-machine scheduling with deteriorating jobs and past-sequence-dependent setup
times. Appl. Math. Model. 35 (2011) 1861–1867.



2758 L.-Y. WANG ET AL.

[8] P. Chrétienne, Minimizing the earliness and tardiness cost of a sequence of tasks on a single machine. RAIRO:OR 35 (2001)
165–187.

[9] S. Gawiejnowicz, Time-Dependent Scheduling. Springer, Berlin-Heidelberg (2008).
[10] V.S. Gordon, J.M. Proth and C.B. Chu, A survey of the state of-the-art of common due date assignment and scheduling

research. Eur. J. Oper. Res. 139 (2002) 1–25.
[11] V.S. Gordon, J.M. Proth and C.B. Chu, Due date assignment and scheduling: SLK, TWK and other due date assignment

models. Prod. Plan. Control 13 (2002) 117–132.
[12] R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Optimization and approximation in deterministic sequencing

and scheduling: a survey. Ann. Disc. Math. 5 (1979) 287–326.
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