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SCHEDULING WITH POSITION-DEPENDENT WEIGHTS, DUE-DATE
ASSIGNMENT AND PAST-SEQUENCE-DEPENDENT SETUP TIMES

L1-YAN WaNG!, XUE HuanG!, WEI-WEI L1v%*, Yu-BIN Wu! anND JI-Bo WanNG!

Abstract. In this study, we consider single-machine scheduling problems with past-sequence-
dependent (denoted by psd) setup times in which the setup times of jobs are proportional to the length
of already processed jobs. Under common (CON) and slack (SLK) due-date assignment methods, we
prove that the weighted sum of earliness, tardiness and due-date minimization remains polynomially
solvable. We also give some extensions for the scheduling problems with psd setup times.
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1. INTRODUCTION

In many realistic scheduling problems, the setup times (costs) of jobs (tasks) are either sequence indepen-
dent or sequence dependent [1,2]. On the other hand, Koulamas and Kyparisis [16] introduced past-sequence-
dependent (psd) setup times for single-machine scheduling, i.e., the setup time of a job is dependent on all already
scheduled jobs. Using the three-field notation (see [12]), they proved that the scheduling problem 1|psd|Z remains
polynomially solvable, where Z € {Crax, > iy Ci, > iq 25—y [Cj—Cil, A 370, Cit-(1-0) 3501, D00, |C—Cil},
0 <A <1, Crax = max{C;|j = 1,2,...,n} is the makespan (C; is the completion time of job .J;), Y7, C; is the
total completion time, TADC = Y7 | Z?:i |C;—C;] is the total absolute differences in completion times. Biskup
and Herrmann [4] considered single-machine scheduling problems with psd setup times and due dates. They
showed that the problem 1|psd| """ ; L; can be solved by the SPT (Smallest Processing Time first) rule, where
L; = C;—d; is the lateness of job J;, and d; is the due-date of job J;. If processing times and due dates are agree-
able, they proved that the problem 1|psd|Z (Z € {3_""_, T}, Liax, Tmax}) can be solved in O(nlogn) time, where
T; = max{0,C; — d;} is the tardiness of job J;, Liax = max{L;} is maximum lateness, and Ty,.x = max{T;} is
maximum tardiness. If a non-restrictive common due-date dopy, is given, Biskup and Herrmann [4] also proved
that the problem 1|psd,d; = dopt|Z (Z € {> 1 (Ei + T3), >y (B + BT; + nd), > i (aE; + BT; + (Ci)})
can be solved in polynomial time, where E; = max{0,d — C;} is the earliness of job J;, and «, 3,7, ¢ are given
constants. Koulamas and Kyparisis [17] proved that the problem 1|psd|Z (Z € {Lmax; Tmax, 91—y Ui}, where
U; = 1if C; > d;, otherwise U; = 0) can be solved in O(n?) time. They also proposed solution algorithms to
solve the problem 1|psd|Z (Z € {>_1_, wiT;, > oy wiUs, >y wi(E; + T;)}), where w; is the weight of job J;.
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Numerous researchers have considered psd setup times and additional factors such as learning and/or dete-
rioration effects. Cheng et al. [7] investigated single-machine scheduling problems with deteriorating jobs and
psd setup times. Kuo and Yang [18], Wang [28], Wang et al. [33], Wang and Wang [31], Kuo et al. [19], Hsu
et al. [14], Mani et al. [25], Wang and Li [29], and Soroush [26] examined single-machine scheduling with psd
setup times and job-independent (job-dependent) learning effects. Cheng et al. [6], Huang et al. [15], and Wang
and Wang [32] studied scheduling problems with deteriorating jobs and learning effects.

For scheduling problems and models, due-date assignment methods have drawn increasing attention
[8,10,11,21, 38], i.e., jobs are to be completed neither too early nor too late. Brucker [5], Liu et al. [22], and
Wang et al. [35] researched single-machine scheduling with due-date assignment and position-dependent weights,
i.e., the weight is not related to the job but to the position in which the job is scheduled. Brucker [5] consid-
ered the common (CON) due-date assignment with position-dependent weights. Liu et al. [22] dealt with the
slack (SLK) due-date assignment with position-dependent weights. Wang et al. [35] scrutinized CON and SLK
due-date assignment methods with learning effects and resource allocation. Under position-dependent weights,
they proved that several scheduling problems can be solved in polynomial time. “The scheduling problem with
psd setup times has many real-world applications. For example, consider the scheduling problem of a high-tech
manufacturing environment in which a batch of jobs consisting of a group of electronic components needs to be
mounted on an IC board” [16]. This paper extends the results of Brucker [5], Liu et al. [22], and Wang et al.
[35], by revisiting psd setup times.

The remaining part of this study is organized as follows. Section 2 formulates the scheduling model. In
Sections 3 and 4, we consider CON and SLK due-date assignment problems, respectively. In Section 5, we
expound upon the work. Last section presents our conclusions.

2. FORMULATION

Considering a single-machine, on which there are n jobs J = {J1,J2,...,J,} waiting for processing. It is
assumed that all the jobs are available at time zero, and preemption (the machine and jobs) is not allowed. Let
s; be the psd setup time of job J; and p; be the processing time of job J;. We assume that the psd setup time
of job J,; is given as follows:

i—1
sp) =0 and sy =7 pyen), (2.1)
h=1

where p(i) is some job scheduled in the ith position in a sequence p, v > 0 is a normalizing constant, and
total processing requirement of job J,; is 72;;11 Pp(h) + Pp(iy- For a given sequence p, let C; = C);) be the
completion time of job J;, by a mathematical induction, we have

%

Coiy = Y _(8p(5) +Po())

Jj=1

= prm + Z Sp(5)
j=1 j=1
1 7 Jj—1
= pro) + Z (7 Z%(h))
j=1 h=1

j=1
i 7 j—1

= prm +7 Z pr(m

j=1

j=1h=1
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i i
= 0ot + Y= P
j=1 j=1

= (L+9( = 1) Pois)- (2.2)

Jj=1

3. COMMON DUE-DATE ASSIGNMENT

For the common (CON) due-date assignment, we have d; = dopt, @ = 1,2,...,n, where dopy is a decision
variable. The problem is to determine dyp¢ and a sequence of jobs such that the following total cost is minimized:

n n
Zwile(i)| + deopt = Zwi‘cp(i) - dopt| =+ WOdoptv (31)
i=1 i=1
where w; (1 =0,1,2,...,n) is the non-negative weight of ith position in a sequence (i.e., the position-dependent

weights), and L; = C; — d; is lateness of job J;. Using the three-field notation (see [12]), the problem can be
denoted as 1 |psd, CON, dopt| > | wil Ly(i)| + wodopt, where 1 denotes a single-machine.
Obviously, for an optimal sequence of the problem 1 |psd, CON, dopt| > i ; wi|Lpy(i)| + wodopt, there exists
no-idle time between the processing of jobs and the first job starts at time zero (see Brucker [5], Lem. 7.1).
Now, we introduce a dummy job Jy, where its processing time is pg = 0 and weight is wg. Obviously, the job
Jo is always scheduled at time 0, yielding

sz|cp(7,) - dopt‘ + deopt = sz|cp(z) - dopt|;
i=1 i=0
and an optimal sequence is given by p = [p(0), p(1), - - - » P(n)], Where py = 0.

Lemma 3.1. For a given sequence p = [p(0),P(1),---»Pm)) of the problem 1|psd, CON,dope| >0 1 wil Lyl
+wodopt, dopt = Cpky = Zle (1 +~(k — 1)) ppgiy, where k is a median for the sequence wy, w1, . .. ,wWn,

n k n
w; < Zwi and Zwi > Z w. (3.2)
i=k

=0 i=k+1

E

-1

N
Il
=)

Proof. Let Cyry < dopt < Cp(ry1), We have

n

k
7 = Zwi(dopt — Cp(z)) + Z wi(Cp(i) — dopt) + deopt~
i=1 i=k+1

When dopi = Cpry and dopt = Cpy(r41), we have

n

k
Zr =Y wiCory = Coi)) + Y wilCoiiy = Cory) + woCor)s
=1

i=k+1
k+1 n
Zy = _wilCpties) = Co) + Y wilCoti) = Cotin) + w0Co(tn),
i=1 i=k+2

n

k
Z =21 =" wildops = Cotiy = Cory + Cotiy) + D @il Coiy = dopt = Cp(iy + Cory) + woldopt = Coiy)
=1 i=k+1
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n

k
= Zwi(dopt - Cp(k)) + Z wi(cp(k) - dopt) + WO(dopt - Cp(k:))

i=k+1
- (z = 3 ) o~ o)
1=k+1
and
Z -7y = sz ovt = Coti) = Cothrny + Coi) + Y @il Cogiy = dopt = Ciy + Coin)) + woldopt = Coir))
i=k+1
= sz opt — Coks1)) + Z Wi (Cok+1) — dopt) + woldopt — Cp(r1))
1=k-+1
(z = 3 ) o~ G
i=k-+1
k n k n
When Y w; — > wi >0 | Ywi— > w<0|, wehave Z; < Z (Zy < Z), then dopy = Chypy
i=0 i=ka1 i=0 i=kt1
(dopt = Cp(k+1)), i-€., dopt is equal to the completion time of some job.
k n
From the above analysis, when dope = Cpr), it follows that Y  w; — > w; > 0. When dopy = Cpp41),
i=0 i=k+1
k n k—1 n
we have Y w; — > w; <0, i, if dopy = Cpiy, we have D w; — Y w; <0.
i=0 i=ka1 i=0 i=k
k—1 n k n
In summary, when dope = Cp(ry, we have Y- w; < Y wiand Y w; > Y w;. O
i=0 i=k i=0 i=kt1

Remark. The properties of Lemma 3.1 is the same as Brucker [5].

Lemma 3.2. For a given sequence p = [p(y,P(1);---,Pm)] of the problem 1 Ipsd, CON, dopt | > 1 wil Lyeay|
+wodopt, the optimal total cost can be written as:

Zwi|Lp(i)| + w()dopt = sz|cp(z) - dopt| + deopt = Zezpp(z)> (33)
i= i= i=1
where
— k n
2(14—7( —i))wyt vk —v)we+ 3 Y —k)wy, for i=12,... k
975 = T—l V=1t v=k+1 (34)
Z(l—i—(v—k—l)v)wv, for i1=k+1,k+2,...,n

Proof. From Lemma 3.1 and equation (2.2), we have dopy = Cpyry and C(;) = 22:1 (1 +~(i = 7)) pp(j), hence

Z wi| Ly(i)| + wodopt
=1
k n
= woCotky + D wilCory = Co)) + Y, @ilCo(i) = Cory)

=1 i=k+1
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—Z%Zv —i)Ppw) +sz Z + (k= 0))Pp(e)

1=0 v=1+1
+ Z w; Zv (i — k) Do) + Z wi Z (1+ (i = 0))pp)
i=k+1  v=1 i=k+1  v=k+1
k v—1 k n
= D) <Z(1+7(’f—v))wi +> yk—iwi+ Y V(i—k)wz)
v=1 i=0 i=v i=k+1
v=k+1 1=v
= Z 0iPp(i)
i=1
where
— k n
Z Atyk=—i))w+ X v(k—vjw+ > y(w—kjwy, for =12k
ei — ’I’:L v=1 v=k+1
Z(l—i—(v—k—l)v)wv, for i=k+1,k+2...,n
O
Lemma 3.3 ([13]). “The sum of products Y ., x;y; is minimized if sequence x1,%s, ..., T, is ordered non-
decreasingly and sequence yi,Ya, ..., Yn 1S ordered nonincreasingly or vice versa, and it is mazimized if the

sequences are ordered in the same way.”

The term (3.3) can be minimized by Lemma 3.3, hence the 1 |psd, CON, dopt| > 1 wil Ly(iy| +wodops problem
can be solved by the following algorithm:

Algorithm 3.4. Step 1. By Lemma 3.1, calculate k.
Step 2. By using Lemma 3.3 (let z; = p;, y; = 0;, see (3.4)) to determine the optimal job sequence.

Step 3. Set dope = Cpy = Sor_y (1+7(k — 1)) pyci)-
Theorem 3.5. Algorithm 3.4 solves the problem 1|psd, CON, dope| Y71 wi|L i) + wodops i O(nlogn) time.

Proof. The correctness of Algorithm 3.4 follows from Lemmas 3.1-3.3. Steps 1 and 3 can be performed in linear
time O(n), and Step 2 requires O(nlogn) time. Thus, the overall computational complexity of Algorithm 3.4
is O(nlogn). O

The following example is used to illustrate Algorithm 3.4 for the 1|psd, CON, dopt| >y wil Lygiy| +wodopt
problem.

Example 3.6. Consider n = 8, v = 0.5: the processing times are p; = 7,p2 = 5,p3 = 6,ps = 9,p5 = 10,
ps = 3,p7 = 8,ps = 11; the position-dependent weights are wy = 4,w; = 2,ws = 3,w3s = b,wy = 1,ws = §,
We :7,w7 :6,wg =9.

By Algorithm 3.4, according to Lemma 3.1, & = 5. From Lemma 3.2, we have 6; = 49,0, = 48,
03 = 46.5,0, = 44.5,05 = 38,0 = 34,0, = 27,03 = 18. From Lemma 3.3, the optimal sequence is
p = [Jo;J2, J3,J1, J7, Ja, J5, Jg], dopt = Cpzy = Z?=1 (1405 (5= 7)) Py = 52, and 37" wilLyay| +
wodopt = 2055.5.
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4. SLACK DUE-DATE ASSIGNMENT

For the slack (SLK) due date assignment, we have d; = s; + p; + Gopt, Where gopt is a decision variable. The
problem is to determine gt and a sequence of jobs such that the following cost is minimized:

n n
Zwi|Lp(i)| + Wogopt = Zwi|Cp(i) — dp(i)| + Woopt.- (4.1)
i= i=1
Using the three-field notation, the problem can be denoted as 1|psd, SLK, gopt| > i wil Lpeiy| + wodopt-
Obviously, for an optimal sequence of the problem 1 |psd, SLK, gopt | > 1 wil L) | +wogopt, there exists no-idle
time between the processing of jobs, and the first job starts at time zero (see [22]).
Similar to Section 3, we introduce a dummy job Jy (its processing time py = 0 and weight wg) which is always
scheduled at time 0, then

> wilCoiy = dyiiy] + wotopt = Y wil Cotiy — i
i=1 i=0
and an optimal sequence is given by p = [p(0), p(1), - - - » P(n)], Where pgy = 0.
Lemma 4.1. If C,;) > djyy then Cpip1y = dygigry, and if Cpy < dyy then Cpi—1y < dpi—1)-
Proof. It Cpiy = dpiy = Sp(i) + Pp(i) + opt = Gopt, then Cpiirr) = Cpay + 8p) + Ppi) = doi) + Sp(i) + Do) =

Gopt T p(s) T Pp(i) = dp(i+1)-
If Cpiy < dp(iy, then Cpi1y + Sp(i) + Do) < Spi) T Pp(i) + dopts Cp(i=1) < Gopt < Sp(i—1) + Pp(i—1) + Gopt=

dp(i-1)- 0
Lemma 4.2. For a gwen sequence p = [p(o),Pq),---,Pm)) of the problem 1|psd, SLK, qopt| > iy wil Lp(s)|
+woGopt, Gopt = Cpy = 22:1 (1 4+~(I = 1)) pp(iy, where I is a median for the sequence woy,wr, . . . ,wn,
l I+1 n
sz < Z w; and sz > Z wj. (4.2)
i=0 i=l+1 i=0 i=l+2

Proof. Define C\,y < qopt < Cp141), then Cpiy+8,041) T Ppi41) < dopt + Sp+1) T Ppi+1) < Cogr) +Spa41) +
Ppi+1), We have Cpy1) < dyq41). Since Cpy + Sp042) + Pp42) < Gopt + Sp42) + Pp+2) < Coug1) + Sp42) +
Pp(i+2), it follows that dp(l+2) < Cp(i42)- From Lemma 4.1, we have

I+1 n
Z = sz o)~ Cot@) + D wilCo(e) = dye)) + wodop
1=l+2
+1 n
= Zwi(sp(i) + Pp(i) + Gopt — Cp(i)) + Z wi(Cogiy = Sp(s) = Pp(i) — opt) + WoGopt-
=1 =142

When gopt = Cp1y, then dyi) = 55(i) + Po(i) + Coy

141 n
Zy =Y wilsoti) + Potiy + Coty = Cot)) + Y, wilCoiy = 5p(0) = Pp(i) — Coy) +woCoq
=1 =142

When gopt = Cpi41), then dygiy = s,3) + Pp(i) + Cppit1);

1+1 n

= wilspt) + Poti) + Cor) = Coy) + Y, Wil Coti) = (i) = Potiy — Cot+1)) + @0Ch(u11)-
i=1 =142
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I+1 n
Z -7y = Zwi(qopt - Cp(l)) + Z Wi(cp(l) - qopt) + WO(QOpt - Cp(l))
i—1 i=142
I+1 n
= <Z Wi — Z wi) (QOpt - Cp(l)) )
=0 =142
I+1 n
Z =7y =Y wildopt — Coqr1) + 3 wilCp(is1) = opt) + w0 (dopt — Co141))
i=1 i=1+42
I+1 n
_ (zwi S wi) (s — Cois)
=0 =142
I+1 n I+1 n
When Z Wi — Z w; >0 Z Wi — Z w; <0 » Z1 < Z (Z2 < Z)v then Gopt = Cp(l) (QOpt = Cp(l+1))7
=0 =142 =0 =142

i.e., ¢opt is equal to the completion time of some job.

141 n
From the above analysis, when gopr = C,(p, it follows that Y  w; — > w; > 0. When gope = Cp41),

i=0 i=1+2
I+1 n l n
it follows that » w; — > w; <0, so, when gopt = Cppy, it follows that ) w; — > w; <0.
i=0 i=1+2 i=0 i=l+1
l n 1+1 n
In summary, when gopy = Cpp), we have Y w; < > wjand Y w; > > wj. a
i=0 i=l+1 i=0 i=142

Remark. The properties of Lemmas 4.1 and 4.2 is the same as Liu et al. [22].

Lemma 4.3. For the problem 1|psd, SLK, qopt| Y11 wil Lp(s)| +wogopt, the optimal total cost can be written as:

n n n
Z wi| Lpiy| + wogopt = Z%|Cp(¢) — dpiy| + wogops = Z 0iPp(iys (4.3)
i=1 i=1 i=1
where
i _ 141
> (vl -i))w+ X v(l-v+1wy
v=0 v=i+1
+ vy —1-1)wy, for 1=1,2,...,1;
0, — 2 ) (4.4)
S 14+ (v—1-2)7)wy, for i=14+1,14+2,...,n—1;
v=1+1
0, for i=n.

Proof. Let p = [p(0), P(1),- - P(m)] and gopt = Co(ry be an optimal solution such that equation (4.2) can be
satisfied, we have

Z Wi|Lp(i) | + WoQopt

i=1
141 n
= woCoy + D wilCoy = Coi)) + D wilCoiy — Cpry)
i=1 i=1+2
I+1 1—1 I+1 1

=Y wiy Al =i+ Dpp) + Y wi Y L+ 7 =)Dy

=0 v=1 1=0 v=1
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—I—Zwlzyz—l—lppﬂ)—&—szz L+ —v—=1))py)

i=l+2 v=1 i=l+2 v=Il+1
+1
—pr(v)<z 1—|—'y(l—v))wi—|—z l—z—i—lwz—i—z (t—1l-1Dw )
v=1 i=v+1 =142
n—1 n
+ Z Po(v) ( Z (1+(i_v_1)7)wi>
v=Il+1 i=v+1
=> 0Dy,
i=1
where
i I+1
SA+y0=-D))we+ > v(l—-v+ 1w
v=0 v=1+1
n
+ > ylv=Il=1)w,, for 1=1,2,...,[;
91': v=I[+2
14+ (v—=101-2)7)w,, for i=14+1,142,...,n—1;
v=1+1
0, for i=n.

O

The term (4.3) can be minimized by Lemma 3.3; hence the 1 |psd, SLK, gopt| > i, wi| Ly(iy| + wogopt problem
can be solved by the following algorithm:

Algorithm 4.4. Step 1. By Lemma 4.2, calculate [.
Step 2. By using Lemma 3.3 (let z; = p;, y; = 6; (see (4.4))) to determine the optimal job sequence.
Step 3. Set qopt = Cp1) = Zizl (L4~ —1) Ppiy-

Theorem 4.5. Algorithm 4.4 solves the problem 1|psd, SLK, qopt| Y11 wi| Lps)| + wogopt in O(nlogn) time.
Proof. Similar to the proof of Theorem 3.5. (]

The following example is used to illustrate Algorithm 4.4 for the problem 1 |psd, SLK, qopt| D1y wil Ly | +
WoYGopt -

Example 4.6. The input data in this example is the same as in Example 3.6.

By Algorithm 4.4, according to Lemma 4.2, [ = 4. From Lemma 4.3, we have 6; = 48,60, = 46.5,
03 = 445,60, = 38,05 = 34,05 = 27,0; = 18,03 = 0. From Lemma 3.3, the optimal sequence is
p = [Jo,Jo, 3, J1, J7, Ja, I5, Jg], qopt = Cpy = Zj:1(1+0-5* (4—17)) i) = 33.5, and D1 wilLyy| +
wWoGopt = 1604.5.

5. EXTENSIONS

5.1. Truncated job-dependent learning effect

In this subsection, the proposed model is extended by the introduction of truncated job-dependent learning
effect [3,23,24,27,34,36,37], i.e., if job J; is scheduled in the rth position in a sequence, its actual processing
time is given by

p;‘A = Di maX{?’ai,b},i,T = 13"'377’7 (51)
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where a; < 0 is the job-dependent learning effect, and b is a truncation parameter (0 < b < 1). The psd setup
time of job Jy;) i s, = E’h_:ll p;‘(h). For the SLK due-date assignment, d; = s; + p* + Gopt -

Obviously, Lemmas 3.1, 3.2, 4.1 and 4.2 still hold when truncated job-dependent learning effect is introduced.
Similar to the above analysis, we have

Z wi| Lpiy| + wodopt /Gopt = Z Hipf(i) = Z 0ipp(iy) max{ree® b}, (5.2)
i=1 i=1 i=1

where, for the CON due-date assignment, 6; (i = 1,2,...,n) is given by (3.4); for the SLK due-date assignment,
0; (i=1,2,...,n) is given by (4.4).
Let
1, if job J; is assigned to the rth position,
Tir = .
0, otherwise.

Then, we can formulate the sequence of the problem 1 |psd, CON/SLK, dopt/Gopt | D11 wil Lp(iy| + wodopt /Gopt
as the following assignment problem:

Min i i 0,p; max{r®, b}x;, (5.3)

i=1r=1

s.t.inT:Lr:L...,n (5.4)
i=1

n
dwp=1li=1,..n (5.5)
r=1

Based on the above analysis, the problem 1 |psd, CON/SLK, dopt /Gopt, P = pi max{ra:, b}’ S wil Loy +
wodopt /Gopt can be solved by the following algorithm:

Algorithm 5.1. Step 1. For the CON due-date assignment, by using Lemma 3.1, calculate k; For the SLK
due-date assignment, by using Lemma 4.2, calculate [.
Step 2. Solve the assignment problem (5.3) to (5.6) to determine the optimal sequence.

Step 3. Calculate dopy = Cpi) = Zle (I+~(k— i))p;‘(i), Gopt = Coy = 22:1 (I +~(— i))p;l(i).
Based on the above analysis, we have

Theorem 5.2. The problem 1 |psd, CON/SLK, dopt /Gopt, P = pi max{r“i,b}| Yoy Wil L) + wodopt /qopt can
be solved by Algorithm 5.1 in O(n®) time.

The following example is only used to illustrate Algorithm 5.1 for the problem
1 ’psd7 CON, dopt,pf1 =p; max{rai,b}} Sy wi| Ly | + wodops .-

Example 5.3. Consider n = 8, v = 0.5, b = 0.6: the processing times are p; = 7,ps = 5,p3 = 6,p4 = 9,
ps = 10,pg = 3,p7 = 8,ps = 11; the position-dependent weights are wg = 4,w; = 2,wy = 3,w3 = d,wy = 1,
ws = 8,wg = T,wr = 6,ws = 9 and job-dependent learning effects are a; = —0.27,a2 = —0.25,a3 = —0.3,
ay = —0.29,a5 = —0.32,a6 = —0.33,a7 = —0.28,ag = —0.31.

By Algorithm 5.1 and Example 3.6, we have k = 5, and 6, = 49,0, = 48,03 = 46.5,0, = 44.5,05 = 38,
06 = 34,07 = 27,05 = 18. The values 0,.p; max{r®, b} are given in Table 1. The costs of solution for the assign-
ment problem (5.3-5.6) are given in bold in Table 1 and the optimal sequence is p = [Jg, Ja, J3, J1, J5, J7, Ja, Jg],

dopt = Cp(s) = Z?:l (1+05(5— j))pp(j) = 41.08366, and 2?21 wi|Lp(i)| + wodopt = 1421.016.
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TABLE 1. Values 6,.p; max{r®,b}.

Ji\r r=1 r=2 r=23 r=4 r=>5 r==6 r="7 r==8

J1 343.0000 278.6514 241.9515 214.2406 172.2502 146.7155 113.4000 75.60000
Jo 245.0000 201.8151 176.6618 157.3313 127.0607 108.6203 82.99640 54.00000
Js 294.0000 233.9287 200.6632 176.1543 140.6837 122.4000 97.20000 64.80000
Ja 441.0000 353.3337 304.3199 267.9200 214.4494 183.6000 145.8000 97.20000
Js 490.0000 384.5135 327.1705 285.5623 228.0000 204.0000 162.0000 108.0000

Je 147.0000 114.5573 97.07875 84.48925 68.40000 61.20000 48.60000 32.40000
Jr 392.0000 316.2590 273.4947 241.4756 193.7144 164.6973 129.6000 86.40000
Jg 539.0000 425.9068 363.8631 318.5034 253.8023 224.4000 178.2000 118.8000

For a special case: a; = a, we have:

Zwi|Lp(i)| + wodopt /Gopt = Z Qip’;‘(i) = Z 0ip iy max{r®, b}. (5.7)
i=1

i=1 =1
Obviously, the minimization of term (5.7) can be obtained by Lemma 3.3 (i.e., x; = p;, y; = 6; max{i*, b}),

hence, we have the following result:

Theorem 5.4. The problem 1 |psd, CON/SLK, dopt /qopt, P = pi max{re, b}’ > wil Lpeiy| + wodopt /qopt can
be solved in O(nlogn) time.

5.2. Deteriorating jobs
In this subsection, we introduce deteriorating jobs [9,30] to the scheduling, i.e., the actual processing time
of job J; is given by
pr=pi+eti=1,....n, (5.8)

where ¢ > 0 is the deterioration rate, and ¢ is its starting time.
Clearly, Lemmas 3.1, 3.2, 4.1 and 4.2 still hold when deteriorating jobs are introduced. Similar to the above
analysis, we have

Z wz|Lp(z)‘ + deopt/qopt = Z Hzp;?(l) = Z Aipcr(i)7 (59)
i=1

i=1 i=1
where

Ay =601 +clh+c(1+c)bs+...+¢(1 +c)n—29n
Ay =0y +cl3+c(l+c)0y+...4+c(14+c)" 30,
Az =03+ cly + (1 +c)95 4.4+l +c)n—49n

Anfl = enfl + Cen
A, =0, (5.10)

where, for the CON due-date assignment, 6; (i = 1,2,...,n) is given by (3.4); for the SLK due-date assignment,
0; (i=1,2,...,n) is given by (4.4).

Obviously, the minimization of term (5.9) can be obtained by Lemma 3.3 (i.e., ; = p;, y; = 4;), thus
yielding the following result.
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TABLE 2. Scheduling problems with the psd setup times.

Problem Complexity  Ref.

1|psd, CON, dopt| > | wil Ly | + wodopt O(nlogn) Theorem 3.5
1|psd, SLK, gopt| > iy wilLpey| + wogopt O(nlogn) Theorem 4.5
1 |psd, CON, gopt, pi* = p; max{r®i, b}| S wilLpwy| +wodopt  O(n?) Theorem 5.2
1 |psd, SLK, qopt,pf1 = pimax{r®,b}| 3" | wilLy)| + wogopt O(n?) Theorem 5.2
1 |psd, CON, gopt, pi* = p; max{r®,b} > wilLpgsy| + wodopt O(nlogn) Theorem 5.4
1 |psd, SLK, gops, pi* = p; max{r®, b} Yo wil Logiy| + wodopt O(nlogn) Theorem 5.4
1|psd, CON, dopt, pi + ct| 31y wil Lyg)| + wodopt O(nlogn) Theorem 5.5
1|psd, SLK, Gopt, pi + ct| D7y wi| Lyiy| + wogopt O(nlogn) Theorem 5.5

Theorem 5.5. The problem 1 |psd7CON/SLK7dOpt/qopt,pf‘ =p; + ct’ Py wi|Lyey| + wodopt/qopt  can be
solved in O(nlogn) time.

The following example is only used to illustrate Algorithm 3.4 for the problem
1 |psd, CON, dopt, pi* = pi + ct| >oiq wilLygiy| + wodopt-

Example 5.6. The input data in this example is the same as in Example 3.6 except that ¢ = 0.1.

By Algorithm 3.4 and Example 3.6, we have £k = 5, and 0, = 49,05 = 48,03 = 46.5,0, = 44.5,
05 = 38,06 = 34,60, = 27,03 = 18. From (5.10), we have A; = 81.87243, Ay = 73.52039, Az = 65.47308,
Ay = 57.70280, A; = 46.54800, A¢ = 38.68000,A; = 28.80000,Ag = 18. From Lemma 3.3, the optimal
sequence is p = [Jg, J2, J3, 1, J7, Ja, 5, Jg], dopt = Cpzy = Z?Zl (14+0.5x (5—j))pﬁ(j) = 59.04380, and
iy wil Loy | + wodops = 2616.481.

6. CONCLUSIONS

In this paper, we considered single-machine scheduling problems with psd setup times and position-dependent
weights. Under the CON and SLK due-date assignment methods, we proved that a non-regular objective function
minimization can be solved in O(nlogn) time (see Tab. 2). Further research may study other non-regular
objective functions (such as the due-window assignment, Liman et al. [20], Zhang and Wang [39], and Zhang
et al. [40]). In addition, multi-machine problems with the psd setup times are also interesting issues.
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