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THE IMPACT FOR RETAILER’S POLICY IN SUPPLY CHAIN SYSTEM
UNDER TRADE CREDIT AND QUANTITY DISCOUNTS

Tien-Yu Lin∗, Ying-Chun Li and Q.-S. Li

Abstract. This paper develops a powerful retailer inventory model under trade credit and quantity
discounts in which the retailer’s order quantity is calculated for each setup and shipped in equal lots
over multiple deliveries. Furthermore, the trade credit condition is that the retailer must make partial
payments in cash for a given number of sub-shipments, with the remaining balance paid in trade credit
time that expires after the inventory is depleted. This integrated powerful retailer supply chain model
has not yet been discussed in previous supply chain coordination systems literature. We propose an
annual total cost function and properties and develop theorems to illustrate that a unique optimal
solution minimizes the relevant cost per year. We also develop an efficient algorithm to determine the
optimal set of the replenishment time and the number of shipments. Numerical examples are provided
to demonstrate the proposed model and algorithm. A sensitivity analysis is explored to examine the
effects of four important parameters (i.e., setup cost, unit holding cost, interest rate, and receiving
cost) on the optimal strategy. Finally, managerial insights are drawn.
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1. Introduction

The retail industry is today increasingly dominated by “powerful” retailers in a dominant position that enables
them to squeeze and pressure their suppliers by taking expensive actions (e.g., lowering prices, accelerating
delivery times, and offering special allowances). Such actions might coerce suppliers deficient in bargaining power
to be easily forced to provide “giant” retailers with concessions that are financially harmful to the suppliers
themselves. This situation exists in the grocery industry (e.g., Wal-Mart). Specifically, a retailer exerts power
over its supplier using certain mechanisms (e.g., trade credit, quantity discounts, and lot-splitting shipments)
in which the buyer and supplier formulate coordinating mechanisms to maintain their partnership.

One of the most common coordination mechanisms for a retailer and supplier is trade credit, which allows a
buyer to settle its balance with a supplier using an interest-free period. Trade credit is recognized as an effective
incentive and coordination contract that is widely used in various industries in China, the United States, and
Europe [10, 19, 38]. In recent years, the issue of trade credit has received considerable attention from scholars
and practitioners (e.g., [5,9,11,12,14,26]). In general, there are two main categories for contract formulation of
trade credit: one-part and two-part trade credit [36]. In one-part trade credit, a seller permits a buyer to delay
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payment for a certain duration without incurring any interest charges. The first proponent of this sub-issue was
Goyal [11], who developed an economic order quantity (EOQ) model for a retailer who receives a permissible
delay in payment for a fixed time period from a supplier. Under this research stream, several studies extending
Goyal’s work were developed. For example, researchers extended his work to the topics of deteriorating goods
(e.g., [1, 20, 28]) and shortages (e.g., [4, 13, 21]). Other researchers developed an inventory model in which they
employed one-part trade credit policy linked to order quantity (e.g., [4, 6, 31]). Other related extensions with
one-part trade credit can be found in Tiwari et al. [27], Ries et al. [24], Tsao [30], Cao and Yu [3], Tiwari et al.
[28], Yang et al. [35], and many others.

Although one-part trade credit provides simple and intuitive advantages for a buyer, it leads to a seller facing
accelerating default risk and reducing cash flow. To balance the risk between the buyer and seller, two-part
trade credit, in which a seller offers a policy to a buyer in which he or she can make full payment either within
a short duration (say, M1) at a discount rate (say, λ) or within a longer duration (say, M2) at no price discount,
was developed. Linking two-part trade credit, which could increase cash flow and decrease default risk, to the
EOQ model was first done by Huang and Chung [15]. Afterward, many researchers explored the two-part trade
credit scheme. Some (e.g., [7, 22, 25]) investigated a retailer or an integrated supplier-retailer inventory model
in which they considered two-part trade credit being linked to optimal lot size. Other variant studies related
to two-part trade credit are Cárdenas-Barrón et al. [4], Chung et al. [8], and Liao et al. [17]. We note that the
above studies based on the conventional two-part trade credit model did not meet practice; especially, when a
buyer has bargaining power to squeeze the seller. Thus, with the flexible two-part trade credit scheme, a seller
requests that a buyer to pay a certain purchasing cost at a cash discount within a given duration and then to
pay the remainder, enjoying the price discount until the maturity date. There are few related papers in the
literature. Zhou et al. [37] proposed a mathematical formula to determine the optimal lot size and payment
scheme under two-part flexible trade credit, in which the retailer benefits more than in the traditional payment
scheme. Yang et al. [34] considered a two-period supply chain model with flexible trade credit in which the
supplier provides the benefit of a discounted price for the second order to strengthen the retailer choosing
early payment during the first period. Their results indicated that flexible trade credit contracts can increase
decentralized supply chain efficiency and decrease suppliers’ trade credit risk. Zou and Tian [39] employed two-
part and two-level trade credit schemes to determine a retailer’s optimal ordering and payment policy in which
the upstream trade credit is a flexible two-part trade credit and the downstream trade credit is a one-part trade
credit. All of the previous papers mentioned above assumed that the length of the trade credit is independent
of order quantity. However, Tiwari et al. [29] discovered that the larger the amount ordered, the better the
trade contract a supplier can offer to increase the credit duration to ease the retailer’s financial situation. They
therefore proposed an EOQ model for determining items under order-size dependent trade credits and allowable
backorders. Although Tiwari et al. [29] noted the relationship between trade credit and order lot size, they did
not discuss the relationship between quantity discounts and trade credit. Suppliers, in general, offered retailers’
trade credit and/or quantity discounts to decrease on hand inventory levels, increase sales, achieve economic
scale, and attract new customers. Wang and Liu [32] therefore proposed a hybrid analytical model combining
trade credit and quantity discounts to coordinate the supply chain by motivating retailers to increase product
order quantity. Their results illustrated that quantity discounts and trade credit do, in fact, influence decision-
making. However, they did not consider two-part trade credit and lot-splitting shipments, in which the order
lot is shipped in equal sub-lot sizes, which is more important in supply chain systems with a powerful retailer.

The aforementioned inventory models implicitly assumed that the retailer does not exert power over suppliers.
However, recent studies have demonstrated that retailers have become more powerful than suppliers. Most
manufacturers are willing to make concessions because they need to sell their products through a powerful
retailer [23, 33]. Many suppliers have reported feeling squeezed and pressured by giant retailers into taking
expensive actions such as lowering prices, accelerating delivery times, offering special allowances, or carrying
extra inventory [2]. In many settings, several coordinating mechanisms (e.g., lot-splitting shipments, trade
credit, quantity discounts) between the retailer and supplier are employed to maintain long-term partnerships
[32]. Specifically, trade credit and quantity discount mechanisms are significant for supply chain coordination
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through lot-splitting shipments but the literature has not adequately addressed them. This paper therefore
formulated a powerful retailer inventory model with quantity discounts and trade credit in which the retailer’s
order quantity is calculated at one setup and delivered in equal lots over multiple shipments. This trade credit
condition involves the retailer making partial cash payments over a given number of sub-shipments with the
remaining unpaid balance paid in trade credit time that expires after the inventory is depleted.

This paper makes three contributions. Firstly, to the best of our knowledge, it is the first study that incorpo-
rates a specific trade credit condition with quantity discounts factored into a powerful retailer inventory model
in which the retailer must make partial cash payment for a given number of sub-shipments with the remaining
unpaid balance paid in trade credit time that expires after the inventory is depleted. Secondly, the hybrid coor-
dination mechanisms influencing decision-making are proven according to properties and theorems. Thirdly, an
algorithm simplifying the complex solution procedure is provided to enhance decision-making efficiency and a
sensitivity analysis provides useful information to examine the effects of the coordination mechanisms.

The remainder of this paper is organized as follows. The model environment notation and assumptions are
discussed in Section 2. Section 3 develops a new coordination inventory system with quantity discounts and trade
credit under multiple shipments. Section 4 determines the properties and solution processes using an algorithm
to calculate the optimal solution. Section 5 presents numerical examples to demonstrate the formulated model
and algorithm. Section 6 provides managerial insights and conclusions.

2. Notation and assumptions

The following notations and assumptions are used throughout this paper to develop the mathematical models.

Notations

D the demand rate.
K the setup cost for each order.
M permissible delay in settling accounts, M > T .
N the number of deliveries for each cycle (integer value), N ≥ z.
R the receiving cost for each delivery.
T time interval between successive orders.
q order size.
r holding cost rate for a unit per period, expressed as a fraction of dollar value.
v unit selling price per item (v ≥ cj).
z the number of zth shipment (integer value), z ∈ {1, 2, . . . , N}.
Ie interest rate per $ per year.
Ik opportunity cost (or interest charged) per $ in stocks per year and, in practice.
cj the unit-purchasing price of jth level.
qs the size of delivery per shipment in which qs = q/N .
ts the inventory depletion time per delivery.
α percent of purchase cost paid in the zth shipment, 0 < α < 1.
TRCj(T,N) the total relevant cost per cycle where j = 1, 2, . . . , r.

Assumptions

(1) The demand rate for items is known and constant.
(2) Shortages are not allowed.
(3) The period is infinite and replenishments are instantaneous.
(4) The ordering quantity is determined for each setup and the shipment is a fixed quantity and delivered at

regular intervals.
(5) The all-unit quantity discount scheme is employed where cj is the unit-purchasing cost for the jth interval

and Qj−1 is the lowest order quantity for the jth interval. This means that when the order quantity is
between [Qj−1, Qj ], the unit-purchasing cost is then cj , where cj−1 > cj .
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(6) The retailer requests that the supplier pay part of payment (α) in a number of sub-shipments (z) and
the retailer employs cash on hand to make the partial payment and thus sustains an opportunity cost
loss. Furthermore, the remaining unpaid balance must be paid within the permissible time (M), which
expires after the inventory is depleted. Because 0 < α <1, cycle time T is less than M and thus we assume
M − T ≥ 0.01 (year). This interval is the operating period for the remaining payment.

(7) The retailer sells items by each sub-lot and immediately deposits the generated sales revenue into an
interest-bearing account.

3. Model development

In a coordinating a supply chain system, to achieve economic scale and best use resources, suppliers often
use quantity discounts and/or trade credit to attract retailers ordering larger quantities. Alternatively, to avoid
being exposed to financial risk, suppliers request retailers pay part of the payments in a given time and the
rest of the payments at another given time. This paper considers a powerful retailer that has authority over
its supplier, using the following coordinating mechanisms to maintain their long-term cooperative relationship.
The supplier provides quantity discounts to stimulate the retailer to order larger quantities. He or she also
allows the retailer to make payments with trade credit. The trade credit condition is that the retailer must
make partial cash payments over a given number of sub-shipments with the remaining unpaid balance paid in
trade credit time that expires after the inventory is depleted. The retailer employs his or her cash on hand to
make the partial payment and thus bears an opportunity cost. Meanwhile, the retailer requests that its supplier
deliver his or her order using lot-splitting shipments. He or she then sells the items and immediately deposits
the generated sales revenue into an interest-bearing account at the end of each sub-lot. The chemical industry
offers an excellent example of this model environment in agreement with Krichen et al.’s [16] work.

As illustrated in the model environment described above, Figure 1 indicates the inventory system and interest-
bearing account behaviors for sales revenue. In the top half of Figure 1, the powerful retailer orders lot size
q units per cycle and requests that the supplier deliver these quantities in split lots with equal qs units per
shipment. This implies the ordered quantity q is delivered N times in equal sub-quantities qs in each cycle (i.e.,
q = Nqs = DT ). The inventory depletion time per shipment at qs quantities is ts, in which the cycle time is
T and T = Nts. The retailer is asked by the supplier to make part of the payments within time z ∗ ts and
the make the remaining payment within time M . From the bottom half of Figure 1, corresponding to the top
half of Figure 1, we know that the retailer sells items in each sub-lot and immediately deposits the generated
sales revenue into an interest-bearing account. The interest earned rate per cycle is from the capital invested
after each lot-splitting inventory is depleted until due date M . For example, during the first sub-period ts, the
retailer deposits its sales revenue, v∗qs, into an interest-bearing account until due date M and thus earns interest
Ie ∗ v ∗ qs ∗ (M − ts). In the same way, during the ith sub-period, the interest earned is Ie ∗ v ∗ qs ∗ (M − I ∗ ts),
in which (M − i ∗ ts) ≥ 0. Thus, the interest earned per unit of time during the permissible settlement period
accumulates all interest generated from each sub-period over the entire cycle time. We have:

IE =
vIe
T

[qs (M − ts) + qs (M − 2ts) + . . .+ qs (M −Nts)]

= DvIe

[
M −

(
T (N + 1)

2N

)]
, (3.1)

where T = Nts, q = Nqs = DT .
Alternatively, referring to the top half of Figure 1, the retailer makes a part of the payments (say, α) in cash

at time (z − 1) ∗ ts. The retailer therefore occurs an opportunity cost from (z − 1) ∗ ts until due date M , in
which the opportunity cost per dollar in stocks per year is Ik. the opportunity cost per unit of time can then
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(b)  

Figure 1. Behaviors of inventory system and interest-bearing account for the sales revenue.
(a) Behavior of inventory system for permissible delay in payment. (b) Behavior of interest-
bearing account for the sales revenue.
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be calculated as follows:

OC =
cjqαIk
T

[M − (z − 1) ts]

= cjαDIk [M − (z − 1)T/N ] . (3.2)

The ordering cost per unit of time is K/T . The receiving cost per unit of time for each order with N times
receiving procedure is N ∗ R/T . According to Assumption (4.2), we know if the order quantity is between
[Qj−1, Qj ], then the unit-purchasing cost is cj . We then obtain the purchasing cost per unit of time as cjq/T .
The stock holding cost (excluding interest charges) is the unit-purchasing per unit of time, cj ∗ r, multiplied by
N triangles of the same area AOts as shown in the top half of Figure 1. Consequently, the holding cost per unit
of time is cjrDT/ (2N).

Combing the above results, we obtain the total relevant cost per unit of time as follows:

Total cost = Ordering cost + Receiving cost + Holding cost + Opportunity cost− Interest earned
+ Purchas amount cost.

We then obtain the total relevant cost per year using a mathematical model expressed as follows:

TRCj (T,N) =
K +NR

T
+
cjrDT

2N
+ cjαDIk [M − (z − 1)T/N ]−DvIe

[
M −

(
T (N + 1)

2N

)]
+ cjD,

j = 1, 2, . . . , r. (3.3)

The goal of the objective function is to simultaneously determine the replenishment time and the number
of shipments that minimizes the relevant total cost in equation (3.3). However, the supplier offers quantity
discounts to the retailer according to its order quantity, which does not meet the type of decision variable in
equation (3.3). We therefore skillfully transfer the type of discount by the “quantity” in Assumption (4.2) into
the type of discount by “time” using q = DT . Furthermore, Assumption (4.3) indicates that permissible delay M
is longer than cycle time T , and thus T −M ≥ 0. We therefore have a new discount scheme based on the ordered
quantity depleted time as [Tj−1, Tj ], corresponding to cj in which Tr = (M − 0.01) and Tj = qj/D. We note
it is hard to confirm the convexity of equation (3.3) because two decision variables need to be simultaneously
determined under the quantity discount scheme. Therefore, the theme results and solution procedure will be
developed to find the optimal number of shipments and replenishment time that corresponds to unit-purchasing
cost.

4. Theorem results and solution procedure

We need the following property to derive the optimal solution for total cost TRCj(T,N) corresponding to
unit-purchasing cost.

Property 4.1. For a fixed N , TRCj(T,N) is convex to T when T > 0.

Proof. We let N be fixed in equation (4.4) and then take the derivative of equation (3.3) with respect to T
leads to:

dTRCj (T,N)
dT

=
− (K +NR)

T 2
+
ωj (N)

2
, j = 1, 2, . . . , r. (4.1)

where ωj (N) = D
[
cjr+vIe−2αcjIk(z−1)

N + vIe

]
dTRC2

j (T,N)

dT = −2(K+NR)
T 3 < 0, if T > 0 for j = 1, 2, . . . , r.

Because the cycle time is a positive value, we know that TRCj(T,N) is convex to T when N is fixed. This
completes the proof. �
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From Property 4.1, we know a unique solution minimizing equation (3.3) exists. We therefore set dTRCj(T,N)
dT =

0 and let its result as be T∆
j . One has:

T∆
j =

√
2 (K +NR)
ωj (N)

, j = 1, 2, . . . , r. (4.2)

However, the optimal cycle time must be less than or equal to the permissible delay. This implies that the
following theorem holds.

Property 4.2. The possible optimal cycle time may occur if NLow
j ≤ Nj ≤ NUpper

j , where

NLow
j = max

z,
−

(
2K −M2vIeD

)
4R

−

√
(2K −M2vIeD)2 + 8RM2D (cjr + vIe − 2αcjIk (z − 1))

16R2




and

NUpper
j = max

z,
− (2K −M2vIeD

)
4R

+

√
(2K −M2vIeD)2 + 8RM2D (cjr + vIe − 2αcjIk (z − 1))

16R2

 .

Proof. See Appendix A. �

Substituting equation (4.2) into equation (3.3) and rearranging the formulate yields:

TRCj (N) = D (cj − vIeM + αcjIkM) +

√
2D (K +NR) [cjr + vIe − 2αcjIk (z − 1) +NvIe]

N
,

j = 1, 2, . . . , r. (4.3)

We ignore the constant terms in equation (4.3) and thus obtain:

γj (N) = 2D
{
K

N
[cjr + vIe − 2αcjIk (z − 1)] +KvIe +R [cjr + vIe − 2αcjIk (z − 1)] +NRvIe

}
,

j = 1, 2, . . . , r. (4.4)

Note that minimizing TRCj (N) is equivalent to minimizing equation (4.4). If we let N be a continuous variable
and take the derivative of equation (4.4) with respect to N , we obtain:

dγj (N)
dN

= 2D
{
−K [cjr + vIe − 2αcjIk (z − 1)]

N2
+RvIe

}
, j = 1, 2, . . . , r. (4.5)

We further take the derivative of ωj (N) with respect to N and have:

dωj (N)
dN

=
−D [cjr + vIe − 2αcjIk (z − 1)]

N2
, j = 1, 2, . . . , r. (4.6)

Observing equation (4.10), two cases occur:

Case A: Yj = [cjr + vIe − 2αcjIk (z − 1)] ≥ 0, j = 1, 2, . . . , r.
In this case, we know

ωj (1) > lim
N→∞

ωj(N) = vIe > 0. (4.7)
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Let

Ωj =

√
K [cjr + vIe − 2αcjIk (z − 1)]

RvIe
, j = 1, 2, . . . , r.

One has

dγj (N)
dN

< 0, if 0 < N < Ωj
= 0, if N = Ωj
> 0, if N > Ωj

, j = 1, 2, . . . , r (4.8)

equation (4.8) indicate that Property 4.3 exists.

Property 4.3. γj (N) is decreasing on (0,Ωj ] and increasing on [Ωj ,∞), where j = 1, 2, . . . , r.
Because N is a positive integer, the candidate optimal value N∆

j is obtained when:

γ
(
N∆
j

)
≤ γ

(
N∆
j − 1

)
and γ

(
N∆
j

)
≤ γ

(
N∆
j + 1

)
. (4.9)

From equations (4.5) and (4.9), N∆
j satisfies the following condition:

(
N∆
j − 1

)
N∆
j ≤

K [cjr + vIe − 2αcjIk (z − 1)]
RvIe

≤ N∆
j

(
N∆
j + 1

)
. (4.10)

We plug N∆
j obtained from equation (4.10) into equation (4.2) to find T∆

j

(
N∆
j

)
corresponds to the unit-

purchasing cost cj , where T∆
j

(
N∆
j

)
is valid when Tj−1 ≤ T∆

j

(
N∆
j

)
< Tj exists. That is, the candidate optimal

solution may occur at
(
T∆
j (N∆

j ), N∆
j

)
. Otherwise, if T∆

j

(
N∆
j

)
is invalid, corresponding to cj , two scenarios

occur:

Scenario I: T∆
j

(
N∆
j

)
> Tj , where Tj is the maximum cycle time corresponding to cj .

This scenario implies that the retailer could use the lower unit-purchasing cost (say ck, for ck < cj) to
achieve the cycle time T∆

k

(
N∆
k

)
in which TRCk

(
N∆
k

)
< TRCj

(
N∆
j

)
. This result indicates that the possible

candidate cycle time under cj should not be optimal and we do not further process it.
Scenario II: T∆

j

(
N∆
j

)
< Tj−1, where Tj−1 is the minimal cycle time corresponding to cj .

This scenario has two situations:

Situation 1: The perspective of breakpoint Tj−1 corresponds to cj .
This situation implies that the candidate optimal cycle time could occur at the break point Tj−1. There-
fore, the candidate integer number of shipments under a given cj can be obtained as follows:

(
Ñj − 1

)
Ñj ≤

(Tj−1)2
D [cjr + vIe − 2αcjIk (z − 1)]

2R
≤ Ñj

(
Ñj + 1

)
. (4.11)

If Ñj ≥ z, the candidate optimal solution may occur at
(
Tj−1, Ñj

)
.

Situation 2: The perspective of N corresponds to cj .
For a given reasonable N , the candidate optimal solution may occur at

(
T∆
j (Nj), Nj

)
in which the

condition Tj−1 ≤ T∆
j (Nj) < Tj is satisfied. Therefore, plugging equation (4.6) into Tj−1 ≤ T∆

j (Nj) we
have:

φN2 + ηjN − χj > 0, (4.12)

where φ = 2R, ηj = 2K −D (Tj−1)2
vIe, and

χj =
{
D (Tj−1)2 [cjr + vIe − 2αcjIk (z − 1)]

}
.
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We solve the above inequality for N and have:

Nj >
−ηj +

√
η2
j + 4φχj

2φ
≡ N̄j , j = 1, 2, . . . , r.

Let
N#
j = max

{
NLow
j , bN̄jc

}
, j = 1, 2, . . . , r (4.13)

where bN̄jc is the smallest integer larger than N̄j .

One has T∆
j

(
N#
j

)
from equation (4.2). Thus, the candidate optimal solution may occur at(

T∆
j

(
N#
j

)
, N#

j

)
. Note that if T∆

j

(
N#
j

)
> Tj , we do not further process it because no feasible solution

occurs.

Case B: Yj = [cjr + vIe − 2αcjIk (z − 1)] < 0, j = 1, 2, . . . , r.
In this case, we know that [dγj (N) /dN ] > 0 from equation (4.5). This implies that γj (N) is increasing on

[1,∞). Furthermore, from equation (4.6), one has:

[dωj (N) /dN ] > 0. (4.14)

Equation (4.14) implies the following property exists.

Property 4.4. ωj (N) is increasing on [1,∞).

Property 4.4 illustrates:
ωj (N) > ωj (1) . (4.15)

Two scenarios occur for ωj (N), in this case:

Scenario A: Gj =
[
cjr+vIe−2αcjIk(z−1)

N + vIe

]
> 0.

In this scenario,

N >
− [cjr + vIe − 2αcjIk (z − 1)]

vIe
= bNminc.

Let
N@
j = bNminc, (4.16)

where bπc is the smallest integer larger than π and j = 1, 2, . . . , r.
Because ωj

(
N@
j

)
> 0, Properties 4.2 and 4.4 exist, and z ≤ N , the candidate optimal number of shipments

is given as follows:
N$
j = max

(
N@
j , N

Low
j

)
. (4.17)

Therefore, the candidate optimal solution may occur at
(
T∆
j

(
N$
j

)
, N$

j

)
in which T∆

j

(
N$
j

)
is determined by

equation (4.2).
However, the candidate optimal cycle time may occur at the break point. Using Property 4.4, we know that
the candidate optimal solution may occur at (Tj−1, z) and (M − 0.01, z), corresponding to cj .

Scenario B: Gj =
[
cjr+vIe−2αcjIk(z−1)

N + vIe

]
≤ 0.

In this scenario,

N ≤ − [cjr + vIe − 2αcjIk (z − 1)]
vIe

= Nmin. (4.18)
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Two situations occur:

Situation A: z = 1.
In this situation, equation (4.18) illustrates that no optimal number of shipments may occur. We
therefore do not process it further.

Situation B: z ≥ 2.
In this situation,

N ≤ − [cjr + vIe − 2αcjIk (z − 1)]
vIe

· (4.19)

Because z ≤ N and equation (4.15) holds, we know that the candidate optimal number of shipments is z.
The candidate optimal solution may occur at

(
T∆
j (z), z

)
in which T∆

j (z) is determined by equation (4.2).
However, the candidate optimal cycle time might also occur at the break point. Using Property 4.4, we
know that the candidate optimal solution may occur at (Tj−1, z) and (M − 0.01, z) corresponding to cj .

Based on the above analysis we have the following results:

Theorem: The candidate optimal solution (T , N) can be determined as follows:

(1) If Yj ≥ 0, three possible candidate optimal solution sets occur, as detailed below:
(a) If NLow

j ≤ N∆
j ≤ NUpper

j , where N∆
j obtained from equation (4.10), the possible candidate opti-

mal solution, may occur at
(
T∆
j (N∆

j ), N∆
j

)
, where T∆

j

(
N∆
j

)
obtained from equation (4.2) and

Tj−1 ≤ T∆
j

(
N∆
j

)
< Tj .

(b) If NLow
j ≤ Ñj ≤ NUpper

j , where Ñj obtained from equation (4.11) and Tj−1 is the break point corre-
sponding to cj .

(c) If NLow
j ≤ N#

j ≤ NUpper
j , where N#

j obtained from equation (4.13), the possible candidate optimal

solution, occurs at
(
T∆
j (N#

j ), N#
j

)
, where T∆

j

(
N#
j

)
is obtained from equation (4.2).

(2) If Yj < 0 three possible candidate optimal solution sets occur as below:
(a) If Gj > 0 and NLow

j ≤ N$
j ≤ NUpper

j where N$
j obtained from equation (4.17), the candidate optimal

solution, may occur at
(
T∆
j (N$

j ), N$
j

)
, where T∆

j

(
N$
j

)
obtained from equation (4.2).

(b) If Gj > 0, the candidate optimal solution may occur at (Tj−1, z) or (M − 0.01, z).
(c) If Gj ≤ 0 and z ≥ 2, the candidate optimal solution may occur at

(
T∆
j (z), z

)
, and T∆

j (z) determined
by equation (4.2), (Tj−1, z), or (M − 0.01, z).

We note that if the retailer employs a single shipment, which means N = 1 and z = 1, then equation (3.3)
reduces as follows:

TRCj (T ) =
K +R

T
+
cjrDT

2
+ cjαDIkM −DvIe [M − T ] + cjD, j = 1, 2, . . . , r. (4.20)

We therefore derive equation (4.20) and set it to zero. One has the replenishment time at N = 1 as follows:

T 1
j =

√
2 (K +NR)
cjrD + 2DvIe

, j = 1, 2, . . . , r. (4.21)

Comparing equations (4.2) and (4.21), we know that the replenishment time for multiple shipments is longer
than that for individual ones.

Until now, we could not obtain the overall optimal solution but obtained the candidate optimal lot cycle time
and the number of shipments. We therefore developed Algorithm 4.5 to calculate the overall optimal cycle time
and number of shipments.
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Algorithm 4.5. Step 1. Compute Yj , where j = 1, 2, . . . , r and Yj = [cjr + vIe − 2αcjIk (z − 1)].
Step 2. For j = 1 to r

{Compute NLow
j and NUpper

j from Property 4.2}
If Yj ≥ 0, Do {
{Compute N∆

j from equation (4.10)}
If NLow

j ≤ N∆
j ≤ N

Upper
j , Do {

{Compute T∆
j

(
N∆
j

)
from equation (4.2)}

If Tj−1 ≤ T∆
j

(
N∆
j

)
< Tj , Do {

{Compute TRCj
(
T∆
j

(
N∆
j

)
, N∆

j

)
from equation (3.3) and record it}

}
}
Else
{Record TRCj

(
T∆
j

(
N∆
j

)
, N∆

j

)
=∞}

{Obtain Tj−1 corresponding to cj from Table 1 and compute Ñj obtained from equation (4.11)}
If Ñj ≥ z, Do {
{Compute TRCj

(
Tj−1, Ñj

)
from equation (3.3) and record it}

}
Else
{Record TRCj

(
Tj−1, Ñj

)
=∞}

{Compute N#
j from equation (4.13)}

If NLow
j ≤ N#

j ≤ N
Upper
j , Do {

{Compute T∆
j

(
N#
j

)
from equation (4.2)}

If Tj−1 ≤ T∆
j

(
N#
j

)
< Tj , Do {

{Compute TRCj
(
T∆
j

(
N#
j

)
, N#

j

)
from equation (3.3) and record it}

}
}

Else
{Record TRCj

(
T∆
j

(
N#
j

)
, N#

j

)
=∞}

Next j
}
If Yj < 0, Do {

{Compute TRCj (Tj−1, z) and TRCr (M − 0.01, z)}
{Compute N$

j from equation (20)}
If NLow

j ≤ N$
j ≤ N

Upper
j , Do {

{Compute Gj , where Gj = −(cjr+vIe−2αcjIk(z−1))

N$
j

}
If Gj > 0, Do {
{Compute T∆

j

(
N$
j

)
from equation (4.2)}

If Tj−1 ≤ T∆
j

(
N$
j

)
< Tj , Do {

{Compute TRCj
(
T∆
j

(
N$
j

)
, N$

j

)
from equation (3.3) and record it}

}
Next j
}
If Gj ≤ 0, Do {

If z ≥ 2, Do {
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{Compute TRCj (Tj−1, z) and TRCr (M − 0.01, z)}
{Compute T∆

j (z) from equation (4.2)}
If Tj−1 ≤ T∆

j

(
N∆
j

)
< Tj , Do {

If T∆
j (z) ≤M , Do {

{Compute TRCj
(
T∆
j (z), z

)
from equation (3.3) and record it}

}
Next j
}

}
Else

Do {
{Record TRCj

(
T∆
j (1) , 1

)
=∞}

{Next j}
}

}
Else

Do {
{Record TRCj

(
T∆
j

(
N$
j

)
, N$

j

)
=∞}

{Next j}
}

}
Step 3. For j = 1 to r

Do {
{TRCj(Tj , Nj) = min

{
TRCj(T∆

j (N∆
j ), N∆

j ),TRCj(Tj−1, Ñj), TRCj (Tj−1, z)

TRCr(M − 0.01, z),TRCj(T∆
j

(
N#
j

)
, N#

j ),TRCj(T∆
j

(
N$
j

)
, N$

j ),TRCj
(
T∆
j (z), z

)}
{Record TRCj (Tj , Nj)}

Next j
}

Step 4. Compare all TRCj(Tj , Nj) recorded in Step 3. The minimal TRCj(Tj , Nj) is the optimal solution
corresponding to unit-purchasing cost cj . If all TRCj(Tj , Nj) =∞, no optimal solution exists.

Step 5. Stop.

5. Numerical examples and sensitivity analysis

As indicated in the introduction, a powerful retailer in China’s the chemical is considered in this paper. A few
examples were taken from estimated data due to trade secrets to demonstrate the above solution procedures.
Applying the algorithm developed in Section 4, we can easily and efficiently solve the following examples.

Example 1. D = 3000 units/year, K = $100/order, Ik = $0.15/$/year, Ie = $0.09/$/year, R = $5/receive,
v = $15/item, and M = 0.35 year. To maintain long-term cooperation, the retailer and supplier have reached
an agreement in which the retailer must pay 10% (i.e., α = 0.1) of the total purchase cost on the second
shipment (i.e., z = 2). The holding cost is 30% of the unit-purchasing cost (i.e., r = 0.3). The supplier
also offers a price discount schedule for the following intervals: [1, 200) corresponding to c1 = 10.05, [200, 400)
corresponding to c2 = 10.04, [400, 650) corresponding to c3 = 10.03, [650, 900) corresponding to c4 = 10.02 and
[900,∞) corresponding to c5 = 10.01. Because the permissible payment time is 0.35 year and q = DT , the above
intervals can be easily and tacitly transferred into Table 1.
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Table 1. Purchase price discount structure based on duration.

j Tj−1 ≤ T < Tj cj

1 0 < T < 0.06667 = (200/3000) 10.05
2 (200/3000) = 0.06667 ≤ T < 0.13333 = (400/3000) 10.04
3 (400/3000) = 0.13333 ≤ T < 0.216667 = (650/3000) 10.03
4 (650/3000) = 0.216667 ≤ T < 0.3 = (900/3000) 10.02
5 (900/3000) = 0.2 ≤ T ≤ (0.35− 0.01) 10.01

Based on the algorithm formulated in Section 4, we calculate the optimal replenishment time, number of
shipments, unit-purchasing cost, and minimum cost as follows (see Appendix B): The optimal replenishment
time is 0.223440 year, the optimal number of deliveries is eight, and the unit-purchasing cost is c4 = 10.02. The
minimum annual total cost is $30 000.84.

Example 2. The parameters are the same as those in Example 1 except that α = 0.8 and Ik = $0.3/$/year.
Again, employing the algorithm developed in Section 4, we found Yj < 0 and Gj > 0. One can easily obThursday,
7 November 19, 2020 at 7:03 pmtain the following results: the optimal replenishment time is 0.255518 year, the
optimal number of deliveries is two, the unit-purchasing cost is c4 = $10.02, and the annual total cost is
$32 028.53

A sensitivity analysis was carried out on the proposed model to understand the influence of the model
parameters on the optimal strategy. In theory, parameters such as D, K, r, α, R, v, Ik, Ie, z, and M should be
explored to realize their effects on optimal policy. However, determining the influence of the above parameters
on the optimal strategy is a laborious calculation. We, therefore, employed four significant parameters (i.e.,
K, r, Ie, R) according to the authors’ experience and the literature to perform a sensitivity analysis. A 2k full
factorial design was used to find the effects of the four parameters on optimal policy and their interactions. These
five parameters are set to two levels (i.e., low and high), expressed as follows: K = (100, 150); r = (0.3, 0.45);
Ie = (0.06, 0.09); and R = (5, 7.5). Except for the above four parameters, the other parameters remain
unchanged. Table 1 indicates the optimal solution under 16 combinations of K, r, Ie, and R. Some findings are
listed in Table 2 and described below.

(1) It is found that TRC∗ increases with r; while by combining T ∗ and N∗, three cases occur when r increases:

Case I: T ∗ remains unchanged and N∗ increases with r.
Case II: T ∗ and N∗ both increase with r.

Case III: T ∗ decreases as r increase while N∗ increases with r.

Observing Case (I) in this finding, the effect of quantity discounts significantly influences the optimal
strategy. This leads to T ∗ remaining unchanged and N∗ decreasing with r. In general, the higher the unit
holding cost is, the larger the number of shipments and the total relevant cost, which agrees with the results
obtained from conventional inventory models. This illustrates that if the unit holding cost increases, the
retailer employs more shipments to reduce its holding cost, in which the effect of the receiving cost does
not significantly impact the optimal strategy. However if the interaction effect between unit holding cost
and receiving cost significantly exists, Cases (II) and (III) occur.
As to Cases (II) and (III), the optimal replenishment time does not occur at the break point of the quantity
discount. This leads to different combinations between T ∗ and N∗ to achieve the minimal total cost. We
note that the replenishment time in traditional inventory models with no receiving cost decreases with the
unit holding cost. To our knowledge, the lower the replenishment time, the lower the unit holding cost,
which agrees with the result of Case (III) in this finding. This indicates that the receiving cost does not
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Table 2. The values of N∗, T ∗, and TRC∗ corresponding to 16 combinations of Ie, K, r, R.

Ie K r R N∗ T ∗ cj TRC∗

0.06 100 0.3 5 10 0.3 10.01 30 261.73
7.5 8 0.3 10.01 30 336.72

0.45 5 12 0.3 10.01 30 323.6
7.5 10 0.3 10.01 30 412.63

150 0.3 5 11 0.33244 10.01 30 423.41
7.5 9 0.332516 10.01 30 498.31

0.45 5 13 0.332007 10.01 30 485.26
7.5 11 0.335979 10.01 30 574.12

0.09 100 0.3 5 8 0.22344 10.02 30 000.84
7.5 6 0.217544 10.02 30 080.77

0.45 5 9 0.221027 10.02 30 059.77
7.5 7 0.217033 10.02 30 153.02

150 0.3 5 10 0.3 10.01 30 226.7
7.5 8 0.3 10.01 30 305.29

0.45 5 12 0.3 10.01 30 285.94
7.5 10 0.3 10.01 30 377.6

significantly affect optimal strategy in Case (III). We therefore know that the retailer might simultaneously
reduce its number of shipments to achieve the minimal total cost. Thus, T ∗ decreases as r increases while
N∗ increases with r. Alternatively, if the effect of a receiving cost being larger than that of the unit holding
cost, the retailer extends its replenishment time to reduce the ordering frequency and the annual total cost,
which matches the results of Case (II) in this finding.

(2) TRC∗N∗ and T ∗ all decrease when Ie increases. In general, the longer the replenishment time (T ) to the
due date of the trade credit (M) is, the higher the interest rate. This illustrates that T ∗ decreases with Ie.
At the same time, the number of shipments decreases with Ie to enhance the effect of the combination of N∗

and T ∗, which makes TRC∗ decrease. We note, although N∗ and T ∗ decrease with Ie, their corresponding
unit-purchasing cost, cj , remains unchanged or increases. If cj increases with Ie especially occurring with
the low level set up cost scenario, the retailer significantly enjoys the benefit of the quantity discounts.
Otherwise, cj remains unchanged. All of these illustrations intuitively indicate that TRC∗ decreases with Ie.
That is, the retailer employs less replenishment time and a lower number of shipments to obtain the
minimum annual total cost, which aligns with the results in Lin’s [18] work.

(3) Case I: T ∗ remains unchanged and N∗ decreases with R.

Case I: T ∗ remains unchanged and N∗ is decreasing with R.
Case II: T ∗ and N∗ both decrease with R.

Case III: T ∗ increases as r increases while N∗ decreases with R.

In general, the total cost increases with the unit receiving cost if the replenishment time remains unchanged.
It is intuitive that the higher the receiving cost is, the fewer the number of shipments, which agrees with the
result of Case (I) in this finding; that is, the retailer reduces the receiving frequency to achieve the minimum
total cost when the receiving cost increases. We also note that the optimal replenishment time occurs at
the break point of quantity discounts. This illustrates that the quantity discount policy truly impacts the
optimal decision-making strategy. However, as with Finding (1) in this section, if the interaction effect
between receiving cost and unit holding cost occurs, the replenishment time does not remain unchanged,
which is discussed in the following paragraph
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As to Cases (II) and (III) in this finding, quantity discounts do significantly influence the optimal solution,
like (1) in the findings above. It is recognized that, in general, the replenishment time increases with the
receiving cost; that is, the higher the receiving cost, the larger the replenishment time. If the unit holding
cost does not significantly influence the optimal decision-making strategy, the retailer may simultaneously
deliver its order with fewer shipments to enhance the minimum total cost, which agrees with Case (III)
in this finding. Alternatively, if the interaction effect between the receiving cost and unit holding cost is
significant, then Case (II) in this finding occurs. In this case, the holding cost significantly impacts the
optimal solution, leading to the replenishment time and the number of shipments decreasing, which agrees
with our expectation.

(4) TRC∗N∗ and T ∗ all increase with K. It is intuitive that the higher the setup cost is, the larger the
replenishment time, which agrees with the results of traditional EOQ models; that is, the retailer extends
the replenishment time to reduce the frequency of ordering and setup, which can decrease the setup cost
effect and reduce the total cost. At the same time, the number of shipments simultaneously increases to
obtain the minimum total cost. We note, the unit-purchasing cost remains unchanged as the setup cost
increases under a low interest rate level. Alternatively, with a high interest rate level, the unit-purchasing
cost decreases as the setup cost increases. This illustrates that quantity discounts do influence the optimal
strategy corresponding to the unit-purchasing cost, like (2) in the findings above.

6. Conclusion

This paper proposed a powerful retailer inventory model in which the retailer exerts power over its supplier and
some coordinating mechanisms are agreed upon to maintain their long-term cooperative relationship. We reveal
that trade credit and quantity discounts truly do impact a retailer’s replenishment time and delivery policy. The
integrated mechanism for trade credit and quantity discounts can achieve perfect coordination of the supply
chain and a “win–win” result, which agrees with the results in Wang and Liu’s [32] work. We also demonstrated
that a unique optimal set of replenishment times and number of shipments exist such that the relevant cost
per year is minimized. This paper also indicated that the replenishment time for multiple shipments is longer
than that of a single shipment. An efficient algorithm was developed to find the optimal solution. This paper
further revealed that the optimal number of deliveries occurs at z if Yj < 0 and Gj ≤ 0. Numerical examples
were provided that verify that the developed algorithm is valid and demonstrated the following five points.
(i) The minimum total cost for the inventory system might not occur at the minimum unit-purchasing cost
because the extra quantity purchased (i.e., the ordering lot size occur at the break point of quantity discounts)
adds additional costs and thus increases the annual total cost. (ii) As the interest rate increases, the values for
the optimal replenishment time, the number of shipments, and the annual total costs decrease. However, if the
effect of the quantity discount is insignificant, the unit-purchasing cost might increase with the interest rate, but
only if the effect of the setup cost is significantly larger than that of the interest rate, which leads the optimal
replenishment time not to occur at the break point of the ordering quantity. (iii) The higher the unit holding
cost rate, the higher the annual total cost and number of shipments. However, the replenishment time might
remain unchanged, increase, or decrease, depending on the comprehensive effects of quantity discounts, unit
holding costs, and receiving costs. (iv) The higher the setup cost, the larger the replenishment time, number of
shipments, and annual total costs are. The unit-purchasing cost remains unchanged as the setup cost increases
under a low interest rate. Alternatively, with a high interest rate, the unit-purchasing cost decreases as the
setup cost increases. (v) The higher the receiving cost rate, the higher the annual total cost and the fewer
the number of shipments becomes. However, as described in (i) above, the replenishment time might remain
unchanged, increase, or decrease depending on the comprehensive effects of quantity discounts, unit holding
costs, and receiving costs.

The proposed models can be further extended by considering more realistic assumptions, such as probability
demand, deteriorating items, finite rate of replenishment and the time value of money.



S2826 T.-Y. LIN ET AL.

Appendix A. Proof of Property 4.2

From equation (4.2), we have

T∆
j =

√
2 (K +NR)
ωj (N)

·

Furthermore, from Assumption (4.3), we know the permissible delay in payment is M , which is greater than or
equal to cycle time. Therefore, we have √

2 (K +NR)
ωj (N)

≤M.

Squaring on both sides for the above inequality, we have

2RN2
j +

(
2K −M2DvIe

)
Nj −M2D [cjr + vIe − 2αcjIk (z − 1)] ≤ 0.

This implies

Nj ≥
−
(
2K −M2vIeD

)
4R

−

√
(2K −M2vIeD)2 + 8RM2D (cjr + vIe − 2αcjIk (z − 1))

16R2

or

Nj ≤
−
(
2K −M2vIeD

)
4R

+

√
(2K −M2vIeD)2 + 8RM2D (cjr + vIe − 2αcjIk (z − 1))

16R2
·

Because Nj is a positive integer and Nj ≥ z, we therefore have

NLow
j ≤ Nj ≤ NUpper

j ,

where

NLow
j = max

z, −
(
2K −M2vIeD

)2
4R

−

√
(2K −M2vIeD)2 + 8RM2D (cjr + vIe − 2αcjIk (z − 1))

16R2


and

NUpper
j = max

z, −
(
2K −M2vIeD

)
4R

+

√
(2K −M2vIeD)2 + 8RM2D (cjr + vIe − 2αcjIk (z − 1))

16R2


and

dτje is the smallest integer larger than or equal to τj ;
bτjc is the greatest integer less than or equal to τj .

This completes the proof.

Appendix B. Computational procedure for Example 1

Step 1. Compute Yj as follows:

Y1 = 4.164; Y2 = 4.1612; Y3 = 4.1584; Y4 = 4.1556; Y5 = 4.1528.



THE IMPACT FOR RETAILER’S POLICY S2827

Step 2. Compute NLow
j and NUpper

j from Property 4.2 shown as follows:(
NLow

1 = 2, NUpper
1 = 34.100

)
,
(
NLow

2 = 2, NUpper
2 = 34.097

)
,(

NLow
3 = 2, NUpper

3 = 34.095
)
,
(
NLow

4 = 2, NUpper
4 = 34.092

)
(
NLow

5 = 2, NUpper
5 = 34.089

)
.

Because Yj > 0 for j = 1, 2, . . . , 5, compute N∆
j from equation (4.10) shown as follows:

N∆
j = 8, forj = 1, 2, . . . , 5.

Because NLow
j ≤ N∆

j ≤ N
Upper
j for j = 1, 2, . . . , 5, we compute T∆

j

(
N∆
j

)
as follows:

T∆
1 (8) = 0.223378, T∆

2 (8) = 0.223398, T∆
3 (8) = 0.223419, T∆

4 (8) = 0.22344, T∆
5 (8) = 0.223461.

We found T∆
4 (8) = 0.22344 is under the interval [0.216667, 0.3) corresponding to c4. Thus, we have

TRC4 (0.22344, 8) = 30 000.84 and record it.
We then compute Ñj from equation (4.11) shown as follows:

Ñ1 = 1, Ñ2 = 2, Ñ3 = 5, Ñ4 = 8, Ñ5 = 11.

Because z = 2, we then have the following results and record them:

TRC2 (0.066667, 2) = 30 800.98, TRC3 (0.133333, 5) = 30 151.65,

TRC4 (0.2166667, 8) = 30 010.44, TRC5 (0.3, 11) = 30 011.66.

We next compute N#
j from equation (4.13) shown as follows:

N#
1 = 2, N#

2 = 2, N#
3 = 2, N#

4 = 8, N#
5 = 22.

We need to substitute the above values into equation (4.2). Thus, we have

T∆
1 (2) = 0.146176, T∆

2 (2) = 0.1462062, T∆
3 (2) = 0.146236,

T∆
4 (8) = 0.22344, T∆

5 (22) = 0.301632.

We not T∆
3 (2) = 0.146232, T∆

4 (8) = 0.22344, and T∆
5 (22) = 0.301632 are located in the interval of

[0.133333, 0.2166667), [0.2166667, 0.3), [0.3, 0.34] respectively. We therefore have

TRC3 (0.146236, 2) = 30 282.23
TRC4 (0.223340, 8) = 30 000.84

TRC5 (0.301632, 22) = 30 110.03.

Step 3. TRC2 (T2, N2) = TRC2 (0.066667, 2) = 30 800.98,

TRC3 (T3, N3) = min {30 282.23, 30 151.65}
TRC4 (T4, N4) = min {30 000.84, 300 010.44} .

Step 4. Comparing all TRCj (Tj , Nj) recorded in Step 3, the minimum annual total cost is $30 000.84. There-
fore, the optimal replenishment time is 0.22344 year, the optimal number of shipments is 8 times, and
the unit-purchasing cost is c4 = 10.02.

Step 5. Stop.
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