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A BI-OBJECTIVE PRODUCTION-DISTRIBUTION PROBLEM IN A SUPPLY
CHAIN NETWORK UNDER GREY FLEXIBLE CONDITIONS

FARIBA GOODARZIAN!, DAVOOD SHISHEBORI'™*, HADI NASSERI*? AND
FARIDREZA DADVAR?

Abstract. One of the main topics discussed in a supply chain is the production-distribution problem.
Producing and distributing the products plays a key role in reducing the costs of the chain. To design
a supply chain, a network of efficient management and production-distribution decisions is essential.
Accordingly, providing an appropriate mathematical model for such problems can be helpful in designing
and managing supply chain networks. Mathematical formulations must be drawn close to the real world
due to the importance of supply chain networks. This makes those formulations more complicated. In
this study, a novel multi-objective formulation is devised for the production-distribution problem of
a supply chain that consists of several suppliers, manufacturers, distributors, and different customers.
Also, a Mixed Integer Linear Programming (MILP) mathematical model is proposed for designing a
multi-objective and multi-period supply chain network. In addition, grey flexible linear programming
(GFLP) is done for a multi-objective production-distribution problem in a supply chain network. The
network is designed for the first time to cope with the uncertain nature of costs, demands, and capacity
parameters. In this regard, due to the NP-hardness and complexity of problems and the necessity of
using meta-heuristic algorithms, NSGA-IT and Fast PGA algorithm are applied and compared in terms
of several criteria that emphasize the quality and diversity of the solutions.
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1. INTRODUCTION

A supply chain includes a set of suppliers, manufacturers, distribution centers, and transfer channels. Each
member plays a distinct role in manufacturing final products from raw materials according to the needs of the
consumer [16,28,36]. In recent years, the globalization of trade, competition, and the integration of supply chains
(SCs) have made organizations pay more attention to their production plans and the other related members in
the SC [10,14,16,28]. Also, providing a production plan for the SC of an organization is one of the most significant
decisions to make in the SC management. Therefore, supply chain management (SCM) should be able to plan
all the activities involved in the chain from the suppliers to the final consumers; inappropriate management of
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SC can lead to the bankruptcy of the members and failure in global competition [15,21,22,28,53]. SCM is a key
process through which competitive ability in the market is increased. Besides, managers can reduce the costs
imposed on their organizations by practicing SCM. It provides a balance among the supplier, the manufacturing
or service organization and the consumer(s) and ultimately guarantees the survival of the organization in the
market [10,22,27,37,40,49].

Therefore, SCM is a set of methods used to coordinate suppliers, manufacturers, warehouses, and retailers
effectively so as to deliver products to customers at a specified time and place, minimize the costs of the whole
SC, and keep customer requirements at high service levels [11,22,33,37,40]. The basic goal of supply chain
network (SCN) problems is to plan a production and distribution model. The production planning area is the
decisions which a producer should make in the case of the ordered product and its time and number to meet
the customer’s need [1]. The distribution planning area includes decisions to find a channel for delivering goods
from a manufacturer to a distributor/customer [4,11,23]. These problems are interdependent, so they should
be integrated to minimize the cost and to maximize the profit in the chain [25,54].

Furthermore, in an SCN, the production and distribution problem is an optimization problem, and solving it
by identifying the best model can be very cost-effective but time-consuming. To solve large-scale complex SCN
models, meta-heuristic algorithms have been developed to offer approximated (generally good) solutions. These
solutions apply to SC and logistics problems. Many researchers have studied the design and modeling of various
components for a production-distribution problem.

Liu and Papageorgiou [32] presented a two-level production-distribution planning problem by paying simulta-
neous attention to the cost, response, and customer service levels. They used the e-constraint and lexicography
to solve the model. Cardona-Valdés et al. [8] designed a two-level production-distribution network with produc-
tion factories, distribution zones and several warehouses. Their significant innovation is a solution provided to
a two-tier random problem using the banned search algorithm along with the multi-objective adaptive mem-
ory programming framework. To solve the problem in small dimensions, the e-constraint and the branch and
leaf technique are used. Nazim et al. [44] proposed a multi-objective production-distribution under randomized
fuzzy conditions. A formula was developed based on the purpose of the problem. To solve a multi-objective
problem, a total weighting method was designed based on the genetic algorithm. Khalifehzadeh et al. [26] stud-
ied a multi-dimensional production-distribution problem. Their objectives included minimizing the total cost
and maximizing the reliability of each transport system. To solve a large-scale problem, a new heuristic algo-
rithm was developed. Rafiei et al. [47] developed an integrated production-distribution planning problem in a
four-echelon SC with two main objectives including maximizing the service level and minimizing the total cost.
Alavidoost et al. [3] developed a multi-objective MINLP model for multi-commodity tri-echelon SCNs. Then,
some meta-heuristic algorithms were applied to solve the model. Nourifar et al. [45] proposed a production-
distribution planning problem in a multi-period SCN with stochastic and fuzzy parameters. Then, a bi-level
MILP model was formulated. Fakhrzad et al. [13] proposed a new production-distribution problem for SCN
under uncertainty. Then, a multi-objective MILP model was formulated. Also, a NSGA-II algorithm was used
to solve the model. Sakalli and Atabas [51] proposed a new multi-site integrated production-distribution plan
in a fuzzy multi-objective optimization SC. In this regard, a multi-period and multi-product MILP model was
formulated. The objective functions included the minimization of delivery time, total cost. Backorder levels
were also taken into consideration. Rafie-Majd et al. [48] proposed a genetic algorithm (GA) and ant colony
optimization for fuzzy stochastic production and distribution planning problems. Zhao and Dou [63] proposed
a multi-objective integrated SC design for a single-product and four-echelon problem. Also, a MILP model was
formulated. Then, a novel meta-heuristic algorithm called Multi-Objective Modified Particle Swarm Optimiza-
tion (MOMPSO) was developed. Mohamadi et al. [38] developed a new distribution network by an adaptive
multi-objective optimization method. Additionally, a new Heat Transfer Search (HTS) algorithm was used.
Badhotiya et al. [6] developed a three-echelon SCN for an integrated inventory-location-routing problem. Also,
the Lagrangian relaxation approach was used to solve the proposed problem. Then, a heuristic algorithm was
developed to improve the feasibility of more solutions obtained from the Lagrangian relaxation algorithm. Billal
and Hossain [7] offered a new multi-objective optimization plan for multi-period multi-product four-echelon SC
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problems under uncertainty. The multi-objective GA, NSGA-II, and e-constraint methods were applied in this
case. Goodarzian and Hosseini-Nasab [19] devised a new fuzzy bi-objective mathematical formula for a four-
echelon production and distribution problem in an SCN under uncertain conditions. Then, a novel self-adoptive
evolutionary algorithm was worked out to solve the formula. Ghahremani-Nahr et al. [18] conducted robust
fuzzy formulation for an SCN. They used a new Whale Optimization Algorithm (WOA) to solve the model on
a large scale with the objective of minimizing the total cost. Goodarzian and Fakhrzad [19] proposed a new
fuzzy multi-objective SCN in an uncertain environment. Then, they used a new Modification of Imperialist
Competitive Algorithm (MICA) to solve the model in a large-size pattern. Zaidan et al. [61] applied a novel
hybrid algorithm of simplex downhill and simulated annealing to solve a multi-objective linear programming
aggregate production problem under fuzzy conditions.

There are several methods for solving multidisciplinary problems. They are categorized into numerical meth-
ods and Pareto methods. Using single-objective problems, numerical methods transform multi-objective prob-
lems via mathematical transformations. Pareto approaches use the concept of dominant sets to find Pareto’s
solutions. In practical situations, one may face large-scale problems which are difficult to resolve with exact
and time-consuming methods. An important optimal solution to large-scale production-distribution problems
in chain networks is the use of heuristic and meta-heuristic algorithms. Accordingly, in this paper, the NSGA-II
and Fast-PGA algorithms have been utilized to solve large-scale problems whose results are then compared in
terms of a series of indicators that emphasize the quality and development of the solutions. Thus, the important
contributions of the current study can be summarized as follows:

— Formulating a new multi-product, multi-period, and multi-echelon production-distribution SCN problem as
a MILP model.

— Achieving an applicable and effective Grey flexible modeling method for the developed SCN problem, con-

sidering various parameters of uncertainty as flexible constraints, Grey coefficients, and Grey purposes of

the decision-maker(s).

Considering cost and reliability objective functions as problem assessment criteria.

— Using multi-objective meta-heuristic algorithms to solve the model in large-scale problems.

The rest of the present paper is organized as follows. In Section 2, the programming model of the problem
and the grey model are described. In Section 3, the proposed solution algorithms as well as the criteria for
evaluating and comparing the methods are discussed. In Section 4, the computational results are analyzed.
Finally, in Section 5, the conclusion and the suggestions for future research are presented.

2. DEFINITION AND FORMULATION OF THE PROBLEM

An SCN includes four levels of suppliers, manufacturers, distributors, and customers. Decisions are made
for different products over several periods. The consumers are at the first level, while the second level is given
to the distributors who transship a number of products to the customers. At the third level, there are the
manufacturers which offer the products to the distributors. At the fourth level, the suppliers provide materials
for the producers. The met demand of each customer for each product is assumed for each time period by
re-ordering. However, the total customer’s demand should be met in the last period. In this formulation, many
sorts of fixed reliability rates are taken into account. The reliability value of every transport system in every
route is achieved from the multiplication of the rate of every transport system by the rate of every route. On this
basis, additional assumptions about the problem are given below. A quantity of each product can be generated
by a producer over a time period. Every transport system can move many times in a given route at any time.
Every transport system also has a limited capacity. The structure of this SCN is shown in Figure 1 and the
general assumptions are as follows:

— There are several suppliers, manufacturers, distributors, customers, products, periods, and transport systems.
— The costs of raw materials purchasing, products manufacturing, transport, maintenance, the shortage of
each product, setup, and time of processing are taken into consideration.
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— There are the capacity of raw materials and the rate of using them for product manufacturing, the available
storage capacity of each manufacturer, distribution center and transport system, and the capacity of each
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FIGURE 1. The structure of a four-level SCN.

producer.

— The amount of the customer demand in each time period, the available time for each manufacturer in each

time period, and the reliability of each transport system are also taken into consideration.

Set of indices

s Supplier (s =1,2,3,...,5).
p Producer (p=1,2,3,...,P).
k Distributor (k =1,2,3,..., K).
i Customer (i =1,2,3,...,1).
r Products (r =1,2,3,..., R).
t Time period (¢t =1,2,3,...,T).
v Transport system (v=1,2,3,...,V).
Parameters
TPst Raw material cost which is prepared by supplier s at the t.
perpe  Producing cost of products r from producer p at the ¢.
persy  Producing cost of raw materials by supplier s at the t.
Strp Setup time for product r in producer p.
krp The processing time of product r in producer p.
max,p; Maximum available time of product 7 in producer p at the ¢.
Jtsg, The fixed sending cost of transport system v from supplier s to producer p.
vtsy, Transport cost of raw materials from supplier s to producer p by using transport system v.
Jtpyr  The fixed sending cost of transport system v from producer p to distributor k.
vtp;,, Transport cost of product r from producer p to distributor k£ by using transport system v.
ftd}, The fixed cost of transporting transport system v from distributor & to customer i.
vtd?,; Sending cost of product r from distributor k to customer ¢ by using transport system v.
vP, The amount of each product r.
ur The amount of raw material.
ury. The rate of using raw materials for producing product r.
hpf Holding cost of raw materials in producer p.
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hpS. ~ Holding cost of product r in distributor k.

dem, Customer demand i for product r at the t.
sc,,% Setup cost for a set of products r in producer p.
scs$  Setup cost for a set of raw materials by supplier s.

shecp;  Cost of shortage of product r for customer i.
capdff Capacity of warehouse for producer p.
capd§ Capacity of warehouse for distributor k.
capd$ Capacity of each transport system v.

ras

v

sp Reliability ratio of transport system v from route s to p.

raj,, Reliability ratio of transport system v from route p to k.
rady, Reliability ratio of transport system v from route k to 7.

G A big positive number.

Decision variables

Lypt The amount of product r produced in producer p at the .
LN The amount of raw materials produced by supplier s at the ¢.
TRSZpt The amount of raw materials sent by using transport system v from supplier s to producer p at the ¢.

TPP? ., The amount of product r sent by using transport system v from producer p to distributor k at the t.

rpkt

TPD;,,; The amount of product r sent by using transport system v from distributor &k to customer 4 at the ¢.

Dt The raw material inventory in producer p at the end of the t.
Wkt The inventory of product r in distributor £ at the end of the t.
My The quality of the re-order of customer 4 of product r at the end of the t.

NS?

spt The quality of the re-order of supplier s of producer p by transport system v at the end of the ¢.

Nszt The quality of the movement of transport systems v from producer p to distributor k at the t.

NP} The quality of the movement of transport systems v from distributor k£ to customer ¢ at the t.
Qrpt If producer p produces products r during the ¢, it is equal to 1, otherwise 0.
Yt If supplier s of the raw materials is provided at the ¢, it is equal to 1, otherwise 0.

Objective 1 : minz Z (pcrst - Ny + scsf . Yst) + Z Z Z Z (fts;’p . NSZpt) (2.1)
v s P t

t

+ Z Z Z Z (vtsg, - TRSY,,) + Z Z Z Z (P - TRSG,,) + Z Z Z (PCrpt + Lept + SCG, - Qrypt)
v s p t v s p t r p t
2200 (Pt NPL) + 300 D 3D (vtph TPPL) + 3> (- Zn)
v P k t v T P k t P t
YIS Tty NDR) DN TS TS US  (wtdly, - TPD) YYD (hel - Wone)
v k 7 t v r k 1 t r k t
+ Z Z Z(Shcri : Mrit)
T 7 t
Objective 2 : Maxz Z Z Z Z (rasy, - TRSY,,) + Z Z Z Z Z (rajp - TPPY 1)
v T s P t v r j2 k t
+ Z Z Z Z Z (rady; - TPD7 ;) (2.2)
v T k i t
s.t.
Z (strp + krp - Lipt) - Qrpt < Matyp Vp-t (2.3)

T
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>N TIPSy, =Ny Vst (2.4)
vop

SN TPPY =Lup  Vrep-t (2.5)
vk

Zp-1y+ Y Y TRSY, = Zp — > ury Ly =0 Vp-t (2.6)

Woke—1) + 3 > TPP = Wy — Y TPDY, =0 Vr-k-t (2.7)

v P v i

Lyt - vr < cappg Vp-t (2.8)

Z Wikt - vpr < capdf Vk -t (2.9)

Nst SG'th Vspt (210)

L'rpt S G'Qrpt Vrpt (211)

vr - TRSE,, < capdS - NS¢ Yv-s-p-t (2.12)

Z (vpr - TPP} ;) < capdS - NP?,, Yo-p-k-t (2.13)

Z (vp - TPD},;;) < capdS - NDY,, Yo-p,k-i-t (2.14)

Myit — Myy—1) — dem, + Z Z (TPDyy) =0 Vr-i-t (2.15)

vk

3D (TPDYy) — Myi—1y = demS,  Vri-t (2.16)

vk

Lypt - Nt - TRS, ), - TPP] ., - TPD s - Zpy - Wogee - Myiy > 0

spt rpkt
ngpt . NPZIct 'NDzit eN- Qrpt . Yrst S {01} . (2.17)

Objective (2.1) refers to the minimization of the total operating costs from suppliers, including delivery
costs from suppliers to manufacturers, product costs including the purchase of primary materials, production
of products, sales costs of products to distributors and maintenance costs from primary materials as well as
total distributor and customer costs including costs from distribution to customers, inventory shortage costs
and maintenance costs in customer locations. Objective (2.2) refers to the maximization of the reliability of
supplying primary materials from suppliers to producers and the reliability of supplying products from suppliers
to distributors and then to customers.

Constraint (2.3) indicates the total set-up and processing times to produce products, which are less than the
maximum accessible time. Constraint (2.4) represents all the primary materials produced by each supplier which
must be shipped to the producer within a similar time. Constraint (2.5) indicates all the products produced per
manufacturer which must be sent from the distributor within the same time. Constraints (2.6) and (2.7) present
the equilibrium equations of the inventory in manufacturers and distributors. Constraints (2.8) and (2.9) specify
the remaining inventory control at every producer and distributor at the end of every period. Constraint (2.10)
shows the supplier of raw materials at any given time. Constraint (2.11) emphasizes the producer of products
manufactured at any given time. Constraints (2.12) to (A.13) indicate the capacity of the transport system.
Constraint (2.15) shows the equilibrium equation of the shortage in every customer’s location. Constraint (2.16)
emphasizes the equilibrium equation of the shortage before the time period. Constraint (2.17) represents the
state of decision variables.
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.1. Description of gray problem

This section presents some definitions and comments which are very useful for the further study of the GS

theory and, in particular, for the calculation of grey numbers as a tool to solve GFLP problems.

2.1.1. Grey numbers and grey system

The Grey theory is a convenient tool, as the fuzzy sets theory is, with which to interpret the uncertainty of

parameters. It can improve the mathematical analysis of systems in an uncertain environment. The rest of the

de
2.

tails are represented in the Appendix A.

2. Grey flexible model

A grey linear optimization model in the form of GFLP is given to solve.

Objective 1 : minz Z (perse - SRgt + scsf You) + Z Z Z Z (ftsg; - NSTL) (2.18)
s m s J t

-‘FZZZZ(’UtSS; TRSY,) +ZZZZ rpst - TRSIZ,) +Zzz(pcm SPpje + 5¢C - Xp50)
+z::i:z;zzj(ftpjd s +ZZZZZ vtply - TPPT ) +ZZ
+ZiZZ<ftd2” NDf.) +ZZZZZ (vt - TPD ) +ZZZ( IDpdt)
+§:zd:zc:(;hcpc-SHpct)

Objective 2: Max » > > 3> (rasl - TRST,) + > > > > > (rajjy- TPP )

Vm Vp Vs Vj Vt Vm Vp Vj Vd Vt

2> DD (radi - TPD,,) (2.19)

Vm Vp Vd Ve Vit

s.t.
Constraints (2.3) to (2.7).
P -vor < capp§ +pi (1 — i)  Vj-t (2.20)
Z Dz - vp < capd§ +pi (1 — ;) vd -t (2.21)
p
Constraints (2.10) and (2.11).
vr - TRSY}, < (capt$ +pi (1 — o)) - NS¢ Ym-i-j-s-t (2.22)
> (vp- TPPp,,) < (capty +p; (1— o)) - NPTy, Vm-j-d-t (2.23)
P
Z (vp - TPDJg,,) < (captS +p; (1 — a;)) - ND7, Ym-d-c-t (2.24)
P
SHpet — SHpe(—1) — (dem$y +pi (1 — o)) + > > (TPDpy,) =0 Vp-c-t (2.25)
m d
Z Z TPD)er) — SHper—1) = demS, + pi (1 — a;) Vp-c-t (2.26)

Constraint (2.17).
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3. SOLUTION METHODS

It has been proven that supply chain network models are NP-hard. Hence, the literature has seen several
meta-heuristics that were ordered to solve these NP-hard problems [21,55]. Besides, No Free Lunch theory says
that there is no meta-heuristic to show a good performance for all optimization problems [56]. Accordingly, the
recent decade has seen a rapid development of meta-heuristic methods [21]. Multi-objective problem solutions are
divided into classical and evolutionary types. Classical methods are weak in that they provide only one optimal
solution in each step and do not find all the optimal solutions in a multi-objective optimization process. To
overcome this weak point, researchers have used evolutionary techniques that can find several optimal solutions
in one run. Genetic algorithms make up a family of meta-heuristic algorithms based on random searches and
serve as a powerful tool for solving large-scale optimization problems. Among the genetic algorithms in use,
NSGA-II has high efficiency due to low computational complexity and the use of the congestion distance
operator in solving multi-objective problems. Also, studies have shown that, for large-scale problems, the Fast
PGA method performs better than the NSGA-II algorithm to solve the supply chain network model [13].

3.1. NSGA-II algorithm

Intelligent and evolutionary methods, unlike numerical processing methods, make it possible for the one-time
solving of multi-objective optimization problems. In the case of multi-objective problems, since there is no
possibility of optimizing a single solution for all the purposes simultaneously, the algorithm that offers some
solutions on Pareto or near Pareto has a high practical value. In fact, sorting the solutions through multi-
objective optimization is problematic. This problem can be solved with the NSGA algorithm. The algorithm
converts a multi-objective optimization space, which is not an irreplaceable space, into a sortable space. The
second version of the NSGA algorithm (NSGA-II) is also presented. In addition to considering the quality of
solutions, NSGA-II addresses the diversity and variety of Pareto’s optimal solutions too [46,50].

The NSGA-IT algorithm has two known phases. The first phase is related to the quality of solutions, and the
second considers their order. In the first phase, the ranking of solutions is done, which is the common feature of
different fronts. To this end, two parameters are determined, including (a) the number of times that a solution
is dominated and (b) the set of solutions that the current solution overcomes. In this regard, the two parameters
should be compared for all the solutions. If the number of times that the solutions are dominated is zero, they
are non-dominated solutions approximate to the Pareto’s front. Accordingly, they are called first front (F7). In
order to identify the solutions of the second front, at first, the number of times that all the solutions are lost is
reduced, and then the number of times that the solutions have fallen to zero as the second front is taken into
account. This process is repeated until all the fronts are identified (Fig. 2).

In the second phase, the distance of swarming criterion is used to represents the distance among all the
solutions at the same level. If the swarming distance among the selective points (in under-populated areas) is
large, these points contribute to the diversity. When comparing two different solutions, one may face two modes;
(a) of two solutions with different ranks, the superior one has the lower rank and (b) if two solutions belong to
the same front, the solution with a greater distance is chosen.

If P, is the population of the current generation and @, is the population of the children created by crossover
and mutation operators, for the next generation or P;y1, the P; and @Q; solutions are first merged together.
Then, this aggregate population undergoes ranking by means of the ranking operator. It is followed by the
sorting of the distance from the crowd. Finally, the population size of the first-order solutions is transmitted
directly to the next generation, and the remaining solutions are eliminated. In fact, the algorithm makes a
balance between quality and order with respect to the high importance which it gives to solutions and the less
relative importance assigned to distance [46,62]. Figure 3 presents the general diagram for the next generation
production in the NSGA-IT algorithm.
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FIGURE 3. The overall mechanism of the NSGA-II performance in the next generation.

3.2. Fast PGA algorithm

This algorithm is presented to simultaneously optimize several goals. It is cost-effective in terms of com-
putational and financial considerations. The algorithm makes use of new genetic operators to improve the
performance in terms of ranking, convergence and computation. It is to be noted that quick convergence is
important in solving multi-objective optimization problems that have a large solution space. The purpose of
this algorithm is to find an optimum Pareto solution that provides suitable distribution and breadth in the
solution space and is reasonably computational and cost-effective [33].

3.2.1. Rating of solutions and allocation of merits to them

The new ranking strategy introduced in this algorithm assigns two different ranks to the candidate’s solutions
based on the overcoming approach. First, all non-dominated solutions are viewed as the first-rank solutions, but
dominated ones are recognized as the second-rank solutions. Then, merit values are allocated to the first-rank
solutions through the comparison of those solutions using the swarm distance of coupling. In addition, every
dominated solution in the second category is compared to all the other solutions (including non-dominated and
dominated ones) in the population. The corresponding merit values are based on the number of the dominated
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solutions. Here, for each solution z; in the population, a weak power value S(z;) is allocated, which indicates
the number of the dominated solutions.

S(Xl) = \{ijxj € CPy A x; > T /\.]#ZH (31)

The cardinal of a set is shown by |,|. CP; is the set of solutions for generation ¢, and the expression z; > z;
means that the solution x; dominates solution z;. The merit value of each dominated solution is calculated by
the following equation:

Fz)= > S(x;)— > S(zx)  Vaj-ax € CPAj#i#k (3.2)

Ti>T; Tp>T;

In other words, the merit value of every dominated solution z; is equal to the difference between the sum of
the power values of all the solutions that make up the dominated x; and the sum of the power values of all the
solutions that dominate x;. Practicing this approach involves only a few computations, because no mechanism
is used; maintaining other varieties among non-dominated solutions needs few computations.

Once the merit values of all the population solutions are calculated and compared, three scenarios should be
noted as follows:

(a) Two solutions are compared with different ranks. The solution to choose is the one with a better rank.

(b) There are two equal-rank solutions, but there is a difference between the amounts of merit. In this case, the
solution to choose is the one with a higher merit value.

(¢) There are two solutions with the same rank and merit. In this case, one of them is chosen randomly.

3.2.2. Elitism and population adjustment

In this section, the population of the previous generation and that of the offspring are combined. This provides
the opportunity to maintain the superior solutions in the next generations and to ignore the weak ones. If the
population is too large and is constant over different generations, it leads to a reduction in elitism in the
early generations. Also, the existence of fluctuation in the number of non-dominated solutions over different
generations requires an adaptive population size strategy to emphasize the intensity of elitism in non-dominated
solutions. If the intensity of elitism is very low, convergence may be too late. This imposes a high computational
cost. On the other hand, if the intensity of elitism is very high, early convergence may occur. Therefore, this
algorithm dynamically uses a modifier operator to set the population size until it reaches a predetermined value.
The modifier operator uses the following equation:

|Py| = min{a; + [b * [{x;| z; € CP A x; is nondominated - maxpopsize} (3.3)

where |P;| is the population size in generation ¢, «; and b; are the positive and the integer positive values
respectively, which may vary over different generations, z; is the smallest integer greater than or equal to the
real value of x, and maxpopsize represents the largest preset population size.

The Fast PGA algorithm, unlike many other evolutionary optimization methods, has the advantage of using
the size of the offspring generated by crossover and mutation operators dynamically. The size of the offspring
in each generation is calculated as follows:

|O¢] = min{e; + [dy * |[{x; |z; € CPy A z; is nondominated - maxsolved} | (3.4)

where |Oy| is the size of the population of the offspring generated in generation ¢, ¢; and d; are the integer
positive and the true positive values respectively, and mazxsolved represents the maximum number of the
evaluated solutions in each generation. This dynamic Fast PGA algorithm allows the saving of a significant
number of solutions at the beginning of the search and exploits extractions efficiently in later generations [33].
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FIGURE 5. An example of a uniform crossover process.

3.3. The used operators in the algorithm
3.8.1. How to display the solution?

This section presents several execution modes for each activity in the problem. Of these modes, only one is
to be run. So, there is a need to display how a mode can be run for an activity. The most appropriate type
of display for the category of integer problems involves a chromosome as a set of integer values (genes) that
represent the selected execution mode for a given activity of a problem. Figure 4 displays a feasible solution (as
a string of a chromosome) for a problem with eight activities.

8.8.2. Calculation of objective functions

This section is dedicated to the comparison of different solutions with one another and ranking of them
according to the calculated values for the objective functions. In fact, as the dominance rule suggests, if none
of the cost functions is worse than the others and at least one of the objectives is better than the others, one
solution can be considered superior to another one.

3.8.8. Crossover operator

The crossover operator depends on the type of display, and, for different displays, different operators must be
defined. Here, according to the type of display, the uniform crossover is used. It is the crossover operator related
to integer representations [33,33,46,50,62]. In a uniform crossover, sequences of random variables are generated
from the uniform distribution in [0, 1] multiplied by the number of chromosome genes. In each position, if the
value is less than parameter P,, the gene will be generated from the first parent; otherwise, it will be inherited
from the second parent. The second offspring is generated in an opposite process (Fig. 5).

3.3.4. Mutation operator

Basically, the type of operator used for mutation depends on the type of presentation. In this case, we use
the random replacement operator, which is one of the common methods for numeric representations [33,50]. In
this operator, first, a string of random numbers with the length of the number of genes in the interval [0, 1] is
generated. In each position of the string, if the corresponding random number is lower than the mutation rate,
a new value is randomly assigned to a set of allowable values in each position which serve to select and replace
the number of the genes in that position. Otherwise, the number of the genes remains unchanged. For more
explanation, see Figure 6.
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FIGURE 6. An example of a random replacement mutation.
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3.8.5. Parent choice mechanism

In the general structure of the algorithm, there is a two-stage evolutionary cycle based on competition. The
stages include (a) selection of individuals to participate in reproduction (parent selection) and (b) selection of
individuals for survival in the next generation (choice of survivors).

In the genetic algorithm, the individuals with higher levels of fitness are more likely to be parental than those
with lower fitness. Here, a binary variable is applied for parent’s selection. In this type of choice, at each stage
2, choices are given, and the best individual is selected among them as a parent in terms of fitness. This is
repeated until the intended number of parents is selected [50].

3.8.6. Primary population generation

In this section, each gene is formed by the assignment of a mode of execution to every activity. This mode
is selected randomly from a set of possible execution modes. It is done to reach the primary population. The
possible execution modes for an activity actually refer to a set of modes that have the necessary quality to
perform that activity. Accordingly, before the production of the initial population, a preprocessor function
should be used to identify the inefficient operating modes whose total weight of quality indices is lower than
a certain limit. These modes should be avoided because they may disturb any stage of population generation.
Therefore, all the generated solutions are always feasible solutions.

3.8.7. Computational analyses

In this section, the authors firstly generate the test problems for the presented model developed. According
to the two conflicting objectives, four evaluating metrics are presented to assess the quality of non-dominated
solutions of the meta-heuristics. Finally, a set of sensitivity analyses is utilized to examine the validity of the
presented model developed. To the best of our knowledge and according to the novelty of the presented model,
no existing study has treated a similar model in the literature. Then, the benchmarks existing in the literature
is not available for the model and an approach is needed to design the test problems. In order to evaluate
the efficiency of the presented algorithms, a number of standard examples are generated for the problem. Ten
test problems including two classifications i.e. small: SP1-SP4, medium sizes: MP5-MP7, and large sizes: LP8—
LP10 are presented. Table 1 introduces the sizes of problem instances. Table 2 presents the parameters of the
generated examples.

3.4. Parameters setting

Meta-heuristic algorithms are very sensitive to their setting parameters, and a change in those parameters
has a significant impact on the efficiency of the algorithms. The proposed algorithms are coded utilizing the
MATLAB R2016b software. They are implemented in the computer system with the characteristics of the Core
i5/6 GHz processor and the 6GB side-mounted memory. Table 3 shows the proposed values for each parameter
related to the NSGA-IT and Fast PGA algorithms. As it is noted in the table, n represents the activities related
to each problem. Therefore, some experiments were conducted on problems 2 and 6 to survey parameter setting
for small-scale problems (i.e. problems 1-4), medium-scale (i.e. problems 5-7), and large-scale problems (i.e.
problems 8-10). Tables 4 and 5 present the parameter setting values for two algorithms in which the value of
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TABLE 1. The instances for test problem.

Classifications Instance

s P k i r v t
Small SP1 1 1 2 2 2 2 1
SP2 2 2 3 3 4 3 2
SP3 3 4 4 5 6 4 4
SP4 3 4 4 5 6 4 4
Medium LP5 6 8 8 8 10 8 9
LP6 8 10 12 10 12 10 10
LP7 10 12 14 12 14 12 12
Large LP8 12 14 16 14 16 12 12
LP9 14 16 18 16 18 14 12
LP10 18 20 22 20 24 16 12

TABLE 2. Parameters for generated examples.

Problem Number of Number Cost Reliability Number of  Reliability of The minimum
activities of run reliability each indicator total of reliability
modes indicators in each run indicators in each
mode run mode
1 7 [2,9] [15,70] [120,190] 2 [60,99] [60,75]
2 9 [2,4] [10,50] [10,20] 5 [60,99] [60,75]
3 15 [2,7] [10,200] [30,60] 2 [60,99] [60,75]
4 21 [2,6] [50,400] [250,480] 3 [60,99] [60,75]
5 31 [2,6] [150,450] [50,140] 4 [60,99] [60,75]
6 40 [2,5] [100,160] [50,120] 4 [60,99] [60,75]
7 50 [2,5] [30,120] [80,180] 3 [60,99] [60,75]
8 60 [2,6] [150,450] [100,200] 5 [70,99] [60,75]
9 80 [2,5] [200,550] [150,250] 6 [80,99] [60,75]
10 100 [2,8] [300,650] [200,300] 8 [90,99] [60,75]

each parameter is fixed by keeping the other parameters in their lowest value. This is done based on the number
of the non-dominated points identified through a certain number of repetitions.

3.5. Algorithms validation

In order to prove that the results of the formulation fully reach the Pareto front side of the problem and the
solutions are necessary for dispersion, the efficiency of the methods used in the different parts of the algorithms
as well as the validity of the obtained solutions should be measured. Thus, three examples are generated on a
relatively small scale. Then, through a search for all the possible spaces in these real-world problems, they are
identified and compared with the results of the algorithms. Table 6 presents the specifications of the example
generation, the results related to the full search of the solution space and their solutions through two algorithms.
For instance, after a complete review of the solution space of an example, as in Table 7, it has been found that
there are 15 non-dominated points for that example. As it can be seen, the obtained solutions have no superiority
to one another, and it is not possible to find a solution that is the best for all objects. The dispersion of the
points in the solution space is indicated in Figure 7a. This problem has been obtained by NSGA-II and Fast
PGA algorithms in about four seconds to identify 14 and 13 non-dominated points respectively. Regarding the
results of the other two examples, it can be concluded that the validity and ability of the two algorithms to
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reach optimal solutions are acceptable. Figures 7b and 7c show the non-dominated points identified in the two
algorithms.

F. GOODARZIAN ET AL.

TABLE 3. The initial value of proposed algorithms parameters.

Type of algorithm  Parameter Proposed values
Mutation rate 01 02 0.3

NSGA-II Intersection rate 04 05 0.6
Population number 5n 7n  10n
of each generation
a 2n  3n  4n
b 05 1 1.5
c 2n 3n  4n
d 0 05 1
Mutation rate 0.1 02 0.3

Fast PGA Intersection rate 04 05 0.6
Maximum popula- 5n  7Tn 10n
tion
Maximum number 5n 7n  10n

of children

TABLE 4. Parameter setting values for Fast PGA algorithm parameters.

The number of maximum

a b c d Population of Population
offspring
Small-scale examples n 05 3n 05 idn ™
Medium-scale examples 3n 0.5 3n 1 5n n
large-scale examples 5 09 4n 1 6n 10n

TABLE 5. Parameter setting values for the parameters of the NSGA-II algorithm.

Mutation rate Intersection rate

The population of each generation

Small-scale examples 0.2
Medium-scale examples 0.3
Large-scale examples 0.8

0.4
0.5
0.6

6n
10n
12n

3.6. The evaluating criteria and algorithms comparison

Number of Pareto solutions (NPS),
Maximum spread or diversity (MS),
Mean ideal distance (MID),
Diversification metric (DM).

Through the comparison of two multi-objective algorithms in terms of efficiency, several useful indicators,
or criteria, should be taken into account. These indicators are mainly divided into two categories. The first
emphasizes the convergence and the quality of the solutions, and the second emphasizes the dispersion and the
expansion of those solutions in the solution space. In this respect, there are four indicators for the comparison
of two algorithms [50]:
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TABLE 6. Specifications and results related to the examples to validate algorithms.

Number of Number of Coefficient Total number of Total number of Total runtime The number of non- Runtime of two
activities modes complexity feasible points non-dominated points (second) dominated points which algorithms (seconds)
of solution space discovered by the algorithms

NSGA-II Fast PGA

8 [2,5] 1.43 4850 17 274 15 13 5
9 [2,5] 1.6 37487 38 24560 36 31 35
12 [2,4] 1.53 196 534 13 23730 14 12 40

TABLE 7. The values of the objective functions related to non-dominated points of the first
example.

Non-dominated points  Reliability = Cost

1 1275 83.96
2 1224 83.66
3 1163 83.48
4 1198 81.82
5 1137 83.18
6 1137 82.35
7 1179 81.58
8 1154 82.76
9 1118 81.57
10 1104 81.07
11 1174 80.51
12 1099 82.07
13 1093 79.82
14 1087 78.07
15 1087 77.71

4. COMPUTATIONAL RESULTS

In this section, the examples generated in the previous section are solved with the NSGA-IT and Fast PGA
algorithms. In order to assess and compare the two algorithms, the criteria mentioned in the previous section
are used. Also, each example is run for 10 times by each algorithm, and the non-dominated solutions of these
10 runs are used to compare the results. Therefore, the comparison of the algorithms is presented in small-scale
examples (Examples 1-4), medium-scale examples (Examples 5-7), and large-scale examples (Examples 8-10).

4.1. Performance evaluation of proposed algorithms on small-scale problems

The performance and the efficiency of the NSGA-IT and Fast PGA algorithms are compared in examples 1-4.
In Table 8, the best results are executed in 10 times, and the average of the results obtained from this set of
runs is presented for the two algorithms. Also, Table 9 represents the values of the comparative indices for both
algorithms. The run time is taken into consideration for two identical algorithms.

Table 9 and Figure 8 indicate that the Fast PGA algorithm is more successful than the NSGA-II algorithm in
finding the number of Pareto’s points in all the problems, except problem 4. Regarding the mean distance from
the ideal solution, there cannot be a decisive claim of superiority for one of the algorithms over the other. For
most of the expanding and diverse criteria that imply the dispersion and proper distribution of the solutions,
the Fast PGA algorithm is significantly superior to NSGA-II.
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FIGURE 7. Distribution of non-dominated points. (a) Pareto points dispersion in the solution
space using a full count method. (b) Non-dominated points dispersion identified in the NSGA-II
algorithm. (¢) Non-dominated points dispersion identified in the Fast PGA algorithm.
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TABLE 8. Computation results of NSGA-II and Fast PGA algorithms for examples 1—4.

The best solution  The average of solutions
Problem  Algorithms Reliability Cost  Reliability  Cost

SP1 NSGA-II 1843.56 87.54 1854.43 85.02
Fast PGA 1843.93 84.22 1853.63 82.19
Sp2 NSGA-II 700.21 91.52 710.77  89.32
Fast PGA 711.23 87.79 723.34 86.63
SP3 NSGA-II 1431.54 86.32 1048.67 84.65
Fast PGA 1429.33 85.24 1045.19 84.60
SP4 NSGA-II 11455.22 88.86 12203.45 87.45

Fast PGA 11458.12 88.63 11981.44 87.23

TABLE 9. Comparative criteria for the NSGA-IT and Fast PGA algorithms for examples 1-4.

NSGA-II FAST PGA NSGA-II FAST PGA NSGA-II FAST PGA NSGA-II FAST PGA

Problem Algorithms Run time (s) NPS MS MID DM
SP1 NSGA-II 10 30 114.43 51.43 12.32
Fast PGA 10 31 115.22 47.76  12.55
SP2 NSGA-IT 10 24 87.63 34.37 10.06
Fast PGA 10 25 90.54 40.07  10.24
SP3 NSGA-II 30 19 65.39 37.07 8.94
Fast PGA 30 34 67.31 33.79 9.02
SP4 NSGA-IT 150 132 396.14 202.73 22.96
Fast PGA 150 126 440.19 21442 24.01
=== Number of Pareto solutions Maximum of spread
Mean ideal distance diversification metric
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F1GURE 8. Comparative criteria for the NSGA-IT and Fast PGA algorithms for examples 1-4.

4.2. Performance evaluation of the proposed algorithms on medium-scale and large-scale
problems

As in the previous section, the performance of the proposed algorithms is examined here in relation to
problems 5-7 for medium scale and 8-10 for large scale. Table 10 presents the best results and the average of
the results achieved for the two algorithms. The values of the comparative indices for the two algorithms are
also indicated in Table 11.
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TABLE 10. Computation results of NSGA-II and Fast PGA algorithms for examples 5-7 and 8-10.

The best solution The average of solutions
Problem  Algorithms Reliability — Cost Reliability ~ Cost

MP5 NSGA-II 5349.71 87.54 5390.82 87.13
Fast PGA 5408.52 87.33 5462.63 87.12
MP6 NSGA-II 8254.76 82.76 8342.46 82.65
Fast PGA 8354.53 82.73 8403.28 82.66
MP7 NSGA-II 8434.62 85.94 11477.33 85.32
Fast PGA 9102.87 85.65 12477.33 85.54
LP8 NSGA-II 9431.25 93.21 9567.12 92.76
Fast PGA 9780.23 93.13 9877.38 92.53
LP9 NSGA-II 10212.92 104.39 10516.44 104.21
Fast PGA 13434.22 104.21  13849.17 104.34
LP10 NSGA-II 14 555.67 156.83  16772.12 155.67

Fast PGA 18 939.26 156.67 19566.59 155.29

TABLE 11. Comparative criteria for the NSGA-IT and Fast PGA algorithms for examples 5-7
and 8-10.

Problem  Algorithms Run time (s) NPS MS MID DM

MP5 NSGA-II 600 52 354.51 158.09  20.05
Fast PGA 600 49 566.84 183.76 23.49
MP6 NSGA-II 900 104 546.23 271.32 22.67
Fast PGA 900 53 753.56 214.08 27.16
MP7 NSGA-II 1000 114 494.14 299.95 22.45
Fast PGA 1000 43 654.54 158.09 26.07
LP8 NSGA-II 1000 128 788.55 201.21 28.45
Fast PGA 1000 56 467.84 167.45 23.12
LP9 NSGA-II 1000 132 891.21 271.32 34.67
Fast PGA 1000 69 582.98 213.13 21.32
LP10 NSGA-II 1000 139 932.75 321.81 41.92
Fast PGA 1000 88 682.29 218.34 26.48

According to the results presented in Table 11 and Figures 9 and 10, it can be claimed that the NSGA-II
algorithm yields better results with the number of non-dominated solutions, while the Fast PGA algorithm
performs better in terms of solution variety. As expected, if the size of the problem and the solution space
of the NSGA-II algorithm are increased, compared with the Fast PGA, the number of Pareto’s points will
be found. This is due to the fast convergence of the Fast PGA algorithm to reach non-dominated points. In
this algorithm, higher iterations lead to the generation of feasible optimal solutions. As it was observed, for
small-scale examples, both algorithms have roughly equal performance, and the differences in their results can
be ignored. When the size of problems increases, however, the differences become more and more evident.

Of course, one cannot ignore the role of runtime in achieving the best solutions. Obviously, the higher the
runtime, the better the NSGA-II algorithm functions than the other one. The shorter the runtime, however,
the more favorable the Fast PGA algorithm is to the other one. Of course, as mentioned before, due to its
high convergence, the Fast PGA algorithm is used in cases where the evaluation of the solutions is either
computational or financially cost-effective, or good solutions are to be found in a short time.
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F1GURE 9. Comparative criteria for the NSGA-IT and Fast PGA algorithms for examples 5-7.
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F1GURE 10. Comparative criteria for the NSGA-IT and Fast PGA algorithms for examples 8-10.

Moreover, to find out the best meta-heuristic decisively, this study conducts a set of statistical comparisons
among meta-heuristics based on Pareto optimal analyses taken by measurement metrics. Accordingly, the results
which were reported by Tables 8-11 are transformed into a well-known metric, namely, Relative Deviation Index
(RDI) as the following formula [50]:

|Alg,,; — Bestgsol "

RDI = 100 (4.1)

Max,,; — Ming,,;

where Alg,; is the objective value obtained by a given measurement metric of algorithm, Max,,; and Ming,
are respectively the maximum and the minimum values among all values outputted by algorithms. Bestg,; is
the best solution among methods; in another word, it is one of the Max,,; and Ming,; according to the nature
of metrics [21]. It is evident that a lower value of RDI brings a higher quality of algorithms. Consequently, the
means plot and Least Significant Difference (LSD) for the proposed modified and hybrid algorithms and their
individual ones have been resulted. The results run by Minitab 16 Statistical Software are shown in Figure 11.
According to Figure 11, based on NPS, MID, MS, and DM metrics, the Fast PGA algorithm shows the best
performance.
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4.3. Sensitivity analyses

This section contains the results of three tests applied to assess the sensitivity analysis of the impact of the
parameters on the values of the decision variables and the objective function of the presented model. Since
the Fast PGA algorithm proved to be the most effective one in the comparisons, we used it for this sensitivity
analysis, applied to the large-sized experimental problem LP6. The results of each test include the value of the
total cost (TC) and the reliability (R).

The first experiment considers modifications in the parameter of the raw material cost (rpst). The second
experiment focuses the parameter of the reliability ratio of transport system (rasﬁ,‘;, Tajf;z, radis). We designed
four experiments for each parameter and analyzed the changes in the objective functions. The relevant results
are presented in Tables 12 and 13, and the trade-off between objective functions of total cost and reliability are
presented as normalized values in Figures 12 and 13.

As indicated in Table 12 and Figure 11 with an increase in raw material cost, in the four experiments the
value of the objective function increases slowly with TC and then R is fixed and without change. Additionally,
by increasing reliability ratio of transport systems, the first objective function is remained fixed but the second
objective function is raised according to the Table 13 and Figure 12.

4.4. Management insight

This study attempts to develop a new solution methodology in a supply chain network (SCN) design under
grey flexible condition. Hence, by optimizing the network configurations, managerial capabilities in elevating



TABLE 12. The results of the sensitivity analysis related to the first experiment.

TABLE 13. The results of the sensitivity analysis related to the second experiment.
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The number of cases  #rp,, TC R

C1 10000  854.32 312.41
C2 20000  945.34 31241
C3 30000  997.21  312.41
C4 40000 1023.12 312.41

The number of cases #rasii#rajﬁ#radﬁ TC R
C1 #10000#15000#20000 854.32  312.41
C2 #15000420000#425000 854.32  378.23
C3 #25000#4300004#35000  854.32  467.27
C4 #35000#440000#45000 854.32  678.29
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F1GURE 12. The behavior of normalized objective functions for sensitivity analysis in the first

experiment.

F1GURE 13. The behavior of normalized objective functions for sensitivity analysis in the second

experiment.
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their SCN, and also solving real-world problems are improving. Such improvements can help many industries,
e.g. the pharmaceutical and the car industries in applying theoretical developments for real cases. On the other
side, when managers decide to apply such models in their organization, problems result in most cases, which
general exact solvers are unable to cope with. Additionally, the outcomes of the model have tremendous effects
on management decisions for the production and distribution of the SCN. Therefore, elevating the capabilities
of solving such vital problems and proposing new methodologies which can solve real cases inappropriate time
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with reliable solutions, are important steps to the applicability of SCN problems in real situations for managers
and industries. Therefore, the results of this paper present powerful and reliable methods for managers to cope
with supply chain network design and planning issues. It also encourages managers to revise the production-
distribution decisions of the SCN of their organizations.

5. CONCLUSION

In this paper, a novel multi-echelon, multi-objective, multi-product, and multi-period production-distribution
model is developed in the SCN design problem. This model is based on two objective functions including
minimizing the operating costs of suppliers, manufacturers, distributors, and customers and maximizing the
reliability of the system. The proposed model is formulated in the form of MILP. In the context of Grey flexible
linear mathematical programming, the model deals with Grey/flexible constraints jointly; that is, the Grey
coefficients for the lack of knowledge and the Grey purpose of the decision maker(s). Because the problem
belongs to the category of NP-hard problems, and an increase in the problem size makes its solution time
increase exponentially, the model makes use of the NSGA-II and Fast PGA algorithms, which are among the
algorithms used in multi-objective problems. After the corresponding parameters were set in this study, the two
algorithms were compared in terms of several indices for several examples generated in different sizes. Finally,
the computational results were analyzed for those examples.

In this study, all model parameters are considered as deterministic parameters. However, the proposed model
could be extended to consider the uncertainty in demand, costs, and capacity for future work. Additionally, the
performance of the NSGA-IT and Fast PGA can be compared with other meta-heuristic algorithms such as the
Tabu, particle swarm optimization, and social engineering optimization algorithms. In addition, other approaches
such as simulation-based optimization can be applied instead of a mathematical programming approach, which
can lead to interesting findings. On the other hand, the bi-objective approach can be elevated to multi-objective
approaches, which let the network consider some essential objectives such as minimizing COs emissions and
shortage of products and maximizing the number of customer respondents.

APPENDIX A. RELATED MATERIALS ABOUT GREY SYSTEM

A.1. Definitions, remarks, and theorems

Definition A.1. A grey system is defined as a system which includes uncertain information presented by grey
variables and grey numbers.

Definition A.2. Suppose X is a universal set. Here, X = R is considered as the set of all real numbers. Then,
the grey system, G, of X is determined by the two maps uG and uG, where uG : X — [0,1], uG : X —
[0,1]uG > pG. The pG and puG are the lower and the upper membership functions in G respectively. The Grey
Systems (GS) theory introduces the concept of interval grey numbers. Grey numbers are considered as the basic
unit of grey systems to apply in the formulation of a grey model. It can be a significant factor in the grey system
theory [59]. Let X specify a bounded and closed set of real numbers.

Definition A.3. A grey number is a number with clear lower and upper boundaries, but it has an unknown
position within the boundaries. In the system, a grey number is represented mathematically as:

@r=[z,7]={texlz<t <z} (A1)

G

where t is information, ®z or £ is a grey number, zand Z are the lower and the upper limits of the characteristic [56].

Remark A.4. Note that the notations ®z and & are the same grey number, and, for simplicity in modeling,
the notation ¢ is sometimes applied for the mentioned grey number.

There are different kinds of grey numbers (see them in [2,30-32,39]). Among them, interval grey numbers
are applied here as appropriate ones reported in the literature.
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Definition A.5. An interval grey number is the one with both upper limit Z and lower limit z: ® € z[z, T].

Definition A.6 (White and black numbers). When ® € z(—o00,+00), i.e., when ®x € [z,Z] and z = Z, ®x is
called a white number. When z has neither a lower limit nor an upper limit, the limits are all grey numbers; in
this case, ®z is called a black number.

The rest of the current study deals with interval grey numbers. For simplicity, they are briefly called grey
numbers.

Remark A.7. For any real number a, if ® = afa, a], we say ®a is the corresponding grey number. In reality,
any real number is a white number. Thus, without loss of generality, throughout the study, it can be ® = 0[0, 0]
as the zero grey number. For simplicity, it is shown with ®0 or 0.

Remark A.8. The set of all grey numbers is denoted by R(®) which can represent an element as ®z € [z, Z].
It belongs to (®) by ®z € [z, Z].

Definition A.9. Let L(®z) = |Z — z| represent the length of the grey number ®z € [z,Z]. It is clear that
L(®z): R(®) — RT U{0}.

Let two grey numbers be defined as ®x1 € [z;,Z1] and x4y € [z, T2]. The arithmetic operations are defined
as follows:

@1 + Ty = [3) + Ty, T1 + T2 (A.2)

Q1 — ®Ty = [T — Ty, T1 — Ta. (A.3)
The following theorems are quoted from Xie and Liu [59].

Theorem A.10. The result of the self-minus of a grey number is zero. That is, ®x — @z = 0.

Lemma A.11. Ifk € R, ®x € [z,Z] is a grey number, we will have:

(
(

Definition A.12. The whitening number of a grey value, ®x, is determined as a deterministic number with
its value lying between the lower and the upper bounds of ®z (see [58]):

) = @(kx) € [ka, kz] if k>0, (A.4)

k- (®x
k- (®z) =((kz) € [kZ, k] if k<O. (A.5)

<Qr<7T

S

where @z is the whitening value of ®z. This relationship can be represented as:

Qr =z+ (T — 1)
where the grey coefficient is specified by the a.
Theorem A.13. The set of all the grey numbers establishes a field.

Proof. Tt is straight forward as given in Shi et al. [52]. |

A.2. Ranking of grey numbers

There are several approaches to rank the grey numbers. Some of them are mentioned here.
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A.2.1. Possibility degree

Definition A.14. For the two grey numbers ®y € [y, y] and ®z € [z, Z], the possibility degree of ®y is less, or

greater) than or equal to ®z. It can be expressed as follows [30]:

max (0, L* — max (O, T — g))
L*

where L* = L(®x) + L(®y).
The relation between ®z and ®y can be defined as follows:
(I) If z =y and Z = 7, it can be said that ®z is equal to ®y, which is shown as ®z = ®y, when p = 0.5.
(IT) If there is an intersection, when p > 0.5, it can be clarified that ®y is greater than ®z, which is determined
as ®r < Qy.

Also, when p < 0.5, it can be said that ®y is less than ®x, shown as ®x > ®y.
An interval number refers to a specific one in grey number conception terms [52]. It is easy to verify the
following results.

Theorem A.15. A set of grey numbers based on the possibility degree is a totally ordered set.

Lemma A.16. For the two grey numbers ®y € [y,y/ and @z € [z,Z], we have @z > ®y if and only if
—Qr < -Qy.

Lemma A.17. A grey number ®x € [z, Z] is said to be nonnegative if the whitening value of ®x is nonnegative.

A.2.2. Kernel and greyness degrees

In this subsection, the concepts and definitions are taken from Xie et al. [? ].

Definition A.18. Take the grey number ®z € [z, Z], where z < Z and there is no distributing information for
the values of the grey number ®uz. If the grey number ®uz is not discrete, then @ = %(ng x) is called the
kernel of that grey number.

Definition A.19. Suppose the background which makes a grey number ®z come into being is €2, and pu(®x) is
the measure of 2. Then g° (®z) = pu(®x)/p(§2) is called the greyness degree of the grey number @z (specified
as g° for short).

Definition A.20. Let ®% and g° (®z)o be respectively the kernel and the greyness degree of a grey number
®x. Then, ® = ®@% 4oy can be defined as the regular form of that grey number.

Proposition A.21. For grey numbers, there is a one-to-one correspondence between the grey numbers
®x € [1,Z] and the simplified forms @x = @I (g0, where r < Z.

Regarding the development of the GS theory in different scientific areas and the request for the comparison
of grey numbers in several fields, ranking of grey numbers plays a key role in some grey system applications
and decision making. So far, different strategies have been developed to rank grey numbers. Here, one of the
popular methods in the literature is discussed.

Definition A.22. Suppose ®z and ®y are two grey numbers, ®12 and ®o& are the kernels of ®z and ®y,
respectively, and g°(®1z) and g°(®qx) are the greyness degrees of @z and ®y, respectively. Accordingly,

if ®% < ®y, then ®xr < Ry;

if 2 = ®y, then

(i) if g° (®z) = g° (®y), then ®z = ®y;
(ii) if g° (®7) < g° (®y), then @z > Qy;
(ili) if g° (®x) > g° (®y), then ®z < ®y.

In this way, different interval grey numbers can be compared.
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A.2.8. Ranking of grey numbers based on whitenization values

An appropriate method for solving GLP problems is to compare grey numbers in terms of the corresponding
whitenization values. An efficient method to order the elements of R(®) is to assign a whitenization value to
every grey number. The whitened function to & : R(®) — R maps each grey number in a genuine line, where
a natural order exists. In fact, for every @z € R(®), there is the relationship R®(®x) = @z. Therefore, the
order of R(®) can be defined based on whitenizaion values as follows:

@z > Qy if and only if @z > Qy;
®z > ®y if and only if ®x > y;
®r = ®y if and only if Rz = y;

where @z and ®y belong to (®). Also, there is ®z < ®y if and only if ®z > Qy. By the above definition,
®x > ®0 holds true when ®z > 0. A corresponding lemma can be also described simply as follows.

Lemma A.23. Let 2C be any whitened function. Then,

(i) ®x > ®y if and only if @ — ®x > R0, and if and only if — Ry > — @ x;
(ii) If @z > ®y and Q@u > Qu, then Qr + Qu > QY + Qu;

where ®x, Y, @u, and v belong to (®) and ®0. The latter is a grey zero number which is defined in
Remark A.8.

A.3. Grey flexible linear programming

An appropriate fuzzy linear programming model is the Grey Flexible Linear Programming (GFLP), which
practically involves various formulations of flexible linear programming [5,24]. In the following subsection, a
definition is given for this type of problems. Whatever discussion that follows is based on this definition.

A.3.1. GFLP problem with a linear membership function

Suppose a decision maker faces a linear programming problem in which s/he can endure violation in com-
pleting the constraints; that is, s/he allows the constraints to be held as well as possible. When there is a set
of constraints, the assumptions a;x <¥ b; and i = 1,...,n can be made for each constraint and formulated by
the use of a membership function as follows:

1, a;z < b
i (x) = flaiw);, b <aiw <b;i+p; (A7)
0, a;x > b; + p;

where f;(0) is continuous and strictly decreasing for a;z, f;(b;) =1 and f;(b; + p;) = 0.
Equation (A.6) emphasizes that the decision maker can tolerate violation in the accomplishment of constraints
i up to the value b; 4+ d;. Considering the assumptions, the associated GFLP problem is represented as:

max 2% (z) = Cz

st. Az <Fb
x>0

or, (A.8)

max 2% (z) = Cz

n
st Hi(z,a;) = Zaix—bi <Fo, i=1,....m,
j=1
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T1,Z2,...,2,) is a n-dimensional real decision, and ¢% = (C?, S, .. CG> is a n-dimensional vector

r n

where x
of grey parameters involved in the grey objective Z. Also the notation “max” maximizes the objective function
in a fuzzy sense and “<F” represents a fuzzy extension of “<” on R which is applied to compare the left side
of fuzzy constraints with the right side.

In general, the main model is not well-defined due to the following reasons:

=

(i) The grey quantity 2(c%, x) cannot be maximized based on the current method.

(ii) The constraint H; (x,a;) = 2?21 a;x — b; <¥ 0 does not result in a crisp feasible set.

An appropriate approach to state the crisp optimal solution preference of an alternative is comparing the
grey quantities using the whitenization function R® : R(®) — R that maps each grey quantity to a real line
which exists a natural order (for more detail, refer to [9,52]).

In addition, if a deterministic feasible set is to be specified, a confidence level a; should be provided so
that a desirable corresponding i-th fuzzy constraint can hold. Therefore, in order to remove those mentioned
restrictions, the following problem is introduced:

max z(z) =R (cG) x
sty {Hi (z,a;) <F 0 Z}ai,
sz,aizDaf),Oﬁaiﬁl, i=1,...,m, (A.9)

where z(z) = R(c®)r means the corresponding crisp value of grey function z%(z) based on linear ranking
function. To choose a suitable membership function for each fuzzy constraint, it is argued that, if H;(x,a;) <0,
then the i-th constraint is fully met. However, if H;(x,a;) > p;, then the i-th constraint is perfectly violated.
In the latter formula, p; is the predefined maximum tolerance from zero, as defined by the decision maker. For
H;(z,a;) € (0,1), it is recommended by Liu and Zhang [33] that the membership function of the i-th constraint
be applied as:

1, H;(z,a;) <0
p(Hi(z,a;) <0) = 1—%, 0<H;(z,a;) < p;. (A.10)
0, ' H;(x,a;) >0
And this is equal to:
17 T, a; S bl
piz) = 1%4—1);77‘—(17:37’ b < a;x <b;+p;. (A.11)
0, a;x > b; + p;

And the (3.1) gets:
max z(z) = R (%) z
st. ax <b+p; (1—a)

r>0,a” <o;,0< 0y <1, i=1,...,m. (A.12)

The above problem is called Multi-Parametric Linear Programming problem (MPLP1).
Now, a feasible solution is made to the grey linear programming problem as presented in (A.12).

Definition A.24. Let @ = (o4, ..., ap,) € (0,1]™, then X5 = N2, @, , where
Xa, = {x e R |x >0,a;x <b;+p;(1—a;),a; > af)}, i=1,...,m. (A.13)
For i =1,...,m (namely, X! is the a-cut of the i-th fuzzy constraint).

Proof. For any a@ = (a1, ...,a,) € (0,1]™, let z € Xg. Therefore, a; > aP, a;x < b;+p; (1 — a;). With regard to
equation (3.4), we have z € Xgi,i =1,...,m. Therefore, X € N7, :Eﬁ,é Also, If X € N, !, , we have z € X[ |,

for all i = 1,...,m. Therefore, a; > aP,a;x <b; +p; (1 —a;) and hence z € X;. This completes the proof. O
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Proposition A.25. Let & = (of,...,a),) and & = (of,...,al), where o < & holds for all i, then &" -
feasibility of x implies the &' -feasibility.
Proof. The proof is straightforward. O

For a given a € (0,1], let € R be a usual a-feasible solution to (A.10). It is to be noted that this solution
provides the same degree of satisfaction for all the constraints. It has the meaning of a;x < b; +p; (1 — o),y > af’
or equivalently x € X! foralli =1,..., m.

If @ =(a,...,a), then z € X, which implies that the a-feasibility of (A.10) can be understood as a special
case of the a-feasibility. Thus, the following result can be obtained.

Remark A.26. If the problem (A.10) is not infeasible, then X, is not empty.
Proof. The proof is straightforward. O

Definition A.27. Let “<” be a fuzzy extension of binary relation “<” and let # = (z1,...,2,)" € R" be
an a-feasibility solution to (A.10), where & = (a1,...,am,) € (0,1]™. Also, let %2 be a grey objective. The
vector nz €R is an a-efficient solution to (A.10) with maximization of the objective. In this case, if there is no
2’ € Xg, the relation ¢®z < %z’ holds true.

Similarly, an a-efficient solution with the optimization of the objective can be defined.

It is to be noted that any a-efficient solution to the GFLP problem is an a-feasible solution to that problem
with some extra properties. In the following theorem, a necessary and sufficient condition is postulated for a
a-efficient solution to (3.3).

Theorem A.28. Let & = (aq,...,q,) € (0,1]" and x* = (27,. .. ,fo)T ;77 20,5 =1,...,n be a a-feasible
solution to (A.10). Then, the vector x* € R" is an a-efficient solution to the problem (A.10) with the optimiza-
tion of the objective if and only if x* is optimal in the following mathematical model:

max z(z) = R (%) z
st. aix <b+pi(1—a;)
>0, <0;,0<a; <1, i=1,....m (A.14)

where p; is the predefined mazximum tolerance.

Proof. Let a@ = (a1,...,qy) € (0,1]" and 2* = (z7,...,25),2; > 0,j = 1,...,n be an a-feasible
solution to (A.11) with optimization of the objective. By “Definition A.24” and equation (A.10), we have
a;ix* <b+p;(1—a;),q; > aiD for i =1,..., m. Therefore, 2* is a feasible solution to (A.12). In this case, z*
is obviously an a-feasible solution to problem (A.11). Thus, by “Definition A.27”, the optimality of x implies

the a-efficiency of z*. a

In Theorem A.28, we have provided a computational method to solve fuzzy flexible linear programming prob-
lem (A.11). Thus, when a specific @ is assigned by a decision maker, the «; can be replaced in the corresponding
constraint of (A.12), and the resulted problem can be solved. An a-efficient solution is, thus, made to problem
(A.11). Such a solution has two characteristics:

(i) It provides various satisfaction degrees depending on the constraints.
(ii) It is an optimal solution.

This solution permits decision makers to achieve more flexibility and compatibility by assigning desired
preferences, especially in online optimization for more desirable cases.

In Theorem A.28, a method is introduced to obtain an a-efficient solution to a GELP problem. If the resulting
problem (A.12) has only one optimal solution, the theorem is confirmed. This solution is, thus, an a-efficient
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one for a given fuzzy problem. In this case, problem (A.12) has some multiple optimal solutions. In order to
find a maximum efficient solution, i.e., an &’-efficient solution with o/ > «, i = 1, ..., m, a two-phase approach
is applied as follows. In Phase (I), problem (A.12) is solved. In Phase (II), a solution is obtained with a higher
satisfaction degree than the previous one. So by the use of a two-phase approach, the available resources can
be utilized better. Also, the solution resulting by this two-phase approach is always an &’-efficient solution.

Problem (A.12) is called a “Phase (I) problem”. Let a° = (af,...,a%,) and (2*,z (c%,2*)) be the optimal
solution of Phase (I) with the a® degree of efficiency. Set o = p; {H; (z*, ;) < 0} > a?. In Phase (II), the
following problem is solved as follows:

max Wazz:ozi
i=1
R(CG)x > R(CG) ¥
a;x < b; +p; (1 —a;)
st. 0<o;<l,af <a, i=1,....m
x> 0. (A.15)

The above problem is named a Multi-Parametric Linear Programming (MPLP) problem. Let
(x**, af*, ..., ) be an optimal solution to problem (A.15), i.e. (MPLP). Then, we have the following theorem.

Theorem A.29. In the optimal solution x** to the problem (A.15), or (MPLP), x** is a mazimum a-efficient
solution to the problem (A.11).

Proof. In problem (A.15), there is the relationship af > af. Therefore, using Proposition A.25, z** is an
a-feasible solution to problem (A.12). This implies that it is feasible in problem [42]. Now, by the optimal-
ity of 2* in problem (A.9) and z(x*) = c%2* < z(2**) = cCx**, there is the optimality of x** in problem
[43]; hence, z(z*) = cCx* = z(z**) = cY2**. This means that 2** is also an a-efficient solution to prob-
lem (A.14). Because (z**,af*,...,a’) is optimal and the coefficients in the objective function of problem
(A.15) are positive, we have of* = p; {Hi (%, a;) <F O} ,i=1,...,m. Now, if possible, let ** be not a max-
imum a-efficient solution to problem (33). Then, there exists an a’-efficient /7 to problem (A.14) such that
of > af*,i=1,...,m and for some k, o} > aj*. In this case, o = p; {H; (x,a;) < 0},i = 1,...,m and

z(z") = B2’ > z(2*) = cBz*. Therefore, (z/,0a,...,al,) serves as a feasible solution to problem (A.15) and

St = et ot < Yl o =300 A
But this implies that (x**, a3*, ..., @) is not a solution to problem (A.15), which is a clear contradiction. O

The following section of the study is dedicated to the main steps of a desired method to solve a GFLP
problem based on the above theoretical discussions.
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