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THE ROUTE PROBLEM OF MULTIMODAL TRANSPORTATION WITH
TIMETABLE UNDER UNCERTAINTY: MULTI-OBJECTIVE ROBUST

OPTIMIZATION MODEL AND HEURISTIC APPROACH

Yong Peng∗, Pengcheng Yong and Yijuan Luo

Abstract. The uncertainty of transportation duration between nodes is an inherent characteristic
and should be concerned in the routing optimization of the multimodal transportation network to
guarantee the reliability of delivery time. The interval number is used to deal with the uncertainty
of transportation duration, and the multi-objective robust optimization model is established which
covers the transportation duration and the cost. To solve the combinatorial optimization problem of
this study, Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) is designed, which integrates the
(µ + λ) selection method elite retention and the external filing elite retention. Our findings verify
the efficiency of the proposed approach by analyzing the diversity, distribution and convergence of
the frontier solutions. Finally, near-optimal solutions are obtained with the proposed algorithm in the
numerical example. The present study can provide decision reference for multimodal transportation
carriers in making transportation plan under uncertainty.
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1. Introduction & literature review

The advanced stage of transportation development is multimodal transportation [18,27]. Routing optimization
is one of the important research directions of multimodal transportation [5,12,32], which is also the extension and
expansion of the classic shortest path problem [3, 25, 29]. Combining the real transportation environment with
an innovative approach to improve transportation efficiency, reduce transportation cost and satisfy customer
requirements is the core of the path optimization problem.

In the previous literature, multimodal transportation route optimization has been extensively studied [26].
Most multimodal transportation route optimization problems were developed with a single objective under
certain conditions [28,34,37]. However, the requirements of customers and transportation enterprises were often
diverse and even conflicting. For example, some customers preferred the lowest freight rates while some others
would rather pay more for faster delivery or a certain person expected to cut transportation cost and duration
simultaneously [23, 38]. This means that it cannot depend on a single objective and should be considered
as a multi-objective optimization problem [4, 13, 15, 31]. In general, there were two conventional methods for
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addressing multi-objective optimization problems, which are the ε-constraint method and the weighted sum
method [6, 20,39].

In the complex transportation environment, it is more significant to take the uncertainty factors of multimodal
transportation into account. Resat and Turkay [23] proposed a mixed-integer optimization model that considered
traffic congestion of the routes among nodes that account for the transportation duration uncertainty. Assadipour
et al. [2] considered the uncertainty of transportation duration caused by the congestion of the intermodal yards
in the railtruck intermodal transportation of hazardous materials. In this regard, the risk uncertainty related to
the placement of transfer yards as well as the possibility of disruptions at those facilities was concerned with the
intermodal transportation of hazardous materials by Ghaderi et al. [11]. Meanwhile, information uncertainties
were discussed in the modeling and optimization of railtruck system intermodal transportation by Wang et al.
[30]. In addition to considering the uncertainties of using cost, the capacities of terminals and transportation
cost also were observed in the works of Abbassi et al. [1].

There are various researches for the uncertainty of multi-objective multimodal transportation route opti-
mization. Demir et al. [8] studied the design of green intermodal transportation service network problems with
transportation duration as well as demands uncertainties for combined offline intermodal routing decisions.
According to their formulation, a stochastic approach of the sample average approximation method was adopted
to generate robust transportation plans. Hrusovsky et al. [14] further extended the study by improving the algo-
rithm. The paper innovated a novel solution framework to support the operational-level decisions by using a
simulation model that includes stochastic elements. It should be noted that the approach of fuzzy logic was also
frequently employed to deal with uncertainty problems. Yang et al. [35] considered the uncertainty of trans-
portation duration and cost as well as developed a comprehensive hybrid methodology of combining the Fuzzy
Random Simulation (FRS) technique and Multi-start Simulated Annealing (MSA) algorithm to achieve near-
optimal solutions in a reasonable time for the proposed problem. Fazayeli et al. [9] studied the location routing
decision-making issue in the multimodal transportation network and established a mixed-integer mathematical
fuzzy model. Time window constraints and fuzzy numbers were imposed upon the formulation to represent the
uncertainty of transportation duration and demand respectively. Additionally, metaheuristic approaches have
gained attention in dealing with NP-hard Problem in the context of multimodal transportation network route
optimization with uncertainty elements. A new method of handling multi-objective based on Fire-Works Algo-
rithm (FWA) was introduced by Mnif et al. [21], which aimed to determine the shortest and efficient itinerary of
satisfying a certain set of demands and operational constraints. Wang et al. [30] adopted a Memetic Algorithm
(MA) to solve the problem of the hub-and-spoke based road-rail intermodal transportation network design and
obtained high-quality solutions. Abbassi et al. [1] developed an effective hybrid solution approach combining
the Population-Based Simulated Annealing (PBSA) with an exact method to achieve near-optimal solutions in
a reasonable time for a real network case study.

Rail and water transportation usually have a fixed departure timetable [16], When the goods arrived at the
transfer nodes and completed the loading and unloading, it might not be transported immediately due to the
timetable limitation of the next mode of transportation [33]. Liu et al. [17] indicated that timetable would affect
the choice of transportation routes and modes. So it makes more sense to consider timetable in multimodal
transportation.

Table 1 outlines a taxonomy of relevant research on multimodal transportation route optimization in recent
years and the taxonomy contains five major categories in terms of models and algorithms that further explain
the studies differences. As can be found from Table 1, multi-objective optimization is often considered in the
previous studies, but there are few attention about the some more realistic aspects that could be expressed
as follows: Frist, there few formulations integrated the time uncertainty of transportation and the influence of
timetable for trains and barges in the route optimization of multimodal transportation simultaneously. Sec-
ond, in most literature, the method of dealing with uncertainty is to use an accurate probability distribution
or fuzzy membership function with more reliable prior data. However, the reliable prior data are often diffi-
cult to obtain and irregular [36]. Third, in the problem solving, there is less literature applied heuristic algo-
rithms combined with non-dominance theory to deal with multi-objective optimization, Furthermore, NSGA-II is
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Table 1. Some related papers.

Paper Uncertainty type Uncertain para. exp. TB Obj. Treatment method
For obj. For alg.

[32] – – – C,T SW Exact
[28] – – – C – B&B
[34] – – – C – Goal program
[23] T – X C,T A ε Exact
[13] – – – C – DP
[15] – – – C,T ND Cplex
[6] – – – C,T SW DP
[39] C,T RN – C,T C c Exact
[2] T – – C,R ND NSGA-II
[30] Demand,C,T TFN – C,T SW MA
[1] Capacity,C IN – C – PBSA & Exact
[8] Demand,T RN – C,T,E SW SAA
[14] T RN – C,T,E SW HS
[35] C,T TFN – C,T SW MSA
[9] Demand,T TFN – C – Two-part GA
[21] – – – C,T ND FWA
[33] – – X C,R SW B&B
[17] T IN X C – GA
This paper T IN X C,T ND NSGA-II & EFER

Notes. T: time, C: cost, exp.: expression, RN: random number, TFN: Triangular fuzzy number, IN: Interval
number, TB: Timetable, R: risk, E: environment, SW: Sum weighting, A ε: Augmented ε-constraint,
C c: chance constraint, ND: Non-dominance theory, B&B: Branch&Bound, DP: Dynamic program, SAA: Sample
average approximation, HS: Hybrid simulation-optimization, GA: Genetic algorithm, EFER: External filing elite
retention.

a common multi-objective optimization evolutionary algorithm, while the merits and demerits of elite retention
strategies in NSGA-II has not been discussed in any of the previous studies of multimodal transportation route
optimization. This study is an effort to bridge the stated gaps with contributions in both model formulation
and solution methodology.

– The impact of timetable on transportation mode is analyzed and making a detailed description in the
mathematical model;

– Interval numbers are used to indicate uncertain transportation time, and introduced robust control param-
eters to analyze the uncertainty characteristics;

– Designing a non-dominated genetic algorithm with external archiving strategy to solve the proposed problem
and the performance of the algorithm and the quality of the solution are evaluated.

The rest of this paper is organized as follows. Following the introduction & literature review, a description of
the problem and its formulation are presented in Section 2. The solution methodology is presented in Section 3.
Algorithms analysis and numerical results for proposal problem instances are reported in Section 4. Finally,
Section 5 concludes the paper.
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2. Problem description

In this paper, we consider a multimodal transportation network including three modes of the highway, railway
and waterway, and more than two available modes could be selected between origin node and destination.
However, road transportation duration is often influenced by congestion and unexpected accidents. Extreme
weather and port congestion are important reasons for the uncertainty of shipping duration. Besides, waterway
and railway transportation timetable limitations also affect the goods departure time to the next node after
reload. The routing decision of our model which aims to simultaneously minimize the total transportation cost
and duration between the origin node and destination is based on some assumptions given as follows:

(1) Only a batch of goods and not allow to spill in transportation;
(2) The transfer duration and cost between different modes of transportation are known;
(3) The arrival time of goods is the start time of transferring;
(4) The time of goods leave for the next node is the latest departure time from the timetable of the selected

transportation mode after finished loading and unloading;
(5) Sufficient capacity of transportation and transshipment facilities.

2.1. Index set

In this study, we assume a multimodal transportation network G = (N,E,M) where N is the set of nodes
(o is the origin node, d is the destination, o, d ∈ N), E =

{
ea
i,j |i, j ∈ N, a ∈M

}
is the set of arcs, ea

i,j =
{
tai,j , c

a
i,j

}
,

M is the set of transportation modes.

Parameters
C The total cost of transportation;
T The total duration of transportation;
δi The time that the goods finished transshipment at the node i;
cai,j The transportation cost of one unit of good from node i to j with a transportation mode selected;
tai,j The transportation duration from node i to j with a transportation mode selected;
TG

i The goods depart time from the node i, and the goods departure time of node o is known;
TR

i The time that the goods arrive at the node i;
t̃ai,j The Interval Number of transportation duration from node i to j with a transportation mode

selected;
Γa

i,j The timetable corresponding to transportation mode a from node i to j, it has been known in
advance and can be defined as Γa

i,j = (. . . ,Φn−1,Φn, . . .), and Φn represents the departure time of
n shift.

θa,b
i The cost on the changing of transportation mode from a to b at the node i;
τa,b
i The transshipment duration of transportation mode from a to b at the node i;

~a
i,j The interval robust control parameter from node i to j with a transportation mode selected.

Decision variable

xa
i,j =

{
1, if the transportation mode a is selected from node i to j
0, otherwise.

Set U =
{

(i, j, a)|xa
i,j = 1

}
, W =

{
(j, a, b)|xa

i,j = 1&xb
j,k = 1

}
. Equation (2.1) indicates how to obtain the

departure time of node i according to the time δi and the timetable Γa
i,j .

ϕ
(
δi,Γa

i,j

)
= Φn,Φn−1 < δi ≤ Φn. (2.1)
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Figure 1. The transshipment duration in the node i.

2.2. Interval uncertainty and robust control

The Interval Number represents a kind of uncertainty, which is composed of a pair of ordered real numbers,
with the dual characteristics of set and number value [22]. This t̃ai,j = [ta−i,j , t

a+
i,j ] =

{
tai,j |t

a−
i,j ≤ tai,j ≤ t

a+
i,j

}
represents the uncertainty of the transportation duration from node i to j with a transportation mode selected.
“−” and “+” represents the lower bound of interval and the upper bound of interval respectively. Equation
(2.2) indicates the uncertainty relationship between the control parameter ~a

i,j and the transportation time tai,j
in the interval.

~a
i,j =

tai,j − t
a−
i,j

ta+
i,j − t

a−
i,j

, ∀i, j ∈ N, ∀a ∈M. (2.2)

2.3. Multi-objective multimodal transportation robust optimization model

As shown in Figure 1, the transshipment duration in the node i under the timetable limitation includes the
transferring duration and the waiting duration considering the timetable. The δi can be formulated as follow:

δi = TR
i + τa,b

i , ∀(i, a, b) ∈W. (2.3)

The TG
i can be formulated as follow:

TG
i = ϕ

(
δi,Γb

i,j

)
, ∀(i, j, b) ∈ U. (2.4)

The TR
j can be formulated as follow:

TR
j = TG

i + ~a
i,j(ta+

i,j − t
a−
i,j ) + ta−i,j , ∀(i, j, b) ∈ U. (2.5)

In this paper, we propose a bi-objective optimization model. The first objective seeks to minimize the total
cost of multimodal transportation, including the itinerary and transshipment cost. The second objective seeks
to minimize the total duration of multimodal transportation. A robust optimization method based on control
parameters ~a

i,j is employed to solve the problem. (The constraints given above are not repeated in the following
models.)

min T = TR
d − TG

o (2.6)

min C =
∑
i∈N

∑
j∈N\{i}

∑
a∈M

cai,jx
a
i,j +

∑
(i,a,b)∈W

θa,b
i (2.7)
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s.t. ∑
j∈N\{i}

∑
a∈M

xa
i,j ≤ 1, ∀i ∈ N (2.8)

∑
i∈N\{o}

∑
a∈M

xa
o,i =

∑
i∈N\{d}

∑
a∈M

xa
i,d = 1 (2.9)

∑
i∈N\{o}

∑
a∈M

xa
i,o =

∑
i∈N\{d}

∑
a∈M

xa
d,i = 0 (2.10)

∑
i∈N\{j}

∑
a∈M

xa
i,j =

∑
i∈N\{j}

∑
a∈M

xa
j,i, ∀j ∈ N\ {o, d} . (2.11)

Equation (2.8) means the selection of mode, that one mode (transportation route) can be selected between
two nodes. If it is zero, it means that this node i is not included in the transportation. Equations (2.9) and
(2.10) ensure that the goods depart from the origin node o to the destination d; Equation (2.11) represents that
the conservation of flow at the node j that requires the flow originating at the node j to equal the flow entering
the node j.

3. The NSGA-II solution methodology

The solution space of our proposed problem is discontinuous, and GA can directly deal with the discrete
property of the problem [19]. The NSGA-II, as the variant of genetic algorithm, is one of the most popular
multi-objective evolution algorithms with fast running speed and good convergence advantages [7]. For these
reasons, NSGA-II is used to solve this problem.

3.1. Coding and evolution operations

In this study, the adopted method of chromosome coding, the crossover operator and the mutation operator
were referred to the literature of Liu et al. [17].

3.2. Fast non-dominant sort

The core of solving multi-objective optimization problem is to find Pareto optimal solution sets [7]. Performing
the fast non-dominated sorting refers to hierarchically ranking based on the advantages and disadvantages of
all individuals in the population. If the individuals are in the same layer, the individuals are dominated by no
others, while in different layers, the individuals are either dominated by others or dominate others. The specific
operations are as follows.

We assume a variable ni and set Si for each individual i of the population Z, where ni is the number of
individuals dominating the individual i and Si is the set of individuals dominated by the individual i in the
population. Let l = 1, Z ′ = Z;

(1) To calculate the ni and Si of each individual i in the population Z;
(2) To find out the individuals of ni = 0 in the population Z ′, and put them into the current set Pl

(Pl represents the l layer of the set), and execute Z ′ = Z ′ \ Pl;
(3) To perform nj = nj − 1 on each individual j in the set Si which corresponds to each individual i in the

current set Pl;
(4) If the set Z ′ is not empty, l = l + 1, and turn to step (2). Otherwise, terminate the algorithm.

Finally, the individuals of the population Z are divided into l layers.
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Figure 2. Integrating the (µ+ λ) selection method elite retention and the external filing elite
retention.

3.3. Crowding distance

The crowding distance is applied to measure the degree of similarity between individuals in the population.
The closer the crowding distance of the individuals, the more similar to each other. Assume the number of the
objective function is m in the constructed model. Individuals are ranked in ascending order based on the kth
objective value of all individuals in the population. Besides, f i+1

k and f i−1
k represent the function values of two

individuals adjacent to the individual i on the kth objective.The fmax
k and fmin

k are the maximum and minimum
values. The crowding distance di of an individual i is calculated as follows:

di =

{
∞, ranked in the first and last individuals∑m

k=1
fi+1

k −fi−1
k

fmax
k −fmin

k

, otherwise.
(3.1)

3.4. Tournament selection

Tournament selection is random sampling with replacement used to select parents in producing offspring.
Firstly, several individuals are randomly taken out of the population, and then the individuals with larger
crowding distance are selected and retained to the next generation population set. Secondly, repeat the operation
until as many individuals as the next generation of the population need to be saved. The purpose of this operation
is to maintain population diversity.

3.5. Elitism strategy

In the multi-objective optimization algorithm, the elitism strategy can effectively prevent the loss of excellent
individuals in the evolutionary process. The (µ + λ) selection [10] method (strategy I) can preserve excellent
genes and make the population evolve in a better direction. However, with the operation of crossover and
mutation, it may lead to the failure of excellent individuals to continue to the last generation of the population.
The external filing method can effectively avoid this problem and make the elite individuals preserved in the
evolution process. Therefore, the second strategy (strategy II) of this study combines the (µ + λ) selection
method with the external filing method to achieve elite retention. The following is a schematic diagram of the
NSGA-II elite retention process, as shown in the Figure 2.

The specific flow expression of NSGA-II is as follows:

Step 1. To generate an initial population Zt with size µ and let iterations times as Υ, crossover probability as
Pc and mutation probability as Pm;



S3042 Y. PENG ET AL.

Step 2. To perform the crossover and mutation operation on the population Zt to generate a new offspring
population Qt, and then combine Zt with Qt to form a population Rt with size (µ+ λ);

Step 3. To evaluate the bi-objective fitness for each individual in the population Rt, and perform fast non-
dominated sorting;

Step 4. To adopt the external filing method to update the external archive sets;
Step 5. To apply the crowding distance and tournament selection methods to generate an offspring population

Zt+1;
Step 6. If the iteration termination condition is not satisfied, turn to step (2). Otherwise, terminate the

algorithm.

4. Results and discussion

4.1. Analysis of algorithms

To compare the performance of the strategy I and strategy II, we employ three evaluation metrics, including
the diversity, the convergence and the distribution degree of the Pareto Frontier solution sets. Set A and B as
two different Pareto Frontier solution sets. The evaluation index of diversity depends on the number of solutions
in solution Pareto Frontier set. Assuming u and v are two solutions in the Pareto Frontier solution set. Equation
(4.1) means the dominance between u and v. Equation (4.2) represents the relative convergence rate of solution
set A to B [40]. r(A,B) > r(B,A) indicates that A has better convergence.

s(u,v) =

{
1, if u dominates v
0, if v dominates u

(4.1)

r(A,B) =
∑

u∈A

∑
∈B s(u,v)∑

u∈A

∑
v∈B s(u,v) +

∑
u∈B

∑
v∈A s(u,v)

· (4.2)

Equation (4.3) represents that the function of F (A) is to evaluate the distribution degree of solutions in the
Pareto Frontier solution set A [24], where d∗i = min

j∈A\{j 6=i}

∑m
k=1 | f i

k − f
j
k |, d̄ = (

∑‖A‖
i=1 d

∗
i )/ ‖ A ‖, i, j ∈ A, α is

a constant and the number of the objective functions is m. The more uniform the solution distribution in the
solution set A, the value of the F (A) is bigger.

F (A) = α


√√√√ 1
‖ A ‖ −1

‖A‖∑
i=1

(d∗i − d̄)2


−1

. (4.3)

In Solomon C101 case, we randomly select 20 nodes, 40 nodes and 60 nodes to construct three multimodal
transport networks respectively. In the three networks, transportation duration, cost and modes are generated
randomly. The data of transfer are shown in Table 3. The transfer nodes have a fixed timetable for each mode
of transportation. The timetable of railway transportation is 3:00; 6:00; 9:00; 12:00; 15:00; 18:00; 21:00. The
timetable of waterway transportation is 11:00; 18:00. Highway transportation has no timetable. The interval
robust control parameter corresponding to all edges in transportation network is set to 1. It is worth noting
that algorithm program is conducted using MATLAB2014b software on an Intel Corei5 PC with 4 gigabytes of
RAM and over 2.5 GHz CPU.

Taking the 40 nodes network as an example, Figure 3 depicts the average total duration and cost of all
individuals in each generation of the population during the evolution of NSGA-II. Meanwhile, it shows that the
objectives of total duration and cost are searched towards the smallest direction by NSGA-II and verifies the
reasonableness of the designed algorithm. Figure 4 illustrates the trend of changes in the obtained minimum total
duration and cost through both strategy I and strategy II, respectively, as the population evolves. According to
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Figure 3. The variation of average cost and duration.

Figure 4. The variation of the minimum duration and cost under comparison strategies.

Figure 5. Average number of Pareto Frontier solutions under different strategies and networks.
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Figure 6. Relative convergence rate under different solution strategies and networks.

Figure 7. The distribution of the solutions under different solution strategies and networks.

Figure 4, the minimum value of each objective obtained through Strategy I will fluctuate, leading to the loss of
the elite. By contrast, strategy II can better achieve elite retention.

Different NSGA-II parameters are set (In the “109010”, the first and second digits represent a population
size of 100(10 ∗ 10), the third and fourth digits represent a crossover probability of 0.90(90/100) and the fifth
and sixth digits represent a mutation probability of 0.10(10/100)) and iterations are performed 200 times. In
Figures 5–7 we graphically describe the diversity, the convergence and the distribution degree of the Pareto
Frontier solution sets obtained by adopting strategy I and strategy II under different network scales after the
algorithm runs 30 times. In Figure 7, the axis index represents the distribution degree of Pareto optimal solution
set, and the strategy II has more desirable ability to make the dispersion of solution more uniform under different
genetic parameter combinations. The results of the three algorithm evaluation indicators can be significantly
verify that Strategy II is superior to strategy I.

Different parameters are set (The “2109010” is composed of “2” and “109010”, the “2” represents that the
number of network nodes is 2 ∗ 10 and the “109010” as explained above) and iterations are performed 200
times. Considered different parameters and strategies, Table 2 states the mean deviation of the minimum and
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Table 2. The evaluation metric data of the two solution strategies.

Param
Strategy I Strategy II

Obj.1 Obj.2
CPU(s)

Obj.1 Obj.2
CPU(s)Ave. Ave. Ave. Ave. Ave. Ave. Ave. Ave.

min% max% min% max% min% max% min% max%

2109010 10.54 9.49 8.47 7.25 69.02 2.45 1.76 0.94 2.31 73.36
2109015 5.92 8.45 8.51 3.98 70.78 1.99 1.53 0.62 2.29 73.67
2108510 11.15 8.65 6.71 10.22 70.38 1.51 1.77 0.76 2.15 74.13
2108520 10.61 10.45 6.29 7.35 71.32 1.04 2.46 1.17 1.94 71.43
2108020 10.95 12.49 6.48 4.54 71.56 1.28 2.07 0.69 1.88 72.72
2108015 11.31 10.38 8.49 8.18 72.14 1.69 1.81 1.01 2.15 73.73
2159010 6.64 9.69 8.73 5.03 133.02 1.30 2.28 0.84 1.66 134.95
2159015 5.88 7.84 8.56 5.56 137.07 0.44 1.88 0.78 1.18 136.30
2158510 6.94 9.60 7.45 3.97 137.49 0.80 1.88 0.84 0.87 140.16
2158520 8.60 8.13 5.01 7.12 129.60 1.06 2.02 1.15 1.62 132.00
2158020 6.36 9.13 6.80 5.40 137.60 0.93 1.96 0.44 1.77 138.65
2158015 12.19 8.37 6.44 7.44 135.80 1.43 1.68 0.65 2.10 136.43
4109010 10.60 5.19 3.26 27.22 78.67 4.14 2.62 1.62 17.35 81.69
4109015 10.44 5.33 2.73 21.54 81.80 4.83 1.84 2.05 26.29 83.44
4108510 11.98 7.36 4.31 24.99 84.85 5.16 1.40 0.58 15.97 85.60
4108520 12.33 7.77 3.56 23.97 75.60 3.88 2.91 2.29 14.31 80.23
4108020 9.21 4.03 2.03 35.68 79.62 6.05 1.03 2.25 21.74 83.30
4108015 6.63 5.37 3.04 26.12 83.40 5.06 1.78 0.47 20.93 82.18
4159010 8.82 5.01 2.59 26.24 142.36 5.83 1.06 1.46 17.89 143.39
4159015 5.54 8.68 5.40 26.23 145.44 5.44 1.33 2.19 14.43 147.71
4158510 7.78 5.03 3.31 34.04 146.35 5.61 1.11 1.97 14.83 150.07
4158520 9.34 4.53 2.28 31.04 137.58 5.10 1.34 1.41 24.92 140.22
4158020 7.91 5.51 3.28 31.69 146.45 5.84 0.95 1.57 15.46 151.25
4158015 9.55 4.29 1.43 33.48 147.33 5.79 0.50 1.62 26.83 149.67
6109010 12.15 7.95 3.93 16.67 87.78 4.67 5.70 2.91 8.56 88.07
6109015 4.84 6.06 2.97 11.92 86.72 5.33 5.70 1.41 9.25 90.24
6108510 4.94 8.66 3.77 9.95 88.45 4.18 5.91 0.91 6.33 92.50
6108520 7.4 8.35 5.28 13 85.51 5.41 5.48 1.65 9.17 86.69
6108020 4.61 8.22 3.31 6.88 91.93 3.74 6.76 1.53 4.25 94.47
6108015 8.18 9.42 4.24 14.48 86.2 5.56 5.22 1.29 9.93 88.89
6159010 3.03 5.99 2.59 4.5 150.69 2.09 5.36 1.29 3.80 151.23
6159015 4.52 8.09 4.99 6.93 153.22 3.32 5.63 0.94 4.55 152.31
6158510 2.93 6.61 2.91 4.84 154.64 2.12 5.49 0.63 2.58 158.58
6158520 5.33 5.5 2.51 7.32 148.62 2.77 4.67 1.15 2.43 149.58
6158020 5.01 8.63 3.32 9.32 156.54 2.26 5.12 0.91 4.69 159.22
6158015 4.04 8.47 3.57 7.44 151.99 3.1 5.7 0.95 6.42 152.24

maximum of each objective value and the average solution time CPU(s) after the algorithm was run 30 times.
From the results presented here, it is obvious that the average deviation of each objective value obtained by
strategy II is relatively small under the same parameters and the fluctuation of the average deviation is also
relatively small when changed NSGA-II parameters. The CPU is mainly related to the network scale and the
population size, yet it is no meaningful relationship with the strategy selection. The analysis shows that strategy
II has a desirable performance of stability in solving multi-objective multimodal transportation optimization
problems under uncertainty.
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Figure 8. Multimodal transportation network.

Table 3. Parameters of transfer.

Unit transferred duration
between different mode of
transportation (h)

Unit transferred cost between
different modes of transportation
(yuan)

Highway Railway Waterway Highway Railway Waterway

Highway 1 1.5 2 30 30 40
Railway 1.5 2 4 30 40 50
Waterway 2 4 3 40 50 50

4.2. Problem instances

We assume, for simplicity, there are 100 tons of goods need to be transported from node o to node d through
multimodal transportation. The structure of the multimodal transportation network is shown in Figure 8. The
transfer data are shown in Table 3, Table 4 presents the data on the multimodal transportation network. Nodes
A to M have a fixed timetable for each mode of transportation. The railway timetable is: 3:00; 6:00; 9:00; 12:00;
15:00; 18:00; 21:00. The waterway timetable is: 11:00; 18:00. The highway has no timetable. The departure time
of the goods at the origin node is 7:30 am. The interval robust control parameters corresponding to all edges
of highway, railway and waterway transportation duration are all set as 1, which indicates that the decision
makers are pessimistic about the uncertain transportation duration. It is required to determine a reasonable
route scheme to minimize the total duration and cost of multimodal transportation.

In this numerical instance, the population size is 100, the number of iterations is 200, Cross probability is
0.8 and mutation probability is 0.2 of the NSGA-II, and two different elite strategies (strategy I and strategy
II) are employed. <1 means Pareto Frontier solution set obtained by strategy I, which contains 8 solutions, <2

means Pareto Frontier solution set obtained by strategy II, which contains 12 solutions. The distribution and
convergence of its solution sets can be understood from Figure 9. In addition, it further reveals that there are
five solutions which have the same objective function value in <1 and <2, and three of the solutions in <1 are
dominated by some of the solutions in <2.

In the solved instances, 12 groups of non-dominant schemes have been obtained through strategy II as shown
in Table 5, but there is no absolute advantage of each group scheme in transportation duration or cost. The
results can be referenced for decision makers.
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Table 4. Multimodal transportation network data.

Point pair; highway data; railway data; waterway data (data format: [transportation
duration interval number (h)], cost (yuan/100TUD). ∼ means empty)

EJ; ∼; ∼; [67,78], 442 EM; ∼; [59,70], 618; ∼
JM; [17,22], 2213; ∼; ∼ LK; [17,20], 1206; ∼; ∼
AD; [27,32], 1663; ∼; ∼ EF; [21,26], 571; ∼; ∼
BC; ∼; [85,96], 611; ∼ GJ; ∼; [65,77], 1078; ∼
DI; ∼; ∼; [89,107], 463 Md; ∼; [40,46], 1046; [104,115], 465
oA; [15,24], 971; [41,48], 674; ∼ oB; [16,21], 1100; [41,45], 653; ∼
AE; [18,25], 1037; [44,52], 475; ∼ AI; ∼; [34,40], 913; [116,120], 367
BD; [26,40], 1004; ∼; [92,103], 497 BF; [36,40], 1527; [63,67], 767; ∼
CD; [18,30], 1890; [54,64], 653; ∼ CE; [12,23], 923; [59,65], 681; ∼
DF; [41,44], 1158; [36,43], 663; ∼ DG; [37,41], 1193; [54,65], 460; ∼
DK; [43,46], 1397; [39,48], 528; ∼ EG; [26,37], 1900; [51,58], 472; ∼
FJ; [17,28], 1592; [35,45], 739; ∼ FL; [19,24], 1784; [45,57], 786; ∼
GL; [32,35], 1825; [38,46], 649; ∼ HJ; [33,45], 1818; ∼; [100,104], 409
IK; [9,21], 1817; [44,48], 459; ∼ IM; ∼; [33,45], 1098; [95,101], 367
Ld; ∼; [40,52], 1053; [69,73], 468 ML; [40,46], 1119; [48,54], 516; ∼
oC; [16,22], 1887; ∼; [100,111], 364 FI; ∼; [44,53], 888; [103,113], 466
BA; [35,43], 1029; [48,57], 782; ∼ GI; [41,48], 1803; [48,59], 671; ∼
BG; [37,47], 1350; [37,43], 423; ∼ HL; [16,25], 1608; [50,62], 716; ∼
CJ; ∼; [30,42], 1203; [85,97], 361 JK; [44,48], 1233; [55,63], 704; ∼
DH; [39,45], 1026; [38,46], 749; ∼ EH; [36,41], 1559; [54,57], 855; [112,115], 439
BE; [35,39], 1921; [46,55], 629; [64,76], 408 BH; [42,47], 1388; [37,41], 981; [65,74], 512
IL; [26,37], 1386; [43,51], 660; [66,76], 403 Kd; [11,20], 1557; [50,61], 879; [83,86], 528
HI; [23,32], 1909; [43,53], 624; [93,99], 522 JL; [27,35], 1140; [43,48], 728; [72,78], 397

Figure 9. Distribution and convergence of Pareto Frontier solution sets under different solution
strategies.
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Table 5. Results of problem instance by solution strategy II.

Route and mode of transportation Total duration (h) Total cost (yuan)

Scheme 1 o(H)A(R)I(H)K(H)d 110 5348
Scheme 2 o(H)A(H)D(R)K(H)d 130 4809
Scheme 3 o(H)A(R)I(R)K(H)d 142 4000
Scheme 4 o(R)B(H)D(R)K(H)d 166 3832
Scheme 5 o(H)A(H)E(R)M(R)d 170 3772
Scheme 6 o(H)A(R)I(R)K(R)d 184 3332
Scheme 7 o(H)B(R)G(R)L(W)d 196 2760
Scheme 8 o(R)B(R)G(R)L(W)d 220 2323
Scheme 9 o(R)A(W)I(R)L(W)d 313 2319
Scheme 10 o(R)A(W)I(R)K(W)d 326 2178
Scheme 11 o(W)C(W)J(R)K(W)d 377 2107
Scheme 12 o(R)A(W)I(W)M(W)d 403 2023

Table 6. Results of problem instance by solution strategy II when ~1
i,j = 1, ~2

i,j = 0.5 and
~3

i,j = 0.8.

Route and mode of transportation Total duration (h) Total cost (yuan)

Scheme 1 o(H)A(R)I(H)K(H)d 108 5348
Scheme 2 o(H)A(H)D(R)K(H)d 126 4809
Scheme 3 o(H)B(H)D(R)K(H)d 138 4279
Scheme 4 o(H)A(R)I(R)K(H)d 140 4000
Scheme 5 o(H)A(H)E(R)M(R)d 164 3772
Scheme 6 o(R)A(R)I(R)K(H)d 164 3713
Scheme 7 o(H)B(R)G(R)L(R)d 167 3335
Scheme 8 o(H)A(R)I(R)K(R)d 176 3332
Scheme 9 o(H)A(R)E(R)M(R)d 190 3220
Scheme 10 o(H)B(R)G(R)L(W)d 193 2760
Scheme 11 o(R)B(R)G(R)L(W)d 217 2323
Scheme 12 o(R)A(W)I(R)L(W)d 298 2319
Scheme 13 o(R)A(W)I(W)L(W)d 322 2062
Scheme 14 o(W)C(W)J(W)L(W)d 385 1740

Notes. The bold values are new ob-tained solutions after adjusting the robust parameters.

Robust control parameters can be adjusted to reflect the risk preferences of different decision makers. For
example, ~1

i,j = 1 and ~2
i,j = 0.5 indicate as pessimistic about the transportation duration for highway and

optimistic for railway and ~3
i,j = 0.8 means the degree of risk decision preferences for waterway duration between

pessimistic and optimistic. The scheme calculation results are shown in Table 6. Compared with Table 5, it can
be seen that pareto solution set is variable under different robust control parameters.

5. Conclusions

In this paper, we establish a multi-objective multimodal transportation route robust optimization model with
the minimum transportation duration and cost based on interval number under the uncertainty of transportation
duration. NSGA-II with the elitist retention strategy is designed to solve the problem. High-quality solutions
are obtained in numerical simulation, which confirms that the algorithm is effective in solving the bi-objective
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optimization problem. In the algorithm analysis, we propose a feasible method to evaluate the performance of
the algorithm and the qualities of Pareto Frontier solution sets. The analysis indicates that adding the external
archive strategy can improve the performance of the algorithm and the quality of the solutions. Decision makers
can adjust robust control parameters to reflect their risk preference for uncertain transportation duration,
and enable to balance the duration and cost interests based on the schemes. Finally, in future research, more
efficient algorithms could be designed for the proposed problem in this paper to further improve the quality of
the solutions.
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