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A HEURISTIC APPROACH FOR GREEN VEHICLE ROUTING

Mehmet Soysal1,∗, Mustafa Çimen1, Çaǧri Sel2 and Sedat Belbaǧ3

Abstract. This paper addresses a green capacitated vehicle routing problem that accounts for trans-
portation emissions. A Dynamic Programming approach has been used to formulate the problem.
Although small-sized problems can be solved by Dynamic Programming, this approach is infeasible
for larger problems due to the curse of dimensionality. Therefore, we propose a Dynamic Program-
ming based solution approach that involves the ideas of restriction, simulation and online control of
parameters to solve large-sized problems. The added values of the proposed decision support tool have
been shown on a small-sized base case and relatively larger problems. Performance comparisons of the
proposed heuristic against other existing Dynamic Programming based solution approaches reveal its
effectiveness, as in most of the instance-setting pairs, the proposed heuristic outperforms the existing
ones. Accordingly, the proposed heuristic can be used as an alternative decision support tool to tackle
real routing problems confronted in sustainable logistics management.
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1. Introduction

The capacitated vehicle routing problem (CVRP) is one of the core problems at operational level logistics
management. The problem deals with the distribution of goods from a central depot to a set of dispersed
customers by means of a fleet of capacitated vehicles. Each vehicle route starts and ends at the depot without
exceeding the capacity of the vehicle at any point in time. The known customer demands must be satisfied
by visiting each of them exactly once. The traditional objective for the CVRP is to determine a set of vehicle
routes that minimizes the total distance travelled or total time spent [10,12,30,31,39].

With increasing freight volumes due to the growing population and internationalization of markets, one of the
main challenges of the logistics sector is to increase the efficiency of freight logistics [1, 3, 6, 16]. Transportation
energy use and resulting Greenhouse Gas (GHG) emissions are the foremost important issues that are considered
while evaluating the efficiency of delivery operations [6, 22,43,45,48].

Increasing concerns about oil scarcity and climate change1 requires advanced methods or approaches to
increase fuel usage efficiency in logistics operations. In response, the recent green Vehicle Routing Problem
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(VRP) literature [5,9,17,32,34,35,47] has focused on having optimized sustainable logistics routes by means of
using detailed fuel consumption and emission estimations.

The basic VRP is an NP-hard combinatorial optimization problem. Incorporating additional concerns such
as explicit fuel consumption estimations further increases the problem complexity. The increase in complexity
along with growing competition among logistics chains in practice causes a continuous need to search for better
solution approaches for routing problems. Accordingly, the main motivation behind this research is to contribute
to the field of logistics management by providing a promising decision support tool. The provided tool can be
used for efficient operational decision making.

This paper presents a Dynamic Programming (DP) based heuristic for the green capacitated routing problem
with heterogeneous arcs in terms of vehicle speed. The solution approach is able to manage several logistical
key performance indicators (KPIs), such as total travelled distance, total energy use (which can be translated
into emissions), total driving time, and total routing cost comprising fuel and wage costs. An emission model
has been incorporated into the heuristic to estimate transportation costs and emissions more accurately and
explicitly. The presented solution approach can be used to obtain close-to-optimal delivery plans for the large-
sized routing instances, since exponential memory and computation time requirements of a classical DP model
restricts its usage in larger problems.

The rest of the paper is structured as follows. Section 2 presents a review of the relevant literature on the topic
to show the contribution of the research. Section 3 presents the formal description of the problem. Section 4
presents a mathematical formulation of the problem and the proposed solution approach. Section 5 presents
computational results for the analysed problems. The last section presents conclusions and future research
directions.

2. Related literature review

Scholars addressing the green VRP literature regard transportation energy use and GHG emissions as promi-
nent logistical environmental issues (see, for instance, [13, 36–38, 46, 48]). The common goal of all of these
attempts on routing problems is to improve the sustainability performance of logistics systems by means of the
developed decision support models that can address the concerns for energy use and consequently emissions,
while also adhering to economic concerns [21].

The featured green VRP models (see [4,18,19,27,33]) estimate transportation energy use and emissions explic-
itly through using several comprehensive fuel estimation approaches that take multiple aspects into account
such as travelled distance, vehicle load and speed, vehicle characteristics, etc. These studies report the bene-
fits of enhancing green VRP models through accounting for explicit transportation energy use. As discussed
in Soysal [41], enhancement of the green VRP models through explicit energy estimation can enable several
opportunities such as; (i) reducing relevant operational costs due to more accurate fuel consumption estimation,
(ii) planning logistics operations according to the environmental and social objectives and (iii) revealing the
trade-off relationships among logistics cost, transportation energy use and emissions. An interested reader on
the topic can be referred to the review of recent research on green road freight transportation conducted by
Demir et al. [15].

Various solution approaches and techniques (e.g., approximate dynamic programming, genetic algorithms,
dynamic programming based heuristics, etc.) have been developed for Vehicle Routing Problems (VRPs) to
solve large-sized problems. This research focuses on the recent DP based heuristics existing in the literature.
These DP based solution approaches are highly flexible frameworks in terms of incorporating various real-life
restrictions that have been generally ignored in classical vehicle routing models, such as time-dependent travel
times, driving hour regulations, explicit energy use estimation [25, 42]. We do believe that there is a need
for research on development of DP based heuristics as routing problems are getting more complex in terms of
considering new practical concerns and, in return, these approaches have the potential to handle this complexity.
This study contributes to the green VRP literature by proposing a DP based heuristic for the addressed problem.
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The classical Restricted Dynamic Programming (RDP) heuristic, which is one of the earlier attempts of
developing DP based heuristics, implements the idea of retaining only the limited amount of promising (H most
promising) partial tours at each stage of the DP algorithm. This means that every partial path that may lead
to an optimal solution is not retained at each stage. The main benefit from the use of this approach is the fact
that the exponential explosion of time and memory requirements of the DP algorithm is avoided. However, this
heuristic does not guarantee optimality, as the states leading to the optimal solution might be pruned earlier.
Gromicho et al. [24, 25]; Kok et al. [28, 29] present the applicability of the classical RDP heuristic to different
variants of VRPs by restricting the state space in this way.

The study of Soysal and Çimen [42] and Soysal et al. [44] present another attempt on developing a DP based
solution approach, Simulation-Based Restricted Dynamic Programming (SRDP), which is based on weighted
random sampling, the classical RDP heuristic and simulation. They propose a different way from the previous
attempts for restricting the state space in the DP algorithm. Their expansion approach suggests to select
S partial tours using weighted random sampling in addition to the most H promising partial tours at each
stage. Afterwards, the best feasible solution for the problem is found through an implemented simulation.
The numerical results show that their solution approach can provide promising results within relatively short
computation times compared to the classical RDP heuristic.

In this study, we propose a new approach which employs the idea of controlling and updating several key
parameters of the algorithm online. This online control enables a better exploration of state space in addition
to benefiting from the simulation approach to test different partial tours that may result in improved solutions
for routing instances. Alternative promising feasible delivery plans provided by means of the proposed solution
approach, namely Restricted Dynamic Programming with Simulation and Online Control (RDP-SOC) can be
used by decision makers who are responsible for logistics operations management. We present in what follows
the formal description of the problem.

3. Problem description

The problem at hand is defined on a complete directed graph G = {V,A}, where V = {0, 1, . . . , n} is the
node set and A is the arc set. Nodes i ∈ V \{0} correspond to customers, whereas node 0 corresponds to a
central depot/warehouse. A set of m homogeneous vehicles, each of which has the capacity of Q, is available at
the warehouse to make the deliveries to the customers. Each customer has a known nonnegative demand, qi, to
be satisfied and a service time, hi. After the service is completed, vehicles leave the nodes without additional
waiting. Arcs (i, j) ∈ A might be heterogeneous in terms of vehicle speed, i.e., average vehicle speeds may vary
among arcs. The reason is that some arcs might have multiple road segments in different lengths (distances)
and the speed of the vehicle can change according to the road section’s traffic congestion and traffic regulations
(see, [2]).

The defined problem aims to determine the routes for all vehicles, starting and ending at the warehouse, by
respecting the aforementioned assumptions so as to minimize the total cost of delivery operations that includes
fuel consumption cost and driver cost. The travel cost between two nodes i 6= j ∈ V is denoted by ci,j . The
driver of each vehicle is paid from the beginning of the time horizon until returning back to the depot. Fuel
consumption is dependent on travelled distance, vehicle speed and vehicle characteristics.

We employ a methodology for the estimation of ultimate CO2 emissions from road transportation operations
[8]. According to that approach, the total amount of transportation emissions E (g/km) generated for traversing
one km at a constant speed v (km/h) is calculated as follows:

E =
k(a + bv + cv2 + dv3 + ev4 + fv5 + gv6)

v
(3.1)

where k, a, b, c, d, e, f and g are vehicle specific parameters. The reader is referred to the technical report
of Boulter et al. [8] for further details on these parameters. After estimating emission levels, we estimate
corresponding fuel consumption amounts by using a fuel conversion factor for transport activities.
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4. The solution approach

This section first describes the DP algorithm for the addressed problem, then introduces a solution approach.

4.1. Dynamic Programming model

We employ a DP algorithm methodology based on the DP formulation introduced by Bellman [7] and Held
and Karp [26] for the Traveling Salesman Problem (TSP). Given a network, the TSP aims to find the shortest
possible route that visits each city exactly once and returns to the starting point. The addressed green routing
problem is first transformed into the TSP by means of a giant-tour representation, which was introduced by
Funke et al. [20], then the DP algorithm is used to formulate and solve the problem.

The DP algorithm of the TSP calculates the routes for each vehicle subsequently, which means that there
exists only one vehicle called active vehicle whose route is being calculated at any point in time. This allows the
algorithm to track the information on vehicle load and time (see, [24,25,29]). Load tracking enables to respect
the vehicle capacities and time tracking enables to calculate driver cost. Algorithm 1 presents the DP algorithm
for the addressed problem.

Algorithm 1: The DP algorithm based on Bellman [7] and Held and Karp [26].

Data: V = {1, . . . , n, a1, . . . , am} where the nodes 1 to n represent customers and a1, . . . , am represent the dummy depots,
m vehicles are available in dummy depot a1 (starting point) for delivery,
Q capacity of the homogenous vehicles,
qi demand of customer i,
utilization average vehicle utilization rate,
li,j vehicle load between nodes i and j,
wi,j departure time of a vehicle that leaves from node i for node j,
ci,j the travel cost between two nodes i 6= j ∈ V ,
Φ the set of visited nodes at any point in time,
C(Φ, j) referred as a partial tour, the cost of starting from dummy depot a1, visiting all nodes in set Φ exactly once and ending in
node j,
C∗ the minimum total travel cost of a complete tour, including the return to the starting point node a1.
Transform the routing problem into its TSP form

Replace the real depot by m dummy depots (a1, . . . , am) which are all located at the same position.
Assign large numbers for the distances between the dummy depots to prohibit travelling among themselves.

Incorporate additional side constraints on capacity and time to the TSP form
Track the vehicle loads (li,j) between related nodes using an extra state dimension on capacity.

Add node i to a partial tour if the following two conditions are satisfied2

1. remaining load in the active truck ≥ qi,
2. remaining load in the active truck + Q * number of remaining unused trucks * utilization ≥ total demand of unvisited

customers.
Track the departure time (wi,j) from the most previously visited node using an extra state dimension on time.

Use the DP formulation for the TSP
Calculate C(Φ, j) in the first (4.1) and in each successive stages (4.2) as follows:

C({j}, j) = ca1,j , ∀j ∈ V \a1, (4.1)

C(Φ, j) = min
i∈Φ\j

{C(Φ\j, i) + ci,j}, ∀j ∈ Φ. (4.2)

Calculate the minimum total travel cost of a complete tour (C∗), including the return to the node a1 as follows:

C
∗

= min
j∈V \a1

{
C(V \a1, j) + cj,a1

}
. (4.3)

Where the travel cost ci,j is calculated as follows:
Calculate emissions and fuel consumption between nodes i and j, FC, using formula (3.1).
Calculate travel time between nodes i and j, TT.
ci,j = TT * Driver wage + FC * Fuel price.

2The first condition ensures that the vehicle visits a node, if it has sufficient load to satisfy the demand. The second condition
restricts vehicles to visit dummy depots with low utilization rates by taking idle capacity of vehicles into account [42].
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4.2. Restricted dynamic programming with simulation and online control

The described DP algorithm is infeasible for the larger routing problems due to enormous computational
burden and time requirements. In response, we propose a DP based heuristic algorithm in order to obtain
promising results for larger problems within short computation times. The introduced approach involves the
ideas of restriction, simulation and online control of parameters.

In what follows, we summarize the RDP-SOC heuristic and provide the necessary steps at each stage of the
algorithm:

– List all potential partial tours. Eliminate any unpromising ones online, based on whether their current
cost-to-go values allude to a higher cost of a complete tour than that of the best solution found so far.

– Sort a predefined number of the remaining partial tours, and normalize their cost-to-go values.
– Select M most promising partial tours. M is restricted by two parameters updated online at the beginning

of each simulation iteration. First, normalized cost-to-go values of any selected partial tours cannot exceed a
random rate. Second, M cannot exceed the randomly defined quota of partial tours expanded in each stage
(Ĥ).

– If the quota (Ĥ) is not filled, select the remaining Ĥ −M partial tours according to assigned probabilities
with respect to their cost-to-go values, using weighted random sampling.

– Keep track of the selected Ĥ partial tours in the next stage, until all nodes are visited.

Our heuristic suggests to (i) restrict the number of tracked partial tours in each stage (see, [24, 25, 28, 29]),
(ii) use a simulation to try different partial tours that may result in an improved solution (see, [42]), and (iii)
control and update key parameters online that enables a better exploration of state space.

To implement the RDP-SOC heuristic, the necessary steps at each stage of the DP algorithm are presented
in detail in Algorithm 2. Since RDP-SOC involves random number generation and simulation processes, each
run of the algorithm will yield different solutions even for the same problem. A fair performance assessment can
be performed by means of a Monte Carlo simulation (e.g., see Algorithm 3).

The recursion requires a proper state space exploration to find close-to-optimal feasible solutions. As distinct
from the existing DP based solution approaches, the proposed heuristic introduced above benefits from online
control of key parameters that enables to find out promising state space expansion. The potential benefits that
could be obtained from the use of the introduced solution approach are investigated in the following section.

5. Numerical experimentation

This section first aims to show the applicability of RDP-SOC on a base case. Then, the performance of the
proposed heuristic has been assessed against the classical RDP and SRDP heuristics using the base case, two
additional small-sized problems and nine problems that are relatively larger in size.

DP based solution algorithms here for the conducted experiments have been developed using C++ program-
ming language. We have used a computer of Pentium(R) i7-7700 K 4.2 GHz CPU with 8 GB memory.

5.1. Base case analyses

We first describe the addressed problem referred to as the base case and present the corresponding data used.
The following seven logistical KPIs have been used for the evaluation of the resultant policies: (i) number of
vehicles used, (ii) total travelled distance, (iii) total emissions, (iv) total driving time, (v) total fuel cost, (vi)
total wage cost and (vii) total routing cost [11].
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Algorithm 2: Algorithm for the RDP-SOC heuristic.

Data: V = {1, . . . , n, a1, . . . , am} where the nodes 1 to n represent customers and a1, . . . , am represent the dummy depots.
m vehicles are available in dummy depot a1 (starting point) for delivery.
Q capacity of the homogenous vehicles.
qi demand of customer i.
utilization average vehicle utilization rate.
li,j vehicle load between nodes i and j.
wi,j departure time of a vehicle that leaves from node i for node j.
ci,j the travel cost between two nodes i 6= j ∈ V .
Φ the set of visited nodes at any point in time.
C(Φ, j) referred as a partial tour, the cost of starting from dummy depot a1, visiting all nodes in set Φ exactly once and ending in
node j.
C∗ the minimum total travel cost of a complete tour, including the return to the starting point node a1.
simtime the length of RDP-SOC run in terms of time.
top the number of most promising states selected in order to reduce computational burden and eliminate any potential effects of
outlier states while calculating normalized costs.
k the fixed stage intervals where we decide whether to keep a potential partial tour (state), based on if it is promising or not.
min, runtime, obtainedcost, dynamicvalue, userdecide, passedtime required additional parameters for the algorithm.
min = a sufficiently large number (i.e., a number larger than any potential objective value of a feasible solution);
runtime = 0;

while runtime ≤ simtime3 do

Ĥ = select a random integer number from a predefined interval, e.g., a single uniformly distributed random integer number in
the interval (50, 100).
dynamicvalue = select a random real number from a predefined interval, e.g., a single uniformly distributed random real
number in the interval (0, 0.2).
userdecide = select a random real number from a predefined interval, e.g., a single uniformly distributed random real number in
the interval (0, 0.2).
At each stage of the DP algorithm do the following steps in order:

Step 1: Determine the partial tours selected in the previous stage and possible nodes to visit in this stage. For the initial
stage, determine only possible nodes to visit.

Step 2: Define potential partial tours for this stage using the information obtained in the Step 1.
Step 3: Calculate the state costs, C(Φ, j), of each potential partial tour (Φ, j), using the equation (4.2). For the initial

stage, use the equation (4.1).
Step 4: If the number of stage mod k is equal to 0, check whether the calculated state costs are higher than the ratio of

(min /(n + m)) ∗ number of stage or not. If a state cost is higher than the calculated ratio, ignore and do not expand this state.
Step 5: Rank the remaining potential partial tours by the cost, C(Φ, j), from lowest to highest.
Step 6: Take partial tours (states) from a predefined top interval (the top most promising).
Step 7: Normalize the cost-to-go values of the selected top states, C(Φ, j), between 0 and 1.
Step 8: Select M most promising partial tours which have the normalized value of smaller than the dynamicvalue to

expand in the next stage. Note that M is also restricted by Ĥ.
Step 9: If M is smaller than Ĥ, assign weights to each of the not selected remaining potential partial tours and calculate

corresponding cumulative probabilities. Then, select Ĥ −M partial tours using the weighted random sampling according to the
calculated cumulative probabilities and the arbitrary selection threshold within the interval (0, userdecide], to expand in the
next stage.

Step 10: Expand only the Ĥ partial tours in the next stage.
Step 11: If all nodes V \a1 are visited, calculate the minimum total travel cost of the complete tour, (obtainedcost), using

the equation (4.3) and go to Step 12. If not, go to Step 1.
Step 12: Calculate the passed time so far, passedtime, while performing the Steps 1–11.

Check the quality of the feasible route found in terms of total cost:
if obtainedcost < min then

min = obtainedcost
Save the feasible route.

Track the total runtime: runtime += passedtime.

5.1.1. Description and Data

The data for the problem has been taken from the Pollution-Routing Problem Instance Library4. The data,
which is referred to as UK15 01 in the web-site, is based on real distances collected from the chosen United
Kingdom cities. The studied transportation network in our base case includes one depot located in Galashiels
and 15 customers located in nearby cities, as shown in Figure 1. The name of customer locations together with
customer demands and related service times can be seen from the Table 1.

3Note that since the runtime is checked only once at the beginning of this loop, the simtime can be expired before the end of
the loop, which means that the final runtime may exceed simtime. The gap will always be smaller than the length of a single run
of the 12 steps. At a cost of slower computation, the runtime may be checked more frequently within the loop.

4www.apollo.management.soton.ac.uk/prplib.htm, Online accessed: January 2017.

www.apollo.management.soton.ac.uk/prplib.htm
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Algorithm 3: Simulation algorithm for evaluating RDP-SOC.

Data: simnumber the length of simulation.
simtime the length of RDP-SOC run in terms of time.
avgcost, result required additional parameters for the simulation.
Start simulation:
avgcost = 0.
for s = 0; s < simnumber; s++ do

result = result of RDP-SOC within simtime (see Algorithm 2)
Update the average cost: avgcost += result.

Find the average cost of all simulation runs: avgcost /= simnumber.

Figure 1. Representation of the logistics network.

Two homogeneous rigid heavy goods vehicles with a capacity of 4000 kg are used for the deliveries from
the depot to the customers. It is assumed that vehicles consume diesel with an emission standard of Euro V.
To calculate ultimate CO2 emissions, the data presented in the technical report of Boulter et al. [8] for the diesel
Euro V rigid heavy goods vehicles are used. This technical report presents estimated exhaust emission factors
for road vehicles in the UK. To be used in equation (3.1), required parameters are set as follows: a = 12 690,
b = 16.564, c = 86.867, d = −3.5532, e = 0.061462, f = −0.0004773, g = 0.0000013853 and k = 1 (see page
173 of the report [8]). The fuel conversion factor of 2.63 kg/l has been used to estimate corresponding fuel
consumption amounts [14]. Table 2 presents the distance matrix.

The average vehicle speed between the nodes under regular traffic conditions are provided from the Google
Maps5. As can be seen from the matrix presented in Table 3, average speeds between the nodes vary between
nearly 9 m/s and 25 m/s.

Fuel price and wage parameters required to calculate fuel consumption and driver costs are taken as 1.6e/l
and 0.004e/s, respectively. The objective of the problem is to determine the vehicle routes that start and end
at the depot and visit each customer exactly once such that the total routing cost is minimized.

5http://maps.google.com.tr/, Online accessed: January 2017.

http://maps.google.com.tr/


S2550 M. SOYSAL ET AL.

Table 1. Demand of customers and corresponding service times.

Demand (in kg) Service time (in s)

Depot – Galashiels 0 0
C1 – Haddington 178 356
C2 – Annan 397 794
C3 – Alnwick 693 1386
C4 – Hamilton 346 692
C5 – Lanark 785 1570
C6 – Rosyth 803 1606
C7 – Tranent 609 1218
C8 – Queensferry 216 432
C9 – Berwick-Upon-Tweed 345 690
C10 – Musselburgh 748 1496
C11 – Hawick 473 946
C12 – Dalkeith 103 206
C13 – Newarthill 486 972
C14 – Linlithgow 410 820
C15 – Carlisle 627 1254

Table 2. Distances between nodes, in meters.

Depot C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

Depot – 50 941 92 751 91 440 96 450 75 910 76 210 49 310 69 650 64 640 49 720 24 280 44 970 91 230 81 440 94 581

C1 51 061 – 137 773 103 641 92 220 82 280 52 100 15 280 45 540 59 500 21 230 72 601 23 220 83 460 57 960 142 902

C2 92 801 137 743 – 140 991 111 514 94 983 144 893 132 233 137 923 137 732 128 923 69 441 122 493 114 864 133 533 31 220

C3 90 990 103 631 141 351 – 202 421 162 160 149 801 115 361 143 241 50 070 120 501 89 141 117 041 193 391 157 061 118 581

C4 96 200 91 870 111 305 202 802 – 23 070 59 960 79 550 52 810 149 200 72 530 115 100 71 390 9820 42 090 135 015

C5 75 930 82 130 94 894 162 320 23 080 – 56 290 69 810 48 910 135 520 62 790 94 830 59 680 20 620 40 530 118 604

C6 76 390 52 140 144 795 149 631 60 440 56 260 – 39 820 8040 109 170 32 800 100 020 33 360 52 320 20 600 166 484

C7 49 450 15 280 132 263 115 381 79 900 69 960 39 780 – 33 220 71 240 8910 73 080 10 980 71 140 45 640 143 381

C8 69 770 45 520 137 774 143 011 53 160 48 980 8010 33 200 – 102 550 26 180 93 400 26 740 45 040 14 050 159 864

C9 64 610 59 100 137 842 50 100 149 170 135 780 108 720 70 830 102160 – 77 850 69 990 78 550 140 500 114 580 135 311

C10 49 430 21 240 128 745 120 011 72 830 62 890 32 710 8920 26 150 78 270 – 73 060 7220 64 070 38 570 143 361

C11 24 310 72 661 69 411 89 141 115 520 94 980 100 060 73 160 93 500 69 950 73 570 – 68 820 110 300 105 290 712 41

C12 45 090 23 200 122 215 116 961 71 200 59 800 33 450 11 010 26 890 78 940 7130 68 720 – 62 170 39 310 139 021

C13 91 250 83 700 114 645 193 972 10 310 20 630 52 340 71 380 45 190 140 810 64 360 110 150 62 560 – 34 470 138 355

C14 81 960 58 010 133 314 156 841 42 450 40 610 20 380 45 690 14 140 115 040 38 670 105 590 39 230 34330 – 157 024

C15 94 731 143 082 30 970 118 401 135 135 118 604 166 424 143 581 159 864 135 381 143 991 71 371 139 241 138 485 157 154 –

5.1.2. Base case solution

The DP model provides the optimal vehicle routes for the introduced problem within approximately two
hours. Summary results which show the performance of the resulting delivery plan in terms of the defined KPIs
are presented in Table 4. As can be seen from this table, sustainable logistics decision makers have a chance to
track both economic (logistics cost) and environmental (emitted emissions, driving time) performances of the
delivery plans provided from the use of the DP model.

Table 5 presents the detailed representation of the resulting delivery plan broken down into each travelled
arc. Here, we would like to note that the DP model for the addressed problem regards the imposed average
speeds at each arc. Using realistic speed data allows the model to better estimate travel time, fuel consumption
(emitted emissions), and therefore resulting logistics cost. Another remark is that both of the available vehicles
are employed to satisfy the customer demands. The utilization rates for the first and second vehicles are 97.4%
and 83.1%, respectively.
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Table 3. Average vehicle speeds between nodes, in m/s.

Depot C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

Depot – 16.33 16.99 16.93 17.66 16.22 18.41 18.26 17.86 16.83 17.63 13.49 17.85 18.77 19.39 16.42

C1 16.37 – 19.79 21.87 22.94 19.31 19.30 25.47 18.51 23.06 20.81 16.35 19.35 24.40 21.00 14.61

C2 17.00 19.62 – 19.58 25.81 22.94 20.82 20.04 20.34 18.36 21.70 18.67 21.27 23.93 22.48 15.77

C3 16.66 21.59 19.47 – 23.27 18.14 20.30 22.10 20.23 21.96 21.37 16.51 20.11 23.88 21.28 19.19

C4 17.06 22.19 25.41 23.31 – 13.26 18.86 21.04 17.96 22.61 19.50 16.12 20.51 9.63 15.25 25.00

C5 16.22 19.28 22.59 18.40 13.74 – 16.75 18.18 15.98 20.17 16.35 16.13 16.86 13.22 14.68 22.72

C6 18.45 19.31 20.98 20.61 19.37 17.05 – 17.46 12.18 21.16 14.39 17.01 16.35 20.76 13.73 21.02

C7 17.54 25.47 20.04 22.36 21.83 17.94 17.00 – 15.82 23.28 13.50 16.68 14.08 23.25 19.50 18.82

C8 17.89 18.50 20.69 20.37 18.85 16.01 12.14 16.27 – 20.84 12.83 16.56 15.37 20.29 11.15 20.82

C9 16.83 21.89 18.23 22.57 22.81 19.85 20.83 22.70 20.51 – 21.99 18.23 21.12 23.65 21.70 17.22

C10 17.91 20.82 19.69 21.51 20.23 16.38 14.35 16.52 12.82 22.49 – 16.91 10.03 21.36 16.92 18.96

C11 13.97 16.59 18.36 17.08 16.18 16.32 17.19 17.17 16.94 18.80 17.03 – 16.87 16.87 18.09 17.46

C12 17.89 19.33 19.40 20.31 21.19 16.61 16.40 13.11 14.94 21.22 9.90 16.36 – 22.53 18.72 18.99

C13 19.01 24.91 23.59 24.49 9.04 13.22 21.81 24.28 21.52 24.19 22.35 16.84 23.70 – 17.95 23.53

C14 19.24 21.02 20.20 21.43 15.72 14.40 14.15 19.53 11.78 22.04 16.53 17.78 18.68 16.35 – 20.61

C15 17.16 18.34 17.80 18.97 26.19 23.82 21.34 19.30 20.98 17.77 19.51 18.30 19.34 24.55 21.29 –

Table 4. Summary results for the base case.

KPIs Results

# of vehicles used 2
Total travelled distance (km) 667.68
Total emissions (kg) 558.76
Total driving time (h) 14.61
Total fuel cost (e) 339.93
Total wage cost (e) 210.39
Total routing cost (e) 550.32

Table 5. Representation of the resulting delivery plan for the base case.

Arc Distance (m) Speed (m/s) Travel time (s) Service time (s) Emissions (kg) Fuel consumption (l)

F
ir

st
v
e
h
ic

le

Depot-C5 75 910 16.22 4680 1570 62.20 23.65

C5-C4 23 080 13.74 1680 692 20.03 7.61

C4-C13 9820 9.63 1020 972 10.45 3.98

C13-C14 34 470 17.95 1920 820 27.99 10.64

C14-C6 20 380 14.15 1440 1606 17.45 6.63

C6-C8 8040 12.18 660 432 7.44 2.83

C8-C10 26 180 12.83 2040 1496 23.52 8.94

C10-C12 7220 10.03 720 206 7.50 2.85

C12-Depot 45 090 17.89 2520 0 36.61 13.92

S
e
c
o
n
d

v
e
h
ic

le

Depot-C7 49 310 18.26 2700 1218 40.06 15.23

C7-C1 15 280 25.47 600 356 13.26 5.04

C1-C9 59 500 23.06 2580 690 50.55 19.22

C9-C3 50 100 22.57 2220 1386 42.34 16.10

C3-C15 118 581 19.19 6180 1254 96.77 36.80

C15-C2 30 970 17.80 1740 794 25.15 9.56

C2-C11 69 441 18.67 3720 946 56.50 21.48

C11-Depot 24 310 13.97 1740 0 20.93 7.96

Total 667 682 38 160 14 438 558.76 212.46
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Table 6. Parameter settings used for the solution approaches.

Solution approaches
Problem Parameter∗ DP RDP SRDP RDP-SOC

BC, SIs, LIs∗∗ simnumber – – 30 30
BC, SIs, LIs utilization 0.9 0.9 0.9 0.9

BC, SIs, LIs H – 50, 100, 250,
500, 1000, 2500 – –

BC, SIs
H and S

– – 70 and 30 –
LIs – – 7 and 3 –
BC, SIs

Ĥ
– – – Uniform∗∗∗(50, 100), integer

LIs – – – Uniform(5, 10), integer
BC, SIs, LIs dynamicvalue – – – Uniform(0, 0.2), real number
BC, SIs, LIs userdecide – – 0.1 Uniform(0, 0.5), real number
BC, SIs, LIs k – – – 5
BC, SIs

top
– – – 1000

LIs – – – 100

Notes. ∗See Algorithm 2 for the notation meaning. ∗∗BC refers base case, SIs refers smaller problems, LIs refers
larger problems. ∗∗∗A single uniformly distributed random number in the given interval.

5.2. Heuristic performance assessment

This subsection aims to assess the performance of the RDP-SOC heuristic by means of the base case, two
small-sized problems and a set of larger problems. In the analyses on the base case and small-sized problems,
the performance of the proposed heuristic is compared against the optimal policy provided by the DP algorithm
and the feasible policies provided by the classical RDP algorithm (see, [24,25,28,29]) and SRDP heuristic [42].
Due to curse of dimensionality, the DP algorithm is infeasible for the larger problems [11]. Therefore, the optimal
policies for these problems cannot be calculated by the DP approach. Accordingly, to assess the performance of
the RDP-SOC heuristic on the larger problems, feasible solutions which are obtained from the classical RDP and
SRDP solution approaches are used. Table 6 presents the parameter settings used for the solution approaches
in our computational analyses.

5.2.1. Heuristic applied to base case

This subsection presents the performances of the classical RDP, SRDP and RDP-SOC heuristics on the base
case. While defining the time limits (see the required parameter simtime in Algorithm 2) for a single run of
the SRDP and RDP-SOC heuristics, the observed computation times of the classical RDP algorithm have been
used. Table 7 presents the comparison results.

According to the results, for instances 5 and 6, the classical RDP heuristic is able to find optimal solution for
the base case, which is e550.32 as presented in Table 4. Although the solution approaches SRDP and RDP-SOC
could not obtain the optimal policy, they achieved to provide near-optimal solutions for the base case. Another
remark is that the proposed heuristic has slightly outperformed the SRDP heuristic in terms of the average
cost. The following subsection provides additional comparison analyses among the aforementioned heuristics on
small-sized problems.

5.2.2. Heuristic applied to small-sized problems

This subsection presents the performances of the classical RDP, SRDP and RDP-SOC heuristics on the two
additional small-sized problems. These small-sized problems have been obtained from The Pollution-Routing
Problem Instance Library6. The first problem (UK10 01) has a single depot and 10 customers, whereas the

6www.apollo.management.soton.ac.uk/prplib.htm, Online accessed: March 2020.

www.apollo.management.soton.ac.uk/prplib.htm
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Table 7. Performance assessment of the classical RDP, SRDP and RDP-SOC heuristics on
the base case.

Classical RDP SRDP RDP-SOC

# Setting Cost (e) Comp. Setting Avg. Avg. Comp. Setting Avg. Avg. Comp.

Time (s) Cost (e) Time (s) Cost (e) Time (s)

1 H = 50 553.01 1 H = 70, S = 30 553.01 1 50 ≤ Ĥ ≤ 100 553.01 1

2 H = 100 553.01 1 H = 70, S = 30 553.01 1 50 ≤ Ĥ ≤ 100 553.01 1

3 H = 250 553.01 2 H = 70, S = 30 553.01 3 50 ≤ Ĥ ≤ 100 553.01 3

4 H = 500 550.47 4 H = 70, S = 30 553.01 4 50 ≤ Ĥ ≤ 100 553.01 4

5 H = 1000 550.32 12 H = 70, S = 30 553.01 12 50 ≤ Ĥ ≤ 100 552.91 12

6 H = 2500 550.32 64 H = 70, S = 30 553.01 64 50 ≤ Ĥ ≤ 100 552.69 64

Notes. Bold values demonstrate the relatively better results.

Table 8. Performance assessment of the classical RDP, SRDP and RDP-SOC heuristics on
the small-sized problems.

Classical RDP SRDP RDP-SOC

Instances # Setting Cost (e) Comp. Setting Avg. Avg. Comp. Setting Avg. Avg. Comp.

Time (s) Cost (e) Time (s Cost (e) Time (s)

U
K

1
0

0
1

1 H = 50 332.77 1 H = 70, S = 30 332.77 1 50 ≤ Ĥ ≤ 100 325.98 1

2 H = 100 332.77 1 H = 70, S = 30 332.77 1 50 ≤ Ĥ ≤ 100 325.98 1

3 H = 250 325.41 2 H = 70, S = 30 332.77 2 50 ≤ Ĥ ≤ 100 325.59 2

4 H = 500 325.41 3 H = 70, S = 30 332.77 3 50 ≤ Ĥ ≤ 100 325.41 3

5 H = 1000 325.41 5 H = 70, S = 30 332.77 5 50 ≤ Ĥ ≤ 100 325.41 5

6 H = 2500 325.41 13 H = 70, S = 30 332.77 13 50 ≤ Ĥ ≤ 100 325.41 13

U
K

1
5

0
2

1 H = 50 435.42 1 H = 70, S = 30 435.34 1 50 ≤ Ĥ ≤ 100 435.28 1

2 H = 100 435.34 1 H = 70, S = 30 435.34 1 50 ≤ Ĥ ≤ 100 435.28 1

3 H = 250 434.73 2 H = 70, S = 30 435.34 2 50 ≤ Ĥ ≤ 100 435.26 2

4 H = 500 434.73 4 H = 70, S = 30 435.34 4 50 ≤ Ĥ ≤ 100 433.35 4

5 H = 1000 434.73 12 H = 70, S = 30 435.34 12 50 ≤ Ĥ ≤ 100 427.94 12

6 H = 2500 432.28 53 H = 70, S = 30 435.34 53 50 ≤ Ĥ ≤ 100 418.54 53

Notes. Bold values demonstrate the relatively better results.

second problem (UK15 02) has a single depot and 15 customers. In both problems, two homogeneous vehicles
are used for the delivery operations. Vehicle capacities are assumed as 3650 and 4000 kg in the first and second
problems, respectively. The vehicles travel at an average speed of 90 km/h in all arcs. Other required data for
the problems, i.e., distances matrix, customer demands and customer service times can be obtained from the
web site of The Pollution-Routing Problem Instance Library. Table 8 presents the comparison results.

The optimal solutions provided by the classical DP algorithm for the first and second problems are e325.41
and e398.29, respectively. According to the results, RDP-SOC outperforms the SRDP heuristic in all instance-
setting pairs. The performances of the proposed heuristic are also equal to or better than that of the classical
RDP heuristic in 5 out of 6 instance-setting pairs for both UK 10 01 and UK 15 02 problems. Note that both the
classical RDP and RDP-SOC are able to provide the optimal solution for UK 10 01. The following subsection
provides more extensive performance comparison analyses among the RDP, SRDP and RDP-SOC heuristics on
large-sized problems.

5.2.3. Heuristic applied to large-sized problems

This subsection presents the performances of the classical RDP, SRDP and RDP-SOC heuristics in relatively
large problems. These large problems have been obtained from The Pollution-Routing Problem Instance Library7

7www.apollo.management.soton.ac.uk/prplib.htm, Online accessed: January 2017.

www.apollo.management.soton.ac.uk/prplib.htm
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and The Routing Problem Library introduced by Solomon [40]. These libraries have been used in many other
studies addressing routing problem variants (see, e.g., [4, 23]).

Nine problems each of which has a single depot and 50 customers have been used for the analyses. For
the delivery, (i) seven vehicles are employed in problems 1 (UK50 01), 2 (UK50 02) and 5 (UK50 05), (ii) eight
vehicles are employed in problems 3 (UK50 03) and 4 (UK50 04), and (iii) four vehicles are employed in problems
6–9 (C101, C201, R101 and RC101). The vehicle capacity is taken as 3650 kg for problems 1–5 and 270 kg for
problems 6–9. Other required data for the problems, i.e., distances matrix, customer demands and customer
service times can be obtained from the The Pollution-Routing Problem Instance Library and The Routing
Problem Library.

The provided data does not contain any information about potential road segments as it has been prepared
for the use of traditional routing models. Therefore, we assumed that all arcs have a fraction of urban and
non-urban parts. The following approach has been used while defining the corresponding fractions. The arcs
between odd customer numbers (e.g., between nodes-customers 1 and 3, 5 and 7 or 47 and 49) and even numbers
(e.g., between nodes 2 and 4, 6 and 8 or 48 and 50) have 15% urban and 85% non-urban section. The remaining
arcs (e.g., between nodes 1 and 4, 2 and 5 or 47 and 48) have 5% urban and 95% non-urban section. The vehicles
travel at an average speed of 40 km/h in urban sections and 90 km/h in non-urban sections. Table 9 presents
the comparison results for the selected nine problems.

As it has been done in the base case, for the first four settings, the time limit for a single run of the SRDP
and RDP-SOC heuristics is defined by the observed computation times of the classical RDP algorithm. Large
H and S values in instances 5 and 6 require higher computation times. In order to complete 30 runs of the
SRDP and RDP-SOC heuristics for the numerical experiments in each problem at a reasonable time, we have
used a ratio of 1/2. For example, the observed computation time of the classical RDP algorithm in Instance 1
– Setting 5 is 1122 s. Therefore, the time limit for a single run of the SRDP and RDP-SOC heuristics is set as
1/2 of this number, which is 561 s.

Comparison results show that in all instances, except Instance 1 (UK 01) and Instance 7 (C201), the proposed
heuristic provides the least-cost solutions. For the first and seventh instances, the least-cost solutions have been
obtained from the classical RDP heuristic, i.e., Instance 1 under Setting 5: e1203.53 and Instance 7 under
Settings 4,5,6: e332.02. The obtained least-cost solutions from the proposed heuristic are as follows: Instance 2
– Setting 6: e1218.70, Instance 3 – Setting 6: e1282.70, Instance 4 – Setting 6: e1542.60, Instance 5 – Setting 6:
e1300.40, Instance 6 – Setting 6: e268.12, Instance 8 – Setting 6: e401.22, and Instance 9 – Setting 6: e394.10.

An overall comparison between the RDP-SOC and SRDP heuristics reveals that the proposed heuristic
outperforms the SRDP in terms of the average total cost in 48 out of the 54 instance-setting pairs. Similarly,
the proposed heuristic shows better cost performances in 40 instance-setting pairs compared to the classical
RDP heuristic.

Among all instance-setting pairs, the resultant average cost of the proposed heuristic is 1% lower than that
of the SRDP heuristic within the same computation time. The obtained average cost-benefit increases to 1.96%
when the performance of the RDP-SOC heuristic is compared to that of the classical RDP heuristic. Considering
huge budgets devoted to logistics management and small profit margins, these kinds of cost and/or emission
savings could yield significant benefits in competitive advantage. Note that the proposed heuristic obtains these
results within significantly shorter computation times, i.e., the average computation time of RDP-SOC in all
instance-setting pairs (755 s) is almost half of that of the classical RDP (1459 s).

Figure 2 presents the average cost performances of the solution approaches in different settings. For settings
5 and 6, all of the three heuristics are run with the same limit, that is why these setting are referred as 5A and
6A. Note that in the previous analyses a ratio of 1/2 has been used for the run times. In Table A.1, the reader
can find the detailed results for performance assessment of the classical RDP, SRDP and RDP-SOC heuristics
on the larger instances for settings 5 and 6 with the same time limit.

As can be observed from the figure, compared to the existing solution approaches, the proposed heuristic
offers to have promising delivery plans in terms of the average cost in all settings that are run for the same time
limit.
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Ĥ
≤

1
0

1
3
2
3
.8

2
2
6
6

0
.8

3
%

–
0
.4

4
%

5
H

=
1
0
0
0

1
3
1
1
.9

1
1
1
2
8

H
=

7
,

S
=

3
1
3
2
7
.9

7
5
6
4

5
≤

Ĥ
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Figure 2. Average cost performances of the solution approaches in different settings.

Table 10. Representation of the resulting delivery plan for the base case when the same speed
is assumed at every arc.

Arc Distance (m) Speed (m/s) Travel time (s) Service time (s) Emissions (kg) Fuel consumption (l)

F
ir

st
v
e
h
ic

le

Depot-C5 75 910 25 3036 1570 65.65 24.96

C5-C4 23 080 25 923 692 19.96 7.59

C4-C13 9820 25 393 972 8.49 3.23

C13-C14 34 470 25 1379 820 29.81 11.34

C14-C6 20 380 25 815 1606 17.63 6.70

C6-C8 8040 25 322 432 6.95 2.64

C8-C10 26 180 25 1047 1496 22.64 8.61

C10-C12 7220 25 289 206 6.24 2.37

C12-Depot 45 090 25 1804 0 39.00 14.83

S
e
c
o
n
d

v
e
h
ic

le

Depot-C11 24 280 25 971 946 21.00 7.98

C11-C2 69 411 25 2776 794 60.03 22.83

C2-C15 31 220 25 1249 1254 27.00 10.27

C15-C3 118 401 25 4736 1386 102.40 38.94

C3-C9 50 070 25 2003 690 43.30 16.47

C9-C1 59 100 25 2364 356 51.11 19.44

C1-C7 15 280 25 611 1218 13.22 5.02

C7-Depot 49 450 25 1978 0 42.77 16.26

Total 667 402 26 696 14 438 577.23 219.48

Our computation analyses reveal the added values of the proposed RDP-SOC heuristic for the green rout-
ing problem. We acknowledge the fact that the proposed heuristic does not always guarantee a better solu-
tion than the ones which can be obtained from the classical RDP and SRDP heuristics. However, in most
of the instance-setting pairs, the proposed heuristic outperforms the existing DP based solution approaches.
The results demonstrate that RDP-SOC can be used as an alternative decision support tool to tackle large-sized
VRPs confronted in sustainable logistics management.

5.3. The effects of heterogeneity in arcs

This subsection is devoted to analyse the effects of having heterogeneous arcs in terms of vehicle speed.
The analyses here is conducted to show the possibility of a significant change in the results when there exist
heterogeneous arcs in the logistics network, such that the routes and KPI values may considerably alter.
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Table 11. Results when the proposed route, which assumes the same speed at every arc, is
implemented with the realistic vehicle speeds.

Arc Distance (m) Speed (m/s) Travel time (s) Service time (s) Emissions (kg) Fuel consumption (l)

F
ir

st
v
e
h
ic

le

Depot-C5 75 910 16.22 4680 1570 62.20 23.65

C5-C4 23 080 13.74 1680 692 20.03 7.61

C4-C13 9820 9.63 1020 972 10.45 3.98

C13-C14 34 470 17.95 1920 820 27.99 10.64

C14-C6 20 380 14.15 1440 1606 17.45 6.63

C6-C8 8040 12.18 660 432 7.44 2.83

C8-C10 26 180 12.83 2040 1496 23.52 8.94

C10-C12 7220 10.03 720 206 7.50 2.85

C12-Depot 45 090 17.89 2520 0 36.61 13.92

S
e
c
o
n
d

v
e
h
ic

le

Depot-C11 24 280 13.49 1800 946 21.25 8.08

C11-C2 69 411 18.36 3780 794 56.41 21.45

C2-C15 31 220 15.77 1980 1254 25.74 9.79

C15-C3 118 401 18.97 6240 1386 96.49 36.69

C3-C9 50 070 21.96 2280 690 42.02 15.98

C9-C1 59 100 21.89 2700 356 49.56 18.84

C1-C7 15 280 25.47 600 1218 13.26 5.04

C7-Depot 49 450 17.54 2820 0 40.17 15.27

Total 667 402 38 880 14 438 558.11 212.21

Let’s assume that vehicles travel at a speed of 25 m/s (90 km/h) at every arc in the base case. This means
that vehicles have the chance to retain their speeds at each arc. The detailed representation of the resulting
delivery plan obtained when the DP model assumes the same speed at every arc is presented in Table 10.

The estimated total logistics cost of this delivery plan presented in Table 10 is e515.7. Note that the provided
delivery plan cannot be directly implemented in practice, as speed limits will not allow vehicles to have the
same travel speeds in urban roads as in non-urban ones. We present the implementation of the proposed delivery
plan, which assumes the same speed at every arc, with the realistic vehicle speeds in Table 11.

According to the results presented in Table 11, the total logistics cost of the delivery plan under realistic
travel times is e552.81. This means that when the delivery plan obtained using the data set that ignores
heterogeneity in arcs is implemented in practice, the resulting total logistics cost is more than expected. Note
that this resulting total logistics cost is 0.5% higher than the one obtained when the realistic speeds are used
(see Tab. 4).

Another key issue is that the DP model proposes a different delivery plan in terms of vehicle routes when
the heterogeneity in arcs is ignored. As can be checked from Tables 5 and 10 or 11, although the resulting route
for the first vehicle has not been altered, this is not the case for the second one.

6. Conclusions

Maintaining environmentally friendly operations in logistics management is a challenge for companies. This
paper accordingly presents a decision support tool that can aid decision-making processes in operational level
efficient logistics management. The introduced DP based solution approach can be used to have promising
feasible delivery plans within short computational times for the larger problems. As distinct from the traditional
approaches, the solution approach estimates fuel consumption based on travelled distance, vehicle speed and
vehicle characteristics while constructing vehicle routes.

The added values of the RDP-SOC heuristic have been shown on a small-sized base case and five relatively
larger problems. Performance comparisons of the proposed heuristic against other DP based recent solution
approaches (the RDP and SRDP heuristics) reveal the effectiveness of the proposed approach in larger problems.
According to the numerical analyses on heuristic performance, the proposed heuristic outperforms the SRDP
in terms of the average total cost in 48 out of the 54 instance-setting pairs. Similarly, the proposed heuristic
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shows better cost performances in 22 instance-setting pairs compared to the classical RDP heuristic within
significantly shorter computation times.

Additional analysis to reveal the effects of heterogeneity in arcs shows that when heterogeneity is ignored,
the resulting delivery plan may change and has a higher logistics cost.

These results on small and large-sized instances confirm that the proposed solution approach can be used
as an alternative decision support tool to tackle large-sized VRPs. It is worth mentioning that the introduced
DP based solution approach is also highly flexible in terms of incorporating other potential problem-specific
constraints such as uncertainty in travel or service times, the existence of customer time windows or having
time-dependent travel times in arcs due to traffic congestion. Future studies on routing problems might focus
on finding out better ways for state-space exploration in the DP algorithm and incorporate the aforementioned
dimensions. We believe that this research has the potential to lead the way for further enhancements.

Appendix A.

Table A.1. Performance assessment of the classical RDP. SRDP and RDP-SOC on the larger
instances for settings 5 and 6 with the same time limit.

Classical RDP SRDP RDP-SOC % Differences

# Setting Cost Comp. Setting Avg. Avg. Comp. Setting Avg. Cost Avg. Comp. Gap %∗ Gap %∗∗

(euro) Time (s) Cost (euro) Time (s) (euro) Time (s)

U
K

5
0

0
1

5A H = 1000 1203.53 1122 H = 7, S = 3 1225.46 1122 5 ≤ Ĥ ≤ 10 1230.65 1122 2.25% 0.42%

6A H = 2500 1212.01 8450 H = 7, S = 3 1219.60 8450 5 ≤ Ĥ ≤ 10 1218.60 8450 0.54% –0.08%

U
K

5
0

0
2

5A H = 1000 1255.19 1138 H = 7, S = 3 1270.43 1138 5 ≤ Ĥ ≤ 10 1233.20 1138 –1.75% –2.93%

6A H = 2500 1230.16 8210 H = 7, S = 3 1255.62 8210 5 ≤ Ĥ ≤ 10 1215.71 8210 –1.17% –3.18%

U
K

5
0

0
3

5A H = 1000 1295.40 1250 H = 7, S = 3 1284.81 1250 5 ≤ Ĥ ≤ 10 1284.70 1250 –0.83% –0.01%

6A H = 2500 1286.57 9100 H = 7, S = 3 1283.02 9100 5 ≤ Ĥ ≤ 10 1279.65 9100 –0.54% –0.26%

U
K

5
0

0
4

5A H = 1000 1602.29 1328 H = 7, S = 3 1561.66 1328 5 ≤ Ĥ ≤ 10 1548.25 1328 –3.37% –0.86%

6A H = 2500 1574.08 9500 H = 7, S = 3 1553.69 9500 5 ≤ Ĥ ≤ 10 1532.41 9500 –2.65% –1.37%

U
K

5
0

0
5

5A H = 1000 1311.91 1128 H = 7, S = 3 1325.88 1128 5 ≤ Ĥ ≤ 10 1318.17 1128 0.48% –0.58%

6A H = 2500 1314.70 8400 H = 7, S = 3 1320.23 8400 5 ≤ Ĥ ≤ 10 1296.43 8400 –1.39% –1.80%

C
1
0
1

5A H = 1000 280.85 754 H = 7, S = 3 280.64 754 5 ≤ Ĥ ≤ 10 272.99 754 –2.80% –2.73%

6A H = 2500 280.85 5070 H = 7, S = 3 274.51 5070 5 ≤ Ĥ ≤ 10 267.20 5070 –4.86% –2.66%

C
2
0
1

5A H = 1000 332.02 850 H = 7, S = 3 341.25 850 5 ≤ Ĥ ≤ 10 336.28 850 1.28% –1.46%

6A H = 2500 332.02 5374 H = 7, S = 3 337.50 5374 5 ≤ Ĥ ≤ 10 332.56 5374 0.16% –1.46%

R
1
0
1

5A H = 1000 440.56 990 H = 7, S = 3 408.56 990 5 ≤ Ĥ ≤ 10 405.23 990 –8.02% –0.82%

6A H = 2500 408.77 6645 H = 7, S = 3 406.87 6645 5 ≤ Ĥ ≤ 10 401.12 6645 –1.87% –1.41%

R
C

1
0
1

5A H = 1000 453.01 811 H = 7, S = 3 403.35 811 5 ≤ Ĥ ≤ 10 395.50 811 –12.70% –1.95%

6A H = 2500 448.91 5973 H = 7, S = 3 394.40 5973 5 ≤ Ĥ ≤ 10 393.52 5973 –12.34% –0.22%

Average: 903.49 4227 897.08 4227 886.79 4227 –1.85% –1.15%

Notes. ∗The percentage gap between average costs obtained from the RDP and RDP-SOC heuristics. ∗∗The percentage gap

between average costs obtained from the SRDP and RDP-SOC heuristics. Bold values demonstrate the relatively better results.
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[17] R. Eglese and T. Bektaş, Green vehicle routing. Veh. Routing: Prob. Methods App. 18 (2014) 437–458.
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