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AN INTEGRATED PRODUCTION POLICY WITH DEFECTIVE ITEMS AND
STOCK-OUT BASED SUBSTITUTION UNDER TRIANGULAR DENSE FUZZY

LOCK SET ENVIRONMENT

Snigdha Karmakar1, Sujit Kumar De2, Tapan Kumar Datta3 and
Adrijit Goswami1,∗

Abstract. Brand substitution is common observed phenomenon in daily life. It is the decision makers’
economic understanding and potential scheme for business-industries. Also, it provides the flexibility
in management and increases the ability to control the production. This works proposes an integrated
supplier–retailer inventory model for substitutable products. Two suppliers work not works with two
different brand products with their corresponding demand are involved and one retailer sells each of the
products. To nullify the complexities of the joint optimization problem, we first develop a deterministic
model for three cases: no substitution, partial substitution and full substitution, then we go for its
fuzzification. Keeping the financial constraint of each producer, we have studied over the elasticity of
the cost parameters by means of triangular dense fuzzy lock set approach with its locking and unlocking
property for final decision making. Finally, sensitivity analysis and graphical illustrations are made to
justify the model.
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1. Introduction

1.1. General overview

In recent years, the business industries are continuously trying to improve their business strategies with
intelligent understanding. The key for an efficient business process is sophisticated planning and control strategy.
The decision makers are usually handling production and logistics that often involve a high amount of complexity.
In such a situation, supply chain management (SCM) promises to tackle the decision over the problem by a
holystic approach. The prime aim in this approach is to optimize the overall systems: suppliers, retailers and
customers with respect to the cost and service level of the entire system. Finding for an optimal solution only
for the suppliers or the retailers would neither be effective nor feasible in the long term process. Banerjee [1]
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developed a joint economic lot size model where the producer produces and delivers an order on a lot basis.
Goyal [16] extended Banerjee’s model and proposed a more general joint total economic-lot-size model with
a lower or equal joint total relevant cost. Goyal and Gupta [17] studied the vendor–buyer coordination in
integrated inventory models. Now there exists a steam of research on this topic. Soni and Patel [39] investigated
an integrated inventory model with variable production rate and price sensitive demand rate and adopted the
two-level trade credit policy to boost the sales and to reduce on-hand stock levels. Pal et al. [29] considered
a multi-item integrated production-inventory for multiple suppliers where each supplier supplies only one raw
material. Sana [34] analyzed a two stage supply chain model for promotional effort sensitive stochastic demand.
Recently, Sarkar [36] considered the quantity discounts between vendor or buyer in a single set up multi-delivery
supply chain model.

The traditional EOQ and EPQ model have several unrealistic assumptions like all items are perfect. Salameh
and Jaber [32] developed a production inventory system where the items are of imperfect quality, not neces-
sarily defective. They considered the items which have less acceptance quality. Goyal et al. [18] proposed a
simple integrated production inventory model with imperfect item. Sarkar and Moon [37] analyzed an imper-
fect production inventory for stochastic demand with the effect of inflation. Sana [33] examined the effect of
imperfect quality production in a three layer supply chain. Sana et al. [35] studied a supply chain model with
multiple suppliers, manufacturers and retailers for both perfect and imperfect quality products. Uthayakumar
and Palanivel [43] studied the effect of inflation and trade credit in an inventory model for imperfect items. De
and Pal [10] considered the imperfect item in a bi-objective optimization problem. Sinha et al. [38] developed
an entropic order quantity model where the demand rate is dependent on selling price and the imperfect items
are being screened out.

In managing inventory stock-out is a fundamental fact that each and every manager has to face off. Wee et al.
[44] developed an inventory model with shortage backordering. Ghosh et al. [15] described an EOQ model for
perishable items with partial backordering (depends on waiting time) and lost sales. Hsu and Hsu [20] analyzed
the shortage backordering in an imperfect integrated vendor–buyer inventory model.

Due to instability of financial market it gets much more challenge for enterprizes to provide customers with
better service to adopt more market share. The concept of substitute product deals with the customers of
different choices and allows them options within the industry and beyond which might fulfill the similar needs.
The concept of substitution was introduced in the inventory model by Mcgillivray and Silver [25]. Parlar and
Goyal [30] extended the single period problem into two-substitutable-product problem for stochastic demand.
Pasternack and Drezner [31] considered a single-period problem with substitution for stochastic demand. In
this sequence, Drezner et al. [14] proposed a shortage-based substitution and considered three cases such as
no substitution, partial substitution and full substitution. They proved that full substitution will never give
optimal decision but only partial substitution or no substitution may carry the optimal decision depending
on the cost parameters itself. Also, Gurnani and Drezner [19] generalized Drezner’s model for multiple substi-
tutable products. They remodified the cost function based on run out items and obtained the optimal solution
numerically. Chen et al. [4] analyzed a downward, supplier-driven substitution for perishable products and cus-
tomer service objectives. Mukhopadhyay and Goswami [28] developed an EOQ model under shortages and one
way substitution. They also considered the presence of imperfect quality items which are being screened out
before selling to the customers. Cai et al. [3] investigated a two-echelon supply chain model with two products
where the demand rate was uncertain and followed an exponential distribution. Benkherouf et al. [2] considered
product substitution and time varying demand and formulated a mixed integer nonlinear program in a finite
horizon inventory model. Transchel [42] examined a stochastic inventory with priced-based and stockout-based
substitution and by this time Mishra [26] developed substitution cost in a deterministic inventory model for
optimal order quantities.

Fuzzy set theory [45] was developed to tackle the uncertain real world problem. Since then, very often
authors like Kumar et al. [23]; De and Sana [11] worked over the application of various fuzzy set in inventory
management problem. Several researchers are practicing along these directions and incorporating new ideas,
they are introducing new fuzzy numbers and applying in various fields. De and Sana [12] applied the hesitant
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Figure 1. Substitution mechanism.

fuzzy set theory in multi-criteria multi attribute EOQ model to select the best alternatives. Incorporating the
learning experience in fuzzy set theory, De and Beg [7] and De and Mahata [8] studied the triangular dense fuzzy
set (TDFS) and cloudy fuzzy set for discrete and continuous variables respectively. Consequently, Karmakar
et al. [22] applied the TDFS in a pollution sensitive backordered EPQ model. De [5] extended the TDFS and
introduced triangular dense fuzzy lock set (TDFLS) in which the decision-maker has the full power to control
the situation. De and Sana [13] proposed a two-layer supply chain model where the demand rate is assumed to
be fuzzy stochastic variable with finite mean and unknown variance. Takami et al. [40] focused on two issues for
a project porfolio selection model by considering hesitant fuzzy weighted averaging operator. Jamali et al. [21]
formulated a supply chain management network under discrete Markov-modulated demand. Considering the
demand rate as triangular fuzzy number Moghdani et al. [27] extended the EPQ model with multiple deliveries
for the space constraints. De and Mahata [9] developed a three layer supply chain network model with partial
backlogging and random disruptions under TDFLS environment. Maity et al. [24] discussed an inventory model
with backorder under intuitionistic dense fuzzy environment. De [6] introduced the degree of fuzziness of a
polygonal fuzzy set.

In this work, first we develop a deterministic two-echelon supply chain with two suppliers offer one brand
each and one retailer who sells the two brands of the product. The items have been replenished simultaneously.
The brands are substitutable. When a desired brand item is out of stock due to the presence of imperfectness
in the product, its demand is satisfied by using the other brand products. Finally, we have assumed the cost
parameters as flexible and have utilized the TDFLS rule to get a final result.

The rest of the paper is organized as follows: Section 3 provides the assumptions for the proposed model and
the notation have been used throughout the paper. In Section 4, the mathematical model is formulated. Then,
in Section 6, we utilize the TDFLS and a fuzzy mathematical model with a solution algorithm is developed.
Also an implication of TDFLS is given in Section 5, Section 7 provides the numerical examples. Sensitivity of
the parameters and some graphical illustrations have been given in Sections 8 and 9 respectively. Section 11
concludes the whole work.

1.2. Motivation and specific study

In the 20th century, the competitive production process have the flexibilities in logistics of decision making.
Flexibility means the DM can carry out the production process in slightly different way than usual to increase
the performance of a company. Substitute of products is one such flexibility which allows the DM as well as the
consumers to choose different options of a particular need. There are two categories substitution process (Fig. 1)
observed in the system: supplier-driven substitution and customer-driven substitution. If a supplier meets a
customer’s demand for a product by another product, then it is supplier-driven substitution. Alternatively,
customer substitute one product by another called customer-driven substitution.
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Figure 2. Customers’ behavior in stockout situation.

Tang and Yin [41] studied three substitution mechanism: inventory based, assortment based and priced
based substitution. When a customer visits a store to buy a particular product that turns out as out of stock,
the customer might be willing to substitute that product and buy another product which is inventory-based
substitution (stock out situation). A recent survey about consumers’ behavior in stock out situation have given
in Figure 2.

The inventory-based substitution is one of the example of supplier-driven substitution also. In assortment-
based substitution, the customer chooses a substitute assuming that the substitute is newly added in the assort-
ment. When income decreases or prices increase, the consumers replace luxury items with cheaper alternatives
which is called price-based substitution. Clearly, price-based substitution is customer-driven.

However, from the existing literature on substitution, we have observed in the area of stochastic inventory
control with substitution, a considerable amount of literature has been published, but often with very restrictive
model assumptions that make it difficult to apply the solution approaches in practice. In this study, we wish
to focus on integrated deterministic inventory model for substitutable items. The substitution occurs due to
the presence of imperfect item which creates stock out in the inventory position. Recent surveys say, around
70–90% stock outs are caused by defective items. Studying this nature we have incorporated the stock out-based
substitution in our work. To the best of our knowledge, no works have been done on substitution under fuzzy
environment. Our contribution to the literature is shown in Figure 3.

2. Preliminaries

Definition 2.1 (Triangular dense fuzzy lock set (TDFLS) [5]). Let a fuzzy number Ã = (a1, a2, a3) with
a1 = a2fn and a3 = a2gn, where fn and gn are the sequence of functions. Now if fn → δ1(< 1) and gn → δ2(> 1)
(both converge) as n→∞, then the fuzzy set does not converge to a crisp singleton {a2} i.e. Ã = (a1, a2, a3) 9
{a2} and we call the triangular dense fuzzy set as TDFLS.

Example 2.2. Let us assume the component functions of a TDFLS be fn = 1
k1
− 1

1+n and gn = 1
k2
− 1

1+n then
the TDFLS is given as follows:

Ã =
(
a2

{
1− ρ

(
1
k1
− 1

1 + n

)}
, a2, a2

{
1 + σ

(
1
k2
− 1

1 + n

)})
, for 0 < ρ, σ < 1. (2.1)

The graphical interpretation of TDFLS is shown in Figure 4.
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Figure 3. Author’s contribution over contemporary research.

Figure 4. Membership function of TDFLS.

2.1. Defuzzification method of TDFLS [5]

Let Ã =
(
a
{

1− ρ
(

1
k1
− 1

n+1

)}
, a, a

{
1 + σ

(
1
k2
− 1

n+1

)})
be a TDFLS with respect to the double keys k1

and k2. Then we construct the membership function µ(x) of Ã as follows

µ(x) =


x−a

{
1−ρ

(
1

k1
− 1

n+1

)}

aρ
(

1
k1
− 1

n+1

) , a
{

1− ρ
(

1
k1
− 1

n+1

)}
6 x 6 a

a
{

1+σ
(

1
k2
− 1

n+1

)}
−x

aσ
(

1
k2
− 1

n+1

) , a 6 x 6 a
{

1 + σ
(

1
k2
− 1

n+1

)}
0, otherwise.

(2.2)

Therefore, the corresponding left and right α-cuts are L−1(α, n) = a
{

1− ρ
(

1
k1
− 1

n+1

)}
+ αaρ

(
1
k1
− 1

n+1

)
and R−1(α, n) = a

{
1 + σ

(
1
k2
− 1

n+1

)}
− αaσ

(
1
k2
− 1

n+1

)
respectively. Now, we find the ranking index value

as I(Ã) = 1
2N

∑N
n=0

∫ 1

0

{
L−1(α, n) +R−1(α, n)

}
dα. So, I(Ã)→ a

{
1 + 1

4

(
σ
k2
− ρ

k1

)}
as N →∞.
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2.2. Finding lock for single-key and double keys [5]

When an uncertainty is present in a parameter, then the expert may not know the exact value but (s)he
knows a bound of that parameter. Then, (s)he fixes a upper limit (aU , if known), lower limit (aL, if known) or
both for that parameter.

For single key, if upper bound is available, then we get

I(ã) ≤ aU implies k ≥ a(σ − ρ)
4(aU − a)

· (2.3)

If the lower bound is known, then we have

I(ã) ≥ aL implies k ≥ a(ρ− σ)
4(a− aL)

· (2.4)

For double key, the index value of a TDFLN is
I(Ã) = 1

2N

∑N
n=0

∫ 1

0

{
L−1(α, n) +R−1(α, n)

}
dα = a

2

(
1− ρ

2k1

)
+ a

2

(
1 + σ

2k2

)
. So,

a

2

(
1− ρ

2k1

)
≥ aL implies k1 ≥

aρ

2(a− 2aL)
(2.5)

and
a

2

(
1 +

σ

2k2

)
≥ aU implies k2 ≥

aσ

2(2aU − a)
· (2.6)

3. Notations and Assumptions

The following notations and assumptions are adopted to develop the proposed inventory model.

3.1. Notations

Cases of supplier

Asi, i = 1, 2 Set up cost of supplier i (STCsi).
hsi, i = 1, 2 Holding cost of product i.
si, i = 1, 2 Selling price of product i (purchasing price of product i by the retailer).
K,K2 Production rate of supplier 1 and 2 respectively.
csi, i = 1, 2 Production cost of product i.
ws Defective items treatment cost per unit item.
p1 % of defective item.

Cases of retailer

Di Demand rate of product i.
spi, i = 1, 2 Selling price of product i.
Ari, i = 1, 2 Ordering cost of product i (OCIi).
csc Screening cost of product 1 per unit item.
hpi, i = 1, 2 Holding cost of retailer for product i.

Decision variables

m Number of shipments.
T1 Time of substitution.
T Time of one production cycle.
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3.2. Assumptions

While developing the model, the following assumptions are made

(1) There are two suppliers with two different brand of items and one retailer.
(2) The retailer sells two brands of the product and each supplier supplies one brand.
(3) An arrival of items from supplier 1 may contain a fraction of defective items. After the arrival of an order,

the retailer inspects and returns the defective items to the supplier 1 at the time of delivery of the next lot.
(4) Screening rate of item 1 is greater than its demand rate.
(5) To avoid shortage during the screening time, the number of good items is at least equal to demand during

screening time implies: p1 < 1− D1
x , x is the screening rate.

(6) Order from supplier 2 does not contain any imperfect items.
(7) The demand rate of both items are constant and unequal in general. Both items face their own demand.
(8) Substitution is allowed when the first item is out of stock and the second item replaces that immediately.
(9) The system operates for an infinite planning horizon.

4. Formulation of the mathematical model

In this two-echelon supply chain, in a single set up the supplier 1 as well as supplier 2 produces mQ1 and
mQ2 units respectively to reduce the production cost. During the production period, as soon as the first Q1

units of item 1 and Q2 units of item 2 have been produced, both supplier will deliver them to the retailer. The
production process of item 1 may be imperfect. An arriving order from supplier 1 may contain some defective
items with defective rate p1 whereas supplier 2 confirms the retailer that there will be no defective items in own
lots. By inspecting the items properly, supplier 2 sends item 2 to the retailer. So, upon the arrival of shipment,
the retailer only inspect item 1. After the screening process of item 1, the defective items will be returned to
the supplier 1 at the time of delivery of the next lot.

After the joint replenishment, both items face their own demand and the demands can be met up by the
perfect quality items. As a fraction p1 of defective item is present in supplier 1’s lot, the order quantity (1−p1)Q1

can not fulfill the demand of item 1 for the time T . After time T1, the inventory of item 1 depletes to zero and
its demand is subsequently satisfied by inventory of item 2. At time T , the inventory of item 2 drops to zero
and an instant joint replenishment for both items is triggered. The nature of the inventory level over time is
shown in Figure 5.

4.1. Supplier 1’s total profit per unit time

The holding cost for supplier 1 (HCs1) is given by

= hs1

[{
mQ1

(
Q1

K
+ (m− 1)T

)
− m2Q1

2

2K

}
−Q1T (1 + 2 + ...+ (m− 1))

]
(4.1)

= hs1

(
mQ1

2

K
+
m(m− 1)Q1T

2
− m2Q1

2

2K

)
Sales revenue (SRs1) = s1mQ1 (4.2)
Production cost (PCs1) = cs1mQ1 (4.3)
Defective items treatment cost (DTC) = wsp1mQ1. (4.4)

Therefore, supplier 1’s total profit per production cycle can be expressed as

TPs1(m,Q1) = SRs1 − (STCs1 + HCs1 + PCs1 + DTC) giving (4.5)

TPs1(m,Q1) = (s1 − cs1)mQ1 −
{
As1 + hs1mQ1

(
mQ1

K
+

(m− 1)T
2

− mQ1

2K

)
+ wsp1mQ1

}
. (4.6)
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Figure 5. Integrated inventory model with defective and stock-out based substitution.

Substituting Q1 = D1T1
1−p1 in (4.6), we get the total average profit per unit time for supplier 1 as

TAPs1(m,T ) =
TPs1(m,T )

mT
=

(s1 − cs1)D1T1

T (1− p1)
− As1
mT

− wsp1D1T1

T (1− p1)
− hs1D1T1

T (1− p1)

{
D1T1

K(1− p1)
+

(m− 1)T
2

− mD1T1

2K(1− p1)

}
·

(4.7)

4.2. Supplier 2’s total profit per unit time

The holding cost of supplier 2 (HCs2) is given by

= hs2

{
mQ2

2

K2
+
m(m− 1)Q2T

2
− m2Q2

2

2K2

}
(4.8)

Sales revenue (SRs2) = s2mQ2 (4.9)
Production cost (PCs2) = cs2mQ2. (4.10)
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Figure 6. Retailer’s inventory.

Therefore, supplier 2’s total profit per production cycle can be expressed as

TPs2(m,Q2) = SRs2 − (STCs2 + PCs2 + HCs2) which gives (4.11)

TPs2(m,Q) = (s2 − cs2)mQ2 −
{
As2 + hs2

(
mQ2

2

K2
+
m(m− 1)Q2T

2
− m2Q2

2

2K2

)}
· (4.12)

Now, substituting Q2 = (D1 +D2)T −D1T1, the total average profit per unit time becomes

TAPs2(m,T ) =
TPs2(m,T )

mT
= (s2 − cs2)

(
D1 +D2 −D1

T1

T

)
− As2
mT
− hs2

(
D1 +D2 −D1

T1

T

)
×
[

(D1 +D2)T −D1T1

K2
+
m− 1

2
− {(D1 +D2)T −D1T1}

2K2

]
· (4.13)

4.3. Retailer’s total profit per unit time

The retailer receives an order of item 1 containing defective items with defective rate p1, so the number of
good items 1 in a lot is = (1 − p1)Q1. On the time interval [0, T1], the governing differential equation of the
production inventory (Fig. 6) is given by

dI11
dt

= −D1 0 ≤ t ≤ T1, I11(T1) = 0 (4.14)

dI21
dt

= −D2 0 ≤ t ≤ T1, I21(0) = Q2. (4.15)

During the time interval [T1, T ], the variation of the inventory level of item 2 is given by

dI22
dt

= −D1 −D2 T1 ≤ t ≤ T, I22(T ) = 0. (4.16)

Utilizing the continuity at T1, we have I21(T1) = I22(T1) and get

Q2 = (D1 +D2)T −D1T1. (4.17)

However, I11(0) = (1− p1)Q1 gives

Q1 =
D1T1

(1− p1)
· (4.18)

Solving (4.14), (4.15) and (4.16) we get

I11 = D1(T1 − t). (4.19)
I21 = Q2 −D2t. (4.20)

and I22 = (D1 +D2)(T − t). (4.21)
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4.3.1. Item 1

Sales revenue (SRI1) = sp1(1− p1)Q1 (4.22)
Purchasing cost (PCI1) = s1Q1 (4.23)

Screening cost (SC) = cscQ1 (4.24)

Holding cost (HCI1) = hp1

∫ 1

0

D1(T − t) dt =
1
2
D1hp1T1

2. (4.25)

The total average profit for item 1 per unit time is given by

TAP1 = SRI1 − (OCI1 + HCI1 + PCI1 + SC)

=
1
T

[
sp1(1− p1)Q1 − s1Q1 − cscQ1 −Ar1 −

1
2
D1hp1T1

2

]
.

(4.26)

4.3.2. Item 2

Sales revenue (SRI2) = sp2Q2 (4.27)
Purchasing cost (PCI2) = s2Q2 (4.28)

Holding cost (HCI2) = hp2

[∫ T1

0

(Q2 −D2t) dt+
∫ T

T1

(D1 +D2)(T − t) dt

]
(4.29)

= hp2

[
Q2T1 −D2

T1
2

2
+ (D1 +D2)

(
T 2

2
− TT1 +

T1
2

2

)]
· (4.30)

The total average profit for item 2 is given by

TAPI2 = SRI2 − (OCI2 + HCI2 + PCI2)

=
1
T

[
sp2Q2 −Ar2 − s2Q2 − hp2

{
Q2T1 −D2

T1
2

2
+ (D1 +D2)

(
T 2

2
− TT1 +

T1
2

2

)}]
· (4.31)

Thus, the total average profit of the retailer becomes

TAPr =
1
T

[
sp1(1− p1)Q1 − s1Q1 − cscQ1 −Ar1 −

1
2
D1hp1T1

2 + sp2Q2 −Ar2

− s2Q2 − hp2
{
Q2T1 −D2

T1
2

2
+ (D1 +D2)

(
T 2

2
− TT1 +

T1
2

2

)}]
· (4.32)

Substituting Q1 and Q2 from (4.18) and (4.17) respectively, we get the equation (4.32) as

TAPr = sp1D1
T1

T
− D1s1T1

(1− p1)T
− Ar1

T
− cscD1T1

T (1− p1)
− hp1

2

{
D1T1

2

T
+
p1D1T1

1− p1

}
+ (sp2 − s2)

(
D1 +D2 −D1

T1

T

)
− Ar2

T
− hp2

{(
D1 +D2 −D1

T1

T

)
T1

+ (D1 +D2)
(
T

2
− T1

)
+
D1T1

2

2T

}
· (4.33)
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4.4. Model of joint SC management

Once the supplier and retailer have built up long-term cooperative relationship, they will jointly determine
the best policy for the mutual benefits. Accordingly, the joint average profit per unit time for the integrated
system is

z = sp2

(
D1 +D2 −D1

T1

T

)
− Ar2

T
− hp2

{(
D1 +D2 −D1

T1

T

)
T1 +

D1T1
2

2T

+ (D1 +D2)
(
T

2
− T1

)}
+ sp1D1

T1

T
− Ar1

T
− cscD1T1

T (1− p1)
− hp1

2

{
D1T1

2

T
+
p1D1T1

1− p1

}
− cs1D1τ

T (1− p1)
− As1
mT
− wsp1D1T1

T (1− p1)
− As2
mT
− cs2

(
D1 +D2 −D1

T1

T

)
− hs1D1T1

T (1− p1)

{
D1T1

K(1− p1)
+

(m− 1)T
2

− mD1T1

2K(1− p1)

}
− hs2

(
D1 +D2 −D1

T1

T

){
(D1 +D2)T −D1T1

K2
+
m− 1

2
− {(D1 +D2)T −D1T1}

2K2

}
· (4.34)

Therefore, the final problem of the integrated profit per unit time becomes
Maximize z(m,T1, T )
Subject to Q1 = D1T1

1−p1
Q2 = (D1 +D2)T −D1T1 for 0 < T1 < T.

(4.35)

4.5. Particular cases

(1) No substitution. If we put T1 = T and p1 = 0 in our proposed model, then we get

z = sp2D2 −
Ar1 +Ar2

T
− 1

2
hp2D2T + sp1D1 − cscD1 −

1
2
hp1D1T

− cs1D1 −
As1 +As2

mT
− cs2D2 − hs1D1

{
D1T

K
+

(m− 1)T
2

− mD1T

2K

}
− hs2D2

{
D2T

2K2
+
m− 1

2

} (4.36)

which is the integrated supplier–retailer problem with no substitution.
(2) Full substitution. Assuming T1 = 0 and p1 = 1 in (4.35), the proposed model corresponds to the full

substitution model. As item 1 is fully substituted by item 2, supplier 1 and inventory of item 1 will be
absent here. Therefore, the full substitution inventory model becomes

z = sp2 (D1 +D2)− Ar2
T
− 1

2
hp2(D1 +D2)T − As2

mT
− cs2 (D1 +D2)

− hs2 (D1 +D2)
{

(D1 +D2)T
K2

+
m− 1

2
− (D1 +D2)T

2K2

}
· (4.37)

(3) If we assume supplier 2’s and item 2’s parameters are zero in (4.36)
As2, Ar2, hs2, hp2, sp2, cs2, csc = 0 then (4.36) reduces to

z = sp1D1 −
Ar1
T
− 1

2
hp1D1T −

As1
mT
− hs1D1

{
D1T

K
+

(m− 1)T
2

− mD1T

2K

}
· (4.38)

The corresponding cost function (4.38) assumes value

z
′

=
Ar1
T

+
1
2
hp1D1T +

As1
mT

+ hs1D1

{
D1T

K
+

(m− 1)T
2

− mD1T

2K

}
(4.39)
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Figure 7. Schematic overview of the fuzzy model under TDFLS.

which is the basic supply chain problem with one supplier and one retailer.
(4) If we put the cost parameters associated with supplier 1 tending to zero, then

z =
Ar1
T

+
1
2
hp1D1T. (4.40)

which is the classical EOQ model.

5. Implication of TDFLS in Supply Chain (SC) management

The current research in application of fuzzy set is developed to capture the linguistic ambiguity in our
day to day life. In decision-making problem, the ambiguity can be reduced through continuous practices. This
kind of situation in inventory management problem basically dealt with through learning experiences. Incor-
porating the concept of learning experience in fuzzy set, the TDFS has been developed and which has the
property to reduce the uncertainty. In practical situation, though learning experience has been applied, but
it is impossible to predict the future situations exactly. Something might go wrong due to several constraints
over complex situations. But the DM are intelligent enough to control the cost of the inventory of the supply
chain as per situation arise. To deal with these kind of situation TDFLS plays an important role. In TDFLS,
Ã =

(
a{1− ρ( 1

k −
1

n+1 )}, a, a{1− ρ( 1
k −

1
n+1 )}

)
and the index I(Ã) = a{1 + σ−ρ

4k }. Now, the DM can accept or
reject a decision based on the situation by using the proper key k. Moreover, the fuzzy inference scheme based
on dense fuzzy lock set is shown in Figure 7.

6. Fuzzy mathematical model

Suppose, the parameters associated with (4.35) assume flexible values by nature. We assume the cost param-
eters of the problem namely, as TDFLS. We shall solve the problem with TDFLS over learning effects for single
key and double key respectively. Recalling (4.34), the total average inventory profit is defined as:

z =
2∑
i=1

cifi −
14∑
j=3

cjfj (6.1)

where c1 = sp1, c2 = sp2, c3 = Ar1, c4 = Ar2, c5 = hp1, c6 = hp2, c7 = csc,

c8 = ws, c9 = As1, c10 = As2, c11 = cs1, c12 = cs2, c13 = hs1, c14 = hs2,
(6.2)
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and f1 = D1
T1

T
, f2 =

(
D1 +D2 −D1

T1

T

)
, f3 =

1
T

= f4, f7 =
D1T1

T (1− p1)
,

f5 =
1
2

{
D1T1

2

T
+
p1D1T1

1− p1

}
, f8 =

p1D1T1

T (1− p1)
, f9 =

1
mT

= f10,

f11 =
D1T1

T (1− p1)
, f12 =

(
D1 +D2 −D1

T1

T

)
,

f6 =
{(

D1 +D2 −D1
T1

T

)
T1 +

D1T1
2

2T
+ (D1 +D2)

(
T

2
− T1

)}
,

f13 =
D1T1

T (1− p1)

{
D1T1

K(1− p1)
+

(m− 1)T
2

− mD1T1

2K(1− p1)

}
,

f14 =
(
D1 +D2 −D1

T1

T

){
(D1 +D2)T −D1T1

K2
+
m− 1

2
− {(D1 +D2)T −D1T1}

2K2

}
· (6.3)

Now we assume the cost vector moves towards a triangular dense fuzzy lock set and the corresponding fuzzy
expected average profit function can be redefined as

z̃ =
2∑
i=1

c̃ifi −
14∑
j=3

c̃jfj (6.4)

where

c̃i =


(
ci0

{
1− ρi

(
1
k1i
− 1

1+n

)}
, ci0, ci0

{
1 + σi

(
1
k2i
− 1

1+n

)})
for TDFLSDK(

ci0

{
1− ρi

(
1
ki
− 1

1+n

)}
, ci0, ci0

{
1 + σi

(
1
ki
− 1

1+n

)})
for TDFLSSK(

ci0

{
1− ρi

k1

}
, ci0, ci0

{
1 + σi

k2

})
for general fuzzy.

(6.5)

Here, we shall study the model under general fuzzy and dense fuzzy lock set approach for single key and double
key vector.

6.1. Solution Algorithm

We develop the solution procedure of the proposed fuzzy model (6.4) for three different cases. Since lock plays
a vital role in TDFLS, we shall solve the fuzzy model for TDFLSSK, TDFLSDK and general fuzzy environment.

Step 1. By using the defuzzification rule given in Section 2, we find the index value of problem (6.4) as

I(z) =
2∑
i=1

ci0

{
1 + σi−ρi

4ki

}
fi −

14∑
j=3

cj0

{
1 + σj−ρj

4kj

}
fj for TDFLSSK,

I(z) =
2∑
i=1

ci0

{
1 + 1

4

(
σi

k2i
− ρi

k1i

)}
fi−

14∑
j=3

cj0

{
1 + 1

4

(
σj

k2j
− ρj

k1j

)}
fj for TDFLSDK and general fuzzy.

Step 2. We find the key vector for all cost parameters for TDFLSSK, TDFLSDK following the constraints
given in equations (2.3)–(2.6) in Section 2. For general fuzzy, the key vector can be chosen randomly.

Step 3. Substituting the value of the key vector in the index value of the profit function for each of the three
environment, the defuzzified problem can be represented by{

Maximize I(z) =
∑2
i=1 ci0

{
1 + 1

4

(
σi

k2i
− ρi

k1i

)}
fi −

∑14
j=3 cj0

{
1 + 1

4

(
σj

k2j
− ρj

k1j

)}
fj

Subject to Q1 = D1T1
1−p1 , Q2 = (D1 +D2)T −D1T1 for 0 < T1 < T.

(6.6)

For TDFLSSK, we put k1i = k2i = ki.
Step 4. Optimize the problem (6.6) and get the optimal solution of the decision variables m∗, T ∗1 , T

∗, Q∗
1, Q

∗
2, z

∗

for TDFLSSK, TDFLSDK and general fuzzy models.
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Table 1. Optimal value of the key vectors.

Single key vector Value Double key vector Value

k1 0.18 {k13, k23} {0.065, 0.065}
k2 3.01 {k14, k24} {0.21, 0.23}
k3 0.074 {k11, k21} {0.52, 0.072}
k4 0.018 {k12, k22} {0.82, 0.024}
k5 1.14 {k15, k25} {2.88, 0.31}
k6 1.08 {k16, k26} {0.045, 0.13}
k7 0.35 {k17, k27} {2.19, 0.15}
k8 0.89 {k18, k28} {0.095, 0.079}
k9 27.78 {k19, k29} {425, 0.13}
k10 114 {k110, k210} {450, 0.17}
k11 2.69 {k111, k211} {0.87, 0.23}
k12 0.64 {k112, k212} {2.25, 0.77}
k13 0.54 {k113, k213} {0.42, 0.13}
k14 1.29 {k114, k214} {0.25, 0.15}

7. Numerical examples

Let us take the following parametric values as Ar1 = 80, Ar2 = 90, sp1 = 260, sp2 = 280, hp1 = 4.8,
hp2 = 4.5, csc = 8, ws = 7.6, As1 = 100 000, As2 = 120 000, cs1 = 50, cs2 = 40, hs1 = 4.7, hs2 = 4.3, D1 = 200,
D2 = 90,K = 300,K2 = 150, p1 = .09.

For TDFLS, we assume the ρi’s and σi’s as ρ1 = 0.01, ρ2 = 0.06, ρ3 = 0.13, ρ4 = 0.11, ρ5 = 0.48,
ρ6 = 0.01, ρ7 = 0.27, ρ8 = 0.03, ρ9 = 0.17, ρ10 = 0.15, ρ11 = 0.07, ρ12 = 0.45, ρ13 = 0.009, ρ14 = 0.08 and
σ1 = 0.2, σ2 = 0.49, σ3 = 0.53, σ4 = 0.27, σ5 = 0.67, σ6 = 0.3, σ7 = 0.34, σ8 = 0.17, σ9 = 0.27, σ10 = 0.34,
σ11 = 0.5, σ12 = 0.77, σ13 = 0.3, σ14 = 0.32.

Now, the company has a certain budget range for every project/planning according to the market. So, the
manufacturer/DM has a monetary range for every cost parameters upon which they will not exceed/lower
the value. The upper and lower bound are given by: Ar1U = 188, Ar1L = 35, Ar2U = 294, Ar2L = 42,
sp1U = 330, sp1L = 120, sp2U = 290, sp2L = 120, hp1U = 5, hp1L = 2.2, hp2U = 4.8, hp2L = 2, cscU = 8.5,
cscL = 3.8, wsU = 7.9, wsL = 3.2, As1U = 100 090, As1L = 49 990, As2U = 120 050, As2L = 59 990, cs1U = 52,
cs1L = 24, cs2U = 45, cs2L = 18, hs1U = 5.2, hs1L = 2.1, hs2U = 4.5, hs2L = 1.8.

Exploiting the equations (2.3)–(2.6) from Section 2, we determine the single key and double key vectors in
Table 1.

Utilizing the solution algorithm (6.1), we get the solution given in Table 2.
Also, we have provided the optimal solution for the other two cases: no substitution and full substitution in

Table 3.

7.1. Discussion on numerical examples

In crisp case, the total average profit is $51 158.09 with respect to the cycle time 7.1 months for the replenish-
ment of item 1 and item 2 as 507.07 and 1597.27 units respectively. After 2.31 months cycle time, the inventory
of item 1 becomes zero and substitution by item 2 is required.

From Table 2, we have observed that the general fuzzy solution of the model assumes higher profit than the
crisp model as well as TDFLSSK model. The general fuzzy ($75 992.56) model increases the profit value and
the order quantity of items are very less but the number of delivery increases to 10 times than crisp.

We have shown the result for TDFLSSK and TDFLSDK. The TDFLSDK gives larger profit than TDFLSSK.
In TDFLS single key, the decision depends on one DM, so to be in the safer situation the decision will be subtle.
But with double key double views, the risk, experiences will make the decision more stronger and higher. In
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Table 2. Optimal solution of the model.

m z T1 T Q1 Q2

3 50 679.76 1.75 9.68 383.98 2458.83
Crisp 4 51 158.09 2.31 7.1 507.07 1597.27

5 49 972.96 2.55 5.66 559.58 1131.60
45 75 957.42 0.7 0.7 153.81 62.99

General fuzzy 46 75 992.56 0.52 0.76 113.50 116.01
47 75 967.04 0.67 0.67 147.79 60.52
22 58 898.09 0.96 1.45 210.61 227.82

TDFLSSK 23 58 932.66 0.92 1.39 202.82 218.30
24 58 532.07 1.20 1.20 264.16 108.17
48 78 940.81 0.66 0.66 144.23 59.06

TDFLSDK 49 80 747.37 0.49 0.71 106.76 108.79
50 78 945.53 0.63 0.63 138.93 56.89

Table 3. Optimal solution of the model for particular cases.

m z T1 T Q1 Q2

No substitution 70 46 855.41 0.44 0.44 87.61 39.43
Full substitution 176 66 870.27 0 0.5 ... 145.93

TDFLSSK, the substitution time, cycle time, the quantity replenished of items is approximately double than
in TDFLSDK. In Table 3, the profit in partial substitution is less than the profit in no substitution and greater
than the profit in full substitution. So, from Table 3, we observe substitution benefits supplier–retailer.

In the whole table, TDFLSDK gives the best result among all other environments in terms of profit function
as well as replenishment quantity of items. Also, we have observed that the profit function grows with the rise
in number of deliveries of the system.

8. Sensitivity analysis

We compute the values of the objective function (4.35) under the sensitivity of the parameters
{D1, D2,K,K2, p1} from {−30% to +30%} and this can be shown in the following Table 4.

8.1. Discussion on sensitivity analysis

Table 4 shows the change in the profit function and other decision variables when a certain value in the
parameter is being changed. A +30% change in the demand of item 1 increases the profit by 25.75% as well
as −30% change reduces the profit by −14.21%. From the change in D1 we see that with increment in D1

from −30% to +30%, the profit function and the replenishment quantity of item 1 is increasing. The nature of
the parameter D2 is approximately same as D1 i.e. as the parametric value of D2 increases the profit function
grows. Likewise the parameter D1, the parameter D2 is also very sensitive. Now, the parameters {K, p1} are
moderately sensitive and at any change in the parameters from −30% to +30%, the change in profit assumes
constant (8.12%). The production rate of item 2, K2, shows a mix behavior. By +30% change the profit increases
12.29% but at −20% decrement there is negligible change in the profit function.

From the whole Table 4, for the parameters {D1, D2,K2}, the change from −30% to +30% the profit is
increasing whether the parameters K, p1 fixes the profit by 8.12%. Most of the cases 3 deliveries or replenishment
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Table 4. Sensitivity Analysis of the EPQ model.

Parameter % change m z T1 T Q1 Q2
z−z∗

z∗ × 100%

+30 3 64 332.4 1.62 8.42 462.94 2527.67 25.75
D1 +20 3 61 625.79 1.13 9.05 298.49 2716.26 20.46

−20 4 46 012.47 1.34 8.57 235.49 1928.63 −10.06
−30 4 43 890.37 0.35 9.95 54.68 2239.32 −14.21
+30 3 59 960.64 0.81 9.57 178.78 2871.00 17.21

D2 +20 3 58 856.28 0.4 9.99 87.87 2998.72 15.05
−20 3 50 714.42 0.0016 10.1 0.35 2745.97 −0.87
−30 3 48 453.23 0.0016 10.03 0.35 2636.76 −5.29
+30 3 55 310.45 0.0016 10.29 0.35 2984.32 8.12

K +20 3 55 310.45 0.0016 10.29 0.35 2984.32 8.12
−20 3 55 310.45 0.0016 10.29 0.35 2984.32 8.12
−30 3 55 310.45 0.0016 10.29 0.35 2984.32 8.12
+30 4 57 447.97 0.0016 9.09 0.35 2634.54 12.29

K2 +20 4 55 380.22 0.83 8.28 181.95 2235.31 8.25
−20 3 51 095.65 2.26 9.03 496.32 2167.91 −0.12
−30 3 48 639.05 3.38 8.45 743.03 1774.92 −4.92
+30 3 55 310.28 0.0016 10.29 0.37 2984.33 8.12

p1 +20 3 55 310.3 0.0016 10.29 0.37 2984.33 8.12
−20 3 55 310.55 0.0016 10.29 0.36 2984.31 8.12
−30 3 55 310.6 0.0016 10.29 0.34 2984.31 8.12

Figure 8. The total average profit for different models.

are sufficient to optimize the model. The parameter D1 gives the maximum profit and the minimum profit for
a +30% change and −30% change respectively.

9. Graphical illustration

Here we shall draw the graphs over the data set obtained in Tables 1–4.
Figure 8 shows the total average profit for different models. The profit function attains the larger value for

TDFLSDK and lower value for crisp environment. Figures 9 and 10 correspond the replenishment quantity of
item 1 and item 2 for different environments. The nature of the graphs 9 and 10 are approximately same. In
crisp environment, order quantity carries maximum value whereas the other cases order quantity gets minimum
value. Also, we observe the Figure 8 is completely opposite in nature to Figures 9 and 10. So, for the proposed
model, less amount of order quantity maximizes the profit function. Figure 11 explores the deviation of the total
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Figure 9. Item 1 replenishment for different models.

Figure 10. Item 2 replenishment for different models.

Figure 11. Average profit under % change in parameters.

average inventory profit with respect to the % change in the non-fuzzy parameters. A change in the parameters
{D1, D2,K2} from −30% to +30%, the curve of profit function is increasing and that for the parameter K, p1;
the curve remains constant.
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10. Managerial insights

From the numerical study we have seen that the TDFLSDK gives maximum profit with respect to the other
models like crisp, general fuzzy and TDFLSSK. However, it is also seen that the order quantities of supplier I
and supplier II are maximum for the case of crisp model but both of them getting minimized for the case of
TDFLSDK. Also, the substitution time of order quantity and time of one production cycle assume minimum
with respect to the model of single key. Beyond this, the basic nature of managerial insights for this study can
be defined as follows:

– To avoid demand-supply mismatch stockout-based substitution is beneficial.
– Stock the product whose primary demand is zero because in stockout situation the secondary choice becomes

the first choice of the customer.
– Substitution approach gives more profits to the inventory management system.
– Substitution raises inventory order quantity which is beneficial for the retailer.
– This model helps to maintain customer service commitment.
– To maintain democracy in managerial systems a scope has been opened for multiple keys of the fuzzy locks.

11. Conclusion

In this study we have developed an integrated supplier–retailer production inventory model considering
stockout-based substitution. In the past literature, a considerable amount of work have been done in stochastic
environment. In deterministic model, inventory with substitutable products are only available in EOQ or EPQ
models. In this study, we develop a deterministic mathematical model for integrated inventory with two products
substitution first. Then we have incorporated non random uncertainty in cost vectors and utilized the TDFLS
rule for final decision making. We have analyzed the situation of no substitution, partial substitution and
full substitution. Also, we have shown that substitution of items is profitable for the retailer. The inventory
dealing with TDFLS is quite new. The application of TDFLS in inventory benefits both supplier and retailer
as TDFLSDK gives the highest inventory profit for the proposed model.

However, this model has some limitations where imperfect items may be found during transportations or
shipments. Also, for the case of full substitution the replenishment of supplier I’s order quantity is less important
for the retailer which is not useful for both the suppliers and retailer.

Scope of future work

This model can be extended to multi-suppliers, multi-retailer and also for multi-items supply chain modelling.
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