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FLUID M/M/1 CATASTROPHIC QUEUE IN A RANDOM ENVIRONMENT

Sherif I. Ammar1,2,∗

Abstract. Our main objective in this study is to investigate the stationary behavior of a fluid catas-
trophic queue of M/M/1 in a random multi-phase environment. Occasionally, a queueing system expe-
riences a catastrophic failure causing a loss of all current jobs. The system then goes into a process of
repair. As soon as the system is repaired, it moves with probability qi ≥ 0 to phase i. In this study, the
distribution of the buffer content is determined using the probability generating function. In addition,
some numerical results are provided to illustrate the effect of various parameters on the distribution of
the buffer content.
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1. Introduction

In recent years, studies on queueing systems in a random environment have become extremely important owing
to their widespread application in telecommunication systems, advanced computer networks, and manufacturing
systems. In addition, studies on fluid queueing systems are regarded as an important class of queueing theory;
the interpretation of the behavior of such systems helps us understand and improve the behavior of many
applications in our daily life.

A fluid queue is an input-output system where a continuous fluid enters and leaves a storage device called a
buffer; the system is governed by an external stochastic environment at randomly varying rates. These models
have been well established as a valuable mathematical modeling method and have long been used to estimate
the performance of certain systems as telecommunication systems, transportation systems, computer networks,
and production and inventory systems. Readers may refer to Anick et al. [3], Mitra [17], Elwalid and Mitra [8],
Knessl and Morrison [14], Stern and Elwalid [23], Bekker and Mandjes [6], and Latouche and Taylor [16] for
more details.

Interest in understanding the behaviors of these systems has resulted in an abundance of diverse studies.
Studies on fluid queueing systems have mainly been divided into two types, i.e., those under nonstationary and
stationary states.
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In addition, the emergence of certain concepts (vacations and disasters) have had a clear impact on the
classification of such studies into two main categories: studies on classical fluid queueing systems and studies
on fluid queueing systems with vacations, disasters, or both.

In this paper, we discuss previous studies pertaining to the current research topic. In [15], providing example
studies on stationary behavior for classical fluid queueing systems, the author arranged the last studies on the
fluid model driven by a stochastic environment with finite states and applied a general construction to analyze
the system using a spectral analysis. In addition, the obtainable results and the solution methodology congruent
to the system of the fluid queue driven by an external environment are outlined. In [29], Virtamo and Norros
considered a fluid queue of M/M/1. The authors obtained a solution for the distribution of buffer content in a
simple integral form, given the explicit expression of the associated individual vectors in terms of second-class
Chebyshev polynomials. Nevertheless, numerous published papers on this subject, such as that by Adan and
Resing [1], have represented the background process as a fluctuating restitution, transacting with successive
idle and busy periods of an M/M/1 queue. In addition, Parthasarathy et al. [19] obtained complete solutions
for a stationary buffer occupancy distribution as well as the buffer content using a continuous fraction method.
Moreover, Barbot and Sericola [4] created an original analytical expression relating to the stationary buffer level
solution and the M/M/1 queue status. Sericola and Tuffin [21] also developed an iteratively stable algorithm
to address the distribution of the stationary buffer content of a fluid queue driven by a Markov queue as a
PH/PH/N/L queue for both L < +∞ and L = +∞.

In addition, there have been several papers published on a stationary fluid queueing system with disasters.
Vijayalakshim and Thangaraj [24] analyzed the transient behavior of a fluid model operated by an M/M/1
queue with a disaster. A study on a stationary fluid queue driven by an M/M/1 queue subject to disasters and
subsequent repair was conducted by Vijayashree and Anjuka [25]. Vijayashree and Anjuka [26] implemented a
stationary fluid queue model driven by a disaster M/M/1 queue. In addition, Ammar [2] derived an explicit
expression for the buffer content distribution in a fluid queue driven by an M/M/1 disaster queue for the
stationary distribution function. Anjuka and Vijayashree [27] explored a stationary analysis of a queueing model
driven by a disaster M/M/1/N queue and subsequent repair. Xu et al. [30] recently examined the stationary
behavior of a fluid M/M/1 queue with working vacations and policies for negative customers. Using the Laplace
transform method, they obtained the mean of the buffer content and the probability of an empty buffer.

By contrast, to interpret the behavior of many aspects in our lives, there has been an increasing tendency to
study queueing systems in a random environment. Excellent surveys on the infinite server queue in a random
environment have been reported [5, 7, 9, 18].

Disaster queueing systems in a random environment have resulted in several studies, particularly a disaster
analysis of single server queue behavior in a random environment. For instance, in a multi-phase random
environment, Paz and Yechiali [20] considered an M/M/1 queue in which the system occasionally suffers from a
disastrous failure causing the loss of all current jobs. They analyzed the behavior of this system in a steady state
by finding the system probabilities and some performance measures. Using the supplementary variable technique,
Jiang et al. [12] researched an M/G/1 queue in a multi-phase random environment with disasters. They obtained
the distribution for a stationary queue and extracted the results of a cycle analysis, the distribution of the
sojourn time, and the length of the working time during a service cycle. Vinodhini and Vidhya [28] proposed a
dynamically changing traffic model in a multi-phase random system as an M/M/1 disaster queue. They obtained
the steady state probabilities and some performance measures using a geometric matrix and function method
generation. In addition, Jiang and Liu [10] studied a single GI/M/1 disaster queue in a multi-phase service
environment. Using an analytical matrix approach and a semi-Markov process, they obtained a stationary queue
length distribution at both the arrival and arbitrary times. Jiang and Liu [11] discussed the stationary behavior
of a single server GI/M/1 queue in a multi-phase service environment with disasters and working breakdowns.
They obtained the queue length distribution at both the arrival and arbitrary periods through an analytic
matrix approach and a semi-Markov process. They also provided an elaborate analysis of some performance
measures and the sojourn time distribution of an arbitrary customer. Jiang et al. [13] presented an N-policy
GI/M/1 queue in a multi-phase service environment with disasters in which they derived the stationary queue
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length distribution; the distribution is then used for the computation of the Laplace Stieltjes transform of the
sojourn time of an arbitrary customer and the server working time within a cycle. Sherman and Kharoufeh [22]
investigated an M/M/1 retrial queue with an unreliable server. An exogenous random environment modulates
the arrival, service, failure, repair, and retrial rates of the server. They were able to find the conditions for
stability, the distribution of the orbit size, and the mean queueing performance measures described using an
analytic matrix method.

It is clear from previous studies that there is a growing interest in studying both fluid queueing systems and
queueing systems in a random environment, which have numerous applications in different fields.

The motivation of our model is derived from computer networking. As an example, we considered a storage
area network (SAN), which is a mass storage setting used to provide improved capacity and high-speed network
services. A SAN consists of one or more servers connected to storage devices, such as hubs, routers, and bridges,
through switching devices. Because linking control between the capacity gadgets and customers is the key job
of a SAN server, such servers are the main targets of distributed denial-of-service attacks (DDoS attacks).
DDoS assaults result in the unavailability of all network infrastructure and information to the intended clients;
destroyed data cannot be retrieved. Another practical motivation of this study stems from the application
used in call centers. Recently, with the increasing advancement of the service industry, as a direct medium for
engaging with consumers, customer service call centers are one of the main components of service businesses
and can offer ticketing, consultancy, and telephone banking, among other services. Call centers can therefore be
modeled as catastrophic fluid queueing systems in a random environment, where the workers in the call centers
and calls reconcile with the servers and customers, respectively. For instance, an automatic call distributor
instantly assigns an incoming call to the server in a call center if the server works upon arrival. Otherwise, no
calls are received if the system goes down. An automatic call distributor provider distributes the incoming calls
for processing to a server, which occurs with a certain possibility. Thus, all incoming calls are distributed for
processing. In addition, the rate of call handling can be adjusted according to the number of calls to increase
the quality of the service and decrease the online waiting times for customers. If the number of calls is less
than a certain value after a processing period, the call center can reduce its processing rate (e.g., decrease the
number of online employees); otherwise, if the number of calls is greater than a certain value, customer service
can increase the processing rate of the call center (e.g., increase the number of online employees). Assuming the
service area is divided into n different levels and that each level has a specific server during a period of time, the
probability that the incoming call is in the ith level is qi, i = 1, 2, . . . , n. In addition, suppose that the arrival
rate of incoming calls is λi and that the service rate of the processing is µi. Motivated by this application, we can
structure an M/M/1 catastrophic fluid queue in a multi-phase Markovian environment. Finally, a catastrophe
can be described as a machine breakdown that causes all processing work in the manufacturing systems to be
decimated. In addition, it is taken from the field of transportation. In the case of an accident or damage to a
car, for example, the vehicles are evacuated to another highway (in other words, they are lost) and new vehicles
arriving on the road wait for the road to be repaired.

To the best of our knowledge, there have been no studies dealing with a fluid queueing system under a
catastrophe in a random environment. The advantages and contributions of this study are as follows:

– System: a novel fluid catastrophe queue in a random environment is presented. This system is suitable
for reflecting the characteristics of customer services and conducting a performance analysis for modern
customer service call centers and computer networks.

– Methodology and results: we first adopt a generating function and Laplace transform to obtain the stationary
probabilities, and then, based on the expressions of the stationary probabilities, we compute the buffer
content distribution.

– Numerical illustrations: a numerical analysis is included in this study for illustrative purposes. Moreover,
using some numerical examples, we discuss the effect of different parameters on the proposed system
and show that they play an important role in changing the general behavior of the system under
consideration.
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Figure 1. State transition diagram of an M/M/1 disaster queue in a random environment.

Using the generating function technique, the stationary probabilities are expressed in terms of a modified
Bessel function of the first kind.

The structure of this study is as follows: We begin in Section 2 by describing the system under consideration.
In Section 3, we present the stationary equations of the system under study. In Section 4, we obtain the stationary
probabilities for the fluid queueing system under consideration. The results of a special case are then presented
in Section 5. Section 6 describes a numerical illustration to clarify the general behavior of the fluid queueing
system.

2. Model description

Consider an M/M/1 queueing system experiencing a catastrophe in a random multi-phase environment.
Under environment i, i = 1, 2, . . . , n, the rates of arrivals and services performed at the Poisson process arrival
rate λi and the service times are distributed exponentially at µi. The period of time during which the sys-
tem remains in phase i is exponentially distributed with mean ηi, that is, the catastrophe interval periods
in phase i are distributed exponentially at a rate of 1/ηi, i = 1, 2, . . . , n. When the system operates in phase
i, i = 1, 2, . . . , n, the system often suffers a catastrophic failure that causes it to transfer to phase 0.

A catastrophic occurrence causes all current customers to leave the system. In the event of a disaster, the
server abandons the service and the system will immediately undergo a repair process. The repair time is
distributed at an exponential rate of η0. During the 0 phase, the arrival rate of a Poisson process is λ0.

After the system is repaired, it moves directly with probability qi, i = 1, 2, . . . , n to the operating process i,
where

∑∞
i=1 qi = 1. Thus, a transition among the operating phases is not allowed. When a catastrophe occurs,

the system moves to phase 0 first, and then moves to phase i with a probability qi. A state transition diagram
of the background queueing model is shown in Figure 1.

3. Analysis of fluid queue

This section deals with the stationary analysis of a fluid queue modulated by an M/M/1 fluid catastrophe
queue in a random multi-phase environment. Let C(t) be the buffer content at time t. This is a non-negative
random variable; the content of the buffer cannot decrease when the buffer is empty. That is,

dC(t)
dt

=

 r0, (U(t), X(t)) = (0, 0), C(t) > 0,
0, (U(t), X(t)) = (0, 0), C(t) = 0
r, (U(t), X(t)) = (0,m), (i,m), i = 1, 2, . . . , n, m ≥ 1.
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This means that when the background queueing system is not empty and the system is within an operative
phase and under a regular busy period, the buffer content linearly increases at a rate of r > 0. By contrast,
the buffer content linearly decreases at a rate of r0 < 0, when the system is in a failure phase or when it
is empty. The stochastic process {U(t), X(t)} under the aforementioned assumption is two-dimensional and
describes the system at any time t as follows: Here, U(t) denotes the system state at any time t (0 = failure
phase; 1, 2, . . ., n = operating phase), and X(t) denotes the number of customers in the system (0, 1, 2, . . .).
The bivariate process {U(t), X(t); t ≥ 0} is a Markov chain with state space Ω = {0, 1, 2, . . . , n} × Z+, where
Z+ = {0, 1, 2, . . .}.

Clearly, the three dimensional process {(U (t) , X (t) , C (t)) , t ≥ 0} represents a fluid queue driven by an
M /M /1 catastrophic queue in a random environment subject to a stability condition given by the following:

ρi = λi/µi < 1, i = 1, 2, . . . , n, d = r0π00 + r

∞∑
m=1

π0m + r

n∑
i=1

∞∑
m=0

πim < 0,

where πim represents the steady state probability of a background queueing model to be in state (i,m). Readers
may refer to Paz and Yechiali [20] for more details.

3.1. Stationary equations

For any (i,m) ∈ Ω, we define Fim(t, u) = P{U(t) = i, C(t) ≤ u,X(t) = m}. Then, {Fim(t, u), (i,m) ∈ Ω} are
joint probability distribution functions of the Markov process {U(t), X(t), t ≥ 0} at time t. When the process
{U(t), X(t), t ≥ 0} is stable, we write Fim(u) = lim

t→∞
Fim(t, u), ((i,m) ∈ Ω). Which are independent of the initial

state of the process.
The stationary distribution function of the buffer content is given by

F (u) = lim
t→∞

P {C (t) ≤ u} =
∞∑
m=0

F0m(u) +
n∑
i=1

∞∑
m=0

Fim(u).

Similar to the standard probability arguments (see, e.g., [29]), it can be seen that the stable joint probability
density sequence {Fim(u), (i,m) ∈ Ω} satisfies the following differential equation system:

For the failure phase i = 0

r0
dF00(u)

du
= −(λ0 + η0)F00(u) +

n∑
i=1

ηi

∞∑
m=0

Fim(u), (3.1)

r
dF0m(u)

du
= λ0F0,m−1(u)− (λ0 + η0)F0m(u), m ≥ 1. (3.2)

For i = 1, 2, . . . , n

r
dFi0(u)

du
= −(λi + ηi)Fi0(u) + µiFi1(u) + η0qiF00(u), m = 0 (3.3)

and

r
dFim(u)

du
= −(λi + µi + ηi)Fim(u) + λiFi,m−1(u) + µiFi,m+1(u) + η0qiF0m(u), m ≥ 1 (3.4)

subject to the boundary conditions.

F00 (0) = a, Fim (0) = 0, (i,m) ∈ Ω/ (0, 0) . (3.5)

To determine the constant a, which represents the F00 (0), adding equations (3.1) to (3.4) yields

r0
dF00 (u)

du
+ r

∞∑
m=1

dF0m (u)
du

+ r

n∑
i=1

∞∑
m=0

dFim (u)
du

= 0. (3.6)
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Integrating (3.6) from zero to infinity gives

r0 (F00 (∞)− F00 (0)) + r

∞∑
m=1

(F0m (∞)− F0m (0)) + r

n∑
i=1

∞∑
m=0

(Fim (∞)− Fim (0)) = 0. (3.7)

Note that

Fi,m (∞) = lim
t→∞

P {U (t) = i, X (t) = m, C (t) ≤ ∞} = P {U = i, X = m} = πim, (i,m ∈ Ω) .

Using the boundary condition represented by (3.5), we obtain the following:

r0 (π00 − a) + r

∞∑
m=1

π0m + r

n∑
i=1

∞∑
m=0

πim = 0 (3.8)

which upon simplification yields

a =
r0π00 + r

∑∞
m=1 π0m + r

∑n
i=1

∑∞
m=0 πim

r0
=

d

r0
· (3.9)

Therefore, the constant a is explicitly given by

a =
(r0 − r)π00 + r

r0
, (3.10)

where π00 is given by Paz and Yechiali [20].

4. Stationary analysis

In this section, we address the stationary probabilities of the queueing system described in the previous
section using the technique of generating functions and a Laplace transform.

4.1. Evaluation of Fim(u)

Define the probability generating function Gi(s, u), i = 1, 2, . . . , n for the stationary probabilities as

Gi(s, u) =
∞∑
m=0

Fim(u)sm, |s| ≤ 1. (4.1)

Using the system of equations (3.3) and (3.4), we obtain a linear differential equation, i.e.,

∂Gi(s, u)
∂u

=
[
λis

r
+
µi
rs
−
(
λi + µi + ηi

r

)]
Gi(s, u) +

µi
r

(
1− s−1

)
Fi0(u) +

η0q0
r

∞∑
m=0

F0m(u)sm

integrating

Gi(s, t) =
∫ u

0

{
µi
r

(
1− 1

s

)
Fi0(u) +

η0qi
r

∞∑
m=0

F0m(u)sm
}

× e−(λi+µi+ηi/r)(u−y)e−(λis/r+µi/rs)(u−y)dy, (4.2)

where ωi = λi+µi+ηi

r .

It is well known that if αi = 2
√
λiµi

r and βi =
√
λi/µi, then

exp
[(

λis

r
+
µi
rs

)
u

]
=

∞∑
m=−∞

(βis)mIm(αiu), (4.3)
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where Im(.) is a modified Bessel function of the first kind. Comparing the coefficients of sm on both sides of
(4.2), we obtain m ≥ 1 and i = 1, 2, . . . , n.

Fim(u) =
µiβ

m
i

r

∫ u

0

Fi0(y)e−ωi(u−y) [Im(αi(u− y))− βiIm+1(αi(u− y))] dy

+
η0qi
r

∫ u

0

∞∑
k=0

F0k(y)βm−ki Im−k(αi(u− y))e−ωi(u−y)dy. (4.4)

The aforementioned equation holds for m = −1,−2,−3, . . . , with the left-hand side replaced by a zero.
Using I−m(.) = Im(.) for m = 1, 2, 3, . . . ,

0 =
µiβ
−m
i

r

∫ u

0

Fi0(y)e−ωi(u−y) [Im(αi(u− y))− βiIm−1(αi(u− y))] dy

+
η0qi
r

∫ u

0

∞∑
k=0

F0k(y)β−m−ki Im+k(αi(u− y))e−ωi(u−y)dy. (4.5)

Equation (4.5) can be rewritten as follows:

µiβ
m
i

r

∫ u

0

Fi0(y)e−ωi(u−y)Im(αi(u− y))dy

=
µiβ

m+1
i

r

∫ u

0

Fi0(y)e−ωi(u−y)Im−1(αi(u− y))dy

− η0qi
r

∫ u

0

∞∑
k=0

F0k(y)βm−ki Im+k(αi(u− y))e−ωi(u−y)dy. (4.6)

The use of (4.6) in (4.4) considerably simplifies the process and results in an elegant expression for Fim(u), i.e.,

Fim(u) =
mβmi
r

∫ u

0

Fi0(y)e−ωi(t−u) Im(αi(u− y))
(u− y)

dy

+
η0qi
r

∫ u

0

∞∑
k=1

F0k(y)βm−ki [Im−k(αi(u− y))− Im+k(αi(u− y))] e−ωi(u−y)dy

+
η0qi
r

∫ u

0

∞∑
k=m+1

F0k(y)βm−ki [Ik−m(αi(u− y))− Ik+m(αi(u− y))] e−ωi(u−y)dy, (4.7)

for m = 1, 2, 3, . . . , i = 1, 2, . . . , n.

4.2. Evaluation of Fi0(u)

To obtain Fi0(u), we use a Laplace transform. In the sequel, for any function g(.), let ĝ(z) denote its Laplace
transform. For this, using (4.3) in (4.2) and comparing the coefficient of the constant terms on both sides,
we have

Fi0(u) =
µi
r

∫ u

0

Fi0(y)e−ωi(u−y) [I0(αi(u− y))− βiI1(αi(u− y))] dy

+
η0qi
r

∫ u

0

∞∑
k=0

F0k(y)β−ki Ik(αi(u− y))e−ωi(u−y)dy. (4.8)
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The Laplace transform of (4.8) yields the following:

F̂i0(z) =
η0qi
r

∞∑
k=0

F̂0k(z)
(αiβi)k

[
(z + ωi)−

√
(z + ωi)2 − α2

i

]k
√

(z + ωi)2 − α2
i

+
µi
r
F̂i0(z)

 1√
(z + ωi)2 − α2

i

−
βi

[
z + ωi −

√
(z + ωi)2 − α2

i

]
αi
√

(z + ωi)2 − α2
i

 .

Solving for F̂i0(z), we obtain

F̂i0(z) =
η0qi

r

∑∞
k=0

F̂0k(z)
(αiβi)k

[
(z + ωi)−

√
(z + ωi)2 − α2

i

]k
{

(z+ωi)+
√

(z+ωi)2−α2
i

2 − µi

r

} · (4.9)

After some mathematical manipulations, (4.9) simplifies to

F̂i0(z) =

η0qi

r

(
2βi

αi

)∑∞
k=0 F̂0k(z)

[
(z+ωi)−

√
(z+ωi)2−α2

i

αiβi

]k+1

{
1−

[
(z+ωi)−

√
(z+ωi)2−α2

i

αiβi

]}
and thus

F̂i0(z) =
η0qi
µi

∞∑
k=0

∞∑
l=1

F̂0k(z)

[
(z + ωi)−

√
(z + ωi)2 − α2

i

2λi/r

]l+k
,

which upon inversion yields

Fi0(u) =
η0qi
µi

∞∑
k=0

∞∑
l=1

∫ u

0

(l + k)β−(l+k)
i e−ωi(u−y) Il+k(αi(u− y))

(u− y)
F0k(u)du. (4.10)

4.3. Evaluation of F0m(u)

To determine F0m(u), we will use the Laplace transform. By taking the Laplace transforms of (3.2), we obtain
the expression

F̂0m(z) =
(

λ0/r
z + η0/r + λ0/r

)
F̂0m−1(z).

Through an iteration, the aforementioned equation can be written as follows:

F̂0m(z) =
(

λ0/r
z + η0/r + λ0/r

)m
F̂00(z).

Upon an inversion, the aforementioned equation yields an expression for F0,m(u) as follows:

F0m(u) =
(λ0/r)m um−1

(m− 1)!
e−(λ0/r+η0/r)u ∗ F00(u), m ≥ 1. (4.11)
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4.4. Evaluation of F00(u)

To obtain the expression of F00(u), we will use the expression of Fim(u). By taking the Laplace transforms
of (3.1), we obtain

zF̂00(z)− a = −
(
λ0 + η0
r0

)
F̂00(z) +

1
r0

n∑
i=1

ηi

∞∑
m=0

F̂im(z). (4.12)

In addition, the Laplace transform of (4.7) is as follows:

F̂im(z) = F̂i0(z)

[
(z + ωi)−

√
(z + ωi)2 − α2

i

2µi/r

]m

+
η0qi
r

∞∑
k=1

F̂0k(z)βm−ki


[
(z + ωi)−

√
(z + ωi)2 − α2

i

]m−k
αm−ki

√
(z + ωi)2 − α2

i

−

[
(z + ωi)−

√
(z + ωi)2 − α2

i

]m+k

αm+k
i

√
(z + ωi)2 − α2

i


+
η0qi
r

∞∑
k=1

F̂0k(z)βm−ki


[
(z + ωi)−

√
(z + ωi)2 − α2

i

]k−m
αm−ki

√
(z + ωi)2 − α2

i

−

[
(z + ωi)−

√
(z + ωi)2 − α2

i

]k+m
αm+k
i

√
(z + ωi)2 − α2

i

 . (4.13)

Using (4.10), (4.11), and (4.13) together with (4.12), after some mathematical manipulations, we obtain the
following:

F̂00(z) =
a

z + λ0/r0 + η0/r0

[
1−

(
Ĥ(z)

z+λ0/r0+η0/r0

)] , (4.14)

where

Ĥ(z) = Ŷ (z) + Â(z) + B̂(z),

Ŷ (z) =
η0
r0

n∑
i=1

ηiqi

∞∑
m=0

∞∑
k=0

∞∑
l=0

(
λi
µi

)m(
λ0/r

z + η0/r + λ0//r

)k [ (z + ai)−
√

(z + ai)2 − α2
i

2λi

]m+l+k

,

Â(z) =
η0
r

n∑
i=1

ηiqi

∞∑
m=0

∞∑
k=1

βm−ki

(
λ0/r

z + η0/r + λ0/r

)k

×


[
(z + ai)−

√
(z + ai)2 − α2

i

]m−k
αm−ki

√
(z + ai)2 − α2

i

−

[
(z + ai)−

√
(z + ai)2 − α2

i

]m+k

αm+k
i

√
(z + ai)2 − α2

i


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and

B̂(z) =
η0
r0

n∑
i=1

ηiqi

∞∑
m=0

∞∑
k=m+1

βm−ki

(
λ0/r

z + η0/r + λ0/r

)k

×


[
(z + ai)−

√
(z + ai)2 − α2

i

]k−m
αm−ki

√
(z + ai)2 − α2

i

−

[
(z + ai)−

√
(z + ai)2 − α2

i

]m+k

αm+k
i

√
(z + ai)2 − α2

i

 ·
Equation (4.14) can be expressed as follows:

F̂00(z) =
a

z + λ0/r0 + η0/r0
×
∞∑
j=0

[(
1

z + η0/r0 + λ0/r0

)
Ĥ(z)

]j
.

An inversion yields

F00(u) = ae−(λ0/r0+η0/r0)u ∗
∞∑
j=0

(
H(u) ∗ e−(λ0/r0+η0/r0)u

)∗j
, (4.15)

where

H(u) = Y (u) +A(u) +B(u),

Y (u) =
η0
r0

n∑
i=1

ηiqi

∞∑
m=0

∞∑
k=0

∞∑
l=0

(
λi
µi

)m
(m+ l + k)βm+l+k

i e−ωiu
Im+r+k(αiu)

u
∗ (λ0/r)m um−1

(m− 1)!
e−(λ0/r+η0/r)u,

A(u) =
η0
r0

n∑
i=1

ηiqi

∞∑
m=0

∞∑
k=1

βm−ki [Im−k(αiu)− Im+k(αiu)] e−ωiu ∗ (λ0/r)m um−1

(m− 1)!
e−(λ0/r+η0/r)u,

and

B(u) =
η0
r0

n∑
i=1

ηiqi

∞∑
m=0

∞∑
k=1

βm−ki ∗ [Ik−m(αi(u))− Ik+m(αiu)] e−ωiu ∗ (λ0/r)m um−1

(m− 1)!
e−(λ0/r+η0/r)u,

where ∗ denotes a convolution and ∗j denotes a j-fold convolution. Thus, (4.7), (4.10), (4.11), and (4.15) give
all stationary probabilities.

5. Special case

In this section, a particular case of the general model discussed in the previous sections is presented when
n = 1. In this case, there is only one operative phase and one catastrophe phase. This means that the arrival,
service, and catastrophe rates become equal, i.e., λ0 = λi = λ, µi = µ, and ηi = η. Therefore, our proposed
system converts into an M/1/1 fluid catastrophe queue. Under this assumption, the aforementioned results are
seen to coincide with those of [2] as follows:

F0m(u) =
(λ/r)m um−1

(m− 1)!
e−(λ/r+η/r)u ∗ F00(u), m ≥ 1.

In addition, the expressions for F0,0(u) and Fm,1(u) agree with the results reported in [2]. Moreover, when there
is no catastrophe, i.e., ηi → 0, the results obtained correspond with the results in [19].
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(a) (b)

(d)

(e)

(c)

Figure 2. Effect of the arrival and service rates on F (u). (a) F (u) versus u for different λ0

(λ1 = 0.5, λ2 = 0.6, µ1 = 0.7, µ2 = 0.8). (b) F (u) versus u for different λ1 (λ0 = 0.3, λ2 = 0.6,
µ1 = 0.7, µ2 = 0.8). (c) F (u) versus u for different λ2 (λ0 = 0.3, λ1 = 0.6, µ1 = 0.7, µ2 = 0.8).
(d) F (u) versus u for different µ1 (λ0 = 0.3, λ1 = 0.5, λ2 = 0.6, µ2 = 0.8). (e) F (u) versus u
for different µ2 (λ0 = 0.3, λ1 = 0.5, λ2 = 0.6, µ1 = 0.7).
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(a) (b)

Figure 3. Impact of the net input rates on F (u). (a) F (u) versus u for different r0 (r1 = 6).
(b) F (u) versus u for different r1 (r0 = −3).

Figure 4. Influence of the disasters rate on F (u).

6. Numerical illustrations

In this section, the analytical results described in the previous sections are discussed numerically. A numerical
discussion is achieved by presenting some numerical examples illustrating the general behavior of the proposed
system and the effect of various parameters on it. Without a lack of generality, we assume that n = 2, which
means that the system will have two operating phases and a failure phase.

The convolutional term, expressed based on infinite sums, transforms, and Bessel functions involved in the
aforementioned expressions is evaluated using the in-built command “quad” in MATLAB, which numerically
evaluates the integral within an error of 10−6 using a recursive adaptive Simpson quadrature.

The influence of both the arrival rates and service rates on the buffer content distribution are illustrated
in Figure 2. Thus, the plots of F (u) versus the buffer content u are presented in Figure 2 for different arrival
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(a) (b)

Figure 5. Effect of the repair rates on F (u). (a) F (u) versus u for different η1 (η2 = 0.7). (b)
F (u) versus u for different η2 (η1 = 0.5).

and service rates, respectively. The values of the other parameters are given by r0 = −3, r = 5, η1 = 0.5,
η2 = 0.7, and p = 0.6. It can be seen that variations in the arrival and services rates have a clear effect on F (u),
particularly in the failure and first operative phases, where the values of F (u) increase with an increase in the
values of u.

The effects of the net input rates r0 and r on the behavior of the buffer content distribution are depicted in
Figure 3, where λ0 = 0.3, λ1 = 0.4, λ2 = 0.5, µ1 = 0.6, µ2 = 0.8, η0 = 0.6, η1 = 0.5, η2 = 0.7, and p = 0.6.
It can be seen from Figure 3 that increasing the values of the net input r and the absolute values of the net
input rate r0 lead to a considerable decrease in the values of the buffer content distribution.

In Figure 4, λ0 = 0.3, λ1 = 0.4, λ2 = 0.5, µ1 = 0.6, µ2 = 0.8, r0 = −3, r = 5, η1 = 0.5, η2 = 0.7, and p = 0.6.
Figure 4 shows the influence of the disaster rate on F (u) for different values of η0. Interestingly, from Figure 4,
we can see that F (u) decreases with an increase in η0.

The effect of the repair rates on the buffer content distribution versus the buffer content parameter has been
presented in Figure 5, where the parameters have the following values: λ0 = 0.3, λ1 = 0.4, λ2 = 0.5, µ1 = 0.6,
µ2 = 0.8, η0 = 0.6, and p = 0.6. It should be noted that repair rate variations have a significant impact on
F (u), where the increase in the value of the buffer content u contributes to a significant reduction in the buffer
content distribution.

It is generally observed that the buffer content distribution monotonically increases when the values of the
buffer content u goes on. In addition, the increase and decrease change depending on the type of parameter
controlling the general behavior of F (u). We observed that the buffer content distribution increases when both
the arrival and services rates increase, whereas it decreases when the disaster and net input rates increase. This
follows because, upon failure, all units are cleared from the system.

Acknowledgements. The author is extremely grateful to the editor, associate editor, and reviewers for their careful reading
of the manuscript and for their comments and suggestions, which have improved the paper.
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