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COMPETITION AND COOPERATION MODELS FOR DYNAMIC PRICING OF
PERISHABLE PRODUCTS IN A TWO-ECHELON SUPPLY CHAIN

Zhenkai Lou1, Xuming Lou2 and Fujun Hou1,∗

Abstract. This paper considers a two-level supply chain involving a supplier and a retailer. The retailer
sells perishable products to consumers over a finite time horizon, and the demand is driven by a price-
and-utility function. First, we study the noncooperative problem, which is formulated by a Stackelberg
model. It is shown that the optimal pricing strategy of the retailer is to reduce a constant amount on
the price at the beginning of each stage. Second, we examine the cooperative problem, in which the
supplier and the retailer jointly price the product. Maximum selling cycle lengths of the two situations
are obtained by analyzing the reasonability of the sales price. We demonstrate that the selling cycle
length is extended by cooperation. Moreover, we show that they lower the sales price in the cooperative
case so as to maximize the total profit. Meanwhile, an allocation method is provided based on the
proportion.
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1. Introduction

Dynamic pricing of perishable products is a fascinating topic, in which the retailer sells products within a
finite time horizon. In recent years, dynamic pricing strategies have been applied successfully in several fields,
such as airlines, fashion retailers, hotels, sporting events, fruits sales, and health care. Because the demand rate
is price-dependent and time-varying, retailers always price their products dynamically.

Some factors are involved in the dynamic pricing of perishable products. First, the market demand of a certain
perishable product is always finite and time-and-price sensitive. Second, because of the variable utility value of
perishable products, dynamic pricing strategies are often adopted by sellers to raise the revenues. In addition,
the retailer is concerned with not only its sales revenue but also its costs, which are made up of wholesale costs
and stock-holding costs. Because consumers do not participate in pricing decisions, we treat them as known
information by a demand function.

Recent years, the literature on joint ordering and pricing of perishable products has been growing substan-
tially. In particular, dynamic joint pricing for perishable products has received a lot of attention [11,15,19,21].
As is known to all, pricing and inventory control have significant impacts on a retailer’s profitability. By jointly
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making decisions, the retailer would lower its inventory cost and raise the revenue. For that reason, we pay no
attention to the inventory replenishment when the supplier and the retailer jointly price their products.

Generally, the pricing models can be classified into two categories: continuous-time models and discrete-time
models. Because the number of times of altering prices cannot be infinite, we consider the sales cycle to be
discrete. In addition, we regard the purchase quantity to be a function of the real-time utility value and the
current retail price and ignore the individual purchase behavior of consumers. Similar to Taleizadeh et al. [28],
we assume that shortage is not permitted. Both the supplier and the retailer aim to maximize their profit. In
addition, they can acquire complete and perfect information.

In practice, Supermarkets often dynamically price perishable items like dairy products. Usually, they will
not be on sale when their selling periods last for some time, even they are still within the shelf life. Study on
how to determine the optimal selling cycle length of a perishable item is of practical significance. This paper
not only discusses the optimal selling cycle length of the non-cooperation model based on the utility of the
product, but also analyzes the change on the optimal selling cycle length when the supplier and the retailer
jointly make decisions. The aim is to show that the selling cycle length of a perishable product can be extended
by centralized decision-making. In addition, sales prices and total profits of the non-cooperation case and the
cooperation case are compared.

The remainder of this paper is organized as follows. In Section 2, we briefly review the related literature about
dynamic pricing of perishable products. Section 3 describes notations and assumptions, and then presents models
for the supplier and the retailer. The noncooperative issue is discussed in Section 4. In Section 5, we focus on
analyzing the impact incurred by cooperation, and propose a suitable method to allocate the surplus value. A
numerical illustration is given in Section 6. Section 7 summarizes the paper.

2. Related literature

Pricing decisions play a crucial role in managing demand in many industries [3]. As is well known, consumer
demand depends on the sale price. Hence, it is imperative for a retailer to trade off the ordering cost, the stock-
holding cost, and the lost sales cost while making his ordering and pricing decisions [7]. This paper considers
one-time ordering issues, and the ordering cost is regarded as a constant that has no impact on the decision
making.

The concept of perishable product was first proposed to describe time-sensitive goods [29]. In order to
maximize their revenue, many industries, retailers, and service providers raised their revenue through dynamic
pricing when facing the problem of selling perishable products [5,12,13]. Because of the practicability of dynamic
pricing, a significant amount of work has been conducted.

For perishable products, quality always plays an important role [9,10,21]. In addition, the utility of a perish-
able product always varies along with time, and the purchase quantity of consumers depends on both the utility
and the sales price [20], which we also adopt. Because of the variable quality (or utility value) of perishable
products, dynamic pricing strategies are often used to raise the revenues of sellers. Gallego et al. [12] studied
dynamic pricing in an oligopolistic market with a mix of substitutable and complementary perishable assets.
Schlosser et al. [27] pointed out that frequent price adjustments are crucial for perishable products. Lu et al.
[23] constructed dynamic pricing models by considering replenishment cycle length, replenishment quantity and
preservation technology investment.

Some literature focused on consumers’ strategic purchase behavior when dealing with ordering and pricing
issues, which is mainly involved with competition. Besanko et al. [2] studied an optimal pricing strategy with a
retailer and a number of consumers by considering the consumers’ strategic behavior on different sales prices.
Levin et al. [18] and Papanastasiou et al. [25] separately formulated dynamic-pricing models for a monopolist
in the presence of strategic consumers. In addition, the competition between two monopolistic retailers while
taking strategic consumers into account was discussed and game-theoretic techniques were applied to obtain
equilibrium solutions [17,24].
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Recent years, jointly ordering and pricing issues of suppliers and retailers have attracted many attentions.
Generally, if suppliers and retailers jointly make decisions by sharing demand information and revenues, less
inventory costs come about [14]. Akcay et al. [1] conducted pioneering work for joint dynamic pricing of perish-
able products, developed an integrative model of consumer choice based on linear random consumer utilities.
Furthermore, Chen et al. [8] proposed methods to obtain an optimal joint pricing policy while considering linear
ordering cost, inventory holding, and lost-sales penalty cost. Chen [6] constructed a centralized decision model
in the presence of a vendor managed inventory, and discussed the optimal strategies to enhance the revenue of
the retailer.

However, despite the plenty of literature with regard to pricing for perishable products, few considers com-
petition and cooperation simultaneously and analyzes the impact incurred by cooperation, which motivates our
study. Similar to Liu et al. [20] and Levin et al. [17], we present discrete models instead of continuous ones, by
considering the finitude of the number of times of altering prices under complete and perfect information. A
novel demand function consisting of the real-time utility value, the real-time sales price and the time-point is
proposed. Following our recent research [22], a non-cooperation model and a cooperation model both involving
a supplier and a retailer are constructed so as to analyze the differences on sales prices and ordering quantities.
Moreover, selling cycle lengths between the two situations are compared. In the first model, the supplier deter-
mines a wholesale price, while the retailer determines a wholesale volume and a sales price. In the second model,
the supplier and the retailer jointly price the item on the premise of sharing stock-holding cost. An allocation
approach is given in the cooperation case to distribute the total profit.

3. Model formulation

This section describes the fundamental elements of our models. In addition, all of the assumptions are given
and the objective functions of the supplier and the retailer are presented.

3.1. Notations and assumptions

We consider a sales scenario composed of a supplier selling a perishable product to end consumers through
a retailer. We assume that the product perishes at a certain known time, and therefore the retailer focuses
on enhancing its profit and ignores the surplus value of the product when finishing a sales cycle. The supplier
has only one opportunity to sell its products. By comparison, the retailer prices and sells its items at multiple
stages.

Following many existing papers, in the following discussion, we employ a linear function to depict the utility
value of the product for consumers at a certain time. We assume that the potential market demand of the
product increases linearly along with the sales time. Furthermore, we believe that the purchase quantity of
consumers may not always coincide with their demands, because they also depend on the purchase time and
the current retail price. The following notations are used throughout this paper (Tab. 1).

In the above notations, α, β, u0 and h are constant parameters, which are mainly acquired by historical data
and the number of consumers, similar to the viewpoint of Boer et al. [4].

We assume that β is higher than h. Otherwise, the stock-holding cost of one product through the whole sales
cycle would be equal to or higher than its maximum utility value, which usually cannot happen.

Some explanations are made for the rationality and the practicality of the proposed purchase quantity func-
tion. Firstly, consumers are always not willing to buy a perishable product when the utility value is lower
than the sales price. Secondly, by the decreasing utility function u(t), we know that there is no demand after
t = u0/β. Denoting by T 0 = u0/β, it is clear that T ≤ T 0. In the following exploration, we will acquire the
maximum selling cycle length, which is assumed to be T . Thirdly, the utility value is assumed to be a linear
decreasing function of time, for describing a product with a stable change rate of quality. In practice, other
types of demand functions are adopted for products with different change rates of quality (e.g., [30]). Finally,
similar to the handling of many literature (e.g., [16]), we adopt a linear function of q(t) to describe Q(t) by
taking the utility value into consideration.
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Table 1. Model parameters.

Parameters Definition

T The selling cycle length determined by the retailer
v The wholesale volume determined by the retailer
p The wholesale price determined by the supplier
α The potential demand amount per unit time
K(t) The market capacity within a period of time t, K(t) = αt
β The decline rate of utility value of the product for consumers
u0 The utility value for consumers at the beginning of the sales
u(t) The utility value of the product for consumers at time t, u(t) = u0−βt
q(t) The retail price at time t
Q(t) The purchase quantity per unit time, Q(t) = α (u(t)− q(t)) /u0

h The stock-holding cost per item per unit time
R The rounding function for determining the selling cycle length under

the discrete scenario
W The profit of the supplier
Z The profit of the retailer

Moreover, we assume that the wholesale volume of the retailer cannot be less than the purchase amount of
the consumers, which suggested that we pay no attention to stock-out issues in the following discussion. Besides,
over ordering is unnecessary. Hence, we have

v =
∫ T

0

Q(t) dt.

3.2. Model description

We next describe the objective models of the supplier and the retailer.
The model of the supplier with p as the unique decision variable can be formulated as follows

maxW = pv, (3.1)

where p is the decision variable of the supplier, and v is determined by the retailer.
The model of the retailer with v and q(t) as its decision variables is given as follows

max Z =
∫ T

0

(q(t)− p)Q(t) dt− h
∫ T

0

(
v −

∫ t

0

Q(s) ds
)

dt

subject to
∫ t

0

Q(s) ds ≤ K(t), ∀t ∈ [0, T ], (3.2)

v ≤ K(T ),
q(t) ≤ u(t), ∀t ∈ [0, T ].

In model (3.2), v and Q(t) are intermediate variables, which are determined by sales prices q(t) of all stages. In
practice, the constraints of model (3.2) make sense.

Given a time series: 0 = t1 < · · · < tn < tn+1 = T , we discretize the times into n stages. Each stage is
denoted by [ti, ti+1], where i ∈ [1, . . . , n]. At the beginning of each stage, the retailer declares its sales price.
Furthermore, following Liu et al. [20], we assume that the length of each stage l = 1. Thus, T = n and ti = i−1,
where the unit can be day, week, etc. Clearly, T (or n) is also a decision variable of the retailer. Later we will
show that all the other decision variables depend on T . Thus, T is regarded as an undetermined parameter
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during the acquisition of other decision variables. Finally, we will deal with the maximum selling cycle length
T .

Then we transform model (3.2) into the following form

max Z =
n∑

i=1

Q(ti) (q(ti)− p)−
n∑

i=1

h

v − i∑
j=1

Q (tj)


subject to

m∑
i=1

Q(ti) ≤ K(tm+1), m ∈ {1, . . . , n}, (3.3)

v ≤ K (tn+1) ,
q(ti) ≤ u(ti), i ∈ {1, . . . , n}.

In model (3.3), we assume that u(t), q(t) and Q(t) take their values at the beginning of each stage, whereas
K(t) takes its value at the end of each stage. Besides, it is assumed that products sold in a certain stage would
also incur stock-holding cost as a result of the fact that, they generally cannot be sold just at the beginning of
this stage.

4. Dynamic pricing in a non-cooperative model

In practice, for some reasons, suppliers and retailers cannot cooperate closely. For example, agreements on
cost sharing and revenue allocation may not be able to be reached between them. For this situation, we focus
on addressing this dynamic pricing problem in which the supplier and the retailer make separate decisions. The
decision order is that the supplier declares its wholesale price first, and then the retailer determines its sales
price. In fact, this is a Stackelberg games framework.

We now deal with the Stackelberg game model consisting of (3.1) and (3.3). The backward induction approach
is adopted to handle this model, by solving (3.3) to obtain the expression of each q(t).

Because it is difficult to solve model (3.3) directly, we transform its objective function to the following form:

Z =
n∑

i=1

Q(ti) (q(ti)− p)−
n∑

i=1

h

v − i∑
j=1

Q(tj)


=

n∑
i=1

Q(ti) (q(ti)− p) +
n∑

i=1

i∑
j=1

hQ(tj)−
n∑

i=1

hv,

where q(ti) and v are variables of Z and p is the variable of W . Because

n∑
i=1

i∑
j=1

hQ(tj) = hQ(t1) + [hQ(t1) + hQ(t2)] + · · ·+ [hQ(t1) + · · ·+ hQ(tn)]

= nhQ(t1) + (n− 1)hQ(t2) + · · ·+ hQ(tn)

=
n∑

i=1

[(n+ 1− i)hQ(ti)] ,

Z can be transformed into

Z =
n∑

i=1

[Q(ti)(q(ti)− p) + (n+ 1− i)hQ(ti)]−
n∑

i=1

hv. (4.1)
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In the discrete situation, v can be described as follows

v =
n∑

i=1

Q(ti) =
α

u0

n∑
i=1

(
u0 − βti − q(ti)

)
. (4.2)

For a certain v determined by formula (4.2), we transform
∑n

i=1 hv into the following expression

n∑
i=1

hv =
α

u0

n∑
i=1

nh
(
u0 − βti − q (ti)

)
. (4.3)

Function (4.1) then can be transformed by using expression (4.3):

Z =
α

u0

n∑
i=1

(q(ti)− p+ (1− i)h)
(
u0 − βti − q(ti)

)
. (4.4)

Given a certain p, for any i ∈ {1, . . . , n} we know that

(q(ti)− p+ (1− i)h)
(
u0 − βti − q(ti)

)
(4.5)

is a function with a unique variable q(ti). Hence, we can solve model (3.3) sequentially stage by stage.
We next consider (4.5). Clearly, it is a quadratic function with a negative second-order coefficient. Therefore,

we acquired its maximum value when q(ti) satisfies the following:

q∗(ti) =
u0 − βti + p+ (i− 1)h

2
· (4.6)

Meanwhile, the corresponding purchase amount is obtained as follows:

Q∗(ti) =
α

2u0

[
u0 − βti − p− (i− 1)h

]
. (4.7)

Given the above results, we obtain the solution of v, which guarantees that Z reaches the maximum value,
as follows:

v∗ =
n∑

i=1

Q∗(ti) =
n∑

i=1

α

2u0

[
u0 − βti − p− (i− 1)h

]
. (4.8)

Formula (4.8), meanwhile, is the Lagrange multiplier that we are searching for, which is actually a relational
expression of p and v. Because both the supplier and the retailer acquire complete and perfect information, we
transform model (3.1) into the following function by taking (4.8) into account

maxW =
α

2u0

n∑
i=1

[
−p2 + u0p− βtip− (i− 1)hp

]
. (4.9)

Apparently, (4.9) is also a quadratic function with a negative second-order coefficient, which can be trans-
formed into the following form by considering n = T and ti = i− 1:

W =
α

2u0

n∑
i=1

[
−p2 + u0p− βtip− (i− 1)hp

]
=

α

2u0

n∑
i=1

[
−p2 + u0p− (i− 1)βp− (i− 1)hp

]
(4.10)

=
α

2u0

[
−np2 +

(
nu0 − n(n− 1)

2
β − n(n− 1)

2
h

)
p

]
.
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We obtain the optimal wholesale price p by solving max W :

p∗ =
2u0 − (n− 1)β − (n− 1)h

4
· (4.11)

As it is shown, the wholesale price of the supplier depends on the selling cycle length of the product, which
implies that the supplier cannot make decisions before the retailer declares its selling cycle length. Hence, the
selling cycle length is the first one that should be figured out.

After acquiring the value of p∗, we turn back to formula (4.6) and formula (4.8). By substituting (4.11) into
(4.6), the values of all q∗(ti) are obtained as follows:

q∗(ti) =
3
4
u0 − β(i− 1)

2
− β(n− 1)

8
+

(i− 1)h
2

− (n− 1)h
8

· (4.12)

And v∗ is acquired by substituting (4.11) into (4.8):

v∗ =
nα

4
− n(n− 1)αβ

8u0
− n(n− 1)αh

8u0
· (4.13)

Also, the wholesale volume is a function of the selling cycle length.
The above solutions are obtained without considering the constraints of model (3.3). Besides, n (or T ) is

undetermined. Before determining n, we first present the following conclusion:

Proposition 4.1. The optimal pricing strategy of the retailer is to reduce a constant amount on the price at
the beginning of each stage.

Proof. Formula (4.6) gives the optimal price of each stage for the retailer. Given the following functions

q∗(ti) =
u0 − βti + p+ (i− 1)h

2
, q∗ (ti+1) =

u0 − βti+1 + p+ ih

2
,

and relations h < β and ti+1 − ti = 1, we have

q∗(ti)− q∗(ti+1) =
1
2

(−βti + βti+1 − h) =
1
2

(β − h) > 0.

Hence, the retailer lowers the price at the beginning of each stage to obtain the maximum profit. Moreover,
it is shown that the extent of the reduction with respect to the sales price of any two adjacent stages is a
constant. �

This proposition actually reveals the regularity of the optimal pricing strategy of each stage. In practice, a
constant is convenient for strategy control.

Next, we look for the maximum selling cycle length by examining the constraints.
Clearly, solutions determined by formula (4.11) and formula (4.12) are the unique optimal strategies of the

supplier and the retailer, respectively. Hence, they should meet the constraints of model (3.3) so as to guarantee
the sales occurs through the whole period.

Firstly, we construct a function f(n) = u(ti)− q∗(ti) to determine the maximum number of sales periods. It
is obtained that

f(n) = u(ti)− q∗(ti)

= u0 − β(i− 1)−
[

3
4
u0 − β(i− 1)

2
− β(n− 1)

8
+

(i− 1)h
2

− (n− 1)h
8

]
=

1
4
u0 − β(i− 1)

2
+
β(n− 1)

8
− (i− 1)h

2
+

(n− 1)h
8

,
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where i ∈ {1, . . . , n}. In practice, consumers will always not purchase a perishable item when its utility value
is lower than its sales price. Hence, q∗(ti) ≤ u(ti) is the necessary condition to ensure that the sales activity
occurs at stage ti. We show the following inequality to guarantee that the sales activity happens through the
whole period:

1
4
u0 − β(n− 1)

2
+
β(n− 1)

8
− (n− 1)h

2
+

(n− 1)h
8

=
1
4
u0 − 3β(n− 1)

8
− 3(n− 1)h

8
≥ 0.

Then n∗ is acquired by rounding function R〈 〉:

n∗ = R

〈
1
4
u0 − 3β(n− 1)

8
− 3(n− 1)h

8
≥ 0
〉
. (4.14)

Secondly, for any m ∈ {1, . . . , n∗},
m∑

i=1

Q(ti) =
mα

4
− m(m− 1)αβ

8u0
− m(m− 1)αh

8u0
< mα.

Given the above, n∗ determined by formula (4.14) meets the constraints of model (3.3).
Because T = n∗, the above discussion actually presents the maximum selling cycle length. In others words,

the retailer will not gain profit when exceeding T .
In addition, for any m ∈ {1, . . . , n∗}, we have

q∗(ti)− p∗ =
1
4
u0 − β(i− 1)

2
+
β(n− 1)

8
+

(i− 1)h
2

+
(n− 1)h

8

>
1
4
u0 − β(i− 1)

2
+
β(n− 1)

8
− (i− 1)h

2
+

(n− 1)h
8

≥ 0,

which suggests that the retailer will not sell the product under a price that is lower than p∗ at any stage.

5. Dynamic pricing in a cooperative model

Sometimes, suppliers and retailers may jointly make decisions by reaching agreements on costs sharing and
profit allocation. In this scenario, the wholesale price does not make any impact on optimal decision [26]. Hence,
in the cooperation model discussed in this section, we focus on sales prices of each stage, the ordering quantity,
the optimal selling cycle length, and the increased profit rather than the wholesale price.

It is well known that the total profit gained by cooperation is always greater than or equal to the sum of
the profit gained by the two participants in the noncooperation situation. Next, we examine the increased value
incurred by cooperation when selling perishable products.

Proposition 5.1. The increased value brought by the cooperation between the supplier and the retailer is defi-
nitely positive.

Proof. We follow the previous assumption and further assume that the supplier and the retailer share the
stock-holding cost of the retail products on the premise of cooperation:

W + Z =
n∑

i=1

[Q(ti)q(ti) + (n+ 1− i)hQ(ti)]−
n∑

i=1

hv (5.1)

=
α

u0

n∑
i=1

[q(ti) + (1− i)h]
[
u0 − β(i− 1)− q(ti)

]
.
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By solving max (W + Z), we obtain the value of q′(ti) at stage ti as follows:

q′(ti) =
u0 − β(i− 1) + (i− 1)h

2
· (5.2)

By comparing (4.12) and (5.2), we know that q′(ti) 6= q∗(ti) for any i ∈ {1, . . . , n}. Besides, for a quadratic
function with a negative second-order coefficient, we know that it has only a unique maximum value.

Thus, we obtain the following proposition:

W ∗ + Z∗ < max
q′(ti)

(W + Z).

Furthermore, the increased value gained by cooperation is given as follows:

S = max
q′(ti)

(W + Z)−W ∗ − Z∗. (5.3)

�

The above result reveals that the two participants definitely gain more profits by cooperation. In theory, this
is because the sales price of each stage has changed, which is also the extreme point of the total profit function.

The increase of the total profit is a necessary condition for the cooperation between the supplier and the
retailer. Without this condition, the supplier and the retailer cannot enhance their revenue simultaneously by
cooperation.

Besides, the sales quantity v′ is obtained as follows:

v′ =
n∑

i=1

Q′(ti) =
n∑

i=1

α

2u0

[
u0 + β(i− 1)− (i− 1)h

]
=
nα

2
+
n(n− 1)αβ

4u0
− n(n− 1)αh

4u0
. (5.4)

Because h < β, we have

q∗(ti)− q′(ti) =
3
4
u0 − β(i− 1)

2
− β(n− 1)

8
+

(i− 1)h
2

− (n− 1)h
8

−
[
u0

2
− β(i− 1)

2
+

(i− 1)h
2

]
=

1
4
u0 − β(n− 1)

8
− (n− 1)h

8

>
1
4
u0 − β(n− 1)

4
> 0

and

v′ − v∗ =
nα

2
+
n(n− 1)αβ

4u0
− n(n− 1)αh

4u0
−
[
nα

4
− n(n− 1)αβ

8u0
− n(n− 1)αh

8u0

]
=
nα

4
+

3n(n− 1)αβ
8u0

− n(n− 1)αh
8u0

>
nα

4
+
n(n− 1)αh

4u0
,

which implies that in the cooperative situation, the supplier and the retailer will lower the sales price for the
sake of a great enhance on the sales quantity.
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Moreover, the optimal price determined by formula (5.2) also needs to meet the constraints of model (3.3).
We define a function g(n) = u(ti)− q′(ti) to determine the maximum number of sales periods. Thus, we have

g(n) = u0(ti)− q′(ti)

= u0 − β(i− 1)−
[
u0

2
− β(i− 1)

2
+

(i− 1)h
2

]
=
u0

2
− β(i− 1)

2
− (i− 1)h

2
·

The following inequality guarantees that the sales activity happens through the whole period:

u0

2
− β(n− 1)

2
− (n− 1)h

2
≥ 0.

Then n′ is acquired by rounding function R〈 〉:

n′ = R

〈
u0

2
− β(n− 1)

2
− (n− 1)h

2
≥ 0
〉
. (5.5)

Because

u0

2
− β(n− 1)

2
− (n− 1)h

2
−
[
u0

4
− 3β(n− 1)

8
− 3(n− 1)h

8

]
=
u0

4
− β(n− 1)

8
− (n− 1)h

8

>
u0

4
− β(n− 1)

4
> 0,

the sales period always longer in the cooperation case than the one in the non-cooperation case. In addition,
u0(m) = u0 − βm ≥ 0 holds for any m ∈ {1, . . . , n′}. Hence, we have

m∑
i=1

Q(ti) =
mα

2
+
m(m− 1)αβ

4u0
− n(m− 1)αh

4u0
<
mα

2
+
m(m− 1)αβ

4u0
<
mα

2
+

(m− 1)α
4

< mα,

i.e., q′(ti) determined by formula (5.2) meets the corresponding constraints.
The above result shows that the selling cycle length can be extended by lowering the sales price of each stage,

which is of practical significance. Apparently, this happens only when the supplier and the retailer jointly make
decisions. Moreover, by (4.14) and (5.5), it is shown that the optimal selling cycle length has nothing to do with
the potential market demand.

Finally, we propose a solution to allocate the increased profit. In the cooperative game theory, the method
of distributing value equally is widely adopted. This approach, however, doesn’t take the profit gap between
the participants into account. According to the previous profit of each participant, we propose an allocation
method based on the proportion.

We denote by W ′ the adjusted profit of the supplier and Z ′ the adjusted profit of the retailer. Then, the
formula is given as follows:

W ′ = W ∗ +
W ∗S

W ∗ + Z∗
, Z ′ = Z∗ +

Z∗S

W ∗ + Z∗
· (5.6)

Clearly, the allocation determined by formula (5.6) increases the revenue of both the supplier and the retailer.
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6. A numerical illustration

In this section, we present a general example that meets the previous conditions to visualize the proposed
model and conclusions, e.g., the discussed object can be a two-layer supply chain that sells a kind of dairy
product with about the shelf life of ten days. Given the potential demand amount per day α = 50, the decline
rate of utility value β = 3, the utility value of the product at the beginning of the sales u0 = 32, and the
stock-holding cost per item per day h = 1. The retailer prices its product at the beginning of each day.

First, we consider the noncooperative situation. Different from the theoretical analysis, the selling cycle length
should be determined first. By function (4.14), we obtain the optimal selling cycle length n∗ = 6.

According to formula (4.4), the objective function of the retailer is acquired as follows:

Z =
50
32

6∑
i=1

[q(ti)− p+ (1− i)][32− 3(i− 1)− q(ti)].

Then we acquire the expression of the price of each stage

q∗(ti) =
32− 2(i− 1) + p

2
·

By formulae (4.7) to (4.9), we obtain the following:

W = pv∗ =
25
32

6∑
i=1

[−p2 + 32p− 4(i− 1)p].

By solving the above quadratic function, we obtain p∗ = 11. Through formula (4.7), we know that Q∗(ti) > 0
for any i ∈ {1, . . . , 6}.

Substituting p∗ into formula (4.6) and formula (4.8), we further obtain the optimal price of each stage
q∗(ti) = 22.5 − i, and the optimal wholesale volume v∗ ≈ 51.6. Immediately, the maximum revenues of the
supplier and the retailer are W ∗ ≈ 567.2 and Z∗ ≈ 393.

The following graph (Fig. 1) drawn by MATLAB shows variation trend of the optimal price q∗(ti), in which
the horizontal axis represents the sales price of each stage, and the vertical axis represents the profit of each
stage.

Next, we analyze the case in which the supplier and the retailer jointly price the product to enhance their
revenues. By formula (5.5), the maximum number of sales periods n′ = 9.

By formula (5.1), we have

W + Z =
50
32

9∑
i=1

(q(ti) + 1− i)(35− 3i− q(ti)).

Solving this function, we obtain the solution q′(ti) = 17− i. Then we get

max
q′(ti)

(W + Z) =
50
32

9∑
i=1

(18− 2i)2 = 1275.

The optimal supply quantity is obtained by formula (5.4): v′ ≈ 281.3.
We obtain the surplus value by formula (5.4), as follows:

S = max
q′(ti)

(W + Z)−W ∗ − Z∗ ≈ 314.8.

The adjusted profits for the two participants are acquired by formula (5.5): W ′ ≈ 753.2, Z ′ ≈ 521.8. Apparently,
both the supplier and the retailer significantly enhance their profit by jointly pricing the perishable item.
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Figure 1. Variation trend of q∗(ti).

Figure 2. Change curves of the two selling cycle lengths.

Finally, the issue of how the optimal selling cycle length changes under different initial utility values is
investigated. Consider u0 ∈ [20, 40]. Change curves of the two selling cycle lengths for different scenarios are
depicted as follows.

In Figure 2, curve I represents the change trajectory of the selling cycle length in the non-cooperation scenario,
and curve II represents the change trajectory of the selling cycle length in the cooperation scenario. As it is
shown, the selling cycle length is extended by cooperation.

7. Conclusions

This paper considers supply and sales issues of perishable items under a price-and time-sensitive demand
function. According to whether or not the supplier and the retailer cooperate and jointly price their products,
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we propose two models. In the noncooperative situation, we obtain the optimal strategies for the supplier and
the retailer by solving a Stackelberg game model. In the joint dynamic pricing situation, the optimal supply
quantity and the optimal sales price are obtained.

Our main theoretical and managerial contributions are summarized as follows:

(1) It is shown that in the cooperative situation, the supplier and the retailer will lower the sales price for the
sake of a great raise on the sales quantity.

(2) The optimal selling cycle length of each situation is acquired, which is a study gap till now. And we show
that the selling cycle length will be extended by cooperation between the supplier and the retailer.

(3) The increased value incurred by cooperation is proved to be positive, and a method based on the proportion
of each previous profit is proposed to allocate the increased profit.

Nevertheless, this paper has some shortcomings. We overlook consumer’ strategic behavior. In reality, strategic
consumers may arrange their purchasing behavior by considering the retailer’s dynamic pricing. Besides, the
online channel may need to be taken into consideration. In practice, Wumart supermarket has already operated
dual channels to sell perishable products in the presence of inventory sharing. We intend to explore this topic
in our next study.

Acknowledgements. We would like to thank the editors and reviewers for their constructive suggestions and corrections
to enhance the clarity of the present article.
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