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ANALYSIS OF THREAT BASED ALGORITHM USING DIFFERENT
PERFORMANCE MEASURES

Iftikhar Ahmad1,∗, Marcus Pirron2 and Günter Schmidt3,4

Abstract. Since its introduction in 1985, competitive analysis is a widely used tool for the performance
measurement of online algorithms. Despite its simplicity and popularity, competitive analysis has its
own set of drawbacks which lead to the development of other performance measures. However, these
measures were seldom applied to problems in other domains. Recently Boyar et al. (Theor. Comput. Sci.
532 (2014) 2–13) studied the online search problem using various performance analysis measures for
non-preemptive algorithms. We extend the work by considering preemptive threat-based algorithms and
evaluate it using competitive analysis, bijective analysis, average case and relative interval analysis. For
competitive analysis, and average case analysis, our findings are in contrast with that of Boyar et al.,
whereas for bijective and relative interval analysis our findings complement that of Boyar et al.
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1. Introduction

Online algorithms have a variety of applications in various domains such as conversion problems, cache
replacement, and job scheduling [1, 2, 12]. One of the most widely used tools for the design and performance
analysis of online algorithms is competitive analysis, introduced by Sleator and Tarjan [13]. Competitive analysis
measures the performance of an online algorithm against the performance of an optimal offline algorithm. This
inherits some problems, most notably the need of knowing how the optimal solution looks like? Also, the
algorithm is tested in a worst-case scenario, which can make it impossible to compare the efficiency of two
algorithms of quite different natures. Considering the paging problem, the strategies Flush When Full (FWF),
First In First Out (FIFO) and Least Recently Used (LRU) all yield the same competitive ratio equal to the
cache size, although LRU and variants of it are, in practice, the preferred strategies [14].

Therefore, for a variety of problems competitive analysis is not an appropriate evaluation measure and the
need to evaluate online algorithms on other performance metrics arises. Alternative approaches exist, some of
which do not rely on computing the optimal offline solution, like bijective analysis, average analysis or relative
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interval analysis. These approaches stem from specific fields of the problem, and some of the shortcomings of
competitive analysis are fixed. However, like competitive analysis, these measures do not provide much insight
when algorithms based on different design mechanism are compared. This motivates the need for a systematic
study where online algorithms are compared on various performance measures to obtain more useful insight into
the performance when the underlying assumptions of an algorithm’s design are no more valid. For instance, an
algorithm designed under worst-case competitive analysis tends to safeguard itself against the worst possible
situation and treats every input like a worst case. By analyzing an algorithm on different performance measures,
we can obtain a useful insight into its performance even when the underlying assumptions are modified (as this
is normally the case in a real-world situation).

Motivated by the need of algorithms’ analysis on various performance measures, we analyze two threat-
based algorithms (Tp and Tq, see Sect. 2) for online uni-directional conversion problem under a spectrum of
performance evaluation measures, namely competitive analysis, bijective analysis, average analysis, and relative
interval analysis. Note that Tp was proposed by El-Yaniv et al. [8], whereas Tq is introduced in this work to
make the comparison meaningful. The focus of the work is on the comparative study of the two threat-based
algorithms using different performance measures. We aim to highlight the discrepancy in the reported ranking
of algorithms based on the assumed performance measure. It is pertinent to mention that our work is different
from that of Boyar et al. [5]. Boyar et al. [5] considered non-preemptive algorithms for conversion problem.
Non-preemptive algorithm are relatively straightforward for analysis as they convert nothing or all when offered
a price qt. Threat based algorithms are more sophisticated, and decide the amount converted on day t based
on the offered price qt. These algorithm can convert any amount between 0 and 1 (assuming the total wealth is
normalized to 1). Therefore, analysis of threat based algorithm is more challenging and sophisticated.

Intuitively, under competitive analysis Tp should always perform better than Tq as Tp is specifically designed
under the competitive analysis, however, we show that this is not the case and the answer depends on the first
offered price. Further, we found that under bijective analysis and average analysis Tp performs better than Tq,
whereas under finite relative interval analysis Tq performance is superior to that of Tp.

Rest of the paper is organized in the following manner. Section 2 presents the preliminaries required to
understand the rest of the paper. In Section 3, the algorithms are evaluated using competitive analysis paradigm.
Section 4 presents analysis of the algorithms under under bijective analysis. Average case analysis is performed in
Section 5, and relative interval analysis is reported in Section 6. Concluding remarks are presented in Section 7.

2. Preliminaries

In this paper, we study the uni-directional conversion problem in an online setting. In the problem settings,
a player wants to convert a given amount of dollars D into yens Y with the objective to maximize the amount
of Y after a fixed time interval T . At the start of the game, it is assumed that D0 = 1 and Y0 = 0. At each time
point t = {1, 2, . . . , T}, the online player is presented with a new exchange rate qt (1 ≤ t ≤ T ), at which she can
exchange an amount st ∈ [0, 1]. The online nature of the problem means that at each time point t the online
player does not have the knowledge of the future prices t+ 1, t+ 2, . . . , T . Likewise, the decision taken at each
time point t is irrevocable. The only additional information available to the online player is about the lower
(m) and upper (M) bounds of future prices, i.e., qt ∈ [m,M ]. However, it is not mandatory that m and/or M
is observed. The knowledge of m and M is necessary as otherwise, it will not be possible to design an online
algorithm with bounded competitive ratio [10,12]. Online uni-directional conversion problem can be categorized
in two different classes as follows;

(1) Uni-directional non-preemptive conversion problem: The online algorithm is restricted to convert all the
wealth (say dollars to yens) at one time point, i.e., st ∈ {0, 1}. Such algorithms are also called “reservation
price algorithms” [12].

(2) Uni-directional preemptive conversion problem: The online algorithm is allowed to convert little by little
as it sees fit, i.e., st ∈ [0, 1].
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One of the seminal work in the domain of online conversion problem is that of El-Yaniv et al. [7]. El-Yaniv
et al. [7, 8] presented online non-preemptive and preemptive algorithms for conversion problem. The non-
preemptive algorithm assumes a-priori information about the estimated lower (m) and upper (M) bounds
of prices, and calculates a reservation price q∗ =

√
Mm. The first offered price which is at least q∗ is accepted,

and whole of the wealth is converted.
El Yaniv et al. [8] also proposed a preemptive algorithm (commonly known as threat based solution) for online

uni-directional conversion problem. The basic rules of the algorithm are as following;

(1) Consider conversion from D to Y only when the offered price is the highest seen so far.
(2) Whenever converting D to Y, convert just enough to ensure that a worst-case competitive ratio c (see

Eq. (2.1)) is achieved if an adversary sets all the future prices to m.

The algorithm is called threat-based (referred to as T in this text) as the online player faces a potential threat
that an adversary can drop the future prices to m without any indication and keep it there for the rest of the
investment horizon. El-Yaniv et al. [8] calculated c to be solution of equation (2.1);

c = ln
M −m
m(c− 1)

· (2.1)

Further it was shown that the first price accepted for conversion must be greater than cm, i.e., in order to
perform the first conversion the offered price must be greater than cm [8]. We call this the reservation price.
For subsequent conversions, the price must fulfill the criterion of highest so far.

We consider two threat-based algorithms, namely Tp and Tq. Tp refers to the threat-based algorithm proposed
by El-Yaniv et al. [8] which has a reservation price p = cm. Tq is another threat-based algorithm (the working
principle of Tq remains the same as that of Tp) but has a higher reservation price q = cm+ ∆. Note that Tq is
introduced only to make the comparison more meaningful.

We assume Tp and Tq to be real-valued algorithms when using competitive analysis, average analysis, and
real interval analysis. For bijective analysis, we assume Tp and Tq to be integer-valued, so that a bijection can
be constructed. This should prove to be no difference, as real values can be scaled arbitrarily.

Definition 2.1. A >e B, if using a performance evaluation criterion e, the performance of algorithm A is found
to be superior than that of algorithm B. If both algorithms perform the same according to some criterion e,
denote this by A ≡e B.

Boyar et al. [5] considered the non-preemptive algorithms for analysis on various performance measures.
Beside considering the non-preemptive algorithm of El-Yaniv et al. [8] with reservation price

√
Mm, authors

also introduced two fictitious algorithms with reservation prices M+m
2 , and M respectively. The algorithms are

compared using different performance measures.

3. Competitive analysis

One of the most widely used tools for evaluating the performance of an online algorithm is competitive
analysis, introduced by Sleator and Tarjan [13]. In the competitive analysis, the performance of an online
algorithm is compared against the performance of an optimal offline algorithm, which has complete knowledge
of the input [11].

Let A be an online algorithm for a profit maximization problem P. The performance of A on a sequence
I ∈ I is denoted by perfA(I). Higher performances are preferred. Let OPT be the optimal offline algorithm for
P. Performing on an input sequence I, the performance of OPT is given by perf(I). Online algorithm A is cA
competitive iff, for all I ∈ I;

cA ≤
perf(I)

perfA(I)
·
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The competitive ratio is always equal to or greater than 1. The closer it is to 1, the better, as the performance
of the online algorithm matches the performance of the optimum offline algorithm. Therefore, we wish to find
an online algorithm which minimize the optimal competitive ratio c∗:

c∗ = inf cA = inf sup
perf(I)

perfA(I)
·

From rule 2 of threat-based algorithm follows that a competitive ratio of c (for Tp) is always attainable if
the maximum rate is cm, even if all exchanges occurs at a rate m [8].

Depending on the initial rate q1, the algorithm behaves differently; El-Yaniv et al. [7, 8] distinguished two
possible cases: first, the initial rate q1 is less than or equal to cm, and second, the initial rate q1 is higher than
cm. The achievable competitive ratio depends on q1.

Theorem 3.1. If q1 ∈ (cm, cm+ ∆] then Tp >c Tq, otherwise Tp ≡c Tq.

Proof. According to [7], the competitive ratio achieved by the threat based algorithm depends on the first
offered price q1. Two cases are discussed. In case 1, q1 ≤ cm and in case 2 q1 > cm. We discuss both of the
cases as following;

Case 1: q1 ≤ cm.
A worst-case sequence can be of the following form;

cm, . . . , . . . ,m.

The first offered price is cm and the subsequent prices are all set to m. Tp and Tq both converts on the last
offered price m, thereby achieving the same competitive ratio, i.e., Tp ≡c Tq.

Case 2: q1 > cm.
We can distinguish between two sub-cases based on q1.

Case 2.1: q1 ∈ (cm, cm+ ∆].

Consider an input sequence of the following form;

q1,m, . . . , . . . ,m.

First offered price is q1 ∈ (cm, cm+ ∆] and all the subsequent prices are set to m. Recall st ∈ [0, 1] represents
the amount of wealth invested at offered price qt by a threat-based algorithm. As q1 ∈ (cm, cm + ∆], i.e.,
cm < q1 ≤ cm+ ∆, Tp invests s1 ∈ (0, 1) on q1. As rest of the prices are all set to m, Tp does not invest on any
other day except on the last day T , i.e., sT = 1−s1. The total return of Tp is s1q1 + (1−s1)m. Optimum offline
algorithm converts all the wealth at the highest price i.e., at q1 ∈ (cm, cm+ ∆]. The resultant competitive ratio
of Tp is;

cp =
q1

s1q1 + (1− s1)m
· (3.1)

On the other hand, Tq does not invest on the first offered price q1 as q1 ≯ cm + ∆, i.e., s1 = 0. Tq invests all
the wealth on the last offered price m resulting in a competitive ratio cq such that;

cq =
q1

m
· (3.2)

As q1 > m and s1 > 0 =⇒ s1q1 + (1− s1)m > m =⇒ cp < cq, i.e., Tp >c Tq.
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Case 2.2 q1 > cm+ ∆ > cm.

Consider an input sequence of the following form;

q1, . . . , . . . ,m.

Both Tp and Tq converts on the first offered price, resulting in the same competitive ratio for both algorithms,
i.e., Tp ≡c Tq.

Summarizing, if cm < q1 ≤ cm+ ∆ then Tp >c Tq, otherwise Tp ≡c Tq. �

4. Bijective analysis

Bijective analysis was first introduced by Angelopoulos et al. [4] in 2007. In bijective analysis, to compare
an algorithm A to an algorithm B, a bijection on the set of all possible sequences is constructed. Contrary to
competitive analysis, bijective analysis does not focus on a single worst case sequence, but on the performance of
all possible sequences. Additionally, there is no need to know an optimal offline algorithm as a baseline, instead,
algorithms can be compared directly.

Boyar et al. [5] defined bijective analysis with regards to the online conversion problem as follows:

Definition 4.1. An online conversion algorithm A is no better than an online conversion algorithm B according
to bijective analysis if there exists an integer no ≥ 1 such that for each n ≥ n0, there is bijection b : In ↔ In
satisfying A(I) ≤ B(b(I)).

For this performance measure, we assume that Tp and Tq both use integer values. Through scaling real values
can be converted into integer values without any loss of information, therefore, the result will not be distorted.
It is important to mention that the assumption of integer values holds for prices only and online algorithms can
invest little by little, i.e., st ∈ [0, 1].

Theorem 4.2. A bijection between Tp and Tq exists if p = m and m < q ≤M, else Tp and Tq are incomparable.

Proof. First, we calculate the number of possible permutations which yield Y yens when given an exchange
rate p at which the first trade should occur. In the second step, we show that a bijection between Tp and Tq is
possible. Denote the length of the trading sequences by n (In analogy to T in the continuous case).

Depending on the reservation price p, we divide the number of possible permutations which yield Y yens into
two cases. In case 1, we consider all sequences which yield between m and p yens, and in case 2, we consider all
sequences which yield between p+ 1 = q and M yens.

For case 1, consider the sequence in Table 1. In this sequence, p′i := c ·m+ εi, εi < εi+1, and for the ease of
notation assume that p′0 is evanescent close to p = cm. In other words, on the first and second day the exchange
rate qi is less than the reservation price p, so that no trades are executed. This is true for p −m prices, and
there are i − 1 possible positions. On the third day, the exchange rate is greater than p, so a trade occurs. As
algorithm T is preemptive, subsequent trades will follow on all days, on which the exchange rate reaches a new
maximum and D 6= 0. This is the case for M − p′0,M − p′1, .., for a total of

(
M−m+1

t

)
possibilities, where t is

additional number of trades after the initial one, which is caused by the preemptive nature of T . If D = 0, no
trade is executed on the remaining days. Note that qj and qk can be arbitrarily close to M .

For case 2, consider all sequences with m ≤ Y < p. m will be chosen as output only if it is the last exchange
rate in the sequence, and all other qi are less than p. There are p −m possible prices, which are smaller than
p, and n− 1 prices which are subject to change in each sequence. This results in a total of (p−m)n−1 possible
sequences. Note that while T is a preemptive algorithm, and as such is likely to trade over a period of days,
this cannot happen if it trades on the last day.

This results in the following equation which, given a reservation price p, yield an output of Y :

Np,Y =

{
(p−m)n−1 m ≤ Y ≤ p, t = 0∑n
i=1((p−m)i−1

(
M−m+1

t

)
Nn−(t+i) p ≤ Y ≤M, t ≤ n− i.

(4.1)
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Table 1. Exchange sequence for Np,Y , where p′0 < p′1 < p′2.

d 1 2 3 4 5 6 7

qi < p′0 < p′0 p′0 p′1 p′2 qj qk

#V p−m p−m 1 M − p′0 M − p′1 N N

For m < p, no bijection between two algorithms Tp and Tq is possible. The number of sequences which results in
an output of m ≤ Y ≤ p for Tq is greater than that of Tp, since (q−m)n−1 > (p−m)n−1 as per the requirement,
i.e., p < q. For the number of sequences with output Y ∈ [p,M ], Tq accumulates higher number of yens than
Tp (with the same reasoning). As p < q, the sum of sequences which result in an output p ≤ Y ≤ M for Tq, is
greater than the ones for Tp.

For m = p, a bijection b : In ↔ In can be constructed. Algorithm Tp accepts the first price. Each possible
price will be the output of

(p−m)1−1

(
M −m+ 1

t

)
Nn−(t+1) =

(
M −m+ 1

t

)
Nn−(t+1)

sequences.
For Tq, the number of sequences can be derived as followed: Each price in range [m, q − 1] = [m, p] is the result
of (q −m)n−1 sequences, each price in [q,M ] = [p+ 1,M ] is result of

n∑
i=1

((p−m)i−1

(
M −m+ 1

t

)
Nn−(t+i)

sequences. For constructing a bijective mapping b : In ↔ In, each sequence with output k < q of algorithm Tp
is mapped to sequences with the same output from algorithm Tq. The number of sequences, which cannot be
mapped in this way, are denoted by EM . The same holds for all sequences with output k ≥ q, and the number
of sequences from Tp, which cannot be mapped in this way to sequences with the same output from Tq are
denoted by Eq. As [5] points out, EM = Eq, which also holds in this model. Thus, a bijective mapping b can be
constructed such that Tp(I) > Tq(b(I))∀I ∈ I.

In other words, for m = p, Tp and Tq are comparable according to bijective analysis, and Tp >b Tq. �

Corollary 4.3. According to bijective Analysis, Tp is better than Tq; Tp >b Tq.

5. Average analysis

With bijective analysis, comparing two algorithms can prove difficult as this measure creates a strong relation-
ship between two algorithms which may not exist [3]. Instead, average analysis compares the average performance
of two algorithms, which can give a tendency towards which algorithm will perform – on average – better.

Definition 5.1. An online conversion algorithm A is no better than an online conversion algorithm B according

to average analysis, if
∫

In
B

∫
In
A ≥ 1 ∀n ≥ no, no ≥ 1.

In Fujiwara et al. [9], the threat based algorithm is defined with help of Lebesgue-integrals. Assuming that
the function, which maps the exchange rate qt, is piecewise continuous, with time t ≥ 0. Then

∫ t+∆t

t
dS(qt)

dollars can be exchanged into
∫ t+∆t

t
qt dS(qt) yens for arbitrarily small time intervals ∆t. Denote by S(qt) :

[0,∞]→ [0, 1] the strategy of the player.
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The strategy Sq(qt) for Tp is given as

Sp(qt) =

{
1

c(qt−m) , cm ≤ qt < M

0, m ≤ qt < cm
(5.1)

and the strategy Sq(qt) for Tq is given as

S(qt) =

{
1

c(qt−m) , cm+ ∆cm ≤ qt < M

0, m ≤ qt < cm+ ∆cm.
(5.2)

(see El-Yaniv et al. [7])
Depending on the initial rate q0, two cases can be distinguished:

Case 1. cm ≤ q0. In this case, no trade occurs, and D(qt) = 1, Y (qt) = 0.
Case 2. cm > q0. In this case, the total profit Y (qt) is m+

∫
I
(qt −m) dS(qt).

Theorem 5.2. According to average analysis, Tp >a Tq.

Proof. Consider Tp

Tq
, with Tp = m+

∫
I
(qt −m) dSp(qt) and Tq = m+

∫
I
(qt −m) dSq(qt).

We choose the interval borders [m, cm) and [cm,M ].
Solving the Lebesgue-integrals yields

Tp
Tq

=
m+

∫
I
(qt −m) dSp(qt)

m+
∫
I
(qt −m) dSq(qt)

=
m+ πpm,cm + πpcm,M + (qt −m) ∗ (Sp(cm+ ε)− Sp(cm− ε))
m+ πqm,cm + πqcm,M + (qt −m) ∗ (Sq(cm+ ε)− Sq(cm− ε))

=
m+ πpm,M + (qt −m)(Sp(cm+ ε)− Sp(cm− ε))
m+ πqm,M + (qt −m)(Sq(cm+ ε)− Sq(cm− ε))

where πqa,b =
∫ b
a

(qt − m) dSq(qt)
dqt

dqt with lower boundary a and upper boundary b, and, respectively,

πpa,b =
∫ b
a

(qt −m) dSp(pt)
dqt

dqt.
Because of limε→0 Sp(cm+ ε)− Sp(cm− ε) = 0 this simplifies to

m+ πpm,M
m+ πqm,M

·

Solving this produces

m+ 1/c(1 +m(ln(M −m)− ln(cm−m))−M − cm)
m+ 1/c(1 +m(ln(M −m)− ln(cm+ ∆cm−m))−M − cm−∆cm)

·

As ln(cm −m) < ln(cm + ∆cm −m) and M + cm < M + cm + ∆cm it follows that this fraction is always
greater than 1 for all ∆cm > 0, therefore, Tp >a Tq. �

6. Relative interval analysis

Relative interval analysis was introduced by Dorrigiv et al. [6] and applied to the paging problem. It compares
two algorithms directly across their entire performance spectrum, i.e., not just on a worst case sequence, and
not using the optimal offline algorithm as a reference.
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Before we are able to define the relative interval fI of two algorithms A and B, we need to define some
auxiliary functions as given in [5]. Denote by A(σ) the returns of A on input σ (respectively B(σ) for B).

MinA,B(n) = min
|σ|=n

{A(σ)− B(σ)}

MaxA,B(n) = max
|σ|=n

{A(σ)− B(σ)}.

Definition 6.1. The finite relative interval fI of two online algorithms A and B is defined as

fI(A,B) = [Min(A,B),Max(A,B)]

where Min(A,B) = infn≥2{MinA,B(n)} and Max(A,B) = supn≥2{MaxA,B(n)}.

Definition 6.2. According to finite relative interval analysis, if Max(A,B) > |Min(A,B)|, then A is better
than B. Especially if fI(A,B) = [0, β], β > 0, then A dominates B.

Theorem 6.3. According to finite interval analysis, fI(Tq, Tp) = [−s1(m− cm− ε), s1(M − cm− ε)].

Proof. For Min(A,B), consider a sequence of two prices cm + ε,m such that ε < ∆. Tp invests s1 on cm + ε
and the remaining (1− s1) on m. The resultant return of Tp is s1(cm+ ε) + (1− s1)m. Tq invests all the wealth
at m. Therefore,

Min(A,B) = m− [s1(cm+ ε) + (1− s1)m]
= −s1(m− cm− ε).

(6.1)

For Max(A,B), consider a sequence of two prices cm+ ε,M such that ε < ∆. Tp invests s1 on cm+ ε and the
remaining (1− s1) on M . The resultant return of Tp is s1(cm+ ε) + (1− s1)M . Tq invests all the wealth at M .
Therefore,

Max(A,B) = M − [s1(cm+ ε) + (1− s1)M ]
= s1(M − cm− ε).

(6.2)

From equations (6.1) and (6.2), fI(Tq, Tp) = [−s1(m− cm− ε), s1(M − cm− ε)]. �

Corollary 6.4. According to finite interval analysis, Tq >fI Tp.

Proof. To prove that Tq >fI Tp, we need to show that Max(Tq, Tp) > |Min(Tq, Tp)|. From Theorem 6.3, we know
that Max(Tq, Tp) = s1(M − cm− ε) and Min(Tq, Tp) = −s1(m− cm− ε). For all values of m and M such that
0 < m < M , Max(Tq, Tp) > |Min(Tq, Tp)| =⇒ Tq >fI Tp. �

7. Conclusion

In this paper, we gave an example of how competitive, bijective, average and relative interval analysis can be
applied to preemptive threat based online algorithms for conversion problem. Two algorithms Tp and Tq, with
reservation prices p < q, were subjected to these measurements and compared. It turned out that finite interval
analysis favored the algorithm with a higher reservation price i.e., Tq, while bijective analysis and average analysis
preferred the algorithm with a lower reservation price, i.e., Tp. In comparison to the work of Boyar et al. [5],
our findings are different in a number of ways. Boyar et al. [5] observed that the non-preemptive algorithm of
El-Yaniv et al. [8] with a reservation price

√
Mm performs better under competitive analysis paradigm than

algorithms with reservation prices M+m
2 , and M . In contrast, we observed that for threat based algorithm,

there is no clear winner, and the answer depends on the first offered price. Boyar et al. [5] concluded that under
relative interval analysis, reservation price M+m

2 is a better choice than
√
Mm. Note than M+m

2 ≥
√
Mm for
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0 < m < M . We came to the same conclusion, as Tq is found superior to Tp under finite interval analysis.
Further, Boyar et al. [5] found that average case analysis favors algorithms with a higher reservation price.
However, for non-preemptive algorithms, we found that this is not the case. Boyar et al. [5] further observed
that the respective algorithms were not comparable under bijective analysis, where as our bijective analysis
favored Tp.
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feedback and suggestions.
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