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VARIABLE NEIGHBORHOOD SEARCH BASED ALGORITHMS FOR
CROSSDOCK TRUCK ASSIGNMENT

Cécilia Daquin∗, Hamid Allaoui, Gilles Goncalves and Tienté Hsu

Abstract. To operate a cross-dock successfully, an efficient assignment of trucks to docks is one of
the key decisions. In this paper, we are interested in the cross-dock assignment of trucks to docks
problem, where the number of trucks exceeds the number of docks. The objective is to minimize the
cost of transferring goods within the cross-dock while avoiding delivery penalties. This problem being
NP-hard, we use Variable Neighborhood Search metaheurisitc (VNS) to solve it approximately. More
specifically, we conduct a structured empirical study to compare several VNS configurations and to
find which is/are the most effective for this cross-dock problem. In this work, first we analyze the way
the search strategy and the neighborhood operators can be combined in a VNS framework according
to their efficiency within a local search. Then the best configurations are tested within three VNS
variants, namely Basic VNS (BVNS), General VNS (GVNS) using Basic VND (B-VND) and GVNS
using Union VND (U-VND) according to the number of used operators and the order of applying
these operators. Finally we evaluate the influence of the stopping criterion within these variants. Some
significant differences among these configurations are shown and illustrated by conducting the Friedman
test.
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1. Introduction

Cross-docking is a common logistics practice in industry where goods are received from suppliers in inbound
trucks and loaded directly without storage into outbound trucks to customers. It enables to reduce operational
costs while shortening delivery time and increasing goods flow (Fig. 1). A cross-dock includes various docks
to which trucks can be assigned for unloading and loading operations. Inbound trucks are assigned to docks
to unload received goods from suppliers. Then goods are immediately transferred to appropriate docks where
outbound trucks are assigned. Finally, goods are loaded for delivering customers. Once an inbound truck is
completely unloaded or an outbound truck is completely loaded, the dock is available for another truck. The
problem is how to assign docks to trucks while synchronizing the arrival and the departure of cargos This prop-
erty allows cost and delivery lead-time to be reduced. Moreover, this practice improves resource utilization by
getting full trucks. All these advantages make cross-docking an interesting logistics practice for many companies.
However, flows have to be well managed to keep these benefits achievable.
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Figure 1. Schematic representation of a cross-dock.

Many decisions have to be taken by the practitioners about the use and implementation of cross-docking.
These decisions have to be decided cautiously, because they have a major impact on the cross-docking efficiency.
The first issue is to fix the location of the cross-dock and its layout. The network has to be designed so as to
determine the goods flows through the network. Afterwards, the practitioners have to decide on routing of trucks
before and after passing through the cross-dock. Once arriving at the cross-dock, the assignment of trucks to
docks has to be addressed. Finally, resources inside the cross-dock have to be scheduled, and the storage area
has to be located. In this paper, we focus on the assignment of trucks to docks in order to optimize the sum of
operational cost and penalty cost. Because we assume that the number of trucks exceeds the number of docks,
some penalties have to be paid when trucks cannot be scheduled in the current horizon. For this problem, we
use the Integer Linear Programming (ILP) model proposed by Miao et al. [21] and propose an amendment to
this model. According to our knowledge, this amended model was not considered in the literature yet. Since this
combinatorial optimization problem is known to be NP-hard [21], we use several VNS variants to find optimal
or near optimal solutions to our model.

The VNS algorithm consists of three steps which are executed until the stopping criterion is reached: the
shaking step, the improvement procedure and the neighborhood change step (cf. Sect. 5). Following this basic
scheme, different VNS variants can be obtained by choosing different settings: number and/or order of neigh-
borhoods, the search strategy, the descent phase configuration, the stopping condition, etc. Thus, in this paper,
we are interested in these different possible configurations of VNS in order to find the most effective for the
studied cross-docking problem (Fig. 2). First, we focus on several neighborhood operators and the way they can
be combined as VNS inputs to solve this problem. We propose four neighborhood operators. One of them is
used by Lim et al. [20] and we develop the other ones for the cross-dock problem. We test and compare them one
by one within a local search using two different search strategies. The aim is to highlight their characteristics
and their efficiency in order to operate VNS algorithms much better as possible. Then, according to the results,
we test several strategies for combining the operators in VNS structures. These strategies differ by the number
and the order of the neighborhood operators. Regarding the VNS structure, we are interested in widely used
variants of VNS method: the basic VNS (BVNS) that uses a local search in a descent phase, the general VNS
(GVNS) that uses a basic VND (Variable Neighborhood Descent) and the GVNS that uses an union VND.
After detecting the best strategy for the BVNS, we use it within the two GVNS variants and we compare the
performances. Finally, we are interested in the impact of stopping criterion within VNS algorithm over the
results. In each step of our empirical study, the performance of the tested algorithms is evaluated on a set of
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Figure 2. Overview of the VNS configurations tested in this paper.

instances of the cross-docking problem and compared with the performance of CPLEX solver. However, we
couldn’t compare our results with ones of Miao et al. [21] since their benchmarks are not available, and both
models are slightly different (objective functions differ). Finally, the Friedman test is conducted to analyse the
statistical significance of the proposed algorithms performance.

In the remainder of this paper, a literature review is presented in Section 2. Afterwards a formal description
and the ILP model of the problem are found in Section 3. Sections 4 and 5 present the local search, the VNS
variants used to solve this problem, their possible configurations and the proposed neighborhood operators.
Computational results are given and analysed in Section 6. Finally, our results are summarized and possible
future research is suggested in Section 7.

2. Literature review

The cross-docking problem is well studied in recent literature. Boysen and Fliedner [6] provided a classification
and a literature review for the truck scheduling problem. Van Belle et al. [35] presented a thorough review of
papers about several problems related to cross-docking. Lately, Ladier and Alpan [17] compared the articles
related to cross-docking operations found in the literature with the industrial practices captured through visits
to cross-docks and interviews with their managers. Some papers discuss factors that influence the suitability of
cross-docking. Apte and Viswanathan [3] examined features and techniques of effective cross-docking compared
with traditional distribution. Van Belle et al. [35] provided guidelines for a successful implementation of cross-
docking. Buijs et al. [7] proposed a framework specifying the interdependencies between different aspects of
cross-docking problem and presented a new general classification scheme for cross-docking research based on
the inputs and outputs for each problem aspect. Thus, during the design and operational phase of cross-docks,
many decisions have to be taken.

In cross-docking, the temporary storage is an important element to manage. Indeed, products unloaded from
trucks can be stored few hours at most while waiting for a truck to arrive. Thus, a staging strategy have to be
decided. Taylor and Noble [32] examined three material staging alternatives in various cross-dock environments.
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They suggested that staging needs can vary depending on different staging methods and the scenarios considering
a range of demand types. Sandal [31] extended this study and examined several staging strategies in order to
determine which one is the most appropriate in a cross-docking operation according to freight attributes and
container loading requirements. Vis and Roodbergen [36] sought to determine temporary storage locations
for incoming freight in order to minimize the travel distances of goods. Their method consisted of a network
formulation that incorporated loading and unloading dock door locations, travel distances and available storage
space in the facility. Experimental results showed the proposed algorithm can reduce the total travel distance
up to about 40%.

One of the key decisions is the dock assignment for inbound and outbound trucks. An efficient dock assignment
can increase the performance of the cross-dock and can reduce the shipment delays, the operational time
and costs in the cross-dock, among other things. So, dock door assignment problem tries to provide the best
assignment for trucks to docks at a given point in time. This problem considers the number of trucks being less
than or equal to the number of docks, and the time dimension are not taken into consideration. The purpose is
to assign each truck to a different door, considering the spatial dimension, i.e. the location of the doors. Tsui
and Chang [33] formulated the dock door assignment problem as a bilinear programming problem where the
objective function is nonlinear that tries to minimize the total distance traveled by the forklifts. A branch-and-
bound algorithm is proposed to solve this problem. Cohen and Keren [9] suggested another optimal formation
that is a non-linear MIP model and a heuristic approach for assigning cross-dock doors to trailers. Nassief
et al. [28] formulated the cross-dock door assignment problem as a mixed integer programming which embedded
into a Lagrangian relaxation that exploited the structure of the problem to obtain lower and upper bounds on
the optimal solution. This approach allowed to obtain solutions of instances more difficult. Nassief et al. [29]
proposed two new MIP models for this problem and compared the results of their computational and analytical
experiments with existing ones.

Dock assignment problems do not take into consideration temporal constraints, so it is not possible to assign
multiple trucks to one dock sequentially. Yet, other problems consider more trucks than docks and seek to
determine the succession of the arriving and departing trucks at the docks. In this case, only the temporal
dimension is taken into consideration, without spatial constraints. Then, the so-called truck scheduling problem
considers dock doors as resources that have to be scheduled over time. Note that the dock assignment problem
is part of the truck scheduling problem: over a first phase, the order and/or the time of trucks assignment is
decided in order to choose a dock for each truck next. Chen and Lee [8] studied a two-machine cross-docking
flow shop scheduling problem in which an operation on the second machine cannot be processed unless the
operation on the first machine has been completed. Their purpose was to sequence both the inbound and
outbound carriers to minimize the makespan. In their paper, they proved that the problem is strongly NP-hard
and developed a branch-and-bound algorithm to solve it optimally. Yu and Egbelu [37] studied a cross-docking
system where a temporary storage area is located in front of the shipping dock. They sought to find the best
truck docking or best scheduling sequence for both inbound and outbound trucks to minimise the makespan.
In their paper, a mixed integer programming model is formulated, and a heuristic algorithm is proposed to
solve large problem instances. For the same problem, Vahdani and Zandieh [34] applied five metaheuristics to
solve it including a genetic algorithm, tabu search, simulated annealing and variable neighborhood search. Their
experimental study showed these metaheuristics resulted clearly better solution than the ones obtained by the
heuristic in [37]. Boloori Arabani et al. [5] studied the same problem and developed also five metaheuristics: a
genetic algorithm, tabu search, particle swarm optimization, ant colony optimization and differential evolution.
Alpan et al. [2] proposed a bounded dynamic approach to schedule inbound and outbound trucks in a multiple
receiving and shipping cross-dock environment. Alpan et al. [1] developed several heuristics to find the best
schedule to minimize the sum of inventory holding and truck replacement costs. Lim et al. [20] considered a
problem with time windows and capacity constraints, i.e. trucks are assigned to docks within its time window
to unload and load the carried merchandises through the cross-dock with a limited capacity of storage. The
objective was to minimize the total shipping distances between docks. In their paper, the problem is formulated
as an integer programming model, then proposed a tabu search and a genetic algorithm to solve it. Later, they
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extended this problem by focusing also on the operational time between docks [19]. Their new purpose was
to minimize the operational cost, which is calculated according to the distance and the time travel between
docks, and the penalty cost for unfulfilled shipments. This problem is formulated as an integer programming
model and the authors proposed a genetic algorithm and finally a tabu search in [21] to solve it optimally. Miao
et al. [22] proposed a new model in which the capacity constraint didn’t take into consideration anymore, and
distinguished the inbound trucks and docks from the outbound trucks and docks. They developed an adaptive
tabu search to solve it. Gelareh et al. [15] proposed a different model for the same problem as in [21] and
provided an efficient branch-and-cut algorithm to solve it in a reasonable computational time. Recently, Miao
et al. [23] proposed a new model in which several practical constraints are simultaneously considered such as the
capacity of trucks and of storage area, the time windows of trucks and the operational time within the crossdock.
They proposed a two stage genetic algorithm to solve it. These last problems are similar to problems of gate
assignment in airports. In the literature, some papers dealt with this subject [4,11,12,18,30]. Because the gate
assignment problem is NP-hard [30] and it is a special case of the problem studied in [21], the latter showed
their problem is NP-hard. Dondo and Cerdá [13] developed a mixed integer linear programming formulation
for the vehicle routing problem with cross-docking to find the routing and scheduling of a mixed fleet, the
truck docking sequence, the dock door assignment and the travel time to move the goods through the cross-
dock. Mohtashami et al. [27] proposed a multi-objective mathematical model that minimizes the makespan,
transportation costs and the number of truck trips in the entire supply chain. To solve it, they developed two
evolutionary metaheuristic algorithms: the non-dominated sorting genetic algorithm and the multi objective
particle swarm optimization. Fonseca et al. [14] proposed a lagrangian relaxation methodolody to solve a truck
scheduling problem in a crossdock with parallel-docks. The objective is to minimize the makespan. Mohtashami
[26] studied a cross-docking problem where there is temporary storage in front of the shipping dock and the
shipping trucks can move in and out of the dock repeatedly. In fact, after the shipping truck loads some of its
needed products, it can choose between two scenarios: either more products are loaded into the current shipping
truck, or the current shipping truck is moved out from the shipping dock and another shipping truck is moved
to the shipping dock to load its products. In this case, an outbound truck can load some of its needed products
from shipping dock, leaves the dock for another outbound truck, waits and goes into the shipping dock again
to load all or part of its remaining product items. Its purpose was to find the optimal/near optimal solution
for sequencing inbound and outbound trucks to minimize the total operational cost. To solve this problem, the
author developed a genetic algorithm-based method.

For the best of our knowledge, the proposed amendment to the model presented in Miao et al. [21] is considered
for the first time. Since the problem is still NP-hard, it is unlikely to find optimal solutions for big instances in
a reasonable computational time. It is why we propose in this paper several VNS metaheuristic variants to get
approximate solutions. Hence, the main purpose here is to deliver a wide structured experimental study and a
sensitivity analysis to compare several VNS configurations. The aim is to investigate some significant differences
among them and to highlight the most effective for the studied problem.

3. Problem statement

Our study focuses on assignment of trucks to docks within a cross-dock under time window constraints as
defined in [20, 21]. Indeed, we seek to assign trucks to docks in order to minimize the sum of operational cost
and penalty cost. The operational cost is the cost of transferring pallets from inbound docks to outbound docks.
The penalty cost is the cost of not being able to transfer pallets from dock to dock. This is due to not assigning
corresponding inbound truck or outbound truck in the required time window. In this case a negotiation could be
engaged with the truck provider in the possibility to reassign it outside the required time window. We consider
the problem whenever the number of trucks exceeds the number of available docks. The problem data are:

• The time window [ai; di] of each truck i, i.e., ai denotes the time instant in which truck i arrives and is
assigned to a dock and di denotes the time instant in which truck i leaves its assigned dock. So then, the
arrival and departure times of each truck have already been set;
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• The cross-dock characteristics (number of docks, costs and time of transferring goods between docks and
the maximum number of shipments that the warehouse can hold);

• The flow of shipments (the quantities and the penalty costs if goods are unfulfilled, the inbound and outbound
trucks that have to transport goods).

Our purpose is to minimize the total cost, which is the sum of the cost of transferring goods between docks and
the penalty cost. Therefore, we have to find the best dock assignments for trucks. Moreover, several constraints
must be satisfied:

• A truck should be assigned to one dock during its time window, i.e. starting from its arriving time until its
departure time. So then, it is necessary to ensure at least one dock is available during the time window of
truck. If no dock is free, the latter will not be assigned and a penalty cost will be incurred for not transferred
pallets;

• At any given time, only one truck can be assigned to a certain dock. If two trucks are assigned to the same
dock, their respective time windows must not overlap;

• At any given time, the total number of goods inside the cross-dock cannot be greater than the maximum
capacity of the warehouse (capacity constraint);

• The goods transfer process between two trucks has to take place between the arrival time of the inbound
truck and the departure time of the outbound truck, while considering the time of transferring goods between
two docks (precedence constraint).

Whenever a truck isn’t assigned during its time window, a penalty cost is incurred for all the unfulfilled
shipment by this truck.

Miao et al. [21] studied the same problem and proposed an IP model. We present in the following the same
model except the objective for which we propose an amendment. Indeed, in the Miao et al.’s model, a transfer
cost is incurred as soon as two docks are assigned, even if there is no shipment between these ones. We propose
to add a new preprocessing variable σ in the operational cost to take into account an incurred cost if and only
if there are transferred pallets between assigned trucks.
The following notations that we use are the same as in [21]:

N set of trucks arriving at and/or departing from the cross-dock.
M set of docks available in the cross-dock.
n total number of trucks.
m total number of docks.
ai opening time of time window of truck i (1 ≤ i ≤ n).
di closing time of time window of truck i (1 ≤ i ≤ n).
tk,l operational time for pallets from dock k to dock l (1 ≤ k, l ≤ m).
fi,j number of pallets moving from truck i to truck j (1 ≤ i, j ≤ n).
ck,l operational cost per unit time from dock k to dock l (1 ≤ k, l ≤ m).
pi,j penalty cost per unit shipment from truck i to truck j (1 ≤ i, j ≤ n).
C capacity of cross-dock, i.e. the maximum number of shipment the cross-dock can hold at each time.

This binary pre-processing parameter is also defined:
xi,j = 1 iff truck i departs no later than truck j arrives, i.e. iff di ≤ aj ; 0 otherwise

We propose to add this new pre-processing parameter:
σi,j = 1 iff fi,j > 0, i.e. if shipment has to be transferred from truck i to truck j; 0 otherwise.
The decision variables are as follows:

yi,k =
{

1 if truck i is assigned to dock k
0 otherwise

zi,j,k,l =
{

1 if truck i is assigned to dock k and truck j is assigned to dock l
0 otherwise.
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Through a pre-processing step, we set the parameters σi,j and xi,j (1 ≤ i, j ≤ n). Moreover, in order to make
data consistent, we give some assumptions as in [21]:

• fi,j ≥ 0, iff dj ≥ ai (1 ≤ i, j ≤ n), otherwise fi,j = 0. In other word, truck i will transfer some shipment to
truck j iff truck j departs no earlier than truck i arrives. Note that even if dj ≥ ai, fi,j can be equal to zero
i.e. truck i has no shipment to transfer to truck j;

• ai < di (1 ≤ i, j ≤ n) which means that for each truck, the arrival time must be strictly smaller than the
departure time;

• n > m because we consider the problem when the number of trucks exceeds the number of available docks;
• Capacity C is defined as follows: when truck i comes, then it will consume

∑m
k=1

∑m
l=1

∑n
j=1 fi,j zi,j,k,l

units of capacity whenever i is assigned. Respectively, when truck j leaves its dock, then∑m
k=1

∑m
l=1

∑n
i=1 fi,j zi,j,k,l units of capacity are released;

• Sort all the ai and di in an increasing order (1 ≤ i, j ≤ n), and let tr (with r an integer such that 1 ≤ r ≤ 2n)
correspond to these 2n number such that t1 ≤ t2 ≤ . . . ≤ t2n. Using these notations, we can easily formulate
the capacity constraint afterwards.

In order to minimize the total cost, which is the sum of the cost of transferring goods and the penalty cost,
we propose the following ILP model:

min

m∑
k=1

m∑
l=1

n∑
i=1

n∑
j=1

ck,l tk,l σi,j zi,j,k,l +
n∑
i=1

 n∑
j=1

pi,j fi,j

(
1−

m∑
k=1

m∑
l=1

zi,j,k,l

) (3.1)

s.t.
m∑
k=1

yi,k ≤ 1 (1 ≤ i ≤ n) (3.2)

zi,j,k,l ≤ yi,k (1 ≤ i, j ≤ n, 1 ≤ k, l ≤ m) (3.3)

zi,j,k,l ≤ yj,l (1 ≤ i, j ≤ n, 1 ≤ k, l ≤ m) (3.4)

yi,k + yj,l − 1 ≤ zi,j,k,l (1 ≤ i, j ≤ n, 1 ≤ k, l ≤ m) (3.5)

xi,j + xj,i ≥ zi,j,k,k (1 ≤ i, j ≤ n, i 6= j, 1 ≤ k ≤ m) (3.6)

m∑
k=1

m∑
l=1

∑
i∈{i:ai≤tr}

n∑
j=1

fi,j zi,j,k,l

−
m∑
k=1

m∑
l=1

n∑
i=1

∑
j∈{j:dj≤tr}

fi,j zi,j,k,l ≤ C (1 ≤ r ≤ 2n) (3.7)

fi,j zi,j,k,l (dj − ai − tk,l) ≥ 0 (1 ≤ i, j ≤ n, 1 ≤ k, l ≤ m) (3.8)

yi,k ∈ {0, 1}, yj,l ∈ {0, 1}, zi,j,k,l ∈ {0, 1} (1 ≤ i, j ≤ n, 1 ≤ k, l ≤ m). (3.9)

In this formulation, the objective function (3.1) is composed of two terms: the total operational cost and
the total penalty cost. In the first part, the total operational cost represents the transfer cost between two
docks according to the transfer time for each shipment transfer. Therefore, compared to [21], we add the binary
parameter σi,j in the definition of the total operational cost. Then, whenever σi,j = 1 i.e. when truck i has
to transfer shipments to truck j, the transfer cost is applied if trucks i and j are assigned. If σi,j = 0, no
transfer cost is added even if trucks i and j are assigned. In [21], this variable is not defined. In this case, with
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constraint (3.5), a transfer cost is incurred as soon as two trucks are assigned, even if there is no shipment
between theses ones. The second part corresponds to penalty incurred when goods are not transferred from
dock to dock because corresponding trucks are not assigned or precedence constraints are not checked.

Constraint (3.2) ensures that each truck can be assigned to one dock at most. Constraints (3.3) to (3.5)
jointly define the variable z which represent the logic relationship among yi,k, yj,l and zi,j,k,l. Constraint (3.6)
guarantees that a dock cannot be occupied by more than one truck simultaneously. Constraint (3.7) defines
the capacity constraint, i.e. at each event time (arrival and departure time of a truck), the total number of
shipment inside the cross-dock cannot exceed the maximum capacity C. The last constraint (3.8) ensures that
the shipment transfer between two trucks takes place within the time window of each truck while respecting
precedence constraint between both of them.

4. Proposed local search algorithm

Before introducing the VNS framework, we first focus, in this section, on the neighborhood operators to
analyse their efficiency within a local search. Local search (LS) is a simple procedure for heuristically solving
combinatorial problems. This method is based on exploring the search space of candidate solutions until a
“good” solution is found. The algorithm starts from an initial solution and then tries to “improve” it by moving
to a neighborhood solution. A neighborhood structure N(S, Op) is a set of solutions that differ only by one
attribute or a combination of attributes from the current solution S. Neighborhood solutions are generated by
applying a neighborhood operator Op to the current solution and a strategy of neighborhood progress.

The local search algorithm takes as parameters an initial solution S, a neighborhood operator and a strategy
of neighborhood progress. Through each iteration, the neighbors of the current solution are created in accordance
with the chosen neighborhood operator Op. Once a solution S′ is identified from this neighborhood structure
N(S, Op), it is compared against the current solution S. If the candidate solution S′ is better, it becomes
the current solution and the search continues. The search stops whenever the stopping criterion is reached, i.e.
whenever the current solution is getting stuck in a local optimum (no more improvement). To select a solution
from the neighborhood, two strategies are used generally. The Best Improvement (BI) consists in choosing
the best neighbor (the one with the lowest objective function). The First Improvement (FI) chooses the first
neighbor which improves the current solution. Note that it is not necessary to generate all the neighbors of the
current solution whenever the strategy FI is used.

The algorithm of local search is given in Algorithm 1.
We generate the initial solution with a “First Come First Served” rule (FCFS): trucks are sorted by their

arrival time and are assigned to the first free dock in this order. If no dock is free for a given truck, the latter

Algorithm 1: Local search.
1 Function localSearch(S, Op, strategy)

Input : S: initial solution,
Op: neighborhood operator
strategy: BI or FI

Output: the solution S

1 repeat
2 N(S, Op)← generate neighbors of S with operator Op;
3 S′ ← choose a solution in N(S, Op) according to strategy;
4 if S′ better than S then
5 S ← S′;
6 end

7 until no more improvement ;
8 return S
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Figure 3. Dock Exchange Move operator (DEM).

Figure 4. Truck Exchange Move operator(TEM).

will not be assigned. Hereafter, all the initial solutions used in the proposed algorithms are generated with this
heuristic.

Neighborhood solutions are generated in accordance with a local search operator. In the rest of this study,
the four operators presented below are used. Note that for each operator we examine all possible combinations.

Dock Exchange Move (DEM)

The first operator is a Dock Exchange Move (DEM): when considering two docks 1 and 2, all trucks assigned
to dock 1 are moved to dock 2 and inversely. This operator enables to reduce the transferring costs between
docks. Moreover, it only moves assigned trucks keeping their same time window and the same links of precedence
as in the initial solution. Therefore, the produced solutions always satisfy all constraints of the problem. In the
worst case, a solution can have (m ∗m)/2 neighbors, where m is the total number of docks (Fig 3).

Truck Exchange Move (TEM)

The second operator is a Truck Exchange Move (TEM): two trucks in a temporal conflict are exchanged.
For example, let truck i be assigned to dock 1 and truck j assigned to dock 2. If both trucks are in a temporal
conflict, truck i moves to dock 2 and truck j to dock 1. Two trucks are in a temporal conflict whenever their
time windows have a shared part. The expected effects of this operator is to obtain larger free time windows
(defragmentation) in order to receive new trucks. In addition, it enables to minimize transferring costs between
docks. TEM can generate solutions that violate the time windows constraint. In this case, these invalid solutions
are not added to the neighborhood. Thus, a solution can have (n ∗m) neighbors in the worst case, where n is
the total number of trucks and m the total number of docks (Fig 4).

Truck Insert Move (TIM)

The third operator is a Truck Insert Move (TIM): a truck i (assigned or not) is assigned to another dock. If
there were trucks in this dock that are in conflict with it, then the last trucks are rejected. For example, truck
i has to be assigned to dock 1. But the latter is taken over by truck j during the time windows of truck i.
Accordingly, truck j is rejected to give a place to truck i. This operator enables to maximize the time windows,
to reduce the transferring costs between docks and to minimize the penalty costs of non-delivering goods. TIM
can generate solutions that break the time windows constraint and the capacity constraint of the cross-dock.
Then, these invalid solutions are not added in the neighborhood. The neighborhood size will be equal to (n∗m)
(Fig 5). This operator is used by Lim et al. [20].

Truck Insert At Free Dock Move (TIAFDM)

The last operator is a Truck Insert At Free Dock Move (TIAFDM): an assigned truck i is moved to a free
dock during the time window of i. The expected effect is to fill the holes in dock allocations and to obtain larger
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Figure 5. Truck Insert Move operator (TIM).

Figure 6. Truck Insert At Free Dock Move operator (TIAFDM).

time windows in order to receive a new truck. The solutions produced by this operator can violate the time
windows constraint and the capacity constraint of the cross-dock. In this case, these invalid solutions aren’t
added in the neighborhood. In the worst case, this operator provides (n ∗m) neighbors (Fig 6).

The main disadvantage of the local search is that the algorithm stops once the local optimum is reached
and returns it. But, there is a big chance that a better solution exists in another neighborhood or in a larger
neighborhood. Therefore, we only use this method to compare our proposed operators in order to combine it as
better as possible in another metaheuristic: Variable Neighborhood Search (VNS).

5. Variable neighborhood search variants

VNS is a metaheuristic proposed by Mladenovic̀ and Hansen [25]. Its main characteristic is to change sys-
tematically the neighborhood during the optimisation process for an optimal (or near-optimal) solution. This
procedure is performed in both methods: get a minimum local, and get out of the valley. VNS is developed upon
the following observations:

• A local optimum with respect to one neighborhood structure is not necessarily a local optimum for another
neighborhood structure;

• A global optimum is a local optimum with respect to all the neighborhood structures;
• For many problems, a large majority of local optima with respect to one or several neighborhoods are close

to each other relatively.

The first property incites to move in several neighborhood in order to find local optima with respect to all the
neighborhoods used. The second property suggests using several neighborhoods whenever local optima found are
of poor quality. The last property means that a local optimum often provides some information about the global
one and so the search for the vicinity of the current solution has to be intensified. Overall, the VNS algorithm
repeats three steps until the stopping criterion is reached: the shaking step, the improvement procedure and
then the neighborhood change step. The first step generates the neighbors of the current solution S within the
current neighborhood operator and then a random solution S′ is chosen among them. Thus, the shaking phase
perturbs the local optimum found through the current iteration in order to provide a good starting point for
the improvement procedure and get out of local optimum traps. Then, a procedure is applied starting from
the selected solution S′ in order to obtain a new local optimum S′′. The final step allows to guide the search
while exploring the solution space. More specifically, the neighborhood change step changes the neighborhood
or continues in generating neighbors. Several neighborhood change procedures exist, but the widely used is
sequential neighborhood step: if the local optimum S′′ is better than the current solution S, then S′′ becomes
the current solution and the process starts again at the first step with the first neighborhood structure –
otherwise, the search is resumed in the next neighborhood structure (according to a predefined order) of the
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current solution S. The VNS algorithm stops whenever the stopping criterion is fulfilled. In this paper, the
stopping criterion is reached whenever the current solution cannot be improved after testing all neighborhood
structures in the course of a maximum number of iterations nmax.

Many variants of VNS are deduced from this basic scheme [16]. In this paper, we focus on the widely used
variants of VNS: basic VNS and general VNS.

Basic VNS (BVNS)

The BVNS parameters are: an initial solution (generated with a FCFS rule in this study) and a sorted list
of neighborhood operators. Through each iteration, this algorithm executes the shaking step, the local search
procedure (presented in Algorithm 1) and the neighborhood change step. These ones occur alternately until the
current solution is not improved anymore in the course of a maximum number of iterations nmax. The algorithm
of the BVNS is given in Algorithm 2. In this strategy, S denotes the current solution which represents the best
solution found at a given time. S′ indicates a random solution used in the local search. The solution proposed
by the local search S′′ is a candidate solution that may become the current solution.

Algorithm 2: Basic Variable Neighborhood Search.
1 Function BVNS(S, Operators, strategy, nmax)

Input : S: initial solution,
Operators: sorted list of κmax neighborhood operators,
strategy: BI or FI,
nmax: stopping criterion

Output: the solution S

1 nbIterationsWithoutImprovement← 0; // number of consecutive iterations without improvement
2 repeat
3 κ← 1;
4 while κ ≤ κmax do

// Shaking step

5 Op← the κth operator in Operators;
6 Nκ ← generate neighbors of S with operator Op;
7 S′ ← choose a random solution in Nκ;

// Improvement procedure: local search

8 S′′ ← localSearch(S′, Op, strategy);
// Sequential Neighborhood change step

9 if the local optimum S′′ is better than S then
10 S ← S′′;
11 κ← 1; // return to the first neighborhood

12 else
13 κ← κ+ 1; // move to the next neighborhood

14 end

15 end
16 nbIterationsWithoutImprovement+ +;

17 until nbIterationsWithoutImprovement == nmax;
18 return S

General VNS (GVNS)

Contrary to the BVNS, the GVNS uses a Variable Neighborhood Descent (VND) procedure instead of a
local search. This function requires as parameters an initial solution S (generated with a FCFS rule in this
study) and two sorted lists of neighborhood operators. One of them is used within the shaking step and the
other one within the VND procedure. To simplify the study hereafter, these two sorted lists will be the same.
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The algorithm of the GVNS is given in Algorithm 3. Several variants of VND exist in the literature and some
of them were compared in [24]. In this study, two procedures stood out from the others: the basic sequential
VND (B-VND) and the union VND (U-VND). In our paper, we focused on this two variants. The parameters of
these two functions are an initial solution S and a sorted list of neighborhood operators. The B-VND algorithm
explores iteratively each neighborhood defined by the current operator according to the established order. The
search strategy BI or FI is used to select a solution within a neighborhood. Whenever the current solution is
improved, the process starts again at the first neighborhood structure. The algorithm is stopped if the current
solution cannot be improved. The U-VND process is the same as the B-VND except that the search is continued
in a single neighborhood that is obtained as the union of all predefined neighborhoods. This algorithm is used
with BI search strategy, else U-VND is equivalent with B-VND. The algorithms of B-VND and U-VND are
given in Algorithm 4 and Algorithm 5 respectively.

Algorithm 3: General Variable Neighborhood Search.
1 Function GVNS(S, Operators shaking, Operators V ND, strategy, nmax)

Input : S: initial solution,
Operators shaking: sorted list of κmax neighborhood operators for the
shaking step,
Operators V ND: sorted list of λmax neighborhood operators for the VND
procedure,
strategy: BI or FI
nmax: stopping criterion

Output: the solution S

1 nbIterationsWithoutImprovement← 0;
2 repeat
3 κ← 1;
4 while κ ≤ κmax do

// Shaking step

5 Op← the κth operator in Operators shaking;
6 Nκ ← generate neighbors of S with operator Op;
7 S′ ← choose a random solution in Nκ;

// Improvement procedure: V ND is either B − V ND or U − V ND
// in this study

8 S′′ ← V ND(S′, Operators V ND, strategy);
// Sequential Neighborhood change step

9 if S′′ is better than S then
10 S ← S′′;
11 κ← 1; // return to the first neighborhood

12 else
13 κ← κ+ 1; // move to the next neighborhood

14 end

15 end
16 nbIterationsWithoutImprovement+ +;

17 until nbIterationsWithoutImprovement == nmax;
18 return S;

6. Experimental study

According to the previous Sections 4 and 5, the VNS algorithms can differ depending on the following
configuration aspects (Fig. 2):
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Algorithm 4: Basic sequential Variable Neighborhood Descent.
1 Function B-VND(S, Operators, strategy)

Input : S: initial solution,
Operators: sorted list of λmax neighborhood operators
strategy: BI or FI

Output: the solution S

1 repeat
2 λ← 1;
3 while λ ≤ λmax do
4 Op← the λth operator in Operators;
5 Nλ ← generate neighbors of S with operator Op;
6 S′ ← select a solution in Nλ according to strategy;

// Sequential Neighborhood change step

7 if S′ is better than S then
8 S ← S′;
9 λ← 1; // return to the first neighborhood

10 else
11 λ← λ+ 1; // move to the next neighborhood

12 end

13 end

14 until no more improvement for S (S ≤ S′);
15 return S;

Algorithm 5: Union Variable Neighborhood Descent.
1 Function U-VND(S, Operators, strategy)

Input : S: initial solution,
Operators: sorted list of λmax neighborhood operators
strategy: BI

Output: the solution S

1 repeat
2 N ← N1 ∪N2 ∪ . . . ∪Nλmax ;
3 S′ ← select the best solution in N ; // BI strategy

4 if S′ is better than S then
5 S ← S′;
6 end

7 until no more improvement for S (S ≤ S′);
8 return S;

(1) Neighborhood operators: among the proposed operators DEM, TEM, TIM and TIAFDM, which one(s) to
use in VNS algorithms? How many? In which order?

(2) Search strategy for the improvement procedure: first (FI) or best improvement (BI)?
(3) Improvement procedure: a simple local search or a VND variant (B-VND or U-VND)? In other words, which

VNS variants to be used: BVNS, GVNS using B-VND or GVNS using U-VND?
(4) Stopping criterion: what is the necessary amount of consecutive iterations while the solution remains without

improvement? 1, 10 or 30 iterations?

We can see that many different VNS variants can be obtained by choosing different settings. We can also
think that these choices could have an impact on the quality of the final solution. Hence in the rest of this paper,
we conduct several experiments to compare several VNS metaheuristic variants under these different settings.
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The aim of this empirical study is to find the most effective configuration(s) of VNS metaheuristic for solving
the cross-dock problem.

This experimental study consists of four parts. In the first part, we evaluate and compare the four neigh-
borhood operators one by one within a local search. These tests are conducted under two different set-
tings: a local search that uses BI search strategy and a local search that uses FI search strategy. The sec-
ond part is devoted to the way these operators could be combined in a BVNS structure according to their
efficiency. We test several strategies that differ by the number and the order of the neighborhood opera-
tors. Then, a comparison of VNS variants is performed in the third part. In the last part, we evaluate the
influence of the stopping criterion within these variants over the results. In each part of this study, the
performance of the tested algorithms is evaluated on various instances of the cross-docking problem. The
best performing algorithms are compared with the performance of CPLEX solver. A detailed description
of the results is presented in the tables of Appendix A. These results are also visible on the following link
https://www.lgi2a.univ-artois.fr/~hsu/Recherche/CROSSDOCK-BENCHS/.

6.1. Experimental setup and parameter settings

The computational experiments are conducted on Intel R©Core (TM) i7 CPU K875 @ 2.93 GHz of a machine
using 2.00 Gb RAM. The runs are made on a 64 bits machine. The instances used are generated in the same
way as in [21] and they are sorted by the number of trucks and also the number of docks. In the first row of each
table of results in Appendix A, n×m denotes that there are n trucks and m docks for a group of instances. Each
category consists of five instances. In total we have 95 instances (19 groups of instances) ranging from n = 10 and
m = 3 up to n = 60 and m = 10. In our study, each instance has been executed thirty five times and each result
cell in the table contains the average value of these runs. As comparison, we use ILOG CPLEX 12.6.3 with default
settings to solve the formulation presented in Section 3 with a time limit of 7200 s. The solution quality and
computational time of the proposed metaheuristics are evaluated. Hereafter, whenever comparing two methods,
the mentioned percentages of improvement of the solution quality (respectively runtime) are determined firstly
by evaluating for each instance the ratio between the value of objective function (or runtime) obtained with
the first method and the value obtained with the second method. Afterward, we calculate the average of all the
objective function ratios (or runtime) for all the instances. To evaluate the statistical significance of our results,
the Friedman test, based on [10] has been conducted.

The Friedman test is a non-parametric statistical test used to detect significant differences between the
behavior of k (k ≥ 2) algorithms through a set of b instances. To perform the Friedman test, the first step is to
rank the results Xij of the metaheuristics j (j ≤ k) for each instances i (i ≤ b) separately. Let R(Xij) be the
rank from 1 to the best performing algorithm and k to the worst. Then, the total summation of squared ranks
A2 is calculated:

A2 =
b∑
i=1

k∑
j=1

[R(Xij)]
2
. (6.1)

Therefore, for each metaheuristic j (j ≤ k) the summation of the rank is computed Rj =
∑b
i=1R(Xij),

then B2 is calculated:

B2 =
1
b

k∑
j=1

Rj
2. (6.2)

In this test, under the null-hypothesis, which states that all the algorithms behave similarly, the Friedman
statistic can be computed as:

T2 =
(b− 1)

[
B2 − bk(k + 1)2/4

]
A2 −B2

(6.3)

which is distributed according to an F distribution with (k − 1) and (k − 1)(b − 1) degrees of freedom. If
T2 is greater than 1 − α quantile of the F distribution with (k − 1) and (k − 1)(b − 1) degrees of freedom

https://www.lgi2a.univ-artois.fr/~ hsu/Recherche/CROSSDOCK-BENCHS/
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(α a significance level), the null-hypothesis is rejected, i.e. the existence significant differences is found. In this
case, we proceed with a post-hoc procedure to characterize these differences.

The post hoc test is used to compare algorithms two by two. This test declares the algorithms i and j
significantly different if the absolute difference between the summation of the ranks for i and for j is greater
than the critical value for the difference with (b− 1)(k − 1) degrees of freedom and α a significance level.

In this study, we always use a significance level α equals to 0.01 for the Friedman test and the post-hoc tests
will be employed for a significant degree α = 0.05.

6.2. Results

6.2.1. Comparison of neighborhood operator within LS

In this first part, we evaluate one by one the neighborhood operators (DEM, TEM, TIM and TIAFDM
presented in Sect. 4) within a local search. For each operator, LS is tested under two different settings: BI and
FI search strategies. The purpose is to determine the efficiency of each operator and the influence of the search
strategies in term of solution quality and runtime. The results are presented in Tables A.1 and A.2

Let’s focus on the search strategies BI and FI. For all operators, considering the average results, we note that
BI provides the best and fastest solutions. Because FI picks the first improvement in the neighborhood which
can be a solution far away from the best neighbor. Consequently, the local search algorithm is slower in finding
the local optima.

Regarding the neighborhood operators with BI strategy, we can deduce:

(1) If we consider the average solutions (see the average results over entire set of instances in column Average of
Tab. A.2), TIM provides the best solution quality, DEM is ranked second followed by TEM, and TIAFDM
is the worst. This ranking is the same for each group of instances (except for 14× 4 and 14× 6).

(2) Regarding the runtime consumed by each operator, if we consider the average solutions, we obtain the
following ranking: TIAFDM is the fastest, DEM and TEM are second and third respectively, and TIM is
the slowest. This ranking is the same for each group of instances (except for 10× 3).

(3) For each group of instances, TIM is the best operator in term of solution quality, but it is slower than the
others. In fact, contrary to the other operators, TIM tries to move all trucks (assigned or not) to another
dock available or not at the risk of rejecting another truck. Hence, this operator is slower, but it improves
the solution quality because the penalty cost can be minimized by trying to assign rejected trucks.

(4) For each group of instances, TIAFDM is the worst operator in term of solution quality, but it is the faster.
This behavior is as expected because usually TIAFDM provide a smaller neighborhood than the others and
with no many improved solutions. So the search is faster and with lower quality.

To highlight the significant differences between these neighborhood operators, we conduct the Friedman test.
Table 1 shows the results of the Friedman test for solution quality and runtime and summarizes the ranking
obtained. In this table and the following ones reporting the results of Friedman test, “Average rank” notices the
average of ranks obtained by the corresponding metaheuristic according to the solution quality (or the runtime)
over the b groups of instances. Similarly, “Summation” notices the sum of the b ranks obtained and of the b
squared ranks. We can notice on Table 1 that for both solution quality and runtime, T2 > F0.99,3,54 i.e. the null
hypothesis is rejected. It means that there exists at least one operator for the local search whose performance
is different from at least one of other operators. Consequently the post-hoc paired comparisons is performed to
know which neighborhood operator outperforms others.

Table 2 shows the results of the post-hoc test for solution quality and runtime. Each cell of this table contains
the absolute difference between the summation of the ranks for the operator of the line (indicated in the Tab. 1)
and the summation of the ranks for the operator of the column. Symbol “(−)” indicates that the result of the
subtraction is negative, that means that the operator of the line provides better performances than the operator
of the column. Conversely, the absence of this symbol indicates that the operator of the column outperforms
the one of the line. Underlines values indicate the operators are significantly different because these values are
greater than the critical value. For example, let’s compare the operators DEM and TEM in term of solution
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Table 1. Results of the Friedman test for solution quality and runtime of the Local Search
(with k = 4, b = 19 and α = 0.01).

DEM TEM TIM TIAFDM

R(Xb1) R(Xb1)2 R(Xb2) R(Xb2)2 R(Xb3) R(Xb3)2 R(Xb4) R(Xb4)2

Solution quality
Average rank 2.11 2.89 1 4
Summation 40 86 55 161 19 19 76 304
Runtime
Average rank 2.05 2.95 4 1
Summation 39 81 56 166 76 304 19 19

Solution quality Runtime
T2 459.79 884.5
F0.99,3,54 4.17

Table 2. Results of the post-hoc test for solution quality and runtime of the Local Search
(with α = 0.05 and 54 degrees of liberty).

(a) Solution quality
DEM TEM TIM TIAFDM

DEM – 15 (–) 21 36 (–)
TEM – – 36 21 (–)
TIM – – – 57 (–)
TIAFDM – – – –
Critical value 20.99

(b) Runtime
DEM TEM TIM TIAFDM

DEM – 19 (–) 38 (–) 19
TEM – – 19 (–) 38
TIM – – – 57
TIAFDM – – – –
Critical value 20.99

quality: 40−55 = −15; hence the absolute value “15” following by “(−)” in the cell of the line DEM and column
TEM; as 15 < 20.99 (the critical value), DEM and TEM have the same performance. Let’s compare the quality
solution of DEM and TIAFDM now, i.e. the last cell of the line DEM of the table: 40− 76 = −36; 36 > 20.99
so DEM and TIAFDM are significantly different; as the subtraction give a negative result, DEM outperforms
TIAFDM. In this way, we can notice that TIM outperforms significantly each one of the other operators in term
of solution quality, contrary to TIAFDM which is significantly outperformed by all the other operators. In term
of runtime, DEM is equivalent to TEM and to TIAFDM. DEM is faster than TIM and TIAFDM outperforms
TEM and TIM.

According to these tests and analysis, we can conclude this following ranking of neighborhood operators:
TIM is the best operator, followed jointly by DEM and TEM, TIAFDM takes the last place. Even if TIM is
the slowest, it needs in average less of 3 s to propose a solution 26% better that the one proposed by TIAFDM.
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6.2.2. Neighborhood operators within BVNS

This second part is designed to answer to the following questions: how many neighborhood operators is better
to use within a basic VNS? In which order? With this in mind, we evaluate BVNS first with two operators
and then with three operators. During these tests, we use the three best operators according to the previous
part: TIM, DEM and TEM. Also, BVNS algorithm uses BI for the search strategy and stops when the solution
cannot be improved, i.e. with nmax = 1.

Firstly we evaluate BVNS with these six possible orders of the neighborhoods:

• TEM-TIM
• TIM-TEM
• DEM-TIM
• TIM-DEM
• TEM-DEM
• DEM-TEM

The results are presented in Tables A.3 and A.4. Let’s focus on the order of the operators. We can notice this
following observations:

(1) TEM-TIM versus TIM-TEM: on average solution (see the average results over entire set of instances in
column Average of Table A.4) and for each group of instances, TIM-TEM provides better solution quality
(except for 60× 10). Regarding the runtime on the average results, TEM-TIM is slightly better.

(2) DEM-TIM versus TIM-DEM: DEM-TIM provides provides better solution quality for each group of instances
(except for 18× 6) but it is slower (except for 14× 4). This observation is valid on the average solution.

(3) TEM-DEM versus DEM-TEM: if we consider average results, DEM-TEM is better regarding the solution
quality and the runtime. Also, this order is faster for each group of instances (except for 16× 6 and 25× 6).

The results of Friedman tests are summarized in Table 3. Obtained tests show that the null hypothesis is
rejected for the solution quality and the runtime as well. The results of the post-hoc test is presented in Table 4.
Comparing the order of the operators, the performance is the same for solution quality and runtime, except
TIM-TEM provides better solution than the reversed order.

According to this analysis, we can conclude that TIM-TEM outperforms the reversed order, just like TIM-
DEM and DEM-TEM.

When we compare the six ordered lists of operators, if we consider the average results (column Average of
Tab. A.4), we can notice:

(1) Regarding the solution quality, we obtain the following ranking: TIM-TEM provides the best solution,
followed by TIM-DEM, then TEM-TIM and DEM-TIM, the two last places are assigned to DEM-TEM and
finally TEM-DEM.

(2) For each group of instances, the best solution is provided by the ordered lists with TIM as the first operator
(except for 18× 6 and 60× 10).

(3) Comparing the runtime, the fastest is DEM-TEM followed by the reversed order (TEM-DEM), DEM-TIM
and the reversed order are ranked third and fourth respectively, TEM-TIM and TIM-TEM are the slowest
ranked in the fifth and the last place respectively.

The statistical tests show that TIM-TEM provides better solutions than the other operators. DEM+TEM
(in two-ways) is worse than all the other operators in term of solution quality, but is the fastest.

Actually, based on these observations, the behavior of the operator TIM shows that it is a typical inten-
sification operator. Indeed the intensification seeks to manage the search in the area around the best found
combinations by favouring through each step the choice of solutions that belong to best neighborhoods built
earlier. Hence, because TIM provides on average the best solution quality combining with the LS, it is able
to explore the search space. As a second operator which is the exploration/diversification operator, DEM and
TEM perform better, even if TEM seems to be slightly better. Actually, they are able to diversify the solution in
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Table 3. Results of the Friedman test for solution quality and runtime of basic VNS with two
operators (with k = 6, b = 19 and α = 0.01).

DEM-TIM TIM-DEM TEM-TIM

R(Xb1) R(Xb1)2 R(Xb2) R(Xb2)2 R(Xb3) R(Xb3)2

Solution quality
Average rank 3.21 1.95 3.42
Summation 61 205 37 81 65 239
Runtime
Average rank 3.05 4.05 5.53
Summation 58 178 77 317 105 585

TIM-TEM TEM-DEM DEM-TEM

R(Xb4) R(Xb4)2 R(Xb5) R(Xb5)2 R(Xb6) R(Xb6)2

Solution quality
Average rank 1.42 5.53 5.47
Summation 27 45 105 585 104 574
Runtime
Average rank 5.37 1.89 1.11
Summation 102 554 36 70 21 25

Solution quality Runtime
T2 99.72 272.09
F0.99,5,90 3.23

Table 4. Results of the post-hoc test for solution quality and runtime of basic VNS with two
operators (with α = 0.05 and 90 degrees of liberty).

(a) Solution quality

DEM- TIM- TEM- TIM- TEM- DEM-
TIM DEM TIM TEM DEM TEM

DEM-TIM – 24 4 (–) 34 44 (–) 43 (–)
TIM-DEM – – 28 (–) 10 68 (–) 67 (–)
TEM-TIM – – – 38 40 (–) 39 (–)
TIM-TEM – – – – 78 (–) 77 (–)
TEM-DEM – – – – – 1
DEM-TEM – – – – – –
Critical value 33.85

(b) Runtime
DEM- TIM- TEM- TIM- TEM- DEM-
TIM DEM TIM TEM DEM TEM

DEM-TIM – 19 (–) 47 (-) 44 (–) 22 37
TIM-DEM – – 28 (–) 25 (–) 41 56
TEM-TIM – – – 3 69 84
TIM-TEM – – – – 66 81
TEM-DEM – – – – – 15
DEM-TEM – – – – – –
Critical value 33.85
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Table 5. Results of the Friedman test for solution quality and runtime of the VNS algorithms
with three operators (with k = 4, b = 19 and α = 0.01).

BVNS BVNS GVNS+ GVNS+
TIMTEMDEM TIMDEMTEM B-VND U-VND

R(Xb1) R(Xb1)2 R(Xb2) R(Xb2)2 R(Xb3) R(Xb3)2 R(Xb4) R(Xb4)2

Solution quality
Average rank 2.58 2.74 1.21 3.47
Summation 49 141 52 150 23 33 66 246
Runtime
Average rank 1.74 1.32 4 2.95
Summation 33 63 25 37 76 304 56 166

Solution quality Runtime

T2 20.68 141.26
F0.99,3,54 4.17

order to escape local optima and to explore the search space because of the large neighborhood size that TEM
and DEM provide. Finally, we can also conclude that TIM-TEM is the best combinaison for BVNS. Hereafter,
the latter will be called BVNS TIMTEM.

In the second step of this part, we decide to evaluate the BVNS algorithm with three operators. Because we
showed that TIM is an intensification operator previously, TIM is placed as the first operator. Hence, we compare
BVNS using the ordered lists TIM-TEM-DEM (hereafter called BVNS TIMTEMDEM) and TIM-DEM-TEM
(called BVNS TIMDEMTEM). The results are presented in Tables A.5 and A.6. If we consider the average
results (see column Average of Tab. A.6), we can notice:

(1) BVNS TIMTEMDEM provides better solution quality than BVNS TIMDEMTEM but it is slightly slower.
The statistical analysis shows that BVNS TIMTEMDEM and BVNS TIMDEMTEM have the same perfor-
mance in term of both solution quality and runtime (Tabs. 5 and 6).

(2) When we compare with BVNS TIMTEM, the last one provides the worst solution quality but it is faster than
BVNS using three operators. In fact, adding an operator in BVNS increases the runtime of the algorithm,
but allows exploring further the search space.

We can conclude that the list TIM-TEM-DEM in this order is the best sequence for BVNS among all those
tested. Even if this one is the slowest, it needs in average less of 14 s to perform.

6.2.3. Comparaison with GVNS

In this third experimental part, we combine the operators TIM-TEM-DEM in this order in another variant
of the VNS algorithm: the GVNS. First, we use GVNS with the B-VND (hereafter called GVNS+B-VND),
then GVNS is combined with the U-VND (hereafter called GVNS+U-VND). In these two scenarios, GVNS and
VND algorithms take as parameters the same list of neighborhood operators (TIM-TEM-DEM). Like BVNS in
the previous experiments, GVNS algorithm stops when the solution cannot be improved, i.e. with nmax = 1.

From the results presented in Tables A.5 and A.6, we can notice if we consider the average results (see column
Average of Tab. A.6):

(1) GVNS+B-VND provides better solution quality than GVNS+U-VND but it is slower. This observation is
valid for each group of instances (except for the solution quality in 16× 4). The good quality of GVNS+B-
VND regarding to GVNS+U-VND is due to the fact that union VND algorithm’s policy is to seek a local
optimum within a same large neighborhood obtained here as the union of three neighborhoods. Thus, it can
be stuck in local optima.
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Table 6. Results of the post-hoc test for solution quality and runtime of the VNS algorithms
with three operators (with α = 0.05 and 54 degrees of liberty).

(a) Solution quality
BVNS BVNS GVNS+ GVNS+
TIMTEMDEM TIMDEMTEM B-VND U-VND

BVNS TIMTEMDEM – 3 (–) 26 17 (–)
BVNS TIMDEMTEM – – 29 14 (–)
GVNS+B-VND – – – 43 (–)
GVNS+U-VND – – – –
Critical value 20.99

BVNS BVNS GVNS+ GVNS+
TIMTEMDEM TIMDEMTEM B-VND U-VND

BVNS TIMTEMDEM – 8 43 (–) 23 (–)
BVNS TIMDEMTEM – – 51 (–) 31 (–)
GVNS+B-VND – – – 20
GVNS+U-VND – – – –
Critical value 20.99

(2) Comparing GVNS variants and BVNS on the solution quality, we obtain the following ranking: GVNS+B-
VND provides the best solution quality, BVNS TIMTEMDEM is ranking second, and GVNS+U-VND is
the worst. GVNS+U-VND is the worst because at each iteration, a local optimum is generated with the
respect to three neighborhoods structure together, whereas BVNS TIMTEMDEM uses one operator only
that can be different at a next iteration. So the last one has higher probability to get out of a local optima.
In the same way and because GVNS+B-VND uses B-VND, it enables to find a local optimum that is more
likely to be a global optimum.

(3) Regarding the runtime, the ranking is as follows: BVNS TIMTEMDEM is the fastest, the second is
GVNS+U-VND and the slowest is GVNS+B-VND. In the same way, using several neighborhood struc-
tures to search a local optimum consumes more time than with a single neighborhood structure.

The statistical analysis validates these observations. Table 5 summarizes Friedman results for solution quality
and runtime. In the two cases, the null hypothesis is rejected. The post-hoc results (see Tab. 6) show that
GVNS+B-VND is better in term of solution quality than GVNS+U-VND. GVNS+B-VND outperforms each
one of the other variants in term of solution quality, but GVNS+B-VND and GVNS+U-VND are the slowest.

In conclusion, GVNS+B-VND using TIM-TEM-DEM as ordered list provides the best solution quality, but
it is the slowest (it is 2 times slower than BVNS TIMTEMDEM). However, the runtime consumed by this
algorithm is still reasonable because it needs in average 28 s to perform. So, all the previous experiments lead
to the ranking for the three best strategies: GVNS+B-VND is at the head, followed by BVNS TIMTEMDEM,
while GVNS+U-VND is ranking as third.

6.2.4. Influence of the stopping criterion

The GVNS algorithm described in Section 5 stops whenever the solution cannot be improved through nmax

iterations. In our analysis above, we chose to set nmax to 1. In this last part of the tests, we evaluate the influence
of this parameter on the solution quality by increasing the value of nmax. To realize this experiment, we use our
best metaheuristic GNVS+B-VND until now and we compare the results obtained with nmax set to 1, then to
10 (called GNVS+B-VND 10) and to 30 (GNVS+B-VND 30).

From the results presented in Tables A.5 and A.6, we can see:

(1) Regarding the solution quality, for each instance we obtain always the followed ranking: GNVS+B-VND 30
is the best, GNVS+B-VND 10 is ranked in second, while GNVS+B-VND is the worst.
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Table 7. Results of the Friedman test for solution quality of the VNS algorithms with nmax ∈
{1; 10; 30} (with k = 3, b = 19 and α = 0.01).

GVNS+B-VND GVNS+B-VND 10 GVNS+B-VND 30

R(Xb1) R(Xb1)2 R(Xb2) R(Xb2)2 R(Xb3) R(Xb3)2

Average rank 3 1.97 1.03
Summation 57 171 37.5 74.25 19.5 19.5
F0.99,2,36 5.27

Table 8. Results of the post-hoc test for solution quality of the VNS algorithms with nmax ∈
{1; 10; 30} (with α = 0.05 and 36 degrees of liberty).

GVNS+B-VND GVNS+B-VND 10 GVNS+B-VND 30

GVNS+B-VND – 19.5 37.5
GVNS+B-VND 10 – – 18
GVNS+B-VND 30 – – –
Critical value 14.76

(2) Regarding the runtime, for each instance, the ranking is in the reversed order than the previous one:
GNVS+B-VND is the fastest, GNVS+B-VND 10 stays in second place, and GNVS+B-VND 30 is the slow-
est.

Friedman test is applied to the results of these three variants. The results are summarized in Table 7. In term
of solution quality, the null hypothesis is rejected. The post-hoc analysis (see Tab. 8) shows that GNVS+B-VND
is outperformed by the other two, but in particular GNVS+B-VND 30 provides the best solutions. These results
can be explained easily. The more the GVNS algorithm continues its search, the more it can escape the local
optima thanks to the shaking step and explore the search space. So, the algorithm has more opportunity to find
the optimal solution. However, the procedure surely consumes more CPU times. In our study, with nmax set to
30, GVNS takes in average less than 5 min (less than 1 s for small instances and up to 40 min for the biggest
instances). To solve the cross-dock issue as an operational problem, this runtime is still reasonable.

Figure 7 describes the distribution of studied algorithms according to their performance. The values are the
total of the objective functions and the total runtime for all instances. Using the Pareto front, non dominated
approaches can be deduced.

6.3. Comparison with exact method

Now that we compared different possible configurations for VNS variants to solve the cross-dock problem,
we evaluate the performances of the best algorithms (i.e. BVNS TIMTEMDEM, GVNS+B-VND variants and
GVNS+U-VND) with those of CPLEX configured with a time limit of 7200 s.

Let’s focus on small instances (from 10× 3 to 18× 4). We can observe:

(1) CPLEX always finds optimal solution in less than two hours. However, for each group of instances, CPLEX
is slower than the VNS variants.

(2) Our best VNS variants can get near optimal solutions in a much shorter time than CPLEX. Table 9, shows
the average gap expressed in percentage of the objective function values between the best algorithms and
CPLEX for the small instances. Each percentage is calculated by averaging the gaps for the small instances
presented in the tables of Appendix A for the corresponding algorithm. This gap is less than 1%, and goes
down 0.3% with GVNS+B-VND 30.
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Figure 7. Metaheuristics distribution according to their performance with Pareto front drawing.

Table 9. Average gap of the objective value with CPLEX on the small instances (from 10× 3
to 18× 4) expressed in percentage.

TIM DEM TEM TIAFDM

LS BI FI BI FI BI FI BI FI

Gap (%) 2.8 4.6 31 31 31.2 31.3 33.3 33.3

BVNS TIM-DEM DEM-TIM TIM-TEM TEM-TIM
Gap (%) 1.4 1.9 1.4 2.3

BVNS DEM-TEM TEM-DEM BVNS TIMDEMTEM BVNS TIMTEMDEM
Gap (%) 30.7 30.7 1 0.86

GVNS GVNS+B-VND GVNS+U-VND GVNS+B-VND 10 GVNS+B-VND 30
Gap (%) 0.9 1.35 0.4 0.3

(3) The best VNS variants enable to find at least one time (over the 35 runs) the optimal solution for almost
all the instances (see lignes “min” in the table of results of Appendix A).

(4) For each group of instances, GVNS+B-VND 10 and GVNS+B-VND 30 always find at least one time the
optimal solution. For some group, they enable to find the optimal solution (hence their gap of 0.4 and 0.3
respectively).

In order to reveal significant differences between CPLEX and the more efficient variants of this study, we apply
Friedman test (see Tabs. 10 and 12). We apply this test only to the small instances to allow comparison with
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Table 10. Results of the Friedman test for solution quality and runtime of CPLEX and VNS
algorithms with three operators (with k = 4, b = 8 and α = 0.01).

CPLEX BVNS GVNS+ GVNS+
TIMTEMDEM B-VND U-VND

R(Xb1) R(Xb1)2 R(Xb2) R(Xb2)2 R(Xb3) R(Xb3)2 R(Xb4) R(Xb4)2

Solution quality
Average rank 1 3.13 2.38 3.5
Summation 8 8 25 83 19 47 28 102
Runtime
Average rank 4 1 3 2
Summation 32 128 8 8 24 72 16 32

Solution quality Runtime
T2 19.05
F0.99,3,21 4.87

Table 11. Results of the post-hoc test for solution quality and runtime of CPLEX and VNS
algorithms with three operators (with α = 0.05 and 21 degrees of liberty).

(a) Solution quality
BVNS TIMTEMDEM GVNS+B-VND GVNS+U-VND

CPLEX 17 (–) 11 (–) 20 (–)
Critical value 10.64

(b) Runtime
BVNS TIMTEMDEM GVNS+B-VND GVNS+U-VND

CPLEX 24 8 16
Critical value 10.64

Table 12. Results of the Friedman test for solution quality of CPLEX and VNS algorithms
with nmax ∈ {1; 10; 30} (with k = 4, b = 8 and α = 0.01).

CPLEX
GVNS+ GVNS+ GVNS+
B-VND B-VND 10 B-VND 30

R(Xb1) R(Xb1)2 R(Xb2) R(Xb2)2 R(Xb3) R(Xb3)2 R(Xb4) R(Xb4)2

Average Rank 1.25 4 2.88 1.88
Summation 10 13.5 32 128 23 67 15 28.5
F0.99,3,21 4.87

the optimal solutions provided by CPLEX. Both in term of solution quality and runtime, the null hypothesis is
rejected. The post-hoc analysis (see Tabs. 11 and 13) shows that CPLEX is the slowest, but in term of solution
quality, it outperforms the metaheuristics excluding GVNS+B-VND 30. Indeed, CPLEX and GVNS+B-VND 30
have the same performance.

For the instances 18 × 6 and 20 × 6, CPLEX does not find the optimal solution in all instances, it provides
only lower bounds. For the instance 18 × 6, CPLEX outperforms our algorithms, but these last ones are able
to find at least one solution with a better quality. For the instances 20× 6, the three GVNS+B-VND variants
outperform CPLEX and these algorithms enable to find at least one time an even better solution.
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Table 13. Results of the post-hoc test for solution quality of CPLEX and VNS algorithms
with nmax ∈ {1; 10; 30} (with α = 0.05 and 21 degrees of liberty).

GVNS+B-VND GVNS+B-VND 10 GVNS+B-VND 30

CPLEX 22 (–) 13 (–) 5(–)
Critical value 10.64

For large instances (from 20 × 8), CPLEX is not able to provide optimal solution in less than two hours.
Whereas, our best algorithms provide near optimal solutions within a computational time between 0.02 s and
40 min.

This final analysis highlights the efficiency of the best VNS: BVNS TIMTEMDEM and GVNS+B-VND
variants. In particular, GVNS+B-VND 30 is the only one to have the same performance as CPLEX in term
of solution quality. We may conclude that to solve the cross-dock problem at best with VNS, it is preferable
to perform GVNS combined with a B-VND using Best Improvement procedure and with TIM-TEM-DEM
as ordered list of neighborhood operators. If this algorithm stops whenever the solution cannot be improved
through at least 30 iterations, GVNS achieves high performance.

7. Conclusion and perspective

To operate cross-dock successfully, an efficient assignment of trucks to docks is one of the key decisions. In
this paper, we sought to find an optimal assignment for each truck within its time window to increase the
efficiency of the cross-dock and to minimize the total cost of transferring shipments within the cross-dock and
the penalty cost of non-delivering goods.

First, we proposed an amended ILP model based on one proposed by Miao et al. [21]. To get optimal solutions
the CPLEX software were used. Since the problem is NP-hard, it was unlikely to optimally solve the problem
in a reasonable time.

Hence, we proposed a VNS metaheuristic to solve this problem approximately. Because different VNS variants
can be obtained depending on different configurations and setting parameters, the main purpose of this paper
is to deliver a wide strucutred experimental study and a sensitivity analysis to compare these variants. The
aim was to highlight the most effective VNS configuration for solving the cross-dock problem at best. First
of all, we provided four neighborhood operators (TIM, TEM, DEM, TIAFDM) and compared them within a
local search so as to illustrate their characteristics and their efficiency. This step allowed also to compare two
search strategies: BI versus FI. Then, we tested the influence on the solution quality and runtime of the order
of operators within BVNS using two then three operators. Moreover, we compared three VNS variants: BVNS
that uses a local search versus GVNS that uses a B-VND versus GVNS that uses U-VND. Finally, we evaluated
the influence of the stopping criterion within VNS.

This empirical study provided many answers. First, the behavior of the operator TIM illustrated that it is
a typical intensification operator while DEM and TEM perform as a diversification operator; TIM-TEM-DEM
in this order combined with the best improvement strategy is most successful for VNS; GVNS using B-VND
significantly outperforms BVNS and GVNS using U-VND; increasing the value of nmax for the stopping criterion
improves solution quality; GVNS that uses B-VND with nmax = 30 has the same performance as CPLEX while
consuming much less time.

A perspective to this work would be to include other VNS settings in the empirical study, like the initial
solution or other VNS variants. An hybridisation schema could be used to solve the cross-dock problem, for
example matheuristics based on integrating metaheuristics and exact methods. In addition, we can evolve this
problem, for example by taking into consideration the capacity of trucks or considering soft time windows for
trucks which have been discarded in the current version of this model.



VNS BASED ALGORITHMS FOR CROSSDOCK TRUCK ASSIGNMENT S2315

Appendix A. Table of results

LS – operator with strategy BI or FI.
VNS variant (first operator + . . . + last operator) with strategy BI.
For CPLEX results, Obj is the value of the objective function provided in TIME second, and LB is the

lower bound given.
For metaheuristics results, Obj is the average value of the objective function, Time is the average runtime in

second, σ is the standard deviation and min the value of the smallest objective function. Gap is the difference
between the objective function given by the metaheuristic Obj and the lower bound LB given by CPLEX,
expressed as a percentage.

The columns Total and Average show respectively the sum and the average results over entire set of instances.
In each table and for each instances group, the best average objective function provided by a metaheuristic

is in bold characters, as well as the best average runtime consumed.
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