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AN ALGORITHM FOR THE ANCHOR POINTS OF THE PPS OF THE FRH
MODELS

Dariush Akbarian∗

Abstract. In this paper we deal with a variant of non-convex data envelopment analysis, called free
replication hull model and try to obtain their anchor points. This paper uses a variant of super-efficiency
model to characterize all extreme efficient decision making units and anchor points of the free replication
hull models. A necessary and sufficient conditions for a decision making unit to be anchor point of the
production possibility set of the free replication hull models are stated and proved. Since the set of
anchor points is a subset of the set of extreme units, a definition of extreme units and a new method
for obtaining these units in non-convex technologies are given. To illustrate the applicability of the
proposed model, some numerical examples are finally provided.
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1. Introduction

Data envelopment analysis (DEA), first introduced by Charnes, Cooper and Rhodes (CCR) [9], is a non-
parametric method for measuring the efficiency of a set of decision making units (DMUs). DEA approaches
are traditionally based on the convexity assumption, but some authors pointed out that it is not always an
appropriate one [7, 14, 18, 25]. The evaluation of efficiency of DMUs in DEA is based on the construction of
unobserved DMUs which usually require the convexity of the production possibility set (PPS). This needs
divisibility in the input and output, which is not always possible. In the free replicability model [24] the input
and output are permitted to enter in only discrete amounts (see [11, 13, 14, 25] and references therein). The
non-convex counterpart of constant return to scale (CRS) is the free replication under which every integer
multiple of any observed input-output bundle is feasible. This added assumption can be added in order to
define a free replication hull (FRH) of the data points and obtain the associated efficiency measures. In fact,
these models which have been first proposed by Tulkens [24], are a special case of the CCR models in which the
convexity axiom is relaxed and the intensity variables are restricted to the whole numbers (see also [2, 13, 17]).
An important set of frontier points of the DEA technologies is that of the anchor points. Anchor points in
DEA are extreme efficient DMUs for which some of their inputs can increase and/or some outputs can decrease
while remaining on the (weak) efficiency frontier. In other words, an anchor point in the DEA model is an
extreme DMU of the PPS that lies on the intersection of some strong and weak efficient frontiers (see [3, 12]).
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The concept of anchor point was used in Thanassoulis and Allen [23] for the generation of unobserved DMUs
in order to extend the DEA efficient frontier. Rouse [19] utilized the anchor points for identifying the prices in
health care services. Bougnol and Dulá [8] defined these points as the production possibilities which give the
transition from the pareto-efficient frontier to the free-disposability portion of the PPS boundary and provided
an approach to identify the anchor points of the variable returns to scale (VRS) PPS based on their geometrical
properties. Mostafaee and Soleimani-damaneh [16] presented an algorithm for identifying of the anchor points
by employing the sensitivity analysis techniques. The empirical applications led to somewhat surprising results
in which that almost all extreme efficient units are in fact anchor points. Free disposal hull (FDH) models are
non-convex DEA models which have been introduced by Deprins et al. [10]. Soleimani-damaneh and Mostafaee
[21] investigated the extreme units and anchor points in non-convex FDH technology and provided necessary
and sufficient conditions for characterizing the anchor points of the PPS of the FDH models. To the best of
the authors’ knowledge, no specific study has been conducted on finding extreme and anchor points of the
PPS of the FRH models. Following Soleimani-damaneh and Mostafaee [21], in this paper a definition of the
extreme unit notion in (non-convex) FRH models has been provided as well as a new method to identify the
extreme units and anchor points of the PPS of these models by testing all FRH-efficient DMUs via a variety
of super-efficiency models (see models (3.1) and (3.2)) (after eliminating the FRH-inefficient DMUs from the
PPS). The reader is referred to Andersen and Petersen [5], Mehrabian et al. [15] and Seiford et al. [20] for the
super-efficiency models. Also some useful facts associated with the models (3.1) and (3.2) have been stated and
proved as along with the necessary and sufficient conditions for a FRH-efficient DMU to be an anchor point. In
addition, three numerical examples have been given.

2. Background

Consider a set of n DMUs (activities) which are associated with m inputs and s outputs. Particularly, each
DMUj = (Xj , Yj) (j ∈ J = {1, . . . , n}) consumes amount xij(> 0) of input i and produces amount yrj(> 0) of
output r . The set of feasible activities is called the production possibility set (PPS) and is defined as follows:
T =

{
(X,Y )|X ∈ Emcan produce Y ∈ Es, X ≥ 0, Y ≥ 0

}
. The PPS T can be made by the following properties:

(A1) The observed activities (Xj , Yj) (j ∈ J = {1, . . . , n}) belong to T .
(A2) The production possibility set is convex.
(A3) If an activity (X,Y ) belongs to T , then the activity (tX, tY ) belongs to T for any positive scalar t. This

property is called the constant returns-to-scale assumption.
(A4) For an activity (X,Y ) belongs to T , any semipositive activity (X̄, Ȳ ) with (X̄ ≥ X) and Ȳ ≤ Y is

included in T . This property is called the free disposability assumption.
(A5) For each T ′ satisfying in the properties A1 through A4, we have T ⊆ T ′. This property is called the

Minimal Extrapolation assumption.

The set T = {(X,Y )|X =
∑
j∈J

λjXj , 0 ≤ Y 5
∑
j∈J

λjYj , λj ≥ 0 j ∈ J} satisfies all the properties A1 through

A5 and is denoted by TCCR. The input radial efficiency of DMUo is defined as:

min θ
s.t. (θXo, Yo) ∈ TCCR.

Model (2.1) shows the CCR envelopment model for evaluating DMUo in an input-oriented manner,

min θ

s.t.
∑
j∈J

λjxij ≤ θxio, i = 1, . . . ,m∑
j∈J

λjyrj ≥ yro, r = 1, . . . , s

λj ≥ 0, j ∈ J
θ ∈ R.

(2.1)
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Also, the CCR envelopment model for evaluating DMUo in an output-oriented manner is as follows:

max ϕ

s.t.
∑
j∈J

λjxij ≤ xio, i = 1, . . . ,m∑
j∈J

λjyrj ≥ ϕyro, r = 1, . . . , s

λj ≥ 0, j ∈ J
ϕ ∈ R.

(2.2)

One of the non-convex DEA models to evaluate the relative efficiency of a set of DMUs is the FDH model
introduced by Deprins et al. [10] and further developed by Tulkens [24]. The production possibility set of FDH
can be specified as

TFDH =

(X,Y )|X =
∑
j∈J

λjXj , 0 ≤ Y 5
∑
j∈J

λjYj ,
∑
j∈J

λj = 1, λj ∈ {0, 1}, j ∈ J

 .

in which Xj and Yj are vectors of inputs and outputs of DMUj , j ∈ J , respectively. Another non-convex DEA
models is the FRH model, which was proposed by Tulkens [24]. Following properties are postulated for the PPS
of the FRH, denoted by TFRH:

(1) The observed activities (DMUs) belongs to TFRH; i.e. (xj , yj) ∈ TFRH, j ∈ J .
(2) If (x, y) ∈ TFRH then, (tx, ty) ∈ TFRH for each t ∈ {0, 1, 2, 3, . . .}.
(3) For each activity (x, y) ∈ TFRH, if x ≥ x and y ≥ y then, (x, y) ∈ TFRH.
(4) TFRH is closed and non-convex set.

The PPS of the FRH model can be defined as follows:

TFRH =

(X,Y )|X =
∑
j∈J

λjXj , 0 ≤ Y 5
∑
j∈J

λjYj , λj ∈ {0, 1, 2, 3, . . .}, j ∈ J

 .

in which Xj and Yj are vectors of inputs and outputs of DMUj , j ∈ J , respectively. Evidently, TFDH ⊆ TFRH.
Unlike the FDH model, the FRH model is computationally quite challenging (see [11]).

The input-oriented FRH model corresponds to DMUk, k ∈ J , is given by:

min θk − ε

(
m∑

i=1

s−i +
s∑

r=1

s+r

)
s.t.

∑
j∈J

λjyrj − s+r = yrk, r = 1, . . . , s∑
j∈J

λjxij + s−i = θkxik, i = 1, . . . ,m

λj ∈ {0, 1, 2, 3, . . .}, j ∈ J
s−i ≥ 0, i = 1, . . . ,m
s+r ≥ 0, r = 1, . . . , s
θk ∈ R.

(2.3)
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Also, the output-oriented FRH model corresponds to DMUk, k ∈ J , is as follows:

max ϕk + ε

(
m∑

i=1

t−i +
s∑

r=1

t+r

)
s.t.

∑
j∈J

λjyrj − t+r = ϕkyrk, r = 1, . . . , s∑
j∈J

λjxij + t−i = xik, i = 1, . . . ,m

λj ∈ {0, 1, 2, 3, . . .}, j ∈ J
t−i ≥ 0, i = 1, . . . ,m
t+r ≥ 0, r = 1, . . . , s
ϕk ∈ R

(2.4)

where ε is non-Archimedean small and positive number and s−i , s+r , t−i and t+r , i = 1, . . . ,m, r = 1, . . . , s are
called slack variables belonging to R≥0. Note that s−i and t−i represent input excesses; also s+r and t+r represent
output shortfalls. Inhere, θk and ϕk are real numbers.

At optimality of models (2.3) and (2.4), 0 < θ∗k ≤ 1 and ϕ∗k ≥ 11.
In evaluation of DMUk by input(output)-oriented CCR model and input(output)-oriented FRH model,

we have θ∗CCR ≤ θ∗FRH(ϕ∗CCR ≥ ϕ∗FRH).
DMUk is called FRH-inefficient if and only if either (i) or (ii) happens:

(i) θ∗k = 1 and (s+∗, s−∗) = (0, 0).
(ii) ϕ∗k = 1 and (t+∗, t−∗) = (0, 0).

Otherwise, DMUk is called FRH-inefficient i.e.:
DMUk is called FRH-inefficient if and only if either (́ı) and (íı) happens:

(́ı) θ∗k < 1 or
(
θ∗k = 1 and (s+∗, s−∗) 6= (0, 0)

)
.

(íı) ϕ∗k > 1 or
(
ϕ∗k = 1 and (t+∗, t−∗) 6= (0, 0)

)
.

Note 1. In the case of

(θ∗k = 1 and (s+∗, s−∗) 6= (0, 0))

or
(ϕ∗k = 1, (t+∗ and t−∗) 6= (0, 0)),

FRH-inefficient DMUk is called weak FRH-efficient. Also, if θ∗k < 1 and ϕ∗k > 1 then DMUk is an interior point
of the TFRH.

As mentioned in the previous section, the set of anchor points is a subset of the set of extreme units. A basic
definition of extreme DMU of the PPS of the FRH technology is as follows (see [21]).

For each o ∈ J , define:

TFRH
o =

(X,Y )|X =
∑

j∈J\{o}

λjXj , 0 ≤ Y 5
∑

j∈J\{o}

λjYj , λj ∈ {0, 1, 2, 3, . . .}, j ∈ J \ {o}

 ,

as the PPS obtained by removing DMUo = (Xo, Yo) from {DMU1,DMU2, . . . ,DMUn}. The unit under evalua-
tion, DMUo, is called an extreme unit in TFRH

o , if (Xo, Yo) not belong to the TFRH
o . In fact, DMUo = (Xo, Yo)

is an extreme unit if deleting it from the set of the observed units does change the PPS.

1(*) is used for optimal solution.
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Figure 1. A, B are FRH-efficient DMUs and only A is extreme efficient DMUs.

Figure 1 shows the FRH production possibility set constructed from observed DMUs A = (xA = 2, yA = 2)
and B = (xB = 6, yB = 6). Both DMUs A and B are FRH-efficient DMUs but, DMU A is just extreme DMU.
The frontier of the PPS is denoted by red broken line. The necessary and sufficient conditions for DMUk (k ∈ E)
under evaluation to be FRH extreme unit is given in the Theorem 3.9.

Hereafter, we will denote the set of FRH-efficient, extreme efficient and FRH-inefficient units by E, E′ and F ,
respectively.

The set of extreme units, E′(⊆ E), is also called the frame of J . The frames are important in DEA because
the PPS of the DEA models are constructed by them and the exclusion each of them alters the shape of the
PPS. As an other example; Figure 2 shows the FRH production possibility set constructed from four observed
DMUs A(xA = 4, yA = 3); B(xB = 6, yB = 4); C(xC = 11, yC = 5) and D(xD = 21, yD = 9). In Figure 2,
J = {A,B,C,D}, F = {C,D} and E = E′ = {A,B}. Here, the point A1 and B1 is a twofold replication of A
and B, respectively. The point L, P , S and U are the sum of the bundles (A and B), (B and A1), (A1 and L)
and (A, B and L), respectively. The point A2 and B2 are a threefold replication of A and B, respectively. Also,
A3 is fourfold replication of A. The frontier of the FRH production possibility set is denoted by red broken line2.
Also, the frontier of the TFRH

A (i.e. the new PPS after excluding extreme unit A) is denoted by blue broken line.
In this paper, corresponding to each FRH-efficient DMU DMUj = (x1j , . . . , xmj , y1j , . . . , ysj) we name virtual

DMUs DMUl
j = (x1j , . . . , xlj + α, . . . , xmj , y1j , . . . , ysj) and DMUq

j = (x1j , . . . , xmj , y1j , . . . , yqj − γ, . . . , ysj) as
FRH “Dominated Input Virtual” DMU (DIVl

j DMU) and “Dominated Output Virtual” DMU (DOVq
j DMU),

respectively, in which α, γ > 0. These virtual DMUs are either interior points of the PPS of the FRH model or
lie on the some weak efficient frontiers (bounded or unbounded). In the latter case we call these virtual DMUs
as “weak efficient virtual DMUs” or WEV DMUs, hereafter.

2For more details see Subhash [22] page 144.
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Figure 2. A, B are (extreme) FRH-efficient DMUs, C and D are FRH-inefficient DMUs
(extracted from Subhash [22]).

Following Soleimani-damaneh and Mostafaee [21], the anchor points of the non-convex FRH models is defined
as follows:

Definition 2.1. DMUk ∈ E′ is an anchor DMU if some component of outputs can be decreased until zero or
some component of inputs can be infinitely increased without penetrating the interior of TFRH.

Remark 2.2. By Definition 2.1, DMUk ∈ E′ is an anchor DMU if there exist some l (or q) so that for each
α > 0 (0 < γ ≤ yqk); DIVl

k (DOVq
k) DMU is to be WEV DMU.

3. Identifying the anchor DMUs of the PPS of the FRH model

In this section, we identify the anchor points of the PPS of the FRH models in the following way. First, we
evaluate each DMUk, (k ∈ J), using models (2.3) or (2.4). Then, we hold all FRH-efficient DMUs, i.e. DMUk

∈ E, and remove other DMUs. Corresponding to each DMUk = (x1k, . . . , xmk, y1k, . . . , ysk), (k ∈ E), we solve
the following models:

min θk
l

s.t.
∑

j∈E−{k}

λk
jxlj ≤ θk

l xlk∑
j∈E−{k}

λk
jxij ≤ xik, i = 1, . . . ,m i 6= l∑

j∈E−{k}

λk
j yrj ≥ yrk, r = 1, . . . , s

λj ∈ {0, 1, 2, 3, . . .}, j ∈ E − {k}
θk

l ∈ R l = 1, . . . ,m

(3.1)
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max ϕk
q

s.t.
∑

j∈E−{k}

µk
jxij ≤ xik, i = 1, . . . ,m∑

j∈E−{k}

µk
j yqj ≥ ϕk

qyqk,∑
j∈E−{k}

µk
j yrj ≥ yrk, r = 1, . . . , s r 6= q

µj ∈ {0, 1, 2, 3, . . .}, j ∈ E − {k}
ϕk

q ∈ R q = 1, . . . , s.

(3.2)

The following theorems hold for models (3.1) and (3.2). Theorems 3.3 and 3.5 provide the necessary and sufficient
conditions for a FRH-efficient DMU to be an anchor DMU in the sense that for each α > 0; DIVl

k DMU is
a WEV DMU. Also, Theorems 3.6 and 3.8 provide the necessary and sufficient conditions for a FRH-efficient
DMU to be an anchor DMU in the sense that for each γ > 0; DOVq

k DMU is a WEV DMU.

Theorem 3.1. In the single input case, for each DMUk = (xk, y1k, . . . , ysk), there is a large enough α > 0 so
that the DIV1

k DMU′k = (xk + α, y1k, . . . , ysk), is an interior point of the PPS of the FRH model.

Proof. Consider the model (2.4) corresponding to DMU′k as follows:

max ϕ

s.t.
∑
j∈E

λjyrj + λoyrk ≥ ϕyrk, r = 1, . . . , s∑
j∈E

λjxj + λo(xk + α) ≤ xk + α

λj ∈ {0, 1, 2, 3, . . .}, j ∈ E ∪ {o}
ϕ ∈ R.

(3.3)

For each λk ∈ {2, 3, . . .}, there is large enough α > 0 so that
(
λo = 0, λj = 0(j ∈ E − {k}), λk, ϕ = λk

)
is

feasible solution of model (3.3). So, we have ϕ∗ ≥ ϕ > 1 at optimality. On the other hand, it can be shown that
in efficiency evaluation of DMUk by model (2.3), θ∗ < 1. Therefore, DMUk is an interior point of the PPS of
the FRH model. The proof is completed. �

Theorem 3.2. In the single output case, for each DMUk = (x1k, . . . , xmk, yk), there is a large enough γ > 0
so that the DOV1

k DMU′k = (x1k, . . . , xmk, yk − γ), is an interior point of the PPS of the FRH model.

Proof. The proof is similar to the proof of Theorem 3.1 except that we consider the models (2.3) and (2.4)
corresponding to the DOV1

k DMU′k. �

Theorem 3.3. In the multiple inputs case, if for some l, model (3.1) is infeasible then, DMUk is an anchor
DMU.

Proof. Suppose that model (3.1) is infeasible. We show that DMUk is an anchor point. For this aim, it is
enough to show that WEV DIVl

k DMU lies on the weak efficient unbounded frontier. Consider the following
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output-oriented FRH model which corresponds to the DIVl
k DMU:

max ϕ

s.t.
∑
j∈E

µjxlj + µo(xlk + α) ≤ xlk + α∑
j∈E

µjxij + µoxik ≤ xik, i = 1, . . . ,m i 6= l∑
j∈E

µjyrj + µoyrk ≥ ϕyrk, r = 1, . . . , s

µj ∈ {0, 1, 2, 3, . . .}, j ∈ E ∪ {o}
ϕ ∈ R.

(3.4)

Now, suppose that (ϕ∗, µ∗j , µ
∗
o) is the optimal solution of the model (3.4). Since ϕ∗ ≥ 1 and xlk + α = θ̂xlk, for

some θ̂ > 1, the constraints of the model (3.4) can be rewritten as follows:∑
j∈E−{k}

µ∗jxlj + (µ∗k + µ∗o)xlk + µ∗oα ≤ θ̂xlk∑
j∈E−{k}

µ∗jxij + (µ∗k + µ∗o)xik ≤ xik, i = 1, . . . ,m i 6= l∑
j∈E−{k}

µ∗jyrj + (µ∗k + µ∗o)yrk ≥ yrk, r = 1, . . . , s

µj ∈ {0, 1, 2, 3, . . .}, j ∈ E ∪ {o}.

(3.5)

If µ∗k + µ∗o = 0 then, µ∗k = µ∗o = 0. Therefore:∑
j∈E−{k}

µ∗jxlj ≤ θ̂xlk∑
j∈E−{k}

µ∗jxij ≤ xik, i = 1, . . . ,m i 6= l∑
j∈E−{k}

µ∗jyrj ≥ yrk, = 1, . . . , s

µ∗j ∈ {0, 1, 2, 3, . . .}, j ∈ E − {k}.

(3.6)

It easily follows from (3.6) that (θk
l , λ

k
j ) = (θ̂, µ∗j ), (j ∈ E − {k}) is a feasible solution of model (3.1), a

contradiction. On the other hand, the second constraint of (3.5) implies that µ∗k + µ∗o = 1. Two cases are occur:

(i) (µ∗k, µ
∗
o) = (1, 0).

(ii) (µ∗k, µ
∗
o) = (0, 1).

In each of these two cases, we conclude that ϕ∗ = 1. Now, since WEV DIVl
k DMU is inefficient, by definition

of weak efficient DMU (see Note 1.), we conclude that DIVl
k DMU is weak efficient and therefore, DMUk is

anchor point. The proof is completed. �

Remark 3.4. By Theorem 3.1, in the single input case; we do not need to solve the model (3.1).

The following theorem is, in fact, the converse of Theorem 3.3.

Theorem 3.5. In a multiple inputs case, if FRH-efficient DMU DMUk = (x1k, . . . , xlk, . . . , xmk, y1k, . . . , ysk)
is an anchor DMU in the sense that for each α > 0 the DIVl

k DMU is a WEV DMU; then model (3.1) is
infeasible.
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Proof. Suppose that DMUk is an anchor point. Consider the output-oriented FRH model (3.4). Suppose that
(ϕ∗ = 1, µ∗j (α), µ∗o(α))(j ∈ E) is an optimal solution of model (3.4). The constraints of the model (3.4) can be
written as follows:∑

j∈E−{k}

µ∗j (α)xlj ≤ (1− µ∗o(α)− µ∗k(α))xlk + (1− µ∗o(α))α∑
j∈E−{k}

µ∗j (α)xij ≤ (1− µ∗o(α)− µ∗k(α))xik, i = 1, . . . ,m i 6= l∑
j∈E−{k}

µ∗j (α)yrj ≥ (1− µ∗o(α)− µ∗k(α))yrk, r = 1, . . . , s

µj ∈ {0, 1, 2, 3, . . .}, j ∈ E ∪ {o}

(3.7)

Two cases can be considered:

(i) 1− µ∗o(α)− µ∗k(α) = 0.
(ii) 1− µ∗o(α)− µ∗k(α) = 1.

In case (i), it is easy to show that
(
µ∗j (α) = 0(j ∈ E−{k}), µ∗o(α) = 0, µ∗k(α) = 1

)
and

(
µ∗j (α) = 0(j ∈ E−{k}),

µ∗o(α) = 1, µ∗k(α) = 0
)

are optimal solutions of model (3.4). Now we show that the case (ii) can not be occurred.
Case (ii) results that µ∗o(α) = µ∗k(α) = 0. Consider the first constraint of (3.4). If for each j, xlj > xlk then,
one can find α > 0 small enough so that the first constraint of (3.4) does not satisfy. These contradict the
feasibility of the model (3.4). If for some j, xlj ≤ xlk then, one can choose α > 0 small enough to have∑

j∈E−{k} µ
∗
j (α)xlj ≤ xlk. Therefore, the following inequalities hold for small enough α > 0:∑

j∈E−{k}

µ∗j (α)xlj ≤ xlk∑
j∈E−{k}

µ∗j (α)xij ≤ xik, i = 1, . . . ,m i 6= l∑
j∈E−{k}

µ∗j (α)yrj ≥ yrk, r = 1, . . . , s.

(3.8)

This implies that there is a DMUp, p ∈ E − {k}, so that:

xlp ≤ xlk

xip ≤ xik, i = 1, . . . ,m i 6= l
yrp ≥ yrk, r = 1, . . . , s

and at least one of these inequalities strictly hold. Therefore, DMUk is dominated by DMUp, a contradiction.
Therefore, case (ii) can not be occurred. Now, we show that model (3.1) is infeasible. By contradiction, suppose
that model (3.1) is feasible. Therefore, it has an optimal solution as

(
θk∗

l (> 1), λk∗
j (j ∈ E − {k})

)
. So:∑

j∈E−{k}

λk∗
j xlj = xlk + α∗∑

j∈E−{k}

λk∗
j xij ≤ xik, i = 1, . . . ,m i 6= l∑

j∈E−{k}

λk∗
j yrj ≥ yrk, r = 1, . . . , s

λj ∈ {0, 1, 2, 3, . . .}, j ∈ E − {k}

(3.9)

in which xlk +α∗ = θk∗

l xlk for some α∗ > 0. It means that the case (ii) has been occurred, a contradiction. The
proof is completed. �
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Theorem 3.6. In the multiple outputs case, if for some q, model (3.2) is infeasible, then, DMUk is an anchor
DMU.

Proof. Suppose that model (3.2) is infeasible. We show that DMUk is an anchor point. For this aim, it is
enough to show that WEV DOVq

k DMU lies on the weak efficient unbounded frontier. Consider the following
input-oriented FRH model corresponding to the DOVq

k DMU:

min θ

s.t.
∑
j∈E

µjxij + µoxik ≤ θxik, i = 1, . . . ,m∑
j∈E

µjyqj + µo(yqk − γ) ≥ yqk − γ,∑
j∈E

µjyrj + µoyrk ≥ yrk, r = 1, . . . , s r 6= q

µj ∈ {0, 1, 2, 3, . . .}, j ∈ E ∪ {o}
θ ∈ R.

(3.10)

Now, suppose that (θ∗, µ∗j , µ
∗
o) is the optimal solution of the model (3.10). Since θ∗ ≤ 1 and yqk − γ = ϕ̂yqk, for

some γ̂ < 1, the constraints of the model (3.10) can be rewritten as follows:∑
j∈E−{k}

µ∗jxij + (µ∗k + µ∗o)xik ≤ xik, i = 1, . . . ,m∑
j∈E−{k}

µ∗jyqj + (µ∗k + µ∗o)yqk ≤ ϕ̂yqk,∑
j∈E−{k}

µ∗jyrj + (µ∗k + µ∗o)yrk ≥ yrk, r = 1, . . . , s r 6= q

µ∗j ∈ {0, 1, 2, 3, . . .}, j ∈ E ∪ {o}.

(3.11)

If µ∗k + µ∗o = 0 then µ∗k = µ∗o = 0. Therefore:∑
j∈E−{k}

µ∗jxij ≤ xik, i = 1, . . . ,m∑
j∈E−{k}

µ∗jyqj ≤ ϕ̂yqk,∑
j∈E−{k}

µ∗jyrj ≥ yrk, r = 1, . . . , s r 6= q

µ∗j ∈ {0, 1, 2, 3, . . .}, j ∈ E − {k}.

(3.12)

It easily follows from (3.12) that (ϕk
q , µ

k
j ) = (ϕ̂, µ∗j ), (j ∈ E − {k}) is a feasible solution of model (3.2), a

contradiction. On the other hand, the second constraint of (3.11) implies that µ∗k +µ∗o = 1. Two cases are occur:

(i) (µ∗k, µ
∗
o) = (1, 0).

(ii) (µ∗k, µ
∗
o) = (0, 1).

In each of these two cases, we conclude that θ∗ = 1. Now, since WEV DOVq
k DMU is inefficient, by definition

of weak efficient DMU (see Note 1.), we conclude that DOVq
k DMU is weak efficient and therefore, DMUk is

anchor point. The proof is completed. �

Remark 3.7. By Theorem 3.2, in the single output case, we do not need to solve the model (3.2).

The following theorem is, in fact, the converse of Theorem 3.6.
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Table 1. Data for Example 4.1 and the results of evaluation FRH-efficient DMUs by models (3.2).

q
DMU x y1 y2 1 2

D1 1 1 5 INFES FES
D2 1 4 4 FES FES
D3 1 5 1 FES INFES

Theorem 3.8. In a multiple outputs case, if FRH-efficient DMU DMUk = (x1k, . . . , xlk, . . . , xmk, y1k,
. . . , ysk) is an anchor DMU in the sense that for each γ > 0 the DOVq

k DMU be a WEV DMU; then model
(3.2) is infeasible.

Proof. The proof is similar to the proof of Theorem 3.5; except that instead of model (3.4) we consider the
input-oriented FRH model (3.10). The details are deleted. �

The necessary and sufficient condition for DMUk (k ∈ E) under evaluation to be FRH extreme unit is given
in the following theorem:

Theorem 3.9. DMUk, k ∈ E, is extreme DMU if and only if either for at least one l (or q), model (3.1)
(or (3.2)) is infeasible or for all l and q, θl

k > 1 and ϕq
k < 1.

Proof. The proof is straightforward. �

To sum up, by Theorems 3.3 and 3.5 we can find all anchor DMUs for which the DIVl
k DMUs DMU

′

k =
(x1k, . . . , x(l−1)k, xlk + α, x(l+1)k, . . . , xmk, y1k, . . . , ysk) are WEV DMUs, for each α > 0, and by Theorems 3.6
and 3.8 we can find all anchor DMUs for which the DOVq

k DMUs DMU
′

k = (x1k, . . . , xmk, y1k, . . . , yqk −
β, . . . ., ysk) are WEV DMUs, for each 0 < β ≤ yqk.

Now we are in the position to put all together the ingredients of the method.

Summary of finding all anchor DMUs’ algorithm

– Step 1. Evaluate n DMUs with a suitable form of models (2.3) and (2.4). Hold all FRH-efficient DMUs and
remove other DMUs. Put indices of this FRH-efficient DMUs in E.

– Step 2. Evaluate each DMUs in E with models (3.1) and (3.2). (Note that in the single input case we don’t
use model (3.1) and in the single output case we don’t use model (3.2)).

– Step 3. If for some l (or q) the model (3.1) (or (3.2)) is infeasible, then, DMUk is an anchor DMU and
DIVl

k (or DOVq
k) DMU′k is WEV DMU.

– Step 4. If all DMUs in E evaluated by models (3.1) and (3.2), stop. Otherwise, go to step 1.

4. Numerical examples

Example 4.1 (Single input and two outputs case). Three DMUs with one input and two outputs are considered
in Table 1. By applying the model (2.4), E = {D1, D2, D3}. Figure 3 shows the constructed PPS by these three
DMUs. The last two columns of Table 1 indicates the results of applying model (3.1). In Table 1, “INFES”
and “FES” denotes “infeasible” and “feasible”, respectively. For instance, “INFES” in the first row means that
model (3.1), corresponding to DMU D1 (k = 1) with q = 1, is infeasible. So, by Theorem 3.5, D1 is an anchor
DMU and for each β > 0, DOV1

1 DMU D′1 = (1, 1−β, 5) is a WEV DMU. Using Theorems 3.1, 3.6, 3.8 and 3.9
and the information of Table 1, DMUs D1, D2 and D3 are extreme DMUs but, D1 and D3 are anchor DMUs.
Please pay attention that by Remark 3.4, we don’t need to apply the model (3.1).
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Table 2. Example 4.2. Multiple inputs and outputs.

DMU D1 D2 D3 D4 D5

x1 2 1 2 4 3
x2 3 2 2 2 5
y1 7 3 4 6 5
y2 4 5 3 1 2

Figure 3. Example 4.1. D1 and D3 are anchor points.

Example 4.2 (Multiple outputs and inputs case). Table 2 shows data for 5 DMUs with two inputs and two
outputs. Running model (2.3) (or (2.4)) shows that D2, D3 and D4 are FRH-efficient and other DMUs are
FRH-inefficient. So, E = {2, 3, 4}. Applying models (3.1) and (3.2) to each DMUk, k ∈ E, produces the results
reported in Table 3. So, by Theorems 3.3 and 3.5, D2 is an anchor DMU and for each α > 0, DIV2

2 DMU
D′2 = (1, 2 + α, 3, 5) is a WEV DMU. Using Theorems 3.3 to 3.9 and the information of Table 3, all DMUk

k ∈ E are extreme and anchor DMUs. Also, for instance, in view of Table 3, for each α > 0, DIV2
2 DMU

D′2 = (1, 2 + α, 3, 5) is a WEV DMU.

Example 4.3 (Real word data). We evaluated the data of 20 branches of a bank in Iran using the proposed
method. The data was previously analyzed by Amirteimoori et al. [4], (see Tab. 4). Running the DEA model
(2.3) (or (2.4)) resulted in E = {1, 2, 3, 4, 7, 8, 9, 11, 15, 16, 17, 20}. Using the proposed method, all DMUs in
E are found to be extreme and anchor DMUs. Also DIV1,2

1 , DIV1,2,3
2 , DIV1,2,3

3 , DIV1,2,3
4 , DIV1,2,3

7 , DIV1,2
8 ,

DIV1,2,3
9 , DIV1,2,3

11 , DIV1,2,3
15 , DIV2,3

16 , DIV1,2,3
17 , DIV2,3

19 , DIV2,3
20 and also, DOV1,2,3

1 , DOV2,3
2 , DOV1,2,3

3 , DOV1,2,3
4 ,

DOV2,3
5 , DOV2,3

6 , DOV1,2,3
7 , DOV1,2,3

8 , DOV1,2,3
9 , DOV1,2,3

11 , DOV2,3
15 , DOV2,3

16 , DOV1,2,3
17 , DOV1,2,3

20 DMUs are
WEV DMUs.

5. Conclusions

Anchor points are a new category of extreme-efficient DMUs. They delineate the pareto efficient frontier from
the unbounded inefficient part of the PPS. The identification and applications of these points have been studied
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Table 3. Example 4.2. The results of evaluation FRH-efficient DMUs by models (3.1) and (3.2).

DMU l q
1 2 1 2

D2 FES INFES FES INFES
D3 INFES FES INFES FES
D4 INFES FES INFES FES

Table 4. Example 4.3. DMUs’ data (extracted from [Amirteimoori et al. [4], p. 689]).

Input output
Branch Staff Computer Space m2 Deposits Loans Charge

terminals

1 0.9503 0.70 0.1550 0.1900 0.5214 0.2926
2 0.7962 0.60 1.0000 0.2266 0.6274 0.4624
3 0.7982 0.75 0.5125 0.2283 0.9703 0.2606
4 0.8651 0.55 0.2100 0.1927 0.6324 1.0000
5 0.8151 0.85 0.2675 0.2333 0.7221 0.2463
6 0.8416 0.65 0.5000 0.2069 0.6025 0.5689
7 0.7189 0.60 0.3500 0.1824 0.9000 0.7158
8 0.7853 0.75 0.1200 0.1250 0.2340 0.2977
9 0.4756 0.60 0.1350 0.0801 0.3643 0.2439
10 0.6782 0.55 0.5100 0.0818 0.1835 0.0486
11 0.7112 1.00 0.3050 0.2117 0.3179 0.4031
12 0.8113 0.65 0.2550 0.1227 0.9225 0.6279
13 0.6586 0.85 0.3400 0.1755 0.6452 0.2605
14 0.9763 0.80 0.5400 0.1443 0.5143 0.2433
15 0.6845 0.95 0.4500 1.0000 0.2617 0.0982
16 0.6127 0.90 0.5250 0.1151 0.4021 0.4641
17 1.0000 0.60 0.2050 0.0900 1.0000 0.1614
18 0.6337 0.65 0.2350 0.0591 0.3492 0.0678
19 0.3715 0.70 0.2375 0.0385 0.1898 0.1112
20 0.5827 0.55 0.5000 0.1101 0.6145 0.7643

by several authors, including Bougnol [8], Thanassoulis and Allen [23] and Rouse [19]. As far as we know, no
efficient study has been performed on finding anchor DMUs of the PPS of the FRH models. In this paper a
method has been presented for finding all extreme and anchor DMUs of the PPS of the FRH models using two
super-efficiency models (see models (3.1) and (3.2)). The necessary and sufficient conditions for a DMU to be an
extreme and anchor DMU has been stated and proved. According to the proposed approach, one can determine
the inputs (outputs) of the anchor DMUs that can be increased (decreased) without penetrating the interior of
the PPS. The validity of the presented approach has been tested through some examples. Finally, the GAMs
software has been employed to run the models (3.1) and (3.2).
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