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ALTERNATIVE APPROACH BASED ON ROOTS FOR COMPUTING THE
STATIONARY QUEUE-LENGTH DISTRIBUTIONS IN GIX/M (1,b)/1 SINGLE

WORKING VACATION QUEUE

Miaomiao Yu1,2,∗

Abstract. The purpose of this paper is to present an alternative algorithm for computing the station-
ary queue-length and system-length distributions of a single working vacation queue with renewal input
batch arrival and exponential holding times. Here we assume that a group of customers arrives into the
system, and they are served in batches not exceeding a specific number b. Because of batch arrival, the
transition probability matrix of the corresponding embedded Markov chain for the working vacation
queue has no skip-free-to-the-right property. Without considering whether the transition probability
matrix has a special block structure, through the calculation of roots of the associated characteristic
equation of the generating function of queue-length distribution immediately before batch arrival, we
suggest a procedure to obtain the steady-state distributions of the number of customers in the queue
at different epochs. Furthermore, we present the analytic results for the sojourn time of an arbitrary
customer in a batch by utilizing the queue-length distribution at the pre-arrival epoch. Finally, various
examples are provided to show the applicability of the numerical algorithm.
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1. Introduction

From a mathematical modeling point of view, batch-arrival bulk-service queue under various vacation
policies is an extension of individual arrival and single service vacation queue. For the vast majority of real-
world applications, bulk arrivals and services are the only realistic assumptions. Such queues are very useful to
investigate the performance measures of systems in the areas like manufacturing, production, telecommunica-
tion, and transportation. As far as vacation or batch-arrival bulk-service systems are concerned, many authors
have addressed these topics during the last several decades. Readers are urged to see Doshi [19], Takagi [37],
Alfa [2], and Chaudhry and Templeton [14] for a more comprehensive survey of related references. However,
being limited by the method and analytic technique, the generalization of batch-arrival bulk-service queue incor-
porating the concept of server vacation has not been fully considered in the previous literature. Notably, due to
model complexity and analytical difficulty, there is little research on the renewal input batch-arrival bulk-service
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vacation queue. Numerous theoretical and computational issues for this type of queue have been left unexplored.
We think one primary reason behind this situation is that the renewal input batch-arrival queue has a more
general block-structured Markov chain. The transition probability matrix associated with the renewal batch-
arrival process has no requisite particular block structure, the matrix-analytic method developed by Neuts [29]
does not work well in the analysis of such a queue. Thus, the practical difficulties described above motivate us
to consider algorithmic aspects of this queueing model and look for a feasible way to estimate the queue size.

Objectively speaking, queues of type GIX/M/1 are more challenging from a mathematical point of view
than the corresponding MX/G/1 type queue. The introduction of batch service and semi-vacation policy in
GIX/M/1 queue further makes the model more complex both from the mathematical and computational points
of view. To better demonstrate this research topic’s necessity, let us briefly review the work done in the field of
batch-arrival bulk-service vacation queue. Earlier studies in this area have mainly focused on Poisson or Bernoulli
batch arrival vacation queue with general bulk service times. Chang and Choi [11] presented a complete analytic
and computational framework for handling the GeoX/GY /1/K+B vacation queue with variable service capacity
and finite waiting space. Using similar arguments, Chang and Choi [12] also discussed algorithmic aspects of
MX/GY /1/K +B queue with server startup time. Later, inspired by the above work, Samanta, Chaudhry and
Gupta [33] further investigated discrete-time GeoX/G(a,b)/1/N vacation queue with general bulk service rule.
It is worth mentioning that the analysis method adopted by them differs significantly from the one by Chang and
Choi, as previously stated. In their work, the queue-length distribution at an arbitrary epoch is derived using the
supplementary variable technique and treating the supplementary variable as the remaining bulk service time.
Additionally, by resorting to the same method, Yu et al. [40] firstly studied GIX/M b/1/N bulk-service working
vacation queue with general inter-batch arrival time, and developed an approach to compute the queue-length
distributions at pre-arrival and arbitrary epochs. As far as we know, this is the only journal paper related to
renewal batch input and bulk-service vacation queue. On the other hand, their infinite buffer size counterparts
received relatively little attention among researchers. Except for a limited number of studies done by several
Indian scholars and Belgian scholars (see, [3, 4, 18, 23, 25]), no work in this direction has come to our notice.
Simultaneously, we note that due to the remarkable properties of the Poisson process, the existing literature
presented above primarily discussed infinite buffer capacity bulk-service vacation queue with batch Poisson
arrivals. While, for the case of renewal input batch-arrival bulk-service vacation queue, we still lack an efficient
way to deal with them uniformly. Therefore, despite its wide potential applications in the manufacturing and
production industry, some profound results on this queueing problem have not yet been systematically studied.
This fact can be further confirmed from the monograph written by Tian and Zhang [38], and a series of work
done by Li and Tian [26, 27], and Chae et al. [10]. We may quickly find that the authors concentrated their
attention on the renewal input single arrival and individual service queue subject to different types of vacation
mechanisms instead of the more realistic batch-arrival bulk-service vacation queue.

However, fortunately, the recent work done by Chaudhry and his collaborators [5–7, 13, 16, 17, 28, 31, 32, 34]
inspires us to overcome difficulties in analyzing renewal input batch-arrival bulk-service vacation queue. Com-
pared with other approaches, the method advocated by Chaudhry can cleverly avoid high complexity caused
by the structure of the transition matrix. Moreover, under such an analytical framework, the queue-length
distribution at the pre-arrival epoch can be obtained by solving a system of linear equations. It also implies
that the method developed by Chaudhry is easy to implement and computationally efficient. Thus, following
the idea of Chaudhry, a simple solution to determine the queue-length distribution and the sojourn time of an
arbitrary customer for the GIX/M (1,b)/1/∞ single working vacation (SWV) queue is present in our current
work. Although our work has some similarities to the existing literature (see, [21, 22, 30]), due to considering
batch-arrival and bulk-service at the same time, the mathematical discussion of the transition probability at the
embedded pre-arrival epochs is much more complicated than the corresponding part of the above references.
Moreover, we note that a system of linear equations that determines the unknown coefficients of the partial
fractions was not explicitly reported in the literature mentioned above. Authors just stated how to obtain these
unknown coefficients by solving a system of linear equations, but the specific form of the linear equations that
must be used in numerical programming is not given. In our paper, the linear algebraic equations for finding
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the unknown coefficients are clearly presented. Meanwhile, we also note that the numerical experiments con-
ducted in the above three articles are very limited. The arrival processes are assumed to be Markovian or
phase-type (PH). Undoubtedly this does not reflect the advantages of the model in the arrival process. Thus,
the conclusion of other arbitrary arrival distributions that do not belong to the class of PH distribution in our
numerical experiments is also an extension of the previous work.

The concept of working vacation policy was introduced by Servi and Finn [35] for use in the analysis of a
Wavelength-Division Multiplexing optical access network. It is well known that in the classical vacation queue,
the server does not continue its original work during the vacation period, and this type of policy may cause the
loss or dissatisfaction of the customers. Unlike standard vacation policy, during working vacation period, the
server serves customers at a lower service rate rather than completely stopping service. That is to say, the server
can still work during the vacation and may accomplish other assistant work simultaneously. Undoubtedly, such
a policy reduces the chance of reneging of the customers compared to regular vacation policy. Also, a working
vacation queue can well describe the operation mode of the original equipment manufacturer (OEM). In order
to increase the production capacity, shift work, particularly work including night shifts, is often adopted by
the OEM managers. The term shift work usually means that people have a work schedule outside the standard
daytime from 9 AM to 5 PM. OEM can rely on the work provided by the shift workers during non-working hours
to fulfill more customer orders. It is precise because of its application in many fields that a growing number of
researchers have focused their attention on working vacation queues in recent years.

The remainder of this paper is organized as follows. Section 2 gives the underlying model assumptions
and introduces the notations to describe the model parameters. Queue-length distributions at pre-arrival and
arbitrary epochs are analyzed in Sections 3 and 4, respectively. Additionally, in Sections 5 and 6, we discuss
several other quantitative measures such as system-length distributions at two different epochs and the sojourn
time of a randomly chosen tagged customer in an arriving batch. Finally, numerical illustration has been done
in Section 7, and conclusions and future scope are also provided in Section 8.

2. Mathematical model description

This section specifies the details of the queueing model. We consider an infinite-buffer single-server queue
wherein batches of customers arrive at epochs 0 = τ0, τ1, τ2, . . . , τn, . . ., and the arrival stream forms a renewal
process with group arrival rate λ. In other words, the inter-batch arrival times, denoted by T , constitute a
sequence of independent and identically distributed random variables having a general distribution function A(t)
and mean inter-arrival time 1/λ. The actual number of customers in any arriving batch is a random variable,
which may take on any positive integral value k (<+∞) with probability distribution Pr {X = k} = gk, where
X represents generic batch size with finite mean E[X] = ḡ and associated probability generating function
(p.g.f.) X(z) =

∑∞
k=1 gkz

k, |z| ≤ 1. Instead of being served individually, customers are now served in batches
of maximum size b (≥ 1). That is to say, the server can process up to “b” customers at once, and the remaining
customers have to wait for the next round of service. During the regular busy period, the normal service time
distribution of a batch is assumed to be exponential with parameter µb. When the system becomes empty at a
batch service completion instant, the server begins a vacation V , which is an exponentially distributed random
variable with parameter θ. During the vacation, an arriving batch of customers can be served at a lower rate µv
as compared to the normal service rate µb. When the working vacation period terminates, if there are customers
in the system, the server changes its service rate from µv to µb, and the batch service interrupted at the end of
vacation restarts from the beginning in a new regular busy period. Otherwise, the server enters an idle period,
and a new regular busy period starts when a batch of customers arrive. Such type of vacation is called a single
working vacation, and the model under consideration is denoted by GIX/M (1,b)/1/SWV . Furthermore, the
traffic intensity of the system is ρ = λḡ/bµb. For the stationary analysis of the model, we need the stability
condition ρ < 1.
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3. Determination of queue-length distribution at pre-arrival epoch

In this section, by constructing a Markov chain embedded within the GIX/M (1,b)/1/SWV queue, the sta-
tionary distribution of the number of customers in the queue at pre-arrival epoch is numerically obtained by
setting up a system of linear equations in terms of the roots of the associated characteristic equation. The
embedded time instants are precisely the instants of batch arrivals since the elapsed inter-batch arrival time at
these moments is exactly equal to zero. This allows us to form a transition probability matrix and to compute
the distribution of customers seen by an arriving batch.

Let Nq(t) denote the number of customers present in the queue (excluding customers in service) at time t.
Further, the state of the server at time t can be described by a random variable Y (t). Here, Y (t) only takes on
the value of 1 or 0. If the server is in the working vacation period, we set Y (t) equal to 0. If the server is in the
regular busy period, Y (t) equals 1. Then it follows that a state of the system can be completely described by the
pair (i, j), where i is the number of customers in the queue, and j denotes the server’s current state. The pairs
(0̄, 0) and (0̄, 1) refer to an empty queue, and the server is idle in the working vacation period and regular busy
period, respectively. There is a clear difference between states (0̄, 0) and (0, 0). Specifically, the pair (0̄, 0) refers
to the waiting line is empty in the working vacation period, and the number of customers receiving services
is zero. While pair (0, 0) also refers to the waiting line is empty in working vacation period, but the number
of customers receiving services is nonzero (maybe equals 1, 2, . . ., or b). You may note here that Nq(t) only
records the number of customers in the waiting line, excluding the customers in service at time t. Therefore,
(0̄, 0) and (0, 0) are two different states. Similarly, (0̄, 1) and (0, 1) are two completely different states. Thus,
the state space of the non-Markovian process {(Nq(t), Y (t)) : t ≥ 0} is Ω = {(i, j) : i = 0̄, 0, 1, 2, 3, . . . ; j = 0, 1}.
As described earlier, the above process can generate an embedded Markov chain at the pre-arrival epoch. Let
Nq(τ−n ) and Y (τ−n ) represent the queue-length and the state of the server immediately prior to the nth batch
arrival, respectively. Since the memoryless property of the exponential distribution, {(Nq(τ−n ), Y (τ−n )) : n ≥ 1}
forms a bivariate Markov chain on the state space Ω. We shall now construct the transition probability matrix
of the Markov chain embedded at arrival instants and write its element. Let us enumerate the states of the
embedded Markov chain in lexicographic order. The transition probability matrix P of the system with state
space Ω can be displayed in a block-partitioned structure as follows:

P =



(0̄, 0) (0̄, 1) (0, 0) (0, 1) (1, 0) (1, 1) (2, 0) (2, 1) (3, 0) (3, 1) · · · · · ·
(0̄, 0)
(0̄, 1) P 0̄,0̄ P 0̄,0 P 0̄,1 P 0̄,2 P 0̄,3 · · · · · ·

(0, 0)
(0, 1) P 0,0̄ P 0,0 P 0,1 P 0,2 P 0,3 · · · · · ·

(1, 0)
(1, 1) P 1,0̄ P 1,0 P 1,1 P 1,2 P 1,3 · · · · · ·

(2, 0)
(2, 1) P 2,0̄ P 2,0 P 2,1 P 2,2 P 2,3 · · · · · ·

...
...

...
...

...
...

...
...


,

where each block P i,j is a two by two matrix. Let

p(i,j)(h,m) = Pr
{
Nq(τ−n+1) = h, Y (τ−n+1) = m

∣∣Nq(τ−n ) = i, Y (τ−n ) = j
}
, m, j = 0, 1;h, i = 0̄, 0, 1, 2, . . . ,

be the transition probabilities of the chain. To explicitly express all elements of the matrix P, we define the
following probabilities of service completions under three different scenarios

αk =
∫ ∞

0

(µbt)k

k!
e−µbt dA(t), k = 0, 1, 2, . . . ; βk =

∫ ∞
0

(µvt)
k

k!
e−(µv+θ)t dA(t), k = 0, 1, 2, . . . ;

∆k =
k∑
l=0

∫ ∞
0

∫ t

0

θe−θxe−µvx
(µvx)l

l!
e−µb(t−x) (µb(t− x))k−l

(k − l)!
dxdA(t), k = 0, 1, 2, . . . .
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Here, αk is the probability that exactly k batches of customers have been served with a normal service rate
during an inter-batch arrival time. βk denotes the probability that the working vacation time is greater than an
inter-batch arrival time and k batches of customers have been served with a lower service rate during the inter-
batch arrival time. Similarly, ∆k represents the probability that the ongoing working vacation ends sometime
during an inter-batch arrival time, and there are k batch-service completions within this period, in which l
batches complete services before the end of a single working vacation and k− l batches complete services in the
following normal busy period. Additionally, we introduce two special symbols for the brevity of notations and
are defined as follows:

φk =
∫ ∞

0

∫ t

0

θe−θxe−µb(t−x) (µb(t− x))k

k!
dx dA(t), k = 0, 1, 2, . . . ;

mk =
k∑
l=0

∫ ∞
0

∫ t

0

θe−θxe−µvx
(µvx)l

l!

∫ t−x

0

e−µby
µb(µby)k−l

(k − l)!
e−θ(t−x−y) dy dxdA(t), k = 0, 1, 2, . . . .

Further, we denote the Laplace–Stieltjes transform (LST) of A(t) by a∗(s), the p.g.f. of αk, βk and ∆k are given
by

Λ(z) =
∞∑
k=0

αkz
k = a∗(µb − µbz), D(z) =

∞∑
k=0

βkz
k = a∗ (θ + µv − µvz) ,

and Φ(z) =
∞∑
k=0

∆kz
k =

θ [Λ(z)−D(z)]
(1− z)(µv − µb) + θ

,

respectively. With the above notations, now we will consider the transition probabilities in detail.
– First, for i, j = 0, 1, 2, . . ., the transition from (i, 1) to (j, 1) corresponds to the case in a regular busy period,

the size of an arriving batch equals kb + j − i with probability gkb+j−i. k batches of customers complete their
services during an inter-batch arrival time, where k denotes all integers that are not less than max{0, b i+1−j

b c+1},
and bxc is the greatest integer less than x, e.g. b2c = 1, b2.5c = 2. Hence, if j 6= 0, we get

p(i,1)(j,1) =
∞∑

k=max{0,b i+1−j
b c+1}

gkb+j−i Pr

{
k∑

n=1

Sn ≤ T <

k+1∑
n=1

Sn

}

=
∞∑

k=max{0,b i+1−j
b c+1}

gkb+j−i

∫ +∞

0

(µbt)k

k!
e−µbt dA(t)

=
∞∑

k=max{0,b i+1−j
b c+1}

gkb+j−iαk,

where Sn denotes the service time of the nth batch during the regular busy period. Otherwise, we have

p(i,1)(0,1) =
∞∑
r=1

gr Pr


d i+r

b e∑
n=1

Sn ≤ T <

d i+r
b e+1∑
n=1

Sn

 =
∞∑
r=1

gr

∫ ∞
0

(µbt)
d i+r

b e

d i+rb e!
e−µbt dA(t) =

∞∑
r=1

grαd i+r
b e
,

where dxe represents the least integer not less than x, e.g. d2e = 2, d2.5e = 3. Furthermore, the transitions from
state (0̄, 1) to states (0, 1) and (j, 1) (j = 1, 2, . . .) can be obtained in a similar way

p(0̄,1)(0,1) =
∞∑
r=1

gr Pr


d r

b e−1∑
n=1

Sn ≤ T <

d r
b e∑

n=1

Sn

 =
∞∑
r=1

grαd r
b e−1,

p(0̄,1)(j,1) =
∞∑
k=1

gkb+j Pr

{
k−1∑
n=1

Sn ≤ T <

k∑
n=1

Sn

}
=
∞∑
k=1

gkb+jαk−1.
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– Second, considering a single working vacation period, the transition from state (i, 0) (i ≥ 0) to state (j, 0)
(j ≥ 1) occurs if the arriving batch contains kb + j − i customers with probability gkb+j−i, and the remaining
vacation time is greater than an inter-batch arrival time. Meanwhile, there are k batch-service completions
during the inter-batch arrival time, where k also denotes all integers that are not less than max{0,

⌊
i+1−j
b

⌋
+1}.

Thus, we have

p(i,0)(j,0) =
∞∑

k=max{0,b i+1−j
b c+1}

gkb+j−i Pr

{
k∑

n=1

S̃n ≤ T <

k+1∑
n=1

S̃n, T < V

}

=
∞∑

k=max{0,b i+1−j
b c+1}

gkb+j−i

∫ ∞
0

(µvt)k

k!
e−(µv+θ)t dA(t) =

∞∑
k=max{0,b i+1−j

b c+1}

gkb+j−iβk,

in which S̃n denotes the service time of the nth batch during the working vacation period. Especially, if j = 0,
the transition from state (i, 0) to state (0, 0) is given by

p(i,0)(0,0) =
∞∑
r=1

gr Pr


d i+r

b e∑
n=1

S̃n ≤ T <

d i+r
b e+1∑
n=1

S̃n, T < V


=
∞∑
r=1

gr

∫ ∞
0

(µvt)
d i+r

b e

d i+rb e!
e−(µv+θ)t dA(t) =

∞∑
r=1

grβd i+r
b e
.

Similarly, the transitions from state (0̄, 0) to states (0, 0) and (j, 0) (j = 1, 2, . . .) are given respectively as
follows:

p(0̄,0)(0,0) =
∞∑
r=1

gr Pr


d r

b e−1∑
n=1

S̃n ≤ T <

d r
b e∑

n=1

S̃n, T < V

 =
∞∑
r=1

grβd r
b e−1,

p(0̄,0)(j,0) =
∞∑
k=1

gkb+j Pr

{
k−1∑
n=1

S̃n ≤ T <

k∑
n=1

S̃n, T < V

}
=
∞∑
k=1

gkb+jβk−1.

– Third, for i = 0, 1, 2, . . . and j 6= 0̄, the transition from state (i, 1) to state (j, 0) is an impossible event.
Thus, we only need to consider the transition from state (i, 1) to state (0̄, 0). If the size of an arriving batch
is equal to r with probability gr, such a transition means that there are d i+rb e + 1 batch-service completions
during an inter-batch arrival time and then the newly started single working vacation does not end during the
remaining inter-batch arrival time. So, we have

p(i,1)(0̄,0) =
∞∑
r=1

gr Pr


d i+r

b e+1∑
n=1

Sn ≤ T <

d i+r
b e+1∑
n=1

Sn + V


=
∞∑
r=1

gr

∫ ∞
0

∫ ∞
0

Pr

t− x <
d i+r

b e+1∑
n=1

Sn ≤ t

 θe−θx dxdA(t)

=
∞∑
r=1

gr

∫ ∞
0

∫ ∞
0

Pr


d i+r

b e+1∑
n=1

Sn ≤ t

− Pr


d i+r

b e+1∑
n=1

Sn ≤ t− x


 θe−θx dxdA(t)

=
∞∑
r=1

gr

∫ ∞
0

∫ t

0

Pr


d i+r

b e+1∑
n=1

Sn ≤ t

− Pr


d i+r

b e+1∑
n=1

Sn ≤ t− x


 θe−θx dx dA(t)
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+
∫ ∞

0

∫ ∞
t

Pr


d i+r

b e+1∑
n=1

Sn ≤ t

 θe−θx dxdA(t)


=
∞∑
r=1

gr

∫ ∞
0

∫ t

0

e−µb(t−x)

d i+r
b e∑

n=0

(µb(t− x))n

n!
− e−µbt

d i+r
b e∑

n=0

(µbt)n

n!

 θe−θx dxdA(t)

+
∫ ∞

0

∫ ∞
t

θe−θx dx dA(t)−
∫ ∞

0

∫ ∞
t

θe−θxe−µbt

d i+r
b e∑

n=0

(µbt)
n

n!
dxdA(t)


= a∗(θ)−

∞∑
r=1

gr

d i+r
b e∑

n=0

αn +
∞∑
r=1

gr

d i+r
b e∑

n=0

φn.

Moreover, the transition from state (0̄, 1) to state (0̄, 0) can be analyzed in a similar manner

p(0̄,1)(0̄,0) =
∞∑
r=1

gr Pr


d r

b e∑
n=1

Sn ≤ T <

d r
b e∑

n=1

Sn + V

 = a∗(θ)−
∞∑
r=1

gr

d r
b e−1∑
n=0

αn +
∞∑
r=1

gr

d r
b e−1∑
n=0

φn.

– Fourth, the transition from state (i, 0) (i ≥ 0) to state (j, 1) (j ≥ 1) occurs if the arriving batch contains
kb + j − i customers with probability gkb+j−i, and the ongoing working vacation ends sometime during an
inter-batch arrival time. Meanwhile, there are k batch-service completions, in which l (l = 0, 1, 2, . . . , k) batches
complete services before the end of a single working vacation and k − l batches complete services after the end
of a single working vacation. Here, k also takes all integers that are not less than max{0, b i+1−j

b c+ 1}. Thus,

p(i,0)(j,1) =
∞∑

k=max{0,b i+1−j
b c+1}

gkb+j−i

k∑
l=0

Pr

{
l∑

n=1

S̃n ≤ V <

l+1∑
n=1

S̃n, V +
k∑

n=l+1

Sn ≤ T < V +
k+1∑
n=l+1

Sn

}

=
∞∑

k=max{0,b i+1−j
b c+1}

gkb+j−i

k∑
l=0

∫ ∞
0

∫ t

0

θe−θx
(µvx)l

l!
e−µvx

×Pr

{
k∑

n=l+1

Sn ≤ t− x <
k+1∑
n=l+1

Sn

}
dx dA(t)

=
∞∑

k=max{0,b i+1−j
b c+1}

gkb+j−i

k∑
l=0

∫ ∞
0

∫ t

0

θe−θxe−µvx
(µvx)l

l!
e−µb(t−x) (µb(t− x))k−l

(k − l)!
dxdA(t)

=
∞∑

k=max{0,b i+1−j
b c+1}

gkb+j−i∆k.

By using an argument similar as above, the transition probability p(i,0)(0,1) is given by

p(i,0)(0,1) =
∞∑
r=1

gr

d i+r
b e∑
l=0

Pr


l∑

n=1

S̃n ≤ V <

l+1∑
n=1

S̃n, V +
d i+r

b e∑
n=l+1

Sn ≤ T < V +
d i+r

b e+1∑
n=l+1

Sn


=
∞∑
r=1

gr

d i+r
b e∑
l=0

∫ ∞
0

∫ t

0

θe−θxe−µvx
(µvx)l

l!
e−µb(t−x) (µb(t− x))d

i+r
b e−l

(d i+rb e − l)!
dxdA(t) =

∞∑
r=1

gr∆d i+r
b e
.
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Additionally, the analysis of the transitions from state (0̄, 0) to states (0, 1) and (j, 1) (j = 1, 2, . . .) is very
similar to the procedure as we have mentioned above. Thus,

p(0̄,0)(0,1) =
∞∑
r=1

gr

d r
b e−1∑
l=0

Pr


l∑

n=1

S̃n ≤ V <

l+1∑
n=1

S̃n, V +
d r

b e−1∑
n=l+1

Sn ≤ T < V +
d r

b e∑
n=l+1

Sn

 =
∞∑
r=1

gr∆d r
b e−1,

p(0̄,0)(j,1) =
∞∑
k=1

gkb+j

k−1∑
l=0

Pr

{
l∑

n=1

S̃n ≤ V <

l+1∑
n=1

S̃n, V +
k−1∑
n=l+1

Sn ≤ T < V +
k∑

n=l+1

Sn

}
=
∞∑
k=1

gkb+j∆k−1.

– Fifth, for i = 0, 1, 2, . . ., two mutually exclusive cases cause a transition from state (i, 0) to state (0̄, 0). Case
1: Suppose that the size of an arriving batch is equal to r with probability gr. The residual working vacation is
greater than the inter-batch arrival time, and d i+rb e+ 1 batches of customers complete their services during the
inter-batch arrival time. Case 2: With the same assumption as in Case 1, the residual working vacation time
is less than the inter-batch arrival time, and the server goes on another working vacation after completing the
services of d i+rb e+1 batches of customers. Further, we assume that there are l (l = 0, 1, . . . , d i+rb e) batch-service
completions before the single working vacation ends and d i+rb e − l + 1 batch-service completions in a regular
busy period. Thus, we have

p(i,0)(0̄,0) =

∞∑

r=1

gr Pr






d i+r
b
e+1∑

n=1

S̃n ≤ T, T < V






+

∞∑

r=1

gr

d i+r
b
e∑

l=0

Pr






l∑

n=1

S̃n ≤ V <

l+1∑

n=1

S̃n, V +

d i+r
b
e+1∑

n=l+1

Sn ≤ T < V +

d i+r
b
e+1∑

n=l+1

Sn + V






=

∞∑

r=1

gr

∫ ∞

0

e−θt



1− e−µvt

d i+r
b
e∑

n=0

(µvt)
n

n!



 dA(t)

+

∞∑

r=1

gr

d i+r
b
e∑

l=0

∫ ∞

0

∫ t

0

θe−θx
(µvx)l

l!
e−µvx Pr






d i+r
b
e+1∑

n=l+1

Sn ≤ t− x <
d i+r

b
e+1∑

n=l+1

Sn + V




 dxdA(t)

= a∗(θ)−
∞∑

r=1

gr

d i+r
b
e∑

n=0

∫ ∞

0

e−(θ+µv)t (µvt)
n

n!
dA(t)

+

∞∑

r=1

gr

d i+r
b
e∑

l=0

∫ ∞

0

∫ t

0

θe−θxe−µvx (µvx)l

l!

∫ t−x

0

e−µby µb(µby)d
i+r

b
e−l

(d i+r
b
e − l)!

e−θ(t−x−y) dy dx dA(t)

= a∗(θ)−
∞∑

r=1

gr

d i+r
b
e∑

n=0

βn +

∞∑

r=1

grmd i+r
b
e.

Furthermore, the transition from state (0̄, 0) to state (0̄, 0) is handled similarly.

p(0̄,0)(0̄,0) =

∞∑

r=1

gr Pr






d r
b
e∑

n=1

S̃n ≤ T, T < V






+

∞∑

r=1

gr

d r
b
e−1∑

l=0

Pr






l∑

n=1

S̃n ≤ V <

l+1∑

n=1

S̃n, V +

d r
b
e∑

n=l+1

Sn ≤ T < V +

d r
b
e∑

n=l+1

Sn + V






= a∗(θ)−
∞∑

r=1

gr

d r
b
e−1∑

n=0

βn +

∞∑

r=1

grmd r
b
e−1.
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– Sixth, for i = 0, 1, 2, . . ., we can also distinguish two possible cases to consider the transition from state
(i, 0) to state (0̄, 1). Case 1: Assuming that the size of an arriving batch equals r with probability gr, the residual
working vacation is less than the inter-batch arrival time, and d i+rb e + 1 batches of customers complete their
services during the residual working vacation time. Case 2: Under the same assumption as mentioned above,
the residual working vacation time is less than the inter-batch arrival time, and the server starts another new
working vacation after completing the services of d i+rb e+ 1 batches of customers. Furthermore, during this new
working vacation period, no customer arrives at the service system. We still assume that l (l = 0, 1, . . . , d i+rb e)
batches of customers complete their services in the residual working vacation time and d i+rb e+ 1− l batches of
customers complete their services in a regular busy period. Thus

p(i,0)(0̄,1) =
∞∑
r=1

gr Pr


d i+r

b e+1∑
n=1

S̃n ≤ V, V < T


+
∞∑
r=1

gr

d i+r
b e∑
l=0

Pr


l∑

n=1

S̃n ≤ V <

l+1∑
n=1

S̃n, V +
d i+r

b e+1∑
n=l+1

Sn + V ≤ T


=
∞∑
r=1

gr

∫ ∞
0

∫ t

0

θe−θx Pr


d i+r

b e+1∑
n=1

S̃n ≤ x

 dx dA(t)

+
∞∑
r=1

gr

d i+r
b e∑
l=0

∫ ∞
0

∫ t

0

θe−θx
(µvx)l

l!
e−µvx Pr


d i+r

b e+1∑
n=l+1

Sn + V ≤ t− x

 dxdA(t)

=
∞∑
r=1

gr

∫ ∞
0

∫ t

0

θe−θx

1− e−µvx

d i+r
b e∑

n=1

(µvx)n

n!

 dxdA(t)

+
∞∑
r=1

gr

d i+r
b e∑
l=0

∫ ∞
0

∫ t

0

θe−θx
(µvx)l

l!
e−µvx

∫ t−x

0

µb(µby)d
i+r

b e−l

(d i+rb e − l)!
e−µby[1− e−θ(t−x−y)] dy dxdA(t)

= 1− a∗(θ)−
∞∑
r=1

gr

d i+r
b e∑

n=1

∫ ∞
0

∫ t

0

θe−θxe−µvx
(µvx)n

n!
dxdA(t)

+
∞∑
r=1

gr

d i+r
b e∑
l=0

∫ ∞
0

∫ t

0

θe−θx
(µvx)l

l!
e−µvx

1− e−µb(t−x)

d i+r
b e−l∑
n=0

(µb(t− x))n

n!

 dxdA(t)

−
∞∑
r=1

gr

d i+r
b e∑
l=0

∫ ∞
0

∫ t

0

θe−θx
(µvx)l

l!
e−µvx

∫ t−x

0

µb(µby)d
i+r

b e−l

(
{
i+r
b

}
− l)!

e−µbye−θ(t−x−y) dy dx dA(t)

= 1− a∗(θ)−
∞∑
r=1

gr

d i+r
b e∑
l=0

∆l −
∞∑
r=1

grmd i+r
b e
.

For i = 0̄, the transition from state (0̄, 0) to state (0̄, 1) is derived in a similar way



S2268 M. YU

p(0̄,0)(0̄,1) =
∞∑
r=1

gr Pr


d r

b e∑
n=1

S̃n ≤ V, V < T

+
∞∑
r=1

gr

d r
b e−1∑
l=0

Pr


l∑

n=1

S̃n ≤ V <

l+1∑
n=1

S̃n, V +
d r

b e∑
n=l+1

Sn + V ≤ T


= 1− a∗(θ)−

∞∑
r=1

gr

d r
b e−1∑
l=0

∆l −
∞∑
r=1

grmd r
b e−1.

Suppose that the size of an arriving batch equals r with probability gr. The transition from state (i, 1) (i ≥ 0)
to state (0̄, 1) occurs if the inter-batch arrival time is not less than the time required to serve d i+rb e+ 1 batches
of customers in a regular busy period followed by a vacation completion duration. Therefore,

p(i,1)(0̄,1) =
∞∑
r=1

gr Pr


d i+r

b e+1∑
n=1

Sn + V ≤ T

 =
∞∑
r=1

gr

∫ ∞
0

∫ t

0

θe−θx Pr


d i+r

b e+1∑
n=1

Sn ≤ t− x

 dxdA(t)

=
∞∑
r=1

gr

∫ ∞
0

∫ t

0

θe−θx

1− e−µb(t−x)

d i+r
b e∑

n=0

(µb(t− x))n

n!

 dx dA(t) = 1− a∗(θ)−
∞∑
r=1

gr

d i+r
b e∑

n=0

φn.

Similar to the above case,

p(0̄,1)(0̄,1) =
∞∑
r=1

gr Pr


d r

b e∑
n=1

Sn + V ≤ T

 = 1− a∗(θ)−
∞∑
r=1

gr

d r
b e−1∑
n=0

φn.

Once the transition probabilities are determined, the block sub-matrices required for finding the z-transform
of the queue-length distribution just before batch arrivals are given by

P 0̄,0̄ =


a∗(θ)−

∞∑
r=1

gr

d r
b e−1∑
n=0

βn +
∞∑
r=1

grmd r
b e−1 1− a∗(θ)−

∞∑
r=1

gr

d r
b e−1∑
l=0

∆l −
∞∑
r=1

grmd r
b e−1

a∗(θ)−
∞∑
r=1

gr

d r
b e−1∑
n=0

αn +
∞∑
r=1

gr

d r
b e−1∑
n=0

φn 1− a∗(θ)−
∞∑
r=1

gr

d r
b e−1∑
n=0

φn

 ,

P 0̄,0 =


∞∑
r=1

grβd r
b e−1

∞∑
r=1

gr∆d r
b e−1

0
∞∑
r=1

grαd r
b e−1

 , P 0̄,j =


∞∑
k=1

gkb+jβk−1

∞∑
k=1

gkb+j∆k−1

0
∞∑
k=1

gkb+jαk−1

 , j = 1, 2, . . . ,

P i,0̄ =


a∗(θ)−

∞∑
r=1

gr

d i+r
b e∑

n=0
βn +

∞∑
r=1

grmd i+r
b e

1− a∗(θ)−
∞∑
r=1

gr

d i+r
b e∑
l=0

∆l −
∞∑
r=1

grmd i+r
b e

a∗(θ)−
∞∑
r=1

gr

d i+r
b e∑

n=0
αn +

∞∑
r=1

gr

d i+r
b e∑

n=0
φn 1− a∗(θ)−

∞∑
r=1

gr

d i+r
b e∑

n=0
φn

 ,

i = 0, 1, . . . ,

P i,0 =


∞∑
r=1

grβd i+r
b e

∞∑
r=1

gr∆d i+r
b e

0
∞∑
r=1

grαd i+r
b e

 , i = 0, 1, 2, . . . ,

P i,j =


∞∑

k=max{0,b i+1−j
b c+1}

gkb+j−iβk
∞∑

k=max{0,b i+1−j
b c+1}

gkb+j−i∆k

0
∞∑

k=max{0,b i+1−j
b c+1}

gkb+j−iαk

 , i = 0, 1, . . . , j = 1, 2, . . . .



GIX/M(1,b)/1 SINGLE WORKING VACATION QUEUE S2269

Let π− =
(
π−

0̄,0
, π−

0̄,1
, π−0,0, π

−
0,1, π

−
1,0, π

−
1,1, . . .

)
be the stationary distribution of the Markov chain {(Nq(τ−n ),

Y (τ−n )) : n ≥ 0}, that is to say, the component π−i,j (i = 0̄, 0, 1, 2, . . . , j = 0, 1) gives the probability that an
arriving batch of customers see the system in state (i, j). It provides us with the queue length distribution
at pre-arrival epoch. From the balance equation π−P = π−, the following set of difference equations can be
obtained

π−
0̄,0

= π−
0̄,0

a∗ (θ)−
∞∑
r=1

gr

d r
b e−1∑
n=0

βn +
∞∑
r=1

grmd r
b e−1

+ π−
0̄,1

a∗ (θ)−
∞∑
r=1

gr

d r
b e−1∑
n=0

αn +
∞∑
r=1

gr

d r
b e−1∑
n=0

φn


+
∞∑
i=0

π−i,0

a∗ (θ)−
∞∑
r=1

gr

d i+r
b e∑

n=0

βn +
∞∑
r=1

grmd i+r
b e


+
∞∑
i=0

π−i,1

a∗ (θ)−
∞∑
r=1

gr

d i+r
b e∑

n=0

αn +
∞∑
r=1

gr

d i+r
b e∑

n=0

φn

 , (3.1)

π−
0̄,1

= π−
0̄,0

1− a∗ (θ)−
∞∑
r=1

gr

d r
b e−1∑
l=0

∆l −
∞∑
r=1

grmd r
b e−1

+ π−
0̄,1

1− a∗ (θ)−
∞∑
r=1

gr

d r
b e−1∑
n=0

φn


+
∞∑
i=0

π−i,0

1− a∗ (θ)−
∞∑
r=1

gr

d i+r
b e∑
l=0

∆l −
∞∑
r=1

grmd i+r
b e

+
∞∑
i=0

π−i,1

1− a∗ (θ)−
∞∑
r=1

gr

d i+r
b e∑

n=0

φn

 ,

(3.2)

π−0,0 = π−
0̄,0

∞∑
r=1

grβd r
b e−1 +

∞∑
i=0

π−i,0

∞∑
r=1

grβd i+r
b e
, (3.3)

π−0,1 = π−
0̄,0

∞∑
r=1

gr∆d r
b e−1 + π−

0̄,1

∞∑
r=1

grαd r
b e−1 +

∞∑
i=0

π−i,0

∞∑
r=1

gr∆d i+r
b e

+
∞∑
i=0

π−i,1

∞∑
r=1

grαd i+r
b e
, (3.4)

π−j,0 = π−
0̄,0

∞∑
k=1

gkb+jβk−1 +
∞∑
i=0

π−i,0

∞∑
k=max{0,b i+1−j

b c+1}

gkb+j−iβk, j = 1, 2, . . . , (3.5)

πj,1 = π−
0̄,0

∞∑
k=1

gkb+j∆k−1 + π−
0̄,1

∞∑
k=1

gkb+jαk−1 +
∞∑
i=0

π−i,0

∞∑
k=max{0,b i+1−j

b c+1}

gkb+j−i∆k

+
∞∑
i=0

π−i,1

∞∑
k=max{0,b i+1−j

b c+1}

gkb+j−iαk, j = 1, 2, . . . . (3.6)

Let π−0 (z) =
∑∞
i=0 π

−
i,0z

i and π−1 (z) =
∑∞
i=0 π

−
i,1z

i be the z-transforms of the sequences
{
π−i,0
}

and
{
π−i,1
}

,
respectively. Using equations (3.3) and (3.5), after some straightforward but tedious algebraic manipulation, we
have

π−0 (z) =
ξ1(z)

1−X(z)D (z−b)
, (3.7)
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where

ξ1(z) = z−bπ−
0̄,0
X(z)D

(
z−b
)
− π−

0̄,0

∞∑
k=0

βk
z(k+1)b

(k+1)b−1∑
j=1

gjz
j − z(k+1)b

(k+1)b−1∑
j=kb+1

gj


−
∞∑
k=1

βk
zkb

kb−2∑
i=0

π−i,0z
i
kb−i−1∑
j=1

gj
(
zj − zkb−i

)
−
∞∑
k=2

βk
zkb

(k−1)b−1∑
i=0

π−i,0z
i

(k−1)b−i∑
j=1

gjz
kb−i.

Employing equations (3.4) and (3.6), π−1 (z) are found similarly,

π−1 (z) =
π−0 (z)X(z)H

(
z−b
)

+ ξ2(z) + ξ3(z)
1−X(z)Λ (z−b)

, (3.8)

where

ξ2(z) = z−bπ−
0̄,0
X(z)H

(
z−b
)
− π−

0̄,0

∞∑
k=0

∆k

z(k+1)b

(k+1)b−1∑
j=1

gjz
j − z(k+1)b

(k+1)b−1∑
j=kb+1

gj


−
∞∑
k=1

∆k

zkb

kb−2∑
i=0

π−i,0z
i
kb−i−1∑
j=1

gj
(
zj − zkb−i

)
−
∞∑
k=2

∆k

zkb

(k−1)b−1∑
i=0

π−i,0z
i

(k−1)b−i∑
j=1

gjz
kb−i,

ξ3(z) = z−bπ−
0̄,1
X(z)Λ

(
z−b
)
− π−

0̄,1

∞∑
k=0

αk
z(k+1)b

(k+1)b−1∑
j=1

gjz
j − z(k+1)b

(k+1)b−1∑
j=kb+1

gj


−
∞∑
k=1

αk
zkb

kb−2∑
i=0

π−i,1z
i
kb−i−1∑
j=1

gj
(
zj − zkb−i

)
−
∞∑
k=2

αk
zkb

(k−1)b−1∑
i=0

π−i,1z
i

(k−1)b−i∑
j=1

gjz
kb−i.

Next, we will rewrite π−0 (z) and π−1 (z) as partial fractions with constant numerators. As can be seen in
equation (3.7), the numerator of π−0 (z) contains unknown constants. These constants can be determined by
invoking the convergence of the p.g.f. in |z| ≤ 1 and by using Rouché’s theorem (see [24]). Due to the convergence
of π−0 (z), the roots inside and on the unit circle must cancel in the numerator and denominator. Therefore, in
making a partial fraction of π−0 (z), the zeros of 1−X(z)D(z−b) whose absolute value are less than or equal to
one do not play any role. Meanwhile, notice that in most practical scenarios, the size of an arriving batch is
always bounded. If we assume that the maximum size of an arriving batch is r̃, then X(z) must be a polynomial
function. On the other hand, the literature on queueing theory indicates inter-batch arrival time distributions
having LST as a rational function cover a wide range of distributions that arise in applications (see [8]). Even
if the LST of the inter-batch arrival time distribution is in non-rational form, it still can be approximated by
rational functions using the technique of Padé’s approximation (see, [17,36]). For the reasons mentioned above,
we can immediately say that D(z−b) = a∗(θ + µv − µvz−b) is a rational function. Therefore, 1 −X(z)D(z−b)
can be easily expressed as a ratio of two polynomials, namely 1 − X(z)D(z−b) = d1(z)/d2(z). It means that
1−X(z)D(z−b) is also a rational function. Thus, equation (3.7) can be rewritten as π−0 (z) = Υ1(z)/d1(z), where
Υ1(z) = ξ1(z)d2(z). Similar to the work done by Chaudhry et al. [17], after some tedious but straightforward
algebraic manipulations, we can show that Υ1(z) is a polynomial in z, and Υ1(z) has at most the same degrees as
d1(z) or d1(z) has a degree which is at most r̃ greater than that of Υ1(z). Clearly, the zeros of d1(z) are exactly
the same as the zeros of 1−X(z)D(z−b). To study the number of roots of the equation 1−X(z)D(z−b) = 0 lying
outside the unit circle, we first investigate the number of roots of the equation zr̃ −

(∑r̃
j=1 gjz

r̃−j
)
D
(
zb
)

= 0

lying inside the unit circle. Here, the equation zr̃ −
(∑r̃

j=1 gjz
r̃−j
)
D
(
zb
)

= 0 is called the characteristic



GIX/M(1,b)/1 SINGLE WORKING VACATION QUEUE S2271

equation of π−0 (z). Additionally, we may see that the roots of 1 − X(z)D(z−b) = 0 and the characteristic
equation zr̃−

(∑r̃
j=1 gjz

r̃−j
)
D
(
zb
)

= 0 are reciprocals to each other. Hence, in numerical experiment, our aim
is to find the roots of the characteristic equation inside the unit circle. Now we further show that the equation
zr̃ −

(∑r̃
j=1 gjz

r̃−j
)
D
(
zb
)

= 0 has exactly r̃ roots inside the unit circle |z| = 1 whenever ρ < 1.

Define the functions f(z) = zr̃ and h(z) = −
(∑r̃

j=1 gjz
r̃−j
)
D
(
zb
)
. Consider absolute values of f(z) and

h(z) on the circle |z| = 1 − δ, where δ is positive and sufficiently small. On the circle |z| = 1 − δ, using the
Taylor series expansion, we have

|h(z)| =

∣∣∣∣∣∣−
 r̃∑
j=1

gjz
r̃−j

D(zb)

∣∣∣∣∣∣ ≤
 r̃∑
j=1

gj |z|r̃−j
D

(
|z|b
)

=
r̃∑
j=1

gj(1− δ)r̃−jD((1− δ)b)

=
r̃∑
j=1

gj [1− (r̃ − j) δ + o(δ)]

[
D(1) +

D′(1)
1!

(
(1− δ)b − 1

)
+
∞∑
n=2

D(n)(1)
n!

(
(1− δ)b − 1

)n]

=
r̃∑
j=1

gj [1− (r̃ − j)δ + o(δ)]

×

[∫ ∞
0

e−θt dA(t) + µv
(
(1− δ)b − 1

) ∫ ∞
0

te−θt dA(t) +
∞∑
n=2

D(n) (1)
n!

(
(1− δ)b − 1

)n]

≤
r̃∑
j=1

gj [1− (r̃ − j)δ + o(δ)]

[
1 + µb

(
(1− δ)b − 1

) ∫ ∞
0

tdA(t) +
∞∑
n=2

D(n) (1)
n!

(
(1− δ)b − 1

)n]

=
r̃∑
j=1

gj [1− (r̃ − j)δ + o(δ)]

[
1 +

µb
λ

(
(1− δ)b − 1

)
+
∞∑
n=2

D(n) (1)
n!

(
(1− δ)b − 1

)n]

=
r̃∑
j=1

gj [1− (r̃ − j)δ + o(δ)]
[
1− bµb

λ
δ + o(δ)

]

= 1− r̃δ −
(
bµb
ḡλ
− 1
)
ḡδ + o(δ) < 1− r̃δ + o(δ) = (1− δ)r̃ = |f (z)| .

Hence from Rouché’s theorem, it follows that f(z) and f(z) + h(z) will have the same number of zeros inside
|z| = 1− δ. Since f(z) has exactly r̃ zeros inside this circle, f(z) + h(z) will also have r̃ zeros inside |z| = 1− δ.
Letting δ tend to zero, then the equation f(z) + h(z) = 0 has exactly r̃ roots inside the unit circle |z| = 1.
Denote these roots by ω1, ω2, . . . , ωr̃, and the modulus of each root is smaller than one. Further, in a similar
manner, we can prove that the characteristic equation zr̃ −

(∑r̃
j=1 gjz

r̃−j
)

Λ
(
zb
)

= 0 has also r̃ roots ηi in

the region |z| < 1. According to the above analysis, we know that the equations 1 − X(z)D
(
z−b
)

= 0 and
1 − X(z)Λ

(
z−b
)

= 0 should have exactly r̃ roots outside the unit circle, respectively. As π−0 (z) is a rational
function of z for |z| ≤ 1, we proceed to form the partial fraction expansion of π−0 (z) as

π−0 (z) =
r̃∑
j=1

Kj

(1− ωjz)
, (3.9)

where K1,K2, . . . ,Kr̃ are the non-zero constants to be determined. To invert the z-transform we can expand
equation (3.9) as a power series and pick off the terms. Observe that 1/(1 − ωjz) is equal to the sum of a
geometric series: 1/(1− ωjz) =

∑∞
i=0(zωj)i. Therefore
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π−0 (z) =
r̃∑
j=1

Kj

∞∑
i=0

(ωjz)
i =

∞∑
i=0

 r̃∑
j=1

Kjω
i
j

 zi,

and so the coefficient of zi (which we previously specified to be π−i,0) is equal to
∑r̃
j=1Kjω

i
j . This gives the final

solution as

π−i,0 =
r̃∑
j=1

Kjω
i
j . (3.10)

Furthermore, following the similar analysis and using the dependence of π−1 (z) on π−0 (z), the partial fraction
expansion of π−1 (z) is given by

π−1 (z) =
r̃∑
j=1

Lj
(1− ωjz)

+
r̃∑
j=1

Hj

(1− ηjz)
· (3.11)

We may invert equation (3.11) by repeated use of the transform relationships Lj/(1 − ωjz) ⇔ Ljω
i
j and

Hj/(1 − ηjz) ⇔ Hjη
i
j , where Lj and Hj are also non-zero constants to be determined, and the double arrow

symbol is used to associate a sequence with its z-transform. Thus, the equilibrium distribution of queue size
when the server is in regular busy period can be computed as

π−i,1 =
r̃∑
j=1

(
Ljω

i
j +Hjη

i
j

)
. (3.12)

Remark 3.1. As demonstrated in the above analysis, we assumed that the roots of the characteristic equations
are distinct, and the case of repeated roots was omitted in our research. This is based on the following reasons.
Tijms [39] and Chaudhry et al. [15] have shown that in queueing theory, the roots of the characteristic equations
are generally distinct and follow a nice pattern. Our numerical experiments also indicate that, in the vast
majority of cases, the roots happen to be distinct. Even if some roots of the characteristic equations inside
the unit circle are repeated, the queue-length distribution at the pre-arrival epoch can also be determined by
slightly modified equations (3.9) and (3.11). Because the length of the paper is strictly limited, and such a case
rarely happens in practical computations, we omitted the detailed discussion of the case of repeated roots in
our current paper.

Now, it is obvious that including π−
0̄,0

and π−
0̄,1

, we have to determine 3r̃ + 2 unknowns. Having found these
unknowns, all the state probabilities π−i,0 and π−i,1 (i = 0, 1, 2, . . .) can be completely derived from equations (3.10)
and (3.12). Substituting equations (3.10) and (3.12) into equations (3.1) to (3.5) for j = 1, 2, . . . , r̃−1 and (3.6)
for j = 1, 2, . . . , 2r̃− 2, and then simplifying these equations gives a linear system for π−

0̄,0
, π−

0̄,1
, Kj , Hj and Lj

(j = 1, 2, . . . , r̃).

0 = π−
0̄,0

a∗(θ)− ∞∑
r=1

gr

d r
b e−1∑
l=0

βl +
∞∑
r=1

grmd r
b e−1 − 1

+ π−
0̄,1

a∗(θ)− ∞∑
r=1

gr

d r
b e−1∑
l=0

αl +
∞∑
r=1

gr

d r
b e−1∑
l=0

φl


+

r̃∑
h=1

Kh

 ∞∑
l=2

βl

(l−1)b−1∑
i=0

ωih

(l−1)b−i∑
j=1

gj +
r̃∑
j=1

gj

∞∑
i=0

ωihmd i+j
b e


+

r̃∑
h=1

Lh

 ∞∑
l=2

(αl − φl)
(l−1)b−1∑
i=0

ωih

(l−1)b−i∑
j=1

gj

+
r̃∑

h=1

Hh

 ∞∑
l=2

(αl − φl)
(l−1)b−1∑
i=0

ηih

(l−1)b−i∑
j=1

gj

 , (3.13)
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0 = π−
0̄,0

1− a∗(θ)−
∞∑
r=1

gr

d r
b e−1∑
l=0

∆l −
∞∑
r=1

grmd r
b e−1

− π−
0̄,1

a∗ (θ) +
∞∑
r=1

gr

d r
b e−1∑
n=0

φn


+

r̃∑
h=1

Kh

 ∞∑
l=2

∆l

(l−1)b−1∑
i=0

ωih

(l−1)b−i∑
j=1

gj −
r̃∑
j=1

gj

∞∑
i=0

ωihmd i+j
b e


+

r̃∑
h=1

Lh

 ∞∑
l=2

φl

(l−1)b−1∑
i=0

ωih

(l−1)b−i∑
j=1

gj

+
r̃∑

h=1

Hh

 ∞∑
l=2

φl

(l−1)b−1∑
i=0

ηih

(l−1)b−i∑
j=1

gj

 , (3.14)

0 = π−
0̄,0

∞∑
r=1

grβd r
b e−1 +

r̃∑
h=1

Kh

 r̃∑
j=1

gj

∞∑
i=0

ωihβd i+j
b e
− 1

 , (3.15)

0 = π−
0̄,0

∞∑
r=1

gr∆d r
b e−1 + π−

0̄,1

∞∑
r=1

grαd r
b e−1 +

r̃∑
h=1

Kh

 r̃∑
j=1

gj

∞∑
i=0

ωih∆d i+j
b e


+

r̃∑
h=1

Lh

 r̃∑
j=1

gj

∞∑
i=0

ωihαd i+j
b e
− 1

+
r̃∑

h=1

Hh

 r̃∑
j=1

gj

∞∑
i=0

ηihαd i+j
b e
− 1

 , (3.16)

0 = π−
0̄,0

∞∑
k=1

gkb+jβk−1 +
r̃∑

h=1

Kh

[( ∞∑
l=0

βl

lb+j∑
r=1

grω
lb+j−r
h

)
− ωjh

]
, 1 ≤ j ≤ r̃ − 1, (3.17)

0 = π−
0̄,0

∞∑
k=1

gkb+j∆k−1 + π−
0̄,1

∞∑
k=1

gkb+jαk−1 +
r̃∑

h=1

Kh

( ∞∑
l=0

∆l

lb+j∑
r=1

grω
lb+j−r
h

)

+
r̃∑

h=1

Lh

[( ∞∑
l=0

αl

lb+j∑
r=1

grω
lb+j−r
h

)
− ωjh

]
+

r̃∑
h=1

Hh

[( ∞∑
l=0

αl

lb+j∑
r=1

grη
lb+j−r
h

)
− ηjh

]
,

1 ≤ j ≤ 2r̃ − 2. (3.18)

For j ≥ r̃, we can easily derive the following relation from equation (3.5):

π−
0̄,0

∞∑
k=1

gkb+jβk−1 +
r̃∑

h=1

Khω
j−r̃
h

 r̃∑
j=1

gjω
r̃−j
h

D(ωbh)− ωr̃h

 = 0.

Since ω1, ω2, . . . , ωr̃ are the roots of equation zr̃ −
(∑r̃

j=1 gjz
r̃−j
)
D
(
zb
)

= 0 inside the unit circle, it follows
that  r̃∑

j=1

gjω
r̃−j
h

D(ωbh)− ωr̃h = 0.

At the same time, we notice that r̃ is the maximum size of an arriving batch, so, for k ≥ 1, we have∑∞
k=1 gkb+jβk−1 = 0. It also means that, if j ≥ r̃, equation (3.5) becomes redundant. This is the reason

why we ignore the values for j ≥ r̃ of equation (3.5). To solve for 3r̃ + 2 unknown variables, we need 3r̃ + 2
separate and independent equations to come to a unique solution. Thus, we must use normalizing condition by
letting z = 1 in equations (3.9) and (3.11), which is given as follows

1 = π−
0̄,0

+ π−
0̄,1

+
r̃∑
j=1

Kj

1− ωj
+

r̃∑
j=1

Lj
1− ωj

+
r̃∑
j=1

Hj

1− ηj
· (3.19)
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Solving for the unknown constants π−
0̄,0

, π−
0̄,1

, Kj , Lj and Hj(j = 1, . . . , r̃) from above 3r̃ + 2 equations, the
queue-length distribution just before the arrival epoch of a batch can be finally obtained.

To help practitioners as well as others who would like to implement the model, we describe the working
procedure for evaluating the pre-arrival probabilities π−i,0 and π−i,1, i = 0, 1, 2, . . .. Given the values of r̃, b, µb,
µv and the probability mass function Pr {X = k} = gk, k = 1, 2, . . . , r̃, the steps of the solution algorithm are
stated as follows:

– Step 1: find the roots of the following two characteristic equations zr̃ −
(∑r̃

j=1 gjz
r̃−j
)
D
(
zb
)

= 0 and

zr̃ −
(∑r̃

j=1 gjz
r̃−j
)

Λ
(
zb
)

= 0 inside the unit circle, respectively. Denote these roots as ωj and ηj ,
j = 1, 2, . . . , r̃.

– Step 2: insert these roots directly into equations (3.13) to (3.19), and solve a system of linear equations to
find the values of the unknown variables π−

0̄,0
, π−

0̄,1
, Kj , Lj and Hj (j = 1, . . . , r̃).

– Step 3: substituting the values of Kj , Lj , Hj , ωj and ηj into equations (3.10) and (3.12) gives π−i,0 and π−i,1,
for i = 0, 1, 2, . . ..

4. Determination of queue-length distribution at arbitrary epoch

From our previous results regarding the stationary queue-length distributions immediately preceding the
nth batch arrival, we will derive the stationary queue-length distribution at arbitrary epochs by employing
the classical argument based on renewal theory and semi-Markov process (SMP). For j = 0̄, 0, 1, 2, . . ., let πj,0
and πj,1 denote the probability of j customers waiting in the queue at an arbitrary epoch when the server is
on working vacation and in a regular busy period, respectively. Here, j = 0̄ also refers to an empty queue,
and the server is in the idle state. Now, consider a new process

{
(Ñq(t), Ỹ (t)), t > 0

}
, where Ñq(t) denotes

the queue size (not including those in service) right after the most recent arrival, and Ỹ (t) equals 0 or 1 if
the most recent arrival occurs during a working vacation or during a regular service period, respectively. Then{

(Ñq(t), Ỹ (t)), t > 0
}

is a SMP having {(Nq(τ−n ), Y (τ−n )), n ≥ 1} for its embedded Markov chain. Let γi,j be

the mean time that SMP
{

(Ñq(t), Ỹ (t)), t > 0
}

spend in the state (i, j). By the definition, γi,j = 1/λ for all
(i, j) ∈ Ω. Let νi,j be the steady-state probability that the SMP is in state (i, j). According to the results given
by Gross and Harris [20], we have

νi,j =
π−i,jγi,j∑

(i′,j′)∈Ω

π−i′,j′γi′,j′
·

This indicates that νi,j = π−i,j . Since the probability density function of the time back to the last transition is
known as λ [1−A(t)], and all states (i, j) communicate with the state (0̄, 0) in the embedded Markov chain of the
above SMP, based on the relationship between {(Nq(t), Y (t)), t > 0} and

{
(Ñq(t), Ỹ (t)), t > 0

}
, the probability

π0̄,0 can be expressed as

π0̄,0 =
∑

(i,j)∈Ω

νi,j

∞∑
r=1

gr

∫ ∞
0

Pr {appropriate changes in the backward recurrence time t

to bring state from (i, j) to (0̄, 0)}λ [1−A(t)] dt}

= π−
0̄,0

∞∑
r=1

gr

∫ ∞
0

Pr


d r

b e∑
n=1

S̃n ≤ t, t < V


+
d r

b e−1∑
l=0

Pr


l∑

n=1

S̃n ≤ V <

l+1∑
n=1

S̃n, V +
d r

b e∑
n=l+1

Sn ≤ t < V +
d r

b e∑
n=l+1

Sn + V


λ [1−A(t)] dt
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+π−
0̄,1

∞∑
r=1

gr

∫ ∞
0

Pr


d r

b e∑
n=1

Sn ≤ t <
d r

b e∑
n=1

Sn + V

λ [1−A(t)] dt

+
∞∑
i=0

π−i,0

∞∑
r=1

gr

∫ ∞
0

Pr


d i+r

b e+1∑
n=1

S̃n ≤ t, t < V


+
d i+r

b e∑
l=0

Pr


l∑

n=1

S̃n ≤ V <

l+1∑
n=1

S̃n, V +
d i+r

b e+1∑
n=l+1

Sn ≤ t < V +
d i+r

b e+1∑
n=l+1

Sn + V


λ [1−A(t)] dt

+
∞∑
i=0

π−i,1

∞∑
r=1

gr

∫ ∞
0

Pr


d i+r

b e+1∑
n=1

Sn ≤ t <
d i+r

b e+1∑
n=1

Sn + V

λ [1−A(t)] dt. (4.1)

To simplify the above equation, the equivalent auxiliary probabilities of αk, βk, φk, ∆k and mk by considering
the time back to the most recent transition looking from t, denoted as α̃k, β̃k, φ̃k, ∆̃k and m̃k are really
needed. Replacing the probability density function of the inter-batch arrival time dA(t) with λ (1−A(t)) dt,
for k = 0, 1, 2, . . ., we have

α̃k =
∫ ∞

0

(µbt)k

k!
e−µbtλ (1−A(t)) dt; β̃k =

∫ ∞
0

(µvt)
k

k!
e−(µv+θ)tλ (1−A(t)) dt;

φ̃k =
∫ ∞

0

∫ t

0

θe−θxe−µb(t−x) (µb(t− x))k

k!
λ (1−A(t)) dxdt;

∆̃k =
k∑
l=0

∫ ∞
0

∫ t

0

θe−θxe−µvx
(µvx)l

l!
e−µb(t−x) (µb(t− x))k−l

(k − l)!
λ (1−A(t)) dxdt;

m̃k =
k∑
l=0

∫ ∞
0

∫ t

0

θe−θxe−µvx
(µvx)l

l!

∫ t−x

0

e−µby
µb(µby)k−l

(k − l)!
e−θ(t−x−y)λ (1−A(t)) dy dxdt.

Note that
∫∞

0
e−stλ [1−A(t)] dt = λ(1−a∗(s))

s . Using the auxiliary probabilities defined here, equation (4.1) can
be simplified as

π0̄,0 = π−
0̄,0

λ (1− a∗ (θ))
θ

−
∞∑
r=1

gr

d r
b e−1∑
n=0

β̃n +
∞∑
r=1

grm̃d r
b e−1


+π−

0̄,1

λ (1− a∗ (θ))
θ

−
∞∑
r=1

gr

d r
b e−1∑
n=0

α̃n +
∞∑
r=1

gr

d r
b e−1∑
n=0

φ̃n


+
∞∑
i=0

π−i,0

λ (1− a∗ (θ))
θ

−
∞∑
r=1

gr

d i+r
b e∑

n=0

β̃n +
∞∑
r=1

grm̃d i+r
b e


+
∞∑
i=0

π−i,1

λ (1− a∗ (θ))
θ

−
∞∑
r=1

gr

d i+r
b e∑

n=0

α̃n +
∞∑
r=1

gr

d i+r
b e∑

n=0

φ̃n

 . (4.2)

The following equations (4.3) to (4.7) also give the relations between the distributions of the number of customers
in the queue at the pre-arrival and arbitrary epochs. These equations can be derived in an analogs way as
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mentioned before.

π0̄,1 = π−
0̄,0

1− λ (1− a∗ (θ))
θ

−
∞∑
r=1

gr

d r
b e−1∑
l=0

∆̃l −
∞∑
r=1

grm̃d r
b e−1


+π−

0̄,1

1− λ (1− a∗ (θ))
θ

−
∞∑
r=1

gr

d r
b e−1∑
n=0

φ̃n


+
∞∑
i=0

π−i,0

1− λ (1− a∗ (θ))
θ

−
∞∑
r=1

gr

d i+r
b e∑
l=0

∆̃l −
∞∑
r=1

grm̃d i+r
b e


+
∞∑
i=0

π−i,1

1− λ (1− a∗ (θ))
θ

−
∞∑
r=1

gr

d i+r
b e∑

n=0

φ̃n

 , (4.3)

π0,0 = π−
0̄,0

∞∑
r=1

grβ̃d r
b e−1 +

∞∑
i=0

π−i,0

∞∑
r=1

grβ̃d i+r
b e
, (4.4)

π0,1 = π−
0̄,0

∞∑
r=1

gr∆̃d r
b e−1 + π−

0̄,1

∞∑
r=1

grα̃d r
b e−1 +

∞∑
i=0

π−i,0

∞∑
r=1

gr∆̃d i+r
b e

+
∞∑
i=0

π−i,1

∞∑
r=1

grα̃d i+r
b e
, (4.5)

πj,0 = π−
0̄,0

∞∑
k=1

gkb+j β̃k−1 +
∞∑
i=0

π−i,0

∞∑
k=max{0,b i+1−j

b c+1}

gkb+j−iβ̃k, j = 1, 2, . . . , (4.6)

πj,1 = π−
0̄,0

∞∑
k=1

gkb+j∆̃k−1 + π−
0̄,1

∞∑
k=1

gkb+jα̃k−1 +
∞∑
i=0

π−i,0

∞∑
k=max{0,b i+1−j

b c+1}

gkb+j−i∆̃k

+
∞∑
i=0

π−i,1

∞∑
k=max{0,b i+1−j

b c+1}

gkb+j−iα̃k, j = 1, 2, . . . . (4.7)

Since the queue-length distribution at the pre-arrival epoch has been computed using the method explained in
Section 3, we can easily obtain the queue-length distribution at an arbitrary epoch by substituting the values
of π−i,0 and π−i,1 directly into equations (4.2) to (4.7).

5. System-length distributions at pre-arrival and arbitrary epochs

For the bulk service rule, we can further determine the system-length distributions at different epochs using
the corresponding queue-length distributions. Since the system-length is the sum of the number of customers
waiting in the queue and the number of customers being served, both system-length and queue-length coincide
with an idle server. According to the status of the server, we derive the system-length distribution under two
different cases. Let π−j,i,0(π−j,i,1) represent the pre-arrival epoch probability that there are i customers waiting
in the queue when the server is on working vacation (in the regular busy period) with a service batch of size j
(1 ≤ j ≤ b). The approach adopted to solve for the probabilities π−j,i,0 and π−j,i,1 is to enumerate the mutually
exclusive events which can result in a group of size j in service just before a batch arrival epoch and then weigh
these by the probability of their occurrence. For example, below are two events that cause the (n+ 1)th batch
to find the system is in state (j, 0, 0) upon its arrival. Event 1: Assume that the size of the nth batch equals
kb + j (k = 0, 1, . . .) with probability gkb+j , and upon arrival it sees that the system is in state (0̄, 0). If the
residual working vacation time is greater than the inter-batch arrival time, and k batches of customers complete
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their services during the inter-batch arrival time, the state transition from (0̄, 0) to (j, 0, 0) can be realized.
Event 2: Suppose that the nth batch finds the system is in state (i, 0) just before its arrival epoch, and the size
of this batch equals kb+ j − i (k = max

(
0, b i+1−j

b c+ 1
)
, . . .) with probability gkb+j−i. If the residual working

vacation time is greater than the inter-batch arrival time, and k+1 batches of customers complete their services
during the inter-batch arrival time, the state transition from (i, 0) to (j, 0, 0) can also be realized. Thus, we have

π−j,0,0 = π−
0̄,0

∞∑
k=0

gkb+jβk +
∞∑
i=0

π−i,0

∞∑
k=max(0,b i+1−j

b c+1)
gkb+j−iβk+1, 1 ≤ j ≤ b.

Investigating the number of customers in the system at two consecutive pre-arrival epochs during working
vacation, we can further establish the following relationships

π−j,n,0 =
n−1∑
i=0

π−j,i,0gn−iβ0, 1 ≤ j ≤ b− 1, n ≥ 1,

π−b,n,0 =
n−1∑
i=0

π−b,i,0gn−iβ0 + π−
0̄,0

∞∑
k=1

gkb+nβk−1 +
∞∑
i=0

π−i,0

∞∑
k=max(1,b i+1−n

b c+1)
gkb−i+nβk, n ≥ 1.

Similarly, the corresponding relations when the server is in regular busy period are given by

π−j,0,1 = π−
0̄,0

∞∑
k=0

gkb+j∆k +
∞∑
i=0

π−i,0

∞∑
k=max(0,b i+1−j

b c+1)
gkb+j−i∆k+1 + π−

0̄,1

∞∑
k=0

gkb+jαk

+
∞∑
i=0

π−i,1

∞∑
k=max(0,b i+1−j

b c+1)
gkb+j−iαk+1, 1 ≤ j ≤ b,

π−j,n,1 =
n−1∑
i=0

π−j,i,0gn−i∆0 +
n−1∑
i=0

π−j,i,1gn−iα0, 1 ≤ j ≤ b− 1, n ≥ 1,

π−b,n,1 =
n−1∑
i=0

π−b,i,0gn−i∆0 +
n−1∑
i=0

π−b,i,1gn−iα0 + π−
0̄,0

∞∑
k=1

gkb+n∆k−1 +
∞∑
i=0

π−i,0

∞∑
k=max(1,b i+1−n

b c+1)
gkb−i+n∆k

+π−
0̄,1

∞∑
k=1

gkb+nαk−1 +
∞∑
i=0

π−i,1

∞∑
k=max(1,b i+1−n

b c+1)
gkb−i+nαk, n ≥ 1.

Further, let πj,i,0 (πj,i,1) denote the arbitrary epoch probability that there are i customers waiting in the queue
when the server is on working vacation (in regular busy period) with a service batch of size j (1 ≤ j ≤ b).
The same argument used before is applied here to derive the system-length distribution at an arbitrary epoch.
Replacing the time frame being considered above with the probabilities appropriate to the elapsed inter-batch
arrival time, rather than the inter-batch arrival time, we obtain the following relationships

πj,0,0 = π−
0̄,0

∞∑
k=0

gkb+j β̃k +
∞∑
i=0

π−i,0

∞∑
k=max(0,b i+1−j

b c+1)
gkb+j−iβ̃k+1, 1 ≤ j ≤ b,

πj,n,0 =
n−1∑
i=0

π−j,i,0gn−iβ̃0, 1 ≤ j ≤ b− 1, n ≥ 1,

πb,n,0 =
n−1∑
i=0

π−b,i,0gn−iβ̃0 + π−
0̄,0

∞∑
k=1

gkb+nβ̃k−1 +
∞∑
i=0

π−i,0

∞∑
k=max(1,b i+1−n

b c+1)
gkb−i+nβ̃k, n ≥ 1,
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πj,0,1 = π−
0̄,0

∞∑
k=0

gkb+j∆̃k +
∞∑
i=0

π−i,0

∞∑
k=max(0,b i+1−j

b c+1)
gkb+j−i∆̃k+1 + π−

0̄,1

∞∑
k=0

gkb+jα̃k

+
∞∑
i=0

π−i,1

∞∑
k=max(0,b i+1−j

b c+1)
gkb+j−iα̃k+1, 1 ≤ j ≤ b,

πj,n,1 =
n−1∑
i=0

π−j,i,0gn−i∆̃0 +
n−1∑
i=0

π−j,i,1gn−iα̃0, 1 ≤ j ≤ b− 1, n ≥ 1,

πb,n,1 =
n−1∑
i=0

π−b,i,0gn−i∆̃0 +
n−1∑
i=0

π−b,i,1gn−iα̃0 + π−
0̄,0

∞∑
k=1

gkb+n∆̃k−1 +
∞∑
i=0

π−i,0

∞∑
k=max(1,b i+1−n

b c+1)
gkb−i+n∆̃k

+π−
0̄,1

∞∑
k=1

gkb+nα̃k−1 +
∞∑
i=0

π−i,1

∞∑
k=max(1,b i+1−n

b c+1)
gkb−i+nα̃k, n ≥ 1.

The formulas above are clearly numerically tractable. However, as some expressions for π−j,i,0(π−j,i,1) and
πj,i,0(πj,i,1) are not in explicit form, the system-length distributions at different epochs can only be computed
by an iterative method.

6. Sojourn time of an arbitrary customer in an arriving batch

Let us define the random variable WA as the equilibrium sojourn time for an arbitrary test customer in an
arriving group, and denote the corresponding cumulative distribution function by WA(t). At the time of an
arbitrary test customer’s arrival, there will be a number of customers arriving in his batch who will be served
before him. Let g−r (r = 0, 1, 2, . . . , r̃− 1) be the probability of an arbitrary test customer being in the (r+ 1)th
position of an arrived batch. Using a result in the renewal theory, Burke [9] and Chaudhry and Templeton [14]
have shown that g−r = 1

ḡ

∑∞
j=r+1 gj . Thus, considering various possible cases seen by an arriving batch, the

expression of WA(t) is given below

WA(t) = Pr {WA ≤ t}

= π−
0̄,0

∞∑
r=0

g−r Pr

WA =
d r+1

b e∑
h=1

S̃h ≤ t

∣∣∣∣∣∣V ≥
d r+1

b e∑
h=1

S̃h

Pr

V ≥
d r+1

b e∑
h=1

S̃h


+π−

0̄,0

∞∑
r=0

g−r

d r+1
b e−1∑
k=0

Pr

WA = V +
d r+1

b e∑
h=k+1

Sh ≤ t

∣∣∣∣∣
k∑
h=1

S̃h ≤ V <

k+1∑
h=1

S̃h

Pr

{
k∑
h=1

S̃h ≤ V <

k+1∑
h=1

S̃h

}

+
∞∑
j=0

π−j,0

∞∑
r=0

g−r Pr

WA =
d r+j+1

b e+1∑
h=1

S̃h ≤ t

∣∣∣∣∣∣V ≥
d r+j+1

b e+1∑
h=1

S̃h

Pr

V ≥
d r+j+1

b e+1∑
h=1

S̃h


+
∞∑
j=0

π−j,0

∞∑
r=0

g−r

d r+j+1
b e∑

k=0

Pr

WA = V +
d r+j+1

b e+1∑
h=k+1

Sh ≤ t

∣∣∣∣∣
k∑
h=1

S̃h ≤ V <
k+1∑
h=1

S̃h


×Pr

{
k∑
h=1

S̃h ≤ V <

k+1∑
h=1

S̃h

}
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+
∞∑
j=0

π−j,1

∞∑
r=0

g−r Pr

WA =
d r+j+1

b e+1∑
h=1

Sh ≤ t

+ π−
0̄,1

∞∑
r=0

g−r Pr

WA =
d r+1

b e∑
h=1

Sh ≤ t


= π−

0̄,0

∞∑
r=0

g−r

∫ t

0

µv(µvx)d
r+1

b e−1

(d r+1
b e − 1)!

e−(θ+µv)x dx

+π−
0̄,0

∞∑
r=0

g−r

d r+1
b e−1∑
k=0

∫ t

0

θe−(θ+µv)x (µvx)k

k!

1− e−µb(t−x)

d r+1
b e−k−1∑
i=0

(µb(t− x))i

i!

 dx

+
∞∑
j=0

π−j,0

∞∑
r=0

g−r

∫ t

0

µv(µvx)d
r+j+1

b e

d r+j+1
b e!

e−(θ+µv)x dx

+
∞∑
j=0

π−j,0

∞∑
r=0

g−r

d r+j+1
b e∑

k=0

∫ t

0

θe−(θ+µv)x (µvx)k

k!

1− e−µb(t−x)

d r+j+1
b e−k∑
i=0

(µb(t− x))i

i!

 dx

+
∞∑
j=0

π−j,1

∞∑
r=0

g−r

∫ t

0

e−µbx
µb(µbx)d

r+j+1
b e

d r+j+1
b e!

dx+ π−
0̄,1

∞∑
r=0

g−r

∫ t

0

e−µbx
µb(µbx)d

r+1
b e−1

(d r+1
b e − 1)!

dx.

Taking LST on both sides of the above equation, we get

W ∗A(s) =
∫ ∞

0

e−st dWA(t)

= π−
0̄,0

∞∑
r=0

g−r

(
µv

s+ θ + µv

)d r+1
b e

+ π−
0̄,0

∞∑
r=0

g−r

d r+1
b e−1∑
k=0

θµkv

(s+ θ + µv)
k+1

(
µb

s+ µb

)d r+1
b e−k

+
∞∑
j=0

π−j,0

∞∑
r=0

g−r

( µv
s+ θ + µv

)d r+j+1
b e+1

+
d r+j+1

b e∑
k=0

θµkv

(s+ θ + µv)
k+1

(
µb

s+ µb

)d r+j+1
b e−k+1


+
∞∑
j=0

π−j,1

∞∑
r=0

g−r

(
µb

s+ µb

)d r+j+1
b e+1

+ π−
0̄,1

∞∑
r=0

g−r

(
µb

s+ µb

)d r+1
b e

.

Then, the expected sojourn time of an arbitrary customer in an arriving batch can be obtained as

E [WA] = − d
ds
W ∗A(s) |s=0

= π−
0̄,0

∞∑
r=0

g−r
d r+1

b eµ
d r+1

b e
v

(θ + µv)
d r+1

b e+1
+ π−

0̄,0

∞∑
r=0

g−r

d r+1
b e−1∑
k=0

(
(k + 1)θµkv
(θ + µv)

k+2
+

(d r+1
b e − k)θµkv

µb (θ + µv)
k+1

)

+
∞∑
j=0

π−j,0

∞∑
r=0

g−r
(d r+j+1

b e+ 1)µd
r+j+1

b e+1
v

(θ + µv)
d r+j+1

b e+2

+
∞∑
j=0

π−j,0

∞∑
r=0

g−r

d r+j+1
b e∑

k=0

(
(k + 1)θµkv
(θ + µv)

k+2
+

(d r+j+1
b e − k + 1)θµkv
µb (θ + µv)

k+1

)

+
∞∑
j=0

π−j,1

∞∑
r=0

g−r
(d r+j+1

b e+ 1)
µb

+ π−
0̄,1

∞∑
r=0

g−r
d r+1

b e
µb
· (6.1)
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Remark 6.1. With just a slight modification of equation (6.1), the mean waiting time of an arbitrary customer
in the queue (excluding service time) is given by

E [WqA] = π−
0̄,0

∞∑
r=b

g−r

(
d r+1

b e − 1
)
µ
d r+1

b e−1
v

(θ + µv)
d r+1

b e

+π−
0̄,0

∞∑
r=b

g−r

d r+1
b e−2∑
k=0

(
(k + 1)θµkv
(θ + µv)

k+2
+

(
d r+1

b e − k − 1
)
θµkv

µb (θ + µv)
k+1

)
+
∞∑
j=0

π−j,0

∞∑
r=0

g−r
d r+j+1

b eµd
r+j+1

b e
v

(θ + µv)
d r+j+1

b e+1

+
∞∑
j=0

π−j,0

∞∑
r=0

g−r

d r+j+1
b e−1∑
k=0

(
(k + 1)θµkv
(θ + µv)

k+2
+

(
d r+j+1

b e − k
)
θµkv

µb (θ + µv)
k+1

)

+
∞∑
j=0

π−j,1

∞∑
r=0

g−r
d r+j+1

b e
µb

+ π−
0̄,0

∞∑
r=b

g−r
d r+1

b e − 1
µb

· (6.2)

In the next section, from the third numerical example, we can see that equation (6.2) can provide us an effective
way to validate the correctness of our analysis results.

7. Numerical results and discussion

In this section, we demonstrate the applicability of the algorithm based on roots via numerical experiments.
All the calculations are performed on a PC having Intel Corei5 processor at 2.6 GHz with 4 GB DDR3 RAM
using Matlab, Mathematica and Maple software packages. Though all the numerical results were carried out
in high precision, they are reported here in six decimal places due to lack of space. Moreover, for testing the
procedure discussed in this article, during the computational work, numerical results have been presented in
some self-explanatory tables, but due to the same reason, only a few of them are appended in this section.
Various performance measures such as the average number of customers in the queue at arbitrary epoch E[Lq],
the mean sojourn time of a random customer E[WA] and the average waiting time of an arbitrary customer in
the queue E[WqA] are also given at the bottom of the tables.

Example 7.1. The general Poisson process is one of the most important models used in queueing theory. Often
the arrival process of customers can be described by a Poisson process. Here we consider an MX/M (1,b)/1/∞
single working vacation queue in which customers arrive at the service facility as a batch Poisson process with
rate λ = 4. The maximum batch size is r̃ = 6, and the sizes of successive arriving groups are independent and
identically distributed random variables with probability mass function g1 = 0.15, g2 = 0.25, g3 = 0.3, g4 = 0.2,
g5 = 0.05, g6 = 0.05. Customers are served in a batch with a maximum batch size b = 4. The service rates in the
regular busy period and working vacation period are µb = 4 and µv = 2.5 so that the traffic intensity ρ = 0.725.
For fixed parameter θ = 1, we compute the stationary probability distributions of the number of customers in
the queue and system at different epochs like pre-arrival and arbitrary.

Replacing the finite support distribution with an appropriate PH distribution can greatly facilitate Matlab
programming. According to work done by Alfa [1], the probability mass function of an arriving batch can be
represented as a discrete PH distribution. We denote by (g,T ) the PH representation of batch size X, where g
is a row vector of length six, and T is a square matrix of order six, which have the following forms:

g = (g1, g2, . . . , g6) = (0.15, 0.25, 0.3, 0.2, 0.05, 0.05) , T =
(

01×5 0
I5 05×1

)
,

in which Im stands for an identity matrix of dimension m, and 0 denotes a zero matrix of appropriate dimension
(when needed, the dimension of zero matrix will be identified with a suffix). For evaluating the queue-length
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Table 1. The roots of the characteristic equations (7.1) and (7.2) with modulus less than one.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6
ωi −0.546431 −0.238168 + 0.471339i −0.238168− 0.471339i 0.141009 + 0.442665i 0.141009− 0.442665i 0.871586

ηi −0.541868 −0.236955 + 0.464936i −0.236955− 0.464936i 0.141909 + 0.439888i 0.141909− 0.439888i 0.917900

Table 2. The numerical results for the coefficients Kj , Lj and Hj in MX/M (1,4)/1/SWV queue.

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

Kj 0.010554 0.009141− 0.000812i 0.009141 + 0.000812i 0.004986 + 0.001215i 0.004986− 0.001215i 0.022813
Lj 0.028787 0.016663 + 0.001973i 0.016663− 0.001973i 0.010648 + 0.001018i 0.010648− 0.001018i −0.062395

Hj −0.017702 −0.006032− 0.003757i −0.006032 + 0.003757i −0.005298 + 0.000732i −0.005298− 0.000732i 0.093299

distributions at various epochs, we first need to calculate the roots of the following characteristic equations
inside the unit circle

z6 −

 6∑
j=1

gjz
6−j

D
(
z4
)

= z6 −
4
(
0.15z5 + 0.25z4 + 0.3z3 + 0.2z2 + 0.05z + 0.05

)
7.5− 2.5z4

= 0, (7.1)

z6 −

 6∑
j=1

gjz
6−j

Λ
(
z4
)

= z6 − 0.15z5 + 0.25z4 + 0.3z3 + 0.2z2 + 0.05z + 0.05
2− z4

= 0. (7.2)

Using Mathematica software, we can get six roots of equations (7.1) and (7.2) in the region |z| < 1, respectively.
Numerical results for these roots are presented in Table 1, where i is the imaginary unit. Substituting ωi
(i = 1, 2, . . . , 6) and ηi (i = 1, 2, . . . , 6) into equations (3.13) to (3.19), the corresponding π−

0̄,0
, π−

0̄,1
, Kj , Lj and

Hj (j = 1, 2, . . . , 6) are calculated by solving systems of linear equations in Matlab. The calculation results for
Kj , Lj and Hj are given in Table 2. Furthermore, employing the algorithm based on roots, Table 3 also gives
a few queue-length distributions at pre-arrival epoch for the current model.
As the queue-length distributions at pre-arrival epochs are known, one can easily determine the arbitrary
epoch probabilities πj,0 and πj,1 using equations (4.2) to (4.7). The values are presented in Table 4. Due to
the PASTA (Poisson Arrivals See Time Averages) property of Poison process, the queue-length distributions
seen by an arriving batch are the same as those at an arbitrary instant. Such a relationship is very useful for
debugging programs and checking accuracy for computations. In what follows, by the calculation of the system-
length distribution at pre-arrival epoch, we can further numerically verify the correctness of our analysis. If our
analysis turns out to be correct, we would expect to have

∑4
j=1 π

−
j,i,0 = π−i,0 and

∑4
j=1 π

−
j,i,1 = π−i,1. From the

numerical results shown in Tables 5 and 6, we may find that the above relationships always hold. It indicates
that our theoretical analysis is reliable and accurate.

Example 7.2. Since any distribution can be arbitrarily well approximated by a PH distribution, in this exam-
ple, we consider the inter-batch arrival time distribution to be of phase type with representation (ε,U) which

is given by ε = (1, 0), U =
(
−7 7
0 −7

)
. Therefore, the LST of the inter-batch arrival time distribution is

a∗(s) = ε (sI −U)−1
U0 = 49

(s+7)2
, where U0 = −Ue and e is a column vector of ones with appropriate dimen-

sion. Additionally, we further assume that the maximum service batch size is b = 3, and the maximum size of
an arriving batch is r̂ = 4. The batch size distribution of successive batch arrivals is taken as g1 = 0.3, g2 = 0.4,
g3 = 0.2 and g4 = 0.1. Since the above distribution has a finite support, it can be viewed as a discrete PH
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Table 3. Stationary queue-length distribution at pre-arrival epoch for MX/M (1,4)/1/SWV queue.

j π−j,0 j π−j,0 j π−j,0 j π−j,1 j π−j,1 j π−j,1

0̄ 0.089971 – – – – 0̄ 0.022493 – – – –
0 0.061621 17 0.002205 34 0.000213 0 0.073951 17 0.015714 34 0.004486
1 0.010858 18 0.001922 35 0.000186 1 0.021627 18 0.014705 35 0.004145
2 0.015034 19 0.001676 36 0.000162 2 0.027904 19 0.013741 36 0.003828
3 0.015346 20 0.001460 37 0.000141 3 0.031384 20 0.012825 37 0.003534
4 0.014066 21 0.001273 38 0.000123 4 0.031337 21 0.011957 38 0.003262
5 0.010588 22 0.001109 39 0.000107 5 0.028322 22 0.011136 39 0.003010
6 0.010649 23 0.000967 40 0.000093 6 0.029194 23 0.010363 40 0.002776
7 0.008509 24 0.000844 41 0.000082 7 0.027153 24 0.009634 41 0.002560
8 0.007571 25 0.000734 42 0.000071 8 0.026196 25 0.008950 42 0.002360
9 0.006631 26 0.000640 43 0.000062 9 0.025057 26 0.008308 43 0.002175
10 0.005805 27 0.000558 44 0.000054 10 0.023868 27 0.007707 44 0.002005
11 0.005001 28 0.000486 45 0.000047 11 0.022566 28 0.007145 45 0.001847
12 0.004397 29 0.000424 46 0.000041 12 0.021399 29 0.006620 46 0.001701
13 0.003818 30 0.000369 47 0.000036 13 0.020180 30 0.006130 47 0.001567
14 0.003331 31 0.000322 48 0.000031 14 0.019010 31 0.005674 48 0.001443
15 0.002903 32 0.000281 49 0.000027 15 0.017871 32 0.005249 49 0.001328
16 0.002532 33 0.000245 ≥50 ≤0.000024 16 0.016773 33 0.004853 ≥50 ≤0.001223
Sum 0.295803 Sum 0.704197

Notes. E[WA] = 1.166747.

Table 4. Stationary queue-length distribution at arbitrary epoch for MX/M (1,4)/1/SWV queue.

j πj,0 j πj,0 j πj,0 j πj,1 j πj,1 j πj,1

0̄ 0.089971 – – – – 0̄ 0.022493 – – – –
0 0.061621 17 0.002205 34 0.000213 0 0.073951 17 0.015714 34 0.004486
1 0.010858 18 0.001922 35 0.000186 1 0.021627 18 0.014705 35 0.004145
2 0.015034 19 0.001676 36 0.000162 2 0.027904 19 0.013741 36 0.003828
3 0.015346 20 0.001460 37 0.000141 3 0.031384 20 0.012825 37 0.003534
4 0.014066 21 0.001273 38 0.000123 4 0.031337 21 0.011957 38 0.003262
5 0.010588 22 0.001109 39 0.000107 5 0.028322 22 0.011136 39 0.003010
6 0.010649 23 0.000967 40 0.000093 6 0.029194 23 0.010363 40 0.002776
7 0.008509 24 0.000844 41 0.000082 7 0.027153 24 0.009634 41 0.002560
8 0.007571 25 0.000734 42 0.000071 8 0.026196 25 0.008950 42 0.002360
9 0.006631 26 0.000640 43 0.000062 9 0.025057 26 0.008308 43 0.002175
10 0.005805 27 0.000558 44 0.000054 10 0.023868 27 0.007707 44 0.002005
11 0.005001 28 0.000486 45 0.000047 11 0.022566 28 0.007145 45 0.001847
12 0.004397 29 0.000424 46 0.000041 12 0.021399 29 0.006620 46 0.001701
13 0.003818 30 0.000369 47 0.000036 13 0.020180 30 0.006130 47 0.001567
14 0.003331 31 0.000322 48 0.000031 14 0.019010 31 0.005674 48 0.001443
15 0.002903 32 0.000281 49 0.000027 15 0.017871 32 0.005249 49 0.001328
16 0.002532 33 0.000245 ≥50 ≤0.000024 16 0.016773 33 0.004853 ≥50 ≤0.001223
Sum 0.295803 Sum 0.704197

Notes. E[Lq] = 10.586747.
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Table 5. System-length distribution at pre-arrival epoch in working vacation period for
MX/M (1,4)/1/SWV queue.

i j = 1 j = 2 j = 3 j = 4 Sum

0 0.010817 0.017007 0.019511 0.014286
∑4
j=1 π

−
j,0,0 = π−0,0 = 0.061621

1 0.000865 0.001361 0.001560 0.007072
∑4
j=1 π

−
j,1,0 = π−1,0 = 0.010858

2 0.001512 0.002376 0.002726 0.008420
∑4
j=1 π

−
j,2,0 = π−2,0 = 0.015034

3 0.001967 0.003093 0.003548 0.006738
∑4
j=1 π

−
j,3,0 = π−3,0 = 0.015346

4 0.001651 0.002596 0.002978 0.006841
∑4
j=1 π

−
j,4,0 = π−4,0 = 0.014066

5 0.001017 0.001599 0.001834 0.006138
∑4
j=1 π

−
j,5,0 = π−5,0 = 0.010588

6 0.001089 0.001712 0.001964 0.005884
∑4
j=1 π

−
j,6,0 = π−6,0 = 0.010649

7 0.000760 0.001195 0.001371 0.005183
∑4
j=1 π

−
j,7,0 = π−7,0 = 0.008509

8 0.000638 0.001002 0.001150 0.004781
∑4
j=1 π

−
j,8,0 = π−8,0 = 0.007571

9 0.000532 0.000836 0.000959 0.004304
∑4
j=1 π

−
j,9,0 = π−9,0 = 0.006631

10 0.000437 0.000686 0.000787 0.003895
∑4
j=1 π

−
j,10,0 = π−10,0 = 0.005805

11 0.000345 0.000543 0.000622 0.003491
∑4
j=1 π

−
j,11,0 = π−11,0 = 0.005001

12 0.000288 0.000453 0.000520 0.003136
∑4
j=1 π

−
j,12,0 = π−12,0 = 0.004397

13 0.000233 0.000366 0.000420 0.002799
∑4
j=1 π

−
j,13,0 = π−13,0 = 0.003818

14 0.000190 0.000299 0.000343 0.002499
∑4
j=1 π

−
j,14,0 = π−14,0 = 0.003331

15 0.000155 0.000244 0.000280 0.002224
∑4
j=1 π

−
j,15,0 = π−15,0 = 0.002903

16 0.000127 0.000200 0.000228 0.001977
∑4
j=1 π

−
j,16,0 = π−16,0 = 0.002532

17 0.000103 0.000162 0.000186 0.001754
∑4
j=1 π

−
j,17,0 = π−17,0 = 0.002205

18 0.000084 0.000132 0.000152 0.001554
∑4
j=1 π

−
j,18,0 = π−18,0 = 0.001922

19 0.000069 0.000108 0.000124 0.001375
∑4
j=1 π

−
j,19,0 = π−19,0 = 0.001676

≥20 ≤0.000055 ≤0.000088 ≤0.000101 ≤0.001216
∑∞
i=20

∑4
j=1 π

−
j,i,0 =

∑∞
i=20 π

−
i,0 ≤ 0.001460

distribution of order 4 with representation (g,T ), where g is a row vector of length four and T is a square
matrix of order four, which have the following forms:

g = (g1, g2, g3, g4) = (0.3, 0.4, 0.2, 0.1) , T =
(

01×3 0
I3 03×1

)
.

Also, we set µb = 3, µv = 1.5 and θ = 1. According to these input parameters, we see that λ = 3.5, ḡ = 2.1, and
hence ρ = 0.816667. The numerical experiment is based on the roots of the following characteristic equations
lie inside the unit circle. These roots are given in Table 7.

z4 −

 4∑
j=1

gjz
4−j

D
(
z3
)

= z4 − 49(0.3z3 + 0.4z2 + 0.2z + 0.1)
(9.5− 1.5z3)2 = 0, (7.3)

z4 −

 4∑
j=1

gjz
4−j

Λ
(
z3
)

= z4 − 49(0.3z3 + 0.4z2 + 0.2z + 0.1)
(10− 3z3)2 = 0. (7.4)

Substituting these values of ωj and ηj into equations (3.13) to (3.19) and solving a set of simultaneous lin-
ear equations, the fourteen unknowns, namely π−

0̄,0
, π−

0̄,1
, Kj , Lj and Hj (j = 1, 2, 3, 4) can be determined.

Table 8 presents the values for Kj , Lj and Hj . Then, employing the coefficients mentioned above and using
the equations (3.10) and (3.12), the stationary probability distribution of the number of customers in queue at
pre-arrival epoch are shown in Table 9. Inserting π−j,0 and π−j,1 into equations (4.2) to (4.7), Table 10 exhibits of
queue size distribution at arbitrary epoch for the system.
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Table 6. System-length distribution at pre-arrival epoch in regular busy period for
MX/M (1,4)/1/SWV queue.

i j = 1 j = 2 j = 3 j = 4 Sum

0 0.013853 0.018890 0.021505 0.019704
∑4
j=1 π

−
j,0,1 = π−0,1 = 0.073951

1 0.001147 0.001587 0.001808 0.017085
∑4
j=1 π

−
j,1,1 = π−1,1 = 0.021627

2 0.002007 0.002777 0.003164 0.019956
∑4
j=1 π

−
j,2,1 = π−2,1 = 0.027904

3 0.002618 0.003627 0.004132 0.021007
∑4
j=1 π

−
j,3,1 = π−3,1 = 0.031384

4 0.002211 0.003071 0.003499 0.022556
∑4
j=1 π

−
j,4,1 = π−4,1 = 0.031337

5 0.001382 0.001931 0.002201 0.022808
∑4
j=1 π

−
j,5,1 = π−5,1 = 0.028322

6 0.001485 0.002076 0.002367 0.023266
∑4
j=1 π

−
j,6,1 = π−6,1 = 0.029194

7 0.001051 0.001479 0.001686 0.022937
∑4
j=1 π

−
j,7,1 = π−7,1 = 0.027153

8 0.000888 0.001253 0.001429 0.022626
∑4
j=1 π

−
j,8,1 = π−8,1 = 0.026196

9 0.000746 0.001055 0.001204 0.022052
∑4
j=1 π

−
j,9,1 = π−9,1 = 0.025057

10 0.000617 0.000876 0.001000 0.021375
∑4
j=1 π

−
j,10,1 = π−10,1 = 0.023868

11 0.000493 0.000701 0.000801 0.020571
∑4
j=1 π

−
j,11,1 = π−11,1 = 0.022566

12 0.000414 0.000591 0.000675 0.019719
∑4
j=1 π

−
j,12,1 = π−12,1 = 0.021399

13 0.000338 0.000483 0.000551 0.018808
∑4
j=1 π

−
j,13,1 = π−13,1 = 0.020180

14 0.000277 0.000398 0.000454 0.017881
∑4
j=1 π

−
j,14,1 = π−14,1 = 0.019010

15 0.000228 0.000328 0.000374 0.016941
∑4
j=1 π

−
j,15,1 = π−15,1 = 0.017871

16 0.000187 0.000270 0.000309 0.016007
∑4
j=1 π

−
j,16,1 = π−16,1 = 0.016773

17 0.000153 0.000222 0.000253 0.015086
∑4
j=1 π

−
j,17,1 = π−17,1 = 0.015714

18 0.000126 0.000183 0.000209 0.014187
∑4
j=1 π

−
j,18,1 = π−18,1 = 0.014705

19 0.000104 0.000150 0.000172 0.013315
∑4
j=1 π

−
j,19,1 = π−19,1 = 0.013741

≥20 ≤0.000085 ≤0.000124 ≤0.000141 ≤0.012475
∑∞
i=20

∑4
j=1 π

−
j,i,1 =

∑∞
i=20 π

−
i,1 ≤ 0.012825

Table 7. The roots of the characteristic equations (7.3) and (7.4) with modulus is less than one.

i = 1 i = 2 i = 3 i = 4
ωi −0.429286 −0.081904 + 0.399455i −0.081904− 0.399455i 0.822984
ηi −0.416969 −0.078361 + 0.393892i −0.078361− 0.393892i 0.912747

Table 8. The numerical results for the coefficients Kj , Lj and Hj in PHX/M (1,3)/1/SWV queue.

j = 1 j = 2 j = 3 j = 4
Kj 0.006758 0.005965− 0.000285i 0.005965 + 0.000285i 0.018920
Lj 0.010924 0.012911− 0.003086i 0.012911 + 0.003086i −0.056291
Hj 0.001545 −0.003724 + 0.003232i −0.003724− 0.003232i 0.096470

As is known, the system-length is the sum of queue-length and service batch size (number of customers in the
service batch). Thus, we can check the correctness of the computed values using the relations

∑3
j=1 π

−
j,i,0 = π−i,0

and
∑3
j=1 π

−
j,i,1 = π−i,1 at pre-arrival epoch, and

∑3
j=1 πj,i,0 = πi,0 and

∑3
j=1 πj,i,1 = πi,1 at arbitrary epoch.

The system-length distributions at pre-arrival and arbitrary epochs are given respectively in Tables 11 and 12.
The computational results presented in the fifth and tenth columns of Tables 11 and 12 suggest that the above
relations always hold true in our numerical experiments.
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Table 9. Stationary queue-length distribution at pre-arrival epoch for PHX/M (1,3)/1/SWV
queue.

j π−j,0 j π−j,0 j π−j,0 j π−j,1 j π−j,1 j π−j,1

0̄ 0.055750 – – – – 0̄ 0.011567 – – – –
0 0.037608 11 0.002219 22 0.000260 0 0.071022 11 0.028735 22 0.012170
1 0.011921 12 0.001827 23 0.000214 1 0.034780 12 0.026821 23 0.011178
2 0.012199 13 0.001503 24 0.000176 2 0.041683 13 0.024968 24 0.010260
3 0.010441 14 0.001237 25 0.000145 3 0.041738 14 0.023191 25 0.009412
4 0.009148 15 0.001018 26 0.000119 4 0.041911 15 0.021498 26 0.008629
5 0.006934 16 0.000838 27 0.000098 5 0.039501 16 0.019894 27 0.007908
6 0.005899 17 0.000690 28 0.000081 6 0.038337 17 0.018382 28 0.007245
7 0.004842 18 0.000568 29 0.000067 7 0.036524 18 0.016962 29 0.006634
8 0.003989 19 0.000467 30 0.000055 8 0.034640 19 0.015634 30 0.006073
9 0.003270 20 0.000384 31 0.000045 9 0.032656 20 0.014395 31 0.005558
10 0.002699 21 0.000316 ≥32 ≤0.000037 10 0.030697 21 0.013241 ≥32 ≤0.005085
Sum 0.177238 Sum 0.822762

Notes. E[WA] = 1.853188.

Table 10. Stationary queue-length distribution at arbitrary epoch for PHX/M (1,3)/1/SWV
queue.

j πj,0 j πj,0 j πj,0 j πj,1 j πj,1 j πj,1

0̄ 0.040484 – – – – 0̄ 0.007585 – – – –
0 0.040621 11 0.002483 22 0.000291 0 0.058226 11 0.029764 22 0.012743
1 0.013069 12 0.002044 23 0.000240 1 0.032400 12 0.027831 23 0.011709
2 0.013635 13 0.001682 24 0.000197 2 0.041279 13 0.025948 24 0.010751
3 0.011673 14 0.001384 25 0.000162 3 0.041721 14 0.024133 25 0.009866
4 0.010263 15 0.001139 26 0.000134 4 0.042413 15 0.022397 26 0.009048
5 0.007745 16 0.000938 27 0.000110 5 0.040048 16 0.020747 27 0.008295
6 0.006602 17 0.000772 28 0.000091 6 0.039133 17 0.019187 28 0.007600
7 0.005417 18 0.000635 29 0.000075 7 0.037427 18 0.017719 29 0.006961
8 0.004464 19 0.000523 30 0.000061 8 0.035620 19 0.016343 30 0.006374
9 0.003658 20 0.000430 31 0.000050 9 0.033673 20 0.015056 31 0.005834
10 0.003020 21 0.000354 ≥32 ≤0.000042 10 0.031731 21 0.013858 ≥32 ≤0.005338
Sum 0.171687 Sum 0.828313

Notes. E[Lq] = 11.046892.

The advantage of this algorithm is that it can efficiently deal with computational problems in queueing systems
with group renewal arrival process. But in the first two numerical examples, we consider only cases when inter-
arrival times of the groups have exponential distribution or Erlangian distribution of order 2. For such arrival
processes that are the particular cases of the batch Markovian arrival process (BMAP), the numerical results
can be much easier obtained without using the technique presented in our paper. To justify our efforts, another
example with an inter-batch arrival time that does not belong to the class of PH distribution is demonstrated
below.

Example 7.3. In this example we examine the DX/M (1,5)/1/SWV queue, which are characterized by batch
deterministic arrivals. Specifically, we assume that customers arrive at the service facility in batches according
to a deterministic process with constant inter-batch arrival times, equal to 0.25. The group size X is a random
variable with probability mass function g1 = 0.15, g2 = 0.25, g3 = 0.3, g4 = 0.2 and g5 = 0.1. It also means
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Table 11. Stationary system-length distribution at pre-arrival epoch for PHX/M (1,3)/1/SWV
queue.

π−j,i,0 π−j,i,1
i j = 1 j = 2 j = 3

∑3
j=1 π

−
j,i,0 i j = 1 j = 2 j = 3

∑3
j=1 π

−
j,i,1

0 0.012617 0.015787 0.009204 0.037608 = π−0,0 0 0.020720 0.026251 0.024051 0.071022 = π−0,1
1 0.002055 0.002572 0.007294 0.011921 = π−1,0 1 0.003447 0.004360 0.026973 0.034780 = π−1,1
2 0.003075 0.003847 0.005277 0.012199 = π−2,0 2 0.005167 0.006537 0.029979 0.041683 = π−2,1
3 0.002317 0.002899 0.005225 0.010441 = π−3,0 3 0.003918 0.004953 0.032867 0.041738 = π−3,1
4 0.001954 0.002444 0.004750 0.009148 = π−4,0 4 0.003322 0.004200 0.034389 0.041911 = π−4,1
5 0.001267 0.001585 0.004082 0.006934 = π−5,0 5 0.002179 0.002752 0.034570 0.039501 = π−5,1
6 0.001049 0.001313 0.003537 0.005899 = π−6,0 6 0.001813 0.002289 0.034235 0.038337 = π−6,1
7 0.000784 0.000981 0.003077 0.004842 = π−7,0 7 0.001364 0.001721 0.033439 0.036524 = π−7,1
8 0.000600 0.000750 0.002641 0.003989 = π−8,0 8 0.001049 0.001323 0.032268 0.034640 = π−8,1
9 0.000451 0.000564 0.002255 0.003270 = π−9,0 9 0.000794 0.001001 0.030861 0.032656 = π−9,1
10 0.000346 0.000432 0.001921 0.002699 = π−10,0 10 0.000612 0.000772 0.039313 0.030697 = π−10,1

11 0.000262 0.000327 0.001630 0.002219 = π−11,0 11 0.000466 0.000588 0.027681 0.028735 = π−11,1

12 0.000200 0.000249 0.001378 0.001827 = π−12,0 12 0.000357 0.000449 0.026015 0.026821 = π−12,1

13 0.000151 0.000189 0.001163 0.001503 = π−13,0 13 0.000272 0.000343 0.024353 0.024968 = π−13,1

14 0.000115 0.000144 0.000978 0.001237 = π−14,0 14 0.000208 0.000262 0.022721 0.023191 = π−14,1

15 0.000087 0.000110 0.000821 0.001018 = π−15,0 15 0.000159 0.000200 0.021139 0.021498 = π−15,1

16 0.000067 0.000083 0.000688 0.000838 = π−16,0 16 0.000121 0.000153 0.019620 0.019894 = π−16,1

17 0.000051 0.000063 0.000576 0.000690 = π−17,0 17 0.000093 0.000116 0.018173 0.018382 = π−17,1

18 0.000039 0.000048 0.000481 0.000568 = π−18,0 18 0.000071 0.000089 0.016803 0.016962 = π−18,1

19 0.000029 0.000037 0.000401 0.000467 = π−19,0 19 0.000054 0.000068 0.015512 0.015634 = π−19,1

≥20 ≤0.000022 ≤0.000028 ≤0.000334 ≤0.000384 ≥20 ≤0.000041 ≤0.000052 ≤0.014302 ≤0.014395

that the maximum group size is r̃ = 5. For computational purposes, the default parameters are fixed as µb = 3,
µv = 2, θ = 1, b = 5 such that ρ = 0.76. To facilitate code writing, we can rewrite the distribution of X as a PH
distribution with representation (g,T ), where the stationary probability vector g = (0.15, 0.25, 0.3, 0.2, 0.1) and

the matrix T is given by T =
(

01×4 0
I4 04×1

)
. Next, we need to calculate the roots of the following characteristic

equations lying inside the unit circle.

z5 −

 5∑
j=1

gjz
5−j

D
(
z5
)

= z5 − (0.15z4 + 0.25z3 + 0.3z2 + 0.2z + 0.1)e−0.25(3−2z5) = 0, (7.5)

z5 −

 5∑
j=1

gjz
5−j

Λ
(
z5
)

= z5 − (0.15z4 + 0.25z3 + 0.3z2 + 0.2z + 0.1)e−0.25(3−3z5) = 0. (7.6)

Since the deterministic inter-batch arrival time does not have a rational LST, the above equations cannot be
directly solved by using the standard Mathematica commands. Through the Padé’s approximation [7/8], we
approximate the LST of the inter-batch arrival time distribution e−0.25z with a rational function of the type
Q1(z)/Q2(z):

e−0.25z =
Q1(z)
Q2(z)

=

1.0− 0.116667z + 0.00625z2 − 0.000200321z3 + 4.17334× 10−6z4

−5.69092× 10−8z5 + 4.74244× 10−10z6 − 1.88192× 10−12z7

1.0 + 0.133333z + 0.00833333z2 + 0.000320513z3 + 8.34669× 10−6z4

+1.51758× 10−7z5 + 1.89697× 10−9z6 + 1.50554× 10−11z7 + 5.881× 10−14z8

,
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Table 12. Stationary system-length distribution at arbitrary epoch for PHX/M (1,3)/1/SWV
queue.

πj,i,0 πj,i,1
i j = 1 j = 2 j = 3

∑3
j=1 πj,i,0 i j = 1 j = 2 j = 3

∑3
j=1 πj,i,1

0 0.013593 0.017299 0.009729 0.040621 = π0,0 0 0.016806 0.021817 0.019603 0.058226 = π0,1

1 0.002422 0.003031 0.007616 0.013069 = π1,0 1 0.004038 0.005111 0.023251 0.032400 = π1,1

2 0.003624 0.004534 0.005477 0.013635 = π2,0 2 0.006055 0.007662 0.027562 0.041279 = π2,1

3 0.002731 0.003417 0.005525 0.011673 = π3,0 3 0.004591 0.005808 0.031322 0.041721 = π3,1

4 0.002302 0.002881 0.005080 0.010263 = π4,0 4 0.003895 0.004925 0.033593 0.042413 = π4,1

5 0.001493 0.001868 0.004384 0.007745 = π5,0 5 0.002555 0.003228 0.034265 0.040048 = π5,1

6 0.001237 0.001547 0.003818 0.006602 = π6,0 6 0.002127 0.002686 0.034320 0.039133 = π6,1

7 0.000924 0.001156 0.003337 0.005417 = π7,0 7 0.001600 0.002020 0.033807 0.037427 = π7,1

8 0.000706 0.000884 0.002874 0.004464 = π8,0 8 0.001231 0.001553 0.032836 0.035620 = π8,1

9 0.000531 0.000664 0.002463 0.003658 = π9,0 9 0.000932 0.001175 0.031566 0.033673 = π9,1

10 0.000407 0.000510 0.002103 0.003020 = π10,0 10 0.000719 0.000906 0.030106 0.031731 = π10,1

11 0.000308 0.000386 0.001789 0.002483 = π11,0 11 0.000547 0.000690 0.028527 0.029764 = π11,1

12 0.000235 0.000294 0.001515 0.002044 = π12,0 12 0.000419 0.000528 0.026884 0.027831 = π12,1

13 0.000178 0.000223 0.001281 0.001682 = π13,0 13 0.000320 0.000403 0.025225 0.025948 = π13,1

14 0.000136 0.000170 0.001078 0.001384 = π14,0 14 0.000244 0.000308 0.023581 0.024133 = π14,1

15 0.000103 0.000129 0.000907 0.001139 = π15,0 15 0.000187 0.000235 0.021975 0.022397 = π15,1

16 0.000079 0.000098 0.000761 0.000938 = π16,0 16 0.000142 0.000179 0.020426 0.020747 = π16,1

17 0.000060 0.000075 0.000637 0.000772 = π17,0 17 0.000109 0.000137 0.018941 0.019187 = π17,1

18 0.000045 0.000057 0.000533 0.000635 = π18,0 18 0.000083 0.000104 0.017532 0.017719 = π18,1

19 0.000035 0.000043 0.000445 0.000523 = π19,0 19 0.000063 0.000080 0.016200 0.016343 = π19,1

≥20 ≤0.000026 ≤0.000033 ≤0.000371 ≤0.000430 ≥20 ≤0.000048 ≤0.000061 ≤0.014947 ≤0.015056

Table 13. The roots of the characteristic equations (7.3) and (7.4) with modulus is less than one.

i = 1 i = 2 i = 3 i = 4 i = 5
ωi −0.393314− 0.258734i −0.393314 + 0.258734i 0.831129 0.035767− 0.522451i 0.035767 + 0.522451i
ηi −0.393764− 0.258909i −0.393764 + 0.258909i 0.901270 0.034864− 0.522547i 0.034864 + 0.522547i

Table 14. The numerical results for the coefficients Kj , Lj and Hj in DX/M (1,5)/1/SWV queue.

j = 1 j = 2 j = 3 j = 4 j = 5
Kj 0.010116 + 0.000313i 0.010116− 0.000313i 0.020150 0.009755− 0.002584i 0.009755 + 0.002584i
Lj −0.422553− 0.113889i −0.422553 + 0.113889i 0.050809 −0.144839− 0.211377i −0.144839 + 0.211377i
Hj 0.441446 + 0.114892i 0.441446− 0.114892i 0.099902 0.162853 + 0.207599i 0.162853− 0.207599i

where the symbol [7/8] stands for a rational function with degree of numerator polynomial 7 and degree of
denominator polynomial 8. Letting z = 3 − 2z5 and z = 3 − 3z5 in the above equation, respectively, and
plugging them into equations (7.5) and (7.6), Mathematica calculates all distinct roots of the characteristic
equations inside the unit circle which are presented in Table 13.

Substitution of ωi and ηi (i = 1, 2, . . . , 5) into equations (3.13) to (3.19) gives the values of π−
0̄,0

, π−
0̄,1

, Kj , Lj
and Hj (j = 1, 2, 3, 4, 5), in which the numerical results for Kj , Lj and Hj are presented in Table 14.

Based on the roots method described in this paper, the stationary queue-length distributions at different
epochs (pre-arrival and arbitrary) have been displayed in Tables 15 and 16, respectively. The notations used
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Table 15. Stationary queue-length distribution at pre-arrival epoch for DX/M (1,5)/1/SWV queue.

j π−j,0 j π−j,0 j π−j,0 j π−j,1 j π−j,1 j π−j,1

0̄ 0.081604 – – – – 0̄ 0.009094 – – – –
0 0.059892 11 0.002621 22 0.000344 0 0.122907 11 0.025170 22 0.009280
1 0.006950 12 0.002198 23 0.000286 1 0.030197 12 0.023198 23 0.008425
2 0.010074 13 0.001822 24 0.000238 2 0.038593 13 0.021281 24 0.007643
3 0.012157 14 0.001510 25 0.000198 3 0.045093 14 0.019492 25 0.006931
4 0.010428 15 0.001256 26 0.000164 4 0.043214 15 0.017838 26 0.006282
5 0.008516 16 0.001045 27 0.000137 5 0.040369 16 0.016301 27 0.005690
6 0.006026 17 0.000869 28 0.000114 6 0.035506 17 0.014877 28 0.005153
7 0.005532 18 0.000722 29 0.000094 7 0.034368 18 0.013560 29 0.004664
8 0.004696 19 0.000600 30 0.000078 8 0.032160 19 0.012349 30 0.004220
9 0.003822 20 0.000499 31 0.000065 9 0.029597 20 0.011236 31 0.003817
10 0.003151 21 0.000414 ≥32 ≤0.000321 10 0.027295 21 0.010215 ≥32 ≤0.035540
Sum 0.228442 Sum 0.771558

Notes. E[WqA] = 0.837883.

Table 16. Stationary queue-ength distribution at arbitrary epoch for DX/M (1,5)/1/SWV queue.

j πj,0 j πj,0 j πj,0 j πj,1 j πj,1 j πj,1

0̄ 0.036378 – – – – 0̄ 0.002818 – – – –
0 0.070692 11 0.003496 22 0.000459 0 0.073804 11 0.028307 22 0.010701
1 0.008013 12 0.002935 23 0.000382 1 0.025439 12 0.026200 23 0.009726
2 0.012843 13 0.002432 24 0.000317 2 0.037682 13 0.024110 24 0.008833
3 0.016268 14 0.002015 25 0.000264 3 0.047962 14 0.022146 25 0.008017
4 0.014038 15 0.001676 26 0.000219 4 0.046798 15 0.020320 26 0.007272
5 0.011453 16 0.001395 27 0.000182 5 0.044108 16 0.018614 27 0.006593
6 0.007951 17 0.001159 28 0.000151 6 0.038450 17 0.017023 28 0.005974
7 0.007380 18 0.000963 29 0.000126 7 0.037851 18 0.015546 29 0.005411
8 0.006283 19 0.000800 30 0.000105 8 0.035717 19 0.014181 30 0.004899
9 0.005102 20 0.000665 31 0.000087 9 0.033001 20 0.012923 31 0.004434
10 0.004201 21 0.000553 ≥32 ≤0.000428 10 0.030565 21 0.011765 ≥32 ≤0.041400
Sum 0.221411 Sum 0.778589

Notes. E[WqA]Little = 0.837883.

in the tables are the same as those defined earlier in this paper except E[WqA]Little which denotes the average
waiting time in the queue of an arbitrary customer evaluated through Little’s rule.

Using the data in Tables 15 and 16, we can give another way to check the validity of our numerical as well as
analytical results. The formula for calculating the average waiting time in the queue of an arbitrary customer
has been obtained in Section 6 (see Eq. (6.2)). Moreover, it is to be noted here that we can also obtain the above
performance measure from Little’s rule, E[WqA] = Lq/λḡ, where Lq denotes the mean number of customers
waiting in the queue at an arbitrary epoch. By our numerical computation (see the bottom of Tabs. 15 and 16),
we find that the average waiting time in the queue of an arbitrary customer evaluated through equation (6.2)
exactly matches with the one obtained from Little’s rule. It also shows that the theoretical analysis and numerical
experiments in this paper are reliable and accurate.
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8. Conclusions and future scope

In this paper, we have successfully analyzed GIX/M (1,b)/1 single working vacation queue with infinite buffer
space. Although this model is very complicated, we did not back away from the complex algebraic manipulation
and provide a meticulous derivation of the various formulas. Based on the roots of the characteristic equation, a
procedure to obtain the numerical solutions of the stationary queue-length distribution at different epochs has
been provided. In the problem-solving process, the most critical step is to solve a system of non-homogeneous
linear equations. From this point of view, the roots method is more easily accepted and implemented by prac-
titioners. Meanwhile, in order to ensure the reliability of the analytical approach, some numerical experiments
have been performed, and the calculation results indicate that our method is valid and accurate. Furthermore,
in numerical experiments, we even give information about established tools that facilitate computation. By
resorting to the queue-length distributions at the pre-arrival epoch, the amount of time spent in the system
by a random customer of an incoming batch is also given. We think the model studied here can be extended
to include the correlation structure among successive batch-service times. We leave this problem as a future
extension of the current research.
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