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A SUPERVISED METHOD FOR SCHEDULING MULTI-OBJECTIVE JOB SHOP
SYSTEMS IN THE PRESENCE OF MARKET UNCERTAINTIES
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Abstract. In real industries, managers usually consider more than one objective in scheduling process.
Minimizing completion time, operational costs and average of machine loads are amongst the main con-
cerns of managers during production scheduling in practice. The purpose of this research is to develop
a new scheduling method for job-shop systems in the presence of uncertain demands while optimizing
completion time, operational costs and machine load average are taken into account simultaneously.
In this research a new multi-objective nonlinear mixed integer programming method is developed for
job-shop scheduling in the presence of product demand uncertainty. The objectives of the proposed
method are minimizing cost, production time and average of machine loads index. To solve the model,
a hybrid NSGA-II and Simulated Annealing algorithms is proposed where the core of the solving algo-
rithm is set based on weighting method. In continue a Taguchi method is set for design of experiments
and also estimate the best initial parameters for small, medium and large scale case studies. Then com-
prehensive computational experiments have been carried out to verify the effectiveness of the proposed
solution approaches in terms of the quality of the solutions and the solving times. The outcomes are
then compared with a classic Genetic Algorithm. The outcomes indicated that the proposed algorithm
could successfully solve large-scale experiments less than 2min (123s) that is noticeable. While per-
formance of the solving algorithm are taken into consideration, the proposed algorithm could improve
the outcomes in a range between 9.07% and 64.96% depending on the input data. The results also
showed that considering multi-objective simultaneously more reasonable results would be reached in
practice. The results showed that the market demand uncertainty can significantly affect to the pro-
cess of job shop scheduling and impose harms in manufacturing systems both in terms of completion
time and machine load variation. Operational costs, however, did not reflect significantly to market
demand changes. The algorithm is then applied for a manufacturing firm. The outcomes showed that
the proposed algorithm is flexible enough to be used easily in real industries.
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FIGURE 1. A graphical view of job-shop based layout.

1. INTRODUCTION

Job-shop layouts cover a wide range of manufacturing systems in industries. Classic job-shop scheduling
problem (JSSP) aims to find the best part routes of completing products respect to operational process chart
of products. Although the philosophy of classic JSSP problems is delivering the products on-time but reviewing
the literature shows that scientists dealt with various objective functions such as completion time (makespan),
cost, quality, job tardiness, etc. In JSSP problem, each of the processes of a product can be served by one
machine or set of parallel machines which are located in a shop and can serve similar services [19]. In modern
production systems, new scheduling methods are always a vital to achieve the fastest response to customer
demands considering market changes (Fig. 1).

In most real cases, part demands are different from one planning horizon to another. Such a phenomena
is known as dynamic part demands. Market changes, changes in product designs, pandemic calamities and
designing new products are considered as the main reasons for the changes in part demands through different
periods. One outcome of such conditions is emerging of imbalances in part routings and bottleneck machines.

The target of this research is to find the best production schedule of job shop systems in the dynamic condition
of product demands in order to minimize the makespan, cost of product completion and average of machine
loads simultaneously. Therefore, the objectives of the research will be minimizing makespan, cost of completion
and average of machine loads. For this purpose, a mathematical programing model will be developed in the first
step. In continue, a hybrid NSGA-IT and Simulated Annealing (SA) algorithms will be proposed to solve the
model. The results will be then compared with Standard Genetic Algorithm.

In this paper a new scheduling method is proposed to optimize system costs (including setup, operating, and
material transferring); manufacturing time and machine load variance simultaneously. The proposed algorithm
is flexible enough to be used easily in real industries while the market demands are not fixed and can be varied
from a period to another.

2. LITERATURE REVIEW

Job-shop researches are wide and include many objectives and conditions. During the last three decades,
scientists addressed various problems to fill the gaps in Job-shop issue. Therefore, a number of novel research
studies from 2009 to 2019, which are more related to the problem statement of this research, will be reviewed.
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2.1. Completion time/makespan in job-shop scheduling problem (JSSP)

Perhaps minimizing the completion time of producing products (also named makespan) is developed more
than other researches in job-shop scheduling during the last 2 decades. The aim is to find best series of machines
in shops to finalize the product demands. Heuristics and Metaheuristics have been widely applied for Job-shop
scheduling problems. Hasan et al. [17] argued that the primary objective of this research is to solve the job-
shop scheduling problems, by minimizing the makespan, with and without process interruptions. Hence, they
developed a GA for solving the job-shop problem, and then improved the algorithm by integrating it with
two simple priority rules and a hybrid rule. Y. Wang [41] used GA for job-shop scheduling problem. In order
to increase the diversity of the population, a mixed selection operator based on the fitness value and the
concentration value was given. To make full use of the characteristics of the problem itself, new crossover
operator based on the machine and mutation operator based on the critical path were specifically designed.
In the same year, Hamidinia et al. [16], used genetic algorithm to sort machines and operators into a flexible
process system. Lei [21] addressed a fuzzy flexible job-shop scheduling problem that was solved by an effective
co-evolutionary genetic algorithm where the minimization of fuzzy makespan was taken into account. Demir
and Isleyen [10] addressed four frequently used formulations of the FJSSP and a time-indexed model for FJSSP
considering sequencing operations on machines. Baykasoglu et al. [4] used teaching learning-based optimization
algorithm (TLBO) for Job-shop scheduling problem. The performance of the TLBO algorithm is tested on some
combinatorial optimization problems, namely flow-shop and job-shop scheduling problems. Saidi-Mehrabad et al.
[35] focused on transportation times of the jobs between machines in a job-shop scheduling problem. Therefore,
a mathematical model that is composed of job-shop scheduling and conflict-free routing problem. Then a two
stage Ant Colony Algorithm is coded to solve the problem. Delgoshaei et al. [9] proposed a hybrid Greedy
and Genetic Algorithm for minimizing makespan. Nouiri et al. [30] proposed a particle swarm optimization
algorithm for flexible job-shop scheduling problem to minimize makespan. Dao et al. [6] parallel Bat Algorithm
for minimizing Makespan in JSSP. Garg [14] used a hybrid Gravitational Search and Genetic Algorithms for
solving non-linear mixed integer models.

2.2. Flexible job-shop scheduling problem (FJSSP)

Flexible job-shop problem is referred to a special type of job-shop scheduling problem where operations are
allowed to be processed by any machine from a given set. Rahmati and Zandieh [33] proposed a Biogeography-
based optimization algorithm (BBO) for flexible job-shop scheduling problem. To assess the performance of
BBO, it is also compared with a genetic algorithm that has the most similarity with the proposed BBO in
terms of three different objective functions that were makespan, critical machine workload, and total workload
of machines. Y. Wang [41] proposed an effective artificial bee colony (ABC) algorithm for the flexible job-
shop scheduling problem to minimize the maximum completion time. Yuan et al. [45] developed a flexible
job-shop scheduling problem with the criterion to minimize makespan. In continue a novel hybrid harmony
search algorithm based on the integrated approach is proposed to solve the problems. Rossi [34] used a swarm
intelligence approach based on a disjunctive graph model in order to schedule a manufacturing system with
resource flexibility and separable setup times in order to minimize the makespan. Garg [12] applied a hybrid
PSO-GA algorithm for constrained optimization problems. They showed superiority of the proposed hybrid
algorithm comparing to other existing methods. Xu et al. [43] presented an effective teaching learning-based
optimization algorithm to solve the flexible job-shop problem with fuzzy processing time. In the first phase of
their method, a special encoding scheme is used to represent solutions, and a decoding method is employed to
transfer a solution to a feasible schedule in the fuzzy sense. Then, a bi-phase crossover scheme based on the
teaching—learning mechanism and special local search operators are incorporated into the search framework of
the TLBO to balance the exploration and exploitation capabilities. Yuan and Xu [44] proposed a new memetic
algorithm for solving a multi-objective flexible job-shop scheduling problem while minimizing the makespan,
total workload, and critical workload are considered. In continue, Shah et al. [37] proposed a Global Artificial
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Bee Colony Search, use the foraging behavior of the global best and guided best honeybees for solving complex
optimization tasks that worked based on maximizing fitness values instead of cycle numbers.

2.3. Multi objective/hybrid meta-heuristics for job-shop scheduling

In the real world, decision makers are often used single objective for scheduling. During the last decade many
scientists tried to formulate models by considering more than one objective functions. Although developing
multi-objective functions increases the complexity of the job-shop models, but at the same time it will results
in more realistic solutions. Jinsong et al. [18] developed a new integrated model and an approach based on
a modified genetic algorithm to facilitate the integration and optimization of the process of scheduling and
timing for components in a sequence. The novel feature of their study was considering the functions of the
planning process and scheduling simultaneously. Meeran and Morshed [28] presented a hybrid of Genetic and
Tabu Search Algorithms. The rationale behind using such a hybrid method as in the case of other systems
which use GA and TS is to use the diversified global search and intensified local search capabilities of GA and
TS respectively. Chen et al. [5] proposed a Genetic and Grouping Genetic Algorithm, for scheduling job-shop
in the presence of parallel machines and reentrant process. They considered total tardiness, total machine idle
time and makespan are important performance measures used in this study. Banharnsakun et al. [3] proposed
an ABC algorithm for Job-shop scheduling. The solution quality is measured based on best, average, standard
deviation, and relative percent error of the objective value. Y. Wang [41], the hierarchical chromosome code of
the genetic algorithm were designed to solve the multiparty project scheduling problem and several constraints.
In the first layer, chromosomes were used to select the sequence of operations, in the second layer chromosomes
were used for decision making in the combination of activity states. Li et al. [23] proposed a hybrid shuffled
frog-leaping algorithm for solving the multi-objective flexible job-shop scheduling problem where the objectives
were completion time (makespan), total workload of all machines and workload of the critical machine. Shao
et al. [38] addresses a multi-objective flexible job-shop scheduling problem while makespan, maximal machine
workload, and total workload are taken into consideration. In order to solve the problem, a hybrid discrete
particle swarm optimization and simulated annealing algorithm was proposed. Garg and Sharma [15] proposed
a multi-objective reliability redundancy allocation problem of a series system where the reliability of the system
and the corresponding designing cost are targeted to be optimized simultaneously.

Li et al. [22] proposed a discrete ABC algorithm for solving the multi-objective flexible job-shop scheduling
problem while maintenance activities are taken into consideration. In order to evaluate the performance of the
algorithm maximum completion time, total workload of machines and workload of the critical machine are taken
into account. Gao et al. [11] used a Pareto-based grouping discrete harmony search algorithm to solve the multi-
objective flexible job-shop scheduling problem where maximum completion time and the mean of earliness and
tardiness are considered as objective functions. In order to measure the performance of the proposed algorithm,
number of non-dominated solutions, diversification metric and quality metric were used. Nguyen et al. [29]
argued that scheduling policy strongly influences the performance of a manufacturing system. Therefore, they
developed four new multi-objective genetic programming-based hyper-heuristic methods for automatic design
of scheduling policies, including dispatching rules and due-date assignment rules in job-shop environments.

Karthikeyan et al. [20] used a hybrid discrete firefly algorithm for a multi-objective flexible job-shop scheduling
problem where the possibility of performing an operation by any machine from a given set along different
routes are allowed. Peng et al. [32] used a hybrid Tabu Search algorithm and path relinking for the job-shop
scheduling problem where the proposed algorithm comprised several distinguishing features such as a specific
relinking procedure to effectively construct a path linking the initiating solution and the guiding solution, and
a reference solution determination mechanism based on two kinds of improvement methods. Shen and Yao [39]
developed a multi-objective proactive-reactive evolutionary algorithm to deal with dynamic flexible job-shop
scheduling, and provide different trade-offs among objectives. Delgoshaei and Gomes [7] focused on machine-load
variation as a major shortcoming in manufacturing systems. For this purpose, a Multi-layer Perceptron method
is proposed for scheduling dynamic manufacturing systems in the presence of bottleneck and parallel machines.
They showed that the condition of dynamic costs affects the routing of materials in process and may induce
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machine-load variation. Zhang and Chiong [46] dealt with the objective of minimizing energy consumption into
a typical production scheduling model. To solve this bi-objective optimization problem, a multi-objective genetic
algorithm is proposed.

2.4. Uncertain job-shop scheduling

Luo et al. [24] designed a two-stage hybrid flow-shop scheduling problem in the condition of deterministic
and uncertain modes for minimizing makespan. A genetic algorithm is used to obtain a near-optimal solution.
The method is then applied in a metal-working company.

Zhang et al. [47] developed a method to address job-shop scheduling problem under an uncertain environment.
Another contribution of this paper is to put forward a generalized Intuitionistic Fuzzy Sets (IFS) to process the
additive operation and to compare the operation between two IFSs. Garg [13] used fuzzy membership function
to reduce the uncertainty level in the industrial systems. Delgoshaei et al. [8] presented a new method for
short-term period scheduling using simulated annealing where the aim was maximizing the profit of the system.
Patwal et al. [31] focused on impact of renewable energy sources on the allocation of optimal power generation
schedule. For this purpose, a time varying acceleration coefficient particle swarm optimization with mutation
strategies is offered. Sajadi et al. [36] addressed a two-stage GA for solving job-shop scheduling problem where
machine breakdown may occur during manufacturing process.

Table 1 compares opted researches which are close to the scope of the current research. An in depth survey
in literature of job-shop scheduling shows that the idea dynamic job-shop scheduling (D-JSSP) for minimizing
completion time, operational costs and average of machine loads has not been developed yet.

This paper alternates various material processing in the presence of parallel machines in plant shops and find
the best part routes. This research is in continue of the Saidi-Mehrabad et al. [35] by considering makespan,
system costs and average of machine loads simultaneously.

3. RESEARCH METHODOLOGY

Saidi-Mehrabad et al. [35] focused on transportation times of the jobs between machines in a job-shop
scheduling problem to provide conflict-free part routes. In this model, the same idea is expanded by considering
completion time, system costs and average of machine loads simultaneously in an alternative part routing model.

3.1. Developing an appropriate model for planning

It should be noted that the demand for products in different planning periods is not constant and is estimated
from the normal distribution function that has already been considered by other researchers in the available
investigations in the literature section and hence, it is reliable in a mathematical model as a default. It should
be noted that in the real world, the estimation of demand is estimated based on the mathematical formulas and
the sales unit information of each plant and there is no need to use the normal function.

Briefly, the features of the model presented in this study can be explained as follows:

Consider multi-objective decision making.

Consider the potential demand for production planning.

Consider vertical and horizontal movements.

— Presentation of the new method of intra-shop and inter-shop movements.

Model assumptions are as follows:

(1) The demand for various time periods is not constant and follows the normal distribution function.

(2) Each shop has a number of parallel machines that are located in specified locations.

(3) The distance between machines is measured as vertical and horizontal units (there is no diagonal and
diametric movement between devices).

(4) The initial inventory of products is zero.

(5) The inventory at the end of the planning shall be zero.
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(6) If the loading rate of a machine is higher than the average of other machines in the same shop, this issue
is considered as the loading variance. One of the goals of the model is to reduce shop-load variance as far
as possible.

(7) The cost of intra-shop and inter-shop movements is specified for each unit.

(8) The sequence of operations needed to complete each product unit is already specified and is expressed by
the OPC matrix.

Inputs
The range of variables and parameters of the model are defined as follows:

: number of products.

: number of machines.

: machine types.

: number of shops.

: time periods.

: number of machine-loads.

D+ T L . .

Model parameters

D(it) ~ N(pi,02) The amount of ith product demand during the period t.
L Service level (used to estimate demand for products).

OPC(is) Operational Processes that needed to complete product 7.

SC(i,7) If the product ¢ needs machine type j for production.

IMC(4) The cost of loading product i.

EMC(7) The cost of each unit intra-shop movement of ith product.

IMT (%) The cost of each unit inter-shop movement of ith product.

EMT(3) Time of each unit intra-shop movement of product ¢ (min).

OT(sj) The time of each intermediate shop movement of ith product (min).

SC(i) Time to perform machine j operations of type s (min).

0C(sy) The cost of each unit of machine j operations of type s.

IDC(jj'k) The distance of machine j to machine j’ in the shop.

EDC(kkK") The shop distance k to k'.

PDC(jk) The distance between each machine in the shop % from the shop exit door.
QDC(jk) The distance between each machine in the shop k from the shop entrance door.
CP(jk) The capacity of the machine j in the shop k.

Model variables

In this mathematical model, three groups of variables will be considered:

X (it) : number of product ¢ which is produced in period ¢ (Integer).
Y (ijkt) : if the product ¢ gets services from the machine j in the shop k during the period ¢ (Binary).
w(j, k,t,e) : the number of times which the machine j is loaded in the shop k during period ¢ (Integer).

Presentation of the mathematical model

T I S K J
Min Z; : Wy - ZZZZZSC i,7) - OC(sj) - Y (ijkt) - OPC(is)
T I J~JK
+3 337 DT IMC() - IDC(j5 k) - (Y (igkt) — (1 — Y (i'kt)) - Y (ijkt)) (3.1)
i 7 k
+ZZZ i EMC(i) - (EDC(kE') + PDC(jk) + QDC(jk)) - (Y (ijkt)

7

- (1= (Ukt))- Y (ijkt))
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T I S K J
Min Zy : Wy ZZZZZOT(SJ) Y (ijkt) - OPC(is)
t i s k 7
T I J~J K
+3 3N S IMT() - IDC(G5'k) - (Y (igkt) — (1= Y (ig'kt)) - Y (ijkt)) (3.2)
t k

> EMT(i) - (EDC(kK’) + PDC(jk) + QDC(jk))
+ (Y (ijkt) — (1 = Y (ijk't)) - Y (ijkt))

T 7 K
Min Z3 : W3 Z ZZ ‘w(j, k,t,e) —w(j, k,t,e) (3.3)
t 5k

s.t.

K J

D) Y(ijkt) = OPC(is) VX (it) & i & t (3.4)
k J
K

> Y (ijkt) = X(it) Vt & i,maxj{j|OPC;; =1} (3.5)
k

> w(j k,tie) < CP(jk) Vit&k&j (3.6)

e=1
w(j k. te) =w(j, k,t,(e—1)) + 1[Y(ijkt) =1 Vt&k&j (3.7)
X(it) < D(it) Vt&i (3.8)
X (it) is integer (3.9)

Yi ke is binary. (3.10)

The mathematical model presented in this study is a nonlinear mixed integer programming model. On the other
hand, the multiplicity of objective functions in this model causes the model to be considered as a MODM model
and therefore, the type of mathematical model presented in this study can be considered as Multi-objective
Nonlinear mixed integer programming. This makes this mathematical model to be even more complicated. The
first objective function of this model is for calculating system various costs. The first part of the objective
function indicates the costs of loading and various operations which is done in different shops by machines.
The second part of the first objective function represents the cost of intra-shop movements. This section will
be explained in more detail below. The third part of the first objective function represents the external shop
movement, which will be subsequently explained in the next section.

The second objective function is similar to the first objective function and represents the time of construction
and transportation so that the first part indicates the operating time, the second part indicates the time of
intra-shop movements and the third part indicates the time of the inter-shop movements. The third objective
function also shows the degree of machines shop-load variance. As can be seen, this objective function is designed
in such a way to increase the variance of a shop if the machine loading be greater than the average load in a
shop.

The first constraint of this model represents the performance of products various operations according to
OPC. The second constraint represents the relationship between the number of operations performed with the
total number of completed products so that whenever final operations are performed according to the OPC
of each product, that is, a product has been completed and therefore, semi-fabricated products will not be
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TABLE 2. The method of calculating intra-shop movement.

Possible state Current Next (Y(ijkt) — (1 — Result
machine machine Y (i5'kt))Y (ijkt))
The semi-finished productis J =1 J =1 (I1-(1-1)-1)=1 An intra-shop movement unit
located in machine j, (j = 1) will be computed from j to j'.
and then goes to machine j’,
(' =1)
The semi-finished productis J =1 J' =0 (1-(1-0)-1) =0 Intra-shop movement will not
in machine j, (j = 1) but be calculated.
will not go to machine j’,
(3'=0)
The semi-finished product is J =0 J' =0 (0—(1—-0)-0) =0 Intra-shop movement will not
not in machine j, (j = 0) be calculated.
and will not go to machine
i’ (3" =0)
The semi-finished productis J =0 J =1 (0—(1-1)-0) =0 Intra-shop movement will not
not in machine 7, (5 = 0) but be calculated.
it will be sent to machine j',
G =1)

computed to satisfy the demand for the period. The third constraint indicates that the service level of each
machine in each shop should not be greater than the capacity of the machine. The fourth constraint is specified
for determining the loading number of each machine in each shop, so that if one operation is assigned to a
machine, the machine loading number becomes one unit greater. Fifth constraint shows that the amount of
products which are produced in each period should not exceed the demand for the course. Sixth constraint
determines the number of times each machine is loaded. The seventh constraint is to determine the range of
variables. In this research, the variables of type X and w are in the form of integer variables and type Y variables
are zero and one.

3.2. The way of intra-shop movements calculation

The way of intra-shop movements calculation is based on the vertical and horizontal movements from a
machine to another one. As regards, intra-shop movement calculation from a machine to itself is not possible,
this machine is included in the term sigma of the domain machine 5 ~ j'. In this statement, the amount of
movement from one machine to another machine will be presented by IDC(j;j'k) and the cost of movement of
each half-finished of product ¢ will be represented by IMC(7). Therefore, the IMC(4) - IDC(j5'k) indicates the
cost of moving from the machine j to the machine j'. In the following, if the product of the machine j moves
to j', the expression Y (ijkt) — (1 — Y (ij'kt)) can show it because the range of movements is specified in the
Table 2.

As can be seen, the following statement will only be able to calculate the possible intra-shop movements and,
on that basis, calculate the cost of intra-shop movements.

I J~J K

T
DD D IMCG) - IDC(j5'k) - (Y (ighkt) — (1= Y (i5'kt)) - Y (ijkt)). (3.11)
t i j k

It should be noted that calculating the time of intra-shop material movement is also calculated in this way.



S1174 A. DELGOSHAEI ET AL.

TABLE 3. The method of calculating inter-shop movement.

Possible state Current Next (Y (igkt) —  Result

shop shop (1 — Y(ijk't)) -

Y (ijkt))

The half-built product is K =1 K' =1 (1-(1-1)-1)=1 An inter-shop movement
located in the shop K, (K = unit will be calculated from
1) and then goes to the shop K to K'.
K' (K'=1)
The half-built product is K =1 K'=0 (1-(1-0)-1) =0 The inter-shop movement
located in the shop K, (K = will not be calculated.
1) but will not go to the shop
K, (K’ =0)
The half-built product isnot K =0 K'=0 (0—(1-0)-0) =0 The inter-shop movement
located in shop K, (K = 0) will not be calculated.
and will not go to the shop
K', (K' =0)
The half-built product isnot K =0 K'=1 (0—(1-1)-0) =0 The inter-shop movement
in shop K, (K = 0) but will not be calculated.
will be sent to the shop K,
(K'=1)

3.3. The way of calculating inter-shop movements

In some cases that the existent machines are not enough in a shop to carry out the next service, (e.g., the
next required machine doesn’t exist in the shop) or the existing machines be in full capacity, but the adjacent
shop machines be empty, inter-shop motions can be used. For this purpose, the term EMC(%) represents the cost
of each unit of inter-shop movement. The way of the inter-shop motion calculation is the movement summation
from a machine to the shop port, moving from one shop to another, and moving from a new shop port to the
location of the new shop, which is presented by EDC(kk’) + PDC(jk) + QDC(jk) is shown. In the following, if
the circumstances of an inter-shop movement is shown by Table 3.

Thus, the following expression represents the inter-shop motion of the material flow.

J K~K'

T I
>33 > EMC(i) - (EDC(kK') + PDC(jk) + +QDC(jk)) - (Y (ijkt) — (1 = Y (ijk't)) - Y (ijkt)). (3.12)
t i g k

Note that these movements will only take place when the capacity of the machines is completed in a shop and
a parallel machine exists in other shops because in the normal state, the cost of intra-shop movements is much
less than the inter-shop movement, and according to the type of target function, intra-shop movements will be
selected at first.

3.4. Complexity evaluation of the developed mathematical model

After developing the mathematical model, the complexity of the model will be examined to check which
algorithm is suitable for it. For this purpose the method that is applied by Delgoshaei and Gomes [7] is used.
In this method, number of the feasible and infeasible basic points of the model will be calculated for a small
size case study. On this basis, a company which produces 20 products, 10 machine types, 15 cells (each cell has
an average of 7 parallel machines), and 5 scheduling periods is considered. Tables 4 and 5 show the number of
variables and constraints for this model respectively.
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TABLE 4. The number of variables in the mathematical model presented for a medium-sized
problem.

Variable Domain Number of variables Result

X(i,t) ikt 20 * 5 100

Y(i,5,k,t) ixjxkxt 20%x10%15%5 15000
Total number 25100

TABLE 5. Number of constraints in the mathematical model presented for a medium-sized problem.

Constraint Domain Number of constraints Results
Constraint 1 ¢, 1 5% 20 100
Constraint 2 ¢, 1 5% 20 100
Constraint 3 txkxj 515+ 10 750
Constraint 4 txk=xj 5% 15 %10 750
Constraint 5 t*1 5% 20 100
Constraint 6 ¢ * ¢t 20 %5 100
Constraint 7 ixjxk*xt 20%x10%15%5 15000
Total number 16 900

TABLE 6. Contribution and novelties of this research.

Reference ~ Mathematical Product Objective Objectives Solving

model demand  function algorithm
This NL-MIP Dynamic Multi- Completion System Average of NSGAIIL
research objective Time cost machine loads
Saidi- MIP Crisp Single Makespan  — — ACO
Mehrabad
et al. [35]
Li et al. MIP Crisp Multi- Completion Total Workload of ABC
[22] objective time workload ~ the critical

machine

Hasan 1P Crisp Single Makespan — — - GA
et al. [17]

+m)! (25100 + 16 900)!
m nlm! 25100!16 900! ( )
The amount of this number is so high that even computational software such as Excel cannot calculate it. This
suggests that optimization algorithms will not be able to solve this model in a medium and large dimension.

Therefore, like most of the similar presented models, the heuristic and metaheuristic algorithms will be used.

3.5. Novelties and contributions of the presented mathematical model

As already mentioned, the mathematical model presented in this study is followed by mathematical models
that have already been presented by other researchers. In Table 6, contribution and novelties of this research
are compared with some of the similar researches in literature:
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TABLE 7. Comparing the abilities of the well-known metaheuristics.

Name Abbreviation Local  opti- Memory Learning Speed Single Multi Multi
mum escaping point point agent

Simulated SA + F +

annealing

Tabu search TS + S +

Genetic GA + + F + +

algorithm

Memtic MA + + F + +

algorithm

Non dominated NSGAIIL + F + +

sorting genetic

algorithm

Ant colony ACO + M + +

optimization

Bacterial forging ~ BEA + M + +

algorithm

Particle swarm PSO M + +

method

Single-layer SLP + + F +

perceptron

Multi-layer MLP + + M + +

perceptron

Hopfield HF + M + +

networks

Self-organized SOM M +

map

Ranked order ROC M +

clustering

4. SOLVING ALGORITHM: A HYBRID NSSGAII AND SIMULATED ANNEALING ALGORITHM

Results of reviewing the literature show that most of the production scheduling models are NP-hard.
As a result, the solving time for them increases exponentially by increasing the size of the problem. Therefore,
the use of a multi objective metaheuristic algorithm is essential. In order to choose appropriate metaheuristics for
solving the proposed models, Table 7 is provided which shows and compares the advantages and disadvantages
of famous metaheuristics. In continue, NSGAII will be proposed for the developed model. The method which
is inspired from Genetic Algorithm is developed for solving multi-objective decision making models. NSGAII is
now considered as a promising way to solve multi-objective models.

The reasons to choose NSGAII is that there are many similar mathematical models in the literature that
solved by the NSGAII and therefore it is a promising way for solving multi-objective models. Moreover, NSGAIIL
uses Genetic Algorithm operators which are frequently used in the similar Job-shop Scheduling problems.

Figure 2 shows the flowchart of the proposed NSGAII-SA. Table 8 shows the pseudo code of the NSGAII-SA.

Therefore, according to the previous research, NSGAII-SA is proposed to solve the developed model. The
steps in this method are as follows:

Step 1. This method works based on the principles of the genetic algorithm. Therefore, in the first step, the
number of inputs should be adjusted based on the decision making items, as follows:
Algorithm parameters. Number of generations; Population; Mutation Rate.
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Generate a Random
Number

Check

Improvement

Throw the Solution
Away

Set as best observed X, Yvand } No

w
Set in Tournament List
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Fi1GURE 2. Flowchart of the proposed hybrid method for solving the model.
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TABLE 8. Pseudo code of the proposed NSGAII-SA algorithm.

Step 1) Insert Dataset

Input data sets (TH; D (it); L; OPC(is); SC(i,j); IMC(i); EMC(i); IMT(i); EMT (i); OT(sj); SC(i);

0C(sj); IDC(jj'k); EDC(kk"); PDC(jk); QDC(jk); CP(jk))

Initialize pop.size, k, G, Mu & LEP (pop.size: population size; k= neighbourhood radius; Mu: mutation rate; G: number of
generations; LEP=local escape probability)

While n<G & for m=1: pop.size

Step 2)

if n=1
Generate/Import a layout
Else

Choose a member from candidate list
Find the required operations from OPCjg
find tournament list; (list of the parallel machines that can serve the required operation)
Activate Cross over Operator
o  Calculate cost, time and average of machine loads for the set of consecutive machines that can produce the selected
product
o Choose the best part route
Call Mutation Operator
o  Rand a number (R: Rand (1)_
o ifY <Mu
o  Re-arrange the part-route (Use other parallel machines)
o If p&p' € Tournament.list; then Wipyse = 1 and Wiy e = 0; DO Wi = 0 and wyyrjepe = 1

Calculate Remained D;,
if Remained D;; > 0
Go Step 2

Calculate Objective Functions

MinZy: Wy 3T 35 2K 2 SC L ). 0C (s)). Y (ijkt). OPC (is) + X X} Z}”"Zﬁ IMC(i). IDC(jj'K). (Y(ijkt) -
(1 -Y(ij'kD)). Y(ijkt)) + T SIS REK EMC(0). (EDC(kK') + PDC(jk) + QDC(jk)). (Y(ijkt) -

(1= Y @jk'D).¥ (ijke) )

MinZ,: Wy XT X133 K X} 0T (s). Y (ijkt). OPC (is) + XT X1 37" T IMT (D). IDC(jj'k). (Y(ijkt) -

(1- Y(ij’kt)).Y(ijkt)) +

I ] K~Kr1

T
Z Zz Z EMT(). (EDC(KK') + PDC(jK) + QDC(R)). (¥ (jkt) — (1 = Y(GK'D). Y (ijke))
T 1 K

T J K
MinZs: W; Z Z Z |Gkt e) = w(sk t,e)
t ] K

Normalize Each Objective Function
Calculate Multi Weighting Objective Function (MOFV = w;.Z; + w,.Z, + w3.Z3)

Step 6) If MOFV>mean (MOFV)

o List Solution in the Best Solution
o  OFVYest=0FV;
o  STRbest = STR,'*
o Tournament list;=STR;
else
Call Simulated Annealing Local Escape Operator
o  Rand a Number (R)
o ifR<L.ER
o List Solution in the Best Solution
o  Tournament list;=STR;
Calculate OFV;
if OFV; < miny,.(OFV)
o  Tournament list;=STR;
o OFVYst =QFV, & STR®t = STR,"*"
o  save Candidate. list (STR,"")

Step 7) Check Stopping Criteria
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FIGURE 3. Number of generations in NSGAII (left image)/results of running in MATLAB
(right image).

Model parameters. Number of shops; Number of machines in each shop; Number of products; Operational
Process Chart; Machines capacity; Production time and Cost of operation.

Step 2. In this step, the algorithm will generate or imports a layout.

Step 3. In this step of the algorithm, a product for the scheduling of successive processes must be selected. In
the proposed algorithm, this choice is based on the time, cost, and load of a machine. In other words, those
products that are less costly and time consuming should be selected first. It should also be noted that this
is in accordance with the multi-objective model.

Step 4. Next, the algorithm will use the intersection operator to select the best set of machines for the related
process operations. To achieve this goal, the NSGA will select a set of machines that have the highest
capacity and the lowest cost and time of operation.

Step 5. While different types of machines are selected in different shops to complete a product, the algorithm
will calculate the suitability function. If the new solution is better or equal to the previous one, then the
algorithm considers the generated solution as a new member of this generation.

Step 6. Even if the new solution does not improve the amount of target observed, there should be some chance
according to a solution for the next generation. This issue can be expressed by the mutation operator, which
is also necessary, to get rid of local optimal solutions in the future.

Step 7. Finally, at each step, the algorithm will check the stop criteria (number of generations, population size
and runtime). The proposed NSGAII-SA components will be further elaborated.

4.1. Number of generations

The number of generations is the first and most important factor in the genetic algorithm, which indicates
the times when the promoted categories of populations to reach the optimal or near optimal solution. The
number of generations varies from one problem to another (Fig. 3). However, input values can play a key role
in choosing the number of generations. In this stage, a layout will be generated (or imported) by the algorithm.

4.2. Population size

Population size is an important factor in reaching or approaching optimal solutions. Population size reflects
the number of solutions that will be generated in each generations. It is obvious that the more population size,
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FIGURE 5. Cross-over operator in NSGAII (left image) /Results of running in MATLAB (right
image).

the better results will be achieved in each generations but at the same time, choosing a large population size
will cause increasing the computing time as well (Fig. 4). Hence, appropriate values should be considered for
population size.

4.3. Cross over operator

Cross-over operator is an operator for improving the selected strings of genes among the solution chromosomes.
Cross-over operator can be a mathematical function or a series of scripts to do a logic function. In this study,
a mathematical equation is used for the cross-over operator as shown by Figure 5.

(a) Choose a member from candidate list (P € OPC;g).
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(b) Find the required operations from OPC;j. Find Tournament.list; (list of the parallel machines that can
serve the required operation):

{Mpk|0pk >0 & OPC;, = 1}. (41)

(c) Calculate cost, time and load ratio for the set of consecutive machines that are required for producing the
selected product.
(d) Choose the best part route:

{Xpkt = 1|P € OPC;; & Minimum Cost, Quality and Time} . (4.2)

For example, suppose that there is a mode that machines of type 2, 3 and 4 should be used to complete a
product of type A. If the capacity of the mentioned machines be 20, 30 and 40, then only 20 products of type
A can be completed in the use of this series of machines.

4.4. Fitness function

Fitness function is an operator to evaluate the quality of the generated solutions in each generation. It is also a
criteria to pass or reject a generated solution. In most of the JSSP models in the literature, the objective function
can be considered as fitness function operator. Since the developed model in this research is multi-objective,
the MCDM goals will be considered as fitness function (Fig. 6). Weighting is one of the most important and
valid methods for solving MCDM problems. In this way, each objective function acquires a weight (which can
be put by the decision maker), and then the algorithm obtains the best solutions according to these weights. In
the following, the mathematical equation will be proposed for calculating the objective function based on the
weighting method.

4.5. Mutation operator

In metaheuristic algorithms, it is very common that solutions in a generations become more and more close
to each other that means the meta-heuristic algorithm is focusing on a specific area of the solution space.
Although it shows the accuracy of the algorithm but at the same time it prevents algorithm to search other
parts of the solution space where optimum (or near optimum solutions) may be hided. This phenomena is
called early solution convergence. To avoid such shortcoming, in the genetic algorithm, the use of the mutation
operator is a promising that allows algorithm to jump from a side of solution algorithm to another by changing
a part of solution string (genes). Mechanism of action is shown by Figure 7:

(a) Generate a random number (R).

(b) If R < Mu. (4.3)

(c) Re-arrange the part-route (use other parallel machines).

(d) If p & p’ € Tournament.list; then wipr s+ = 1 and wip e = 0; (4.4)
DO wipr st = 0 and wipripe = 1. (4.5)

4.6. Local optimum escaping operator

Falling into local optimum traps is a big concern in optimizing problems. In such situations, since a found
solution is better than its neighbors, it is considered as a optimum (or near optimum) solution. However, such
solution might be a local optimum solution. To overcome this shortcoming, the proposed NSGAII is using the
ability of Simulated Annealing algorithm to escape from local optimum traps (Fig. 8). After calculating the
fitness function for the developed solution in iterations (say Xi'), the NSGAII-SA algorithm checks them with
the best observed value achieved so far (FPestit'=1) f the fitness function value (F}'*) is less than the FPestiitr—1
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FIGURE 6. Calculating multi-objective weighting method in NSGAII (above image)/Results of
running in MATLAB (below image).

NSGAII-SA replaces the X with XPestitr=1 Byt at the same time if the value of Fi*' is more than FPestitr—1
it will be withdrawn immediately.

As shown by Figure 8, in proposed method, even after achieving the worse fitness function, the algorithm
provides a base to keep them with a small probability. Such strategy lets the algorithm to keep searching to
find better solutions as shown by Figure 8. Such local escaping operator is added to the algorithm by using a
function which described:

. Fitr, if Fit < min{Fitr, Feestitt—1} v € ity
Fbest;ltr — F];tr; if R S LER (46)
Fbestiitr=1. gtherwise

3

where R is a normal random number between (0, 1) and LER is a local escaping rate which is defined by decision
maker. Note that the exact amount of LER cannot be determined and may be different from case to case but
it can be approximately estimated using design of experiments.
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4.7. Stopping criteria
The stopping criteria in the proposed NSGAII-SA algorithm set as (Fig. 9):

(1) Reaching to maximum number of pre-defined iterations.
(2) If there is no choice in tournament list in iteration which means none of the solutions in the iteration can

improve the fitness function so there will be no choice for improving the algorithm.
(a) Suppose X,iﬂtr

(b) Tt F(XI™) > min(F(X1T), F(XIT),. . P P (X)) Yk e (4.7)

itr

is the kth solution in itrth iteration.

Then Tournament.list'™" = () for next iteration.
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FIGURE 9. Termination operator in NSGAII (left image) /Results of running in MATLAB (right

image).
TABLE 9. Initial estimation for levels of factors.
Algorithm  Factor Small scale Medium scale Large scale
Li Ly Ls L1 L L3 Li L Ls

GA Number of generations 30 50 80 50 100 150 50 100 200
Population size 20 30 50 30 50 80 50 80 100
Mutation rate 01 02 03 01 02 03 01 02 03
Local escaping rate 01 02 03 01 02 03 01 02 03

5. DESIGN OF EXPERIMENTS

In this section design of experiments is used to estimate appropriate values for the elements of the NSGAII-SA.
The propose NSGAII-SA has 4 main elements which are number of generations, population size, mutation rate
and local escaping rate. Hence, an Lg(4”3) orthogonal optimization in Taguchi method is taken into account.
In this research due to complexity of the mathematical model and the solving algorithm it is very hard to
estimate a comprehensive mathematical formula for each of the input parameters. Moreover, the results of
using such formulas in complex conditions may not be trustful. Therefore, as used by many other scientists, for
each parameter, the models are run for a range of values while other parameters are fixed at maximum point
and then the most reasonable value will be chosen by comparing the observed objective function. The best
estimated values for each parameter of metaheuristics are shown by the Table 9.

The levels of factors, which are shown by Table 10 are then used for DOE in order to find the best estimating
value for each parameter, significant parameters and interactions between them.

Upon implementing the experiments designed for the Taguchi method (Tab. 10), the obtained results show
that the algorithm is sensitive to the number of generations, population size, local escaping rate and mutation
rate respectively. Hence, the appropriate ranges for parameters can be set as what shown by Table 11.
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TABLE 10. Results of implementing the Lg(4"3) experiments for Taguchi method for NSGAII-SA.

Experiment Factor OFV
number Generations Population Mutation rate Local
(A) size (B) (C) escaping
rate (D)
1 1 1 1 1 469
2 1 2 2 2 5239
3 1 3 3 3 3334
4 2 1 2 2 4763
5 2 2 3 3 5137
6 2 3 1 1 533
7 3 1 3 3 5070
8 3 2 1 1 1297
9 3 3 2 2 4869

TABLE 11. An estimation for the inputs of the proposed metaheuristic.

Algorithm Factor Small scale Medium scale Large scale
NSGAII-SA  Number of generations 80 100 150
Population size 50 80 80
Mutation rate 0.1 0.3 0.3
Local escaping rate 0.2 0.2 0.3

6. RESULTS AND DISCUSSION

6.1. Solving small size problem using NSGAII-SA

In order to confirm the operation of the mathematical algorithm, data from a heavy vehicles parts production
factory located on the Tehran-Qazvin highway were used. In part of the plant, 4 types of the products related
to the heavy vehicles chassis in 2 shops are produced. In these two large shops there are 20 machines of cutting,
bending, welding and coloring, which are placed in the factory traditionally. These machines are coded in
numbers 1 to 4 in the mathematical algorithm.

Initial information obtained from problem in the mathematical algorithm was coded as follows:

i=4

j=4

k=2

t=4

length=5

width=6
CL=length*width
NOM=[4 5 6 5]
neighbour_radius=2

The data of the integrated algorithm of the ant colony and the simulated cooling which was obtained from
the experimental design part were considered as follows:
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FI1GURE 10. The layout of company.

Generations=80
Popsize=50
Local_escape=0.1
Mutation Rate=0.2.

In addition, other information needed for problem solving was extracted from the organization and coded as
follows:

110 1].
machine_capacity=[900 900 800 800]
op=[14 12 16 14]
setup=[220 150 320 180]
inter-shop_cost=[6 8 12 9]
intra-shop_cost=[2 3 4 6]
inter-shop_time=[2 3 2 2]
intra-shop_time=[1 2 2 3]
Lost_sale_cost=[100 200 50 80]
SETUP_TIME=[5 4 6 5]
OP_TIME=[12 5 7 5].

In this sample, the demand for products was estimated by the average parameters and variance by the
production planning unit and based on sales data.

dmean = [221 165 185 192; d_sigma=1[2 5 5 9; d =[219 161 190 189
200 130 170 155; 237 5; 198 135 175 155
300 150 160 140; 356 1; 300 152 158 142
130 140 150 135] 141 5] 131 131 150 140].

Figure 10 represents the layout of the company. The first issue after the problem solving by the algorithm is
the time calculation. In this case, the time calculation is about 78s, which is evaluated appropriately.

Elapsed time is 78.799s.

In the following, the best values of the produced products inside the shops were calculated by the
“Best_observed_Inhouse_manufacturing” matrix as follows. Also, due to the impossibility of producing products
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TABLE 12. The obtained part route.

Selected machines order Planning Product Production
Machine 1  Machine 2 Machine 3 Machine 4  period type volume
12 5 7 0 1 2 32
6 3 7 0 1 4 32
12 4 15 0 1 4 32
16 5 15 0 1 3 26
4 5 8 0 1 3 26
12 4 15 0 1 1 30
2 5 8 0 1 2 32
3 5 15 0 1 3 26
6 16 42 0 1 1 30
2 3 8 0 1 4 32
4 35 7 0 1 3 26
44 48 8 0 1 3 26
6 16 42 0 1 1 30
2 3 8 0 1 1 30
2 3 1 0 1 4 32
12 44 15 0 1 4 32
24 4 7 0 1 1 30
2 4 7 0 1 1 30
6 48 42 0 1 2 32
12 44 15 0 1 4 29

by external suppliers, these values are calculated and equaled to zero according to the below matrix.

Best_observed_Inhouse manufacturing = Best_observed Out_source =
219 161 190 189 0000
198 135 175 155 0000
300 152 158 142 0000
131 131 150 140 0000

In the following, the best sequencing paths of the product operations (flow of materials) were also shown
(Tab. 12). In each case, the amount of loading on a machine is equal to the minimum remaining capacity of the
machine and the amount of half-finished products reached by the machine (from the previous machine).

As shown by Figure 11, the algorithm starts the value of the target functions from 1.2 and then reaches to
0.78 after 80 repetitions. The downside slope of the algorithm represents the high power of the algorithm in
reducing the target functions. And as previously stated, the existence of the relative extreme points (in this
mathematical model, in particular, relative minimum) indicates the existence of local optimal points. According
to the problem data, the proposed algorithm can solve a real-world problem in a short time.

6.2. Solving numerical case studies

In this section, a set of the numerical examples that are extract from the literature is solved for validating
the performance of the proposed algorithm. The 12 numerical examples, where data are mostly extracted from
subject literature, have been selected in small, medium and large sizes (Tab. 13. The type of processor which
is used has a dramatic effect on the output speed of the algorithm. So in this research, a personal computer
system with Intel®Core™ i5 that has the CPU 2.0 GH and 4 GB RAM will be used.The results are shown
by Table 14. The outcomes show that the algorithm can solve all experiments with different dimensions that
have been extracted from the literature. Table 14 also compares the outcomes of the SGAII-SA with Standard
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TABLE 13. Input data collected from the literature for solving experiments.

Size No. Problem source K P M OP PP AS NOM
Small 1 Askin and Huang [2] 2 2 2 2 4 8 (2 4]
2 Askin and Huang [2) 2 2 4 2 4 20 [3 6]
3 Suer and Cedenio [40] 1 4 4 4 4 15 3232
4 Askin and Huang [2 8 2 2 2 4 4 14 6]
Medium 5 Askin and Huang [2 8 2 2 2 4 4 8 §]
6 Mahdavi et al. [25] 2 4 4 4 2 20 453 6]
7 Mahdavi et al. [26] 2 4 4 4 4 16 [436 5]
8 Aryanezhad et al. [1] 3 3 3 3 3 20 54 5]
Large 9 Aryanezhad et al. [1 5 4 5 5 4 8 43233]
10 Aryanezhad et al. [1] 4 5 5 5 4 12 24344
11 Liet al [23] 2 5 5 5 4 15 [35423
12 Mahdavi et al. [25] 2 6 6 6 3 20 [5436054]

Notes. K: Shops; P: Product; M: Machine; O.P: Operations; P.P: Planning Period; A.S: Available Space; N.O.M: Number
of Machines.

Genetic Algorithm. The results show that for small size problems, both algorithms reported the same results
but for the medium and large scale problems NSGAII-SA always reported solutions with better quality.

The outcomes showed that the proposed algorithm is strong enough to solve all studied cases without failures.
In addition, the algorithm could solve the large scale problems in less than 2min (123s). In order to check the
performance of the algorithm the objective function value (fitness function) of each problem in the 1st generation
is compared with ones that observed in the last generation. The results indicated that the algorithm can improve
small size cases up to 65%, 31.2% for the medium size cases and 17% for large scale ones. In addition, in order
to check the capability of the proposed algorithm, all studied cases are solved with the standard GA once again
and the solutions is compared with the NSGAII-SA. The outcomes revealed that in all studied cases, NSGAII-
SA reported better solutions (best OFV NSGAII-SA column in the Table 14) than classic GA (standard GA
column in the Table 14).
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TABLE 14. Results of solving experiments using NSGAII-SA.

51189

No. Reference Initial OFV Best OFV %Improvement  Standard GA  CPU time
NSGAII-SA NSGAII-SA
1 Askin and Huang [2] 2.1370 0.7487 64.96 0.749 16.399
2 Askin and Huang [2] 0.89 0.78 12.360 0.780 7.71
3 Suer and Cedefio [40] 0.747 0.702 16.024 0.688 11.915
4 Askin and Huang [2] 0.703 0.579 17.639 0.579 18.599
5 Askin and Huang [2] 0.869 0.728 16.226 0.725 18.367
6 Mahdavi et al. [25] 0.869 0.841 31.222 0.841 36.293
7 Mahdavi et al. [26] 0.922 0.835 9.436 0.743 64.632
8 Aryanezhad et al. [1] 0.823 0.696 15.431 0.564 24.723
9 Aryanezhad et al. [1] 0.827 0.752 9.069 0.654 71.691
10  Aryanezhad et al. [1] 0.79 0.701 11.266 0.652 72.143
11 Li et al. [23] 0.848 0.704 16.981 0.584 123.898
12 Mahdavi et al. [25] 0.81 0.694 14.321 0.548 120.473
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reduction diagram problem number 1.

FIGURE 13. Weighting target function
reduction diagram problem number 2.

6.3. Analysis of the reduction power of weighting target functions

Figures 12-23 show the optimization process in each of the solved experiments in the Table 14. The figures
shows that the proposed hybrid NSGAII-SA can successfully reduce objective function value during searching
process.

As the slope of the graphs yields, the algorithm is able to reduce the amount of weight target functions to a
large extent with the appropriate slope during the determined repetitions.

7. CONCLUSIONS

In this paper, a mathematical model is developed for multi-objective scheduling of products in a job-shop
based manufacturing system. For this purpose, a new mathematical programming model (multi-objective non-
linear mixed integer programming) is developed which contains 3 opposing objectives: minimizing production
costs, completion time and average of machine load. The outcome of the model can help decision makers to find
best material sequences in each manufacturing period which best match to all mentioned objective functions.
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Then, the complexity of the model is investigated that showed the model can be classified into NP-hard
problems which cause using meta-heuristic algorithms accordingly. Hence, in order to solve the large-scale
problem, a hybrid NSGAII and SA metaheuristic algorithm was used. In order to prove the quality of the
optimal solution obtained by solving the model with the acquired algorithm, the outcomes are also compared
with a classic GA. In addition, the performance of the solving algorithm for the initial and final solution strings
are compared. The algorithm are then applied for small, medium and large scale problems from the literature.
The results showed that the market demand uncertainty can significantly affect to the process of job shop
scheduling and impose harms in manufacturing systems in terms of product completion and machine loads
while operational cost are not too sensitive to product demands. In addition, the outcomes show the superiority
of the NSGAII-SA in providing solutions with better quality than standard GA in a reasonable solving time.

Further expansion of the proposed model can be considered by using other metaheuristic algorithms. More-
over, integration of proposed model with production planning is suggested for future researches.
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