RAIRO-Oper. Res. 55 (2021) S2071-S2082 RAIRO Operations Research
https://doi.org/10.1051/ro/2020078 WWW.rairo-ro.org

A REDUCTION HEURISTIC FOR THE ALL-COLORS SHORTEST PATH
PROBLEM

FrRANCESCO CARRABS, RAFFAELE CERULLI AND ANDREA RAICONT*

Abstract. The All-Colors Shortest Path (ACSP) is a recently introduced NP-Hard optimization
problem, in which a color is assigned to each vertex of an edge weighted graph, and the aim is to find
the shortest path spanning all colors. The solution path can be not simple, that is it is possible to visit
multiple times the same vertices if it is a convenient choice. The starting vertex can be constrained
(ACSP) or not (ACSP-UE). We propose a reduction heuristic based on the transformation of any
ACSP-UE instance into an Equality Generalized Traveling Salesman Problem one. Computational
results show the algorithm to outperform the best previously known one.

Mathematics Subject Classification. 90C59, 90C27, 05C38.

Received March 25, 2020. Accepted July 5, 2020.

1. INTRODUCTION

The All-Colors Shortest Path (ACSP) is a recently introduced combinatorial optimization problem. Given an
undirected and edge-weighted graph, a logical attribute (defined color) is assigned to each of its vertices. The
aim is to find a minimum-weight path, starting from a predefined source vertex, that spans at least a vertex
for each color. Note that such a path could be non-simple, given that depending on the structure of the input
graph, it may contain multiple occurrences of the same vertex. Multiple vertices for some colors may also be
traversed.

The use of colors to add another layer of information on graphs has been formalized long ago, in its two
main variants — vertex colored graphs and edge colored graphs, and their power in modeling different types
of problems has been extensively discussed. In particular, the problem of finding special paths in edge colored
graphs is discussed in [3,4,6].

The problem has several applications (see for instance [2,5,7]). In particular, it is suited to model path
planning for routes on network topologies (such as urban roads) in which crossing the same location multiple
times may be convenient or even necessary. We can consider, for instance, a problem related to the distribution
or collection of items. In this scenario, vertices corresponding to the same color represent a natural way to
model alternative stores or deposits where each class of items can be picked up or delivered. Alternatively,
colors may represent alternative candidate locations in which such facilities may be constructed. In an outdoor
exploration scenario, a mobile unit may have to collect samples or readings related to various terrain types, or

Keywords. All-Colors Shortest Path problem, Equality Generalized Traveling Salesman Problem, E-GTSP, heuristic.

1 Department of Mathematics, University of Salerno, Fisciano, Italy
*Corresponding author: araiconi@unisa.it

Article published by EDP Sciences © EDP Sciences, ROADEF, SMAI 2021

https://doi.org/10.1051/ro/2020078
https://www.rairo-ro.org
mailto:araiconi@unisa.it
https://www.edpsciences.org

S2072 FRANCESCO CARRABS ET AL.

other environmental conditions that can be found in sub-regions of a geographical area of interest. In this case,
sub-regions with the same features would be marked by the same color. Finally, we note that in [1] the problem
was linked to the modeling of optimal routes of a mobile beacon used to aid trilateration in a wireless sensor
network offering a localization service.

All-Colors Shortest Path was first proposed in [5]. In this work, the problem was proven to be NP-Hard and
not approximable within a constant factor unless P = N P. Furthermore, the authors proposed an Integer Linear
Programming (ILP) formulation and six heuristics. In more detail, they presented three metaheuristics, using
the Simulated Annealing, Ant Colony Optimization and Genetic paradigms respectively, and three iterative
rounding heuristics based on the LP relaxation of the proposed formulation. In [2] the authors analyzed ACSP
in the case in which the input graph is a tree. They proved that the problem remains difficult, and presented
specialized heuristics.

In [7] the authors introduced a variant of ACSP named, All-Colors Shortest Path with Unconstrained End-
points (ACSP-UE), in which the source vertex is unspecified, meaning that both endpoints may correspond
to any vertex of the graph. The authors proposed a mathematical formulation and a Variable Neighborhood
Search (VNS) metaheuristic, adaptable to solve both ACSP and ACSP-UE with simple modifications. The VNS
algorithm was experimentally proven to outperform all algorithms proposed in [5] on their proposed dataset
for ACSP. Furthermore, a new, larger dataset was created to test the performances of the VNS algorithm for
ACSP-UE. A key concept underlying this algorithm is the one of high-level solution representation, which is
resumed in Section 2. Furthermore, the authors provided a polynomial-time transformation from each of the
two problems to the other, such that the optimal solution for ACSP (resp. ACSP-UE) can be trivially obtained
from an optimal solution for ACSP-UE (resp. ACSP) on an appropriately built graph.

In this work, we prove that any ACSP-UE instance can be transformed, again in polynomial time, into a
symmetric Equality Generalized Traveling Salesman Problem (E-GTSP, see [9]) one. The transformation takes
advantage of the high-level solution concept. In particular, we show that from any feasible (resp. optimal) E-
GTSP solution for the transformed problem we can easily derive a feasible (resp. optimal) ACSP-UE solution
for the original one, with identical cost. Note that, while we focus on the ACSP-UE problem, the transformation
from ACSP to ACSP-UE proposed in [7] also suggests a possible transformation from ACSP to E-GTSP.

The E-GTSP problem is a variant of the well-known symmetric Traveling Salesman Problem (TSP), in
which vertices are partitioned into clusters, and the tour corresponding to any feasible solution has to include
exactly one vertex for each cluster. In the symmetric Generalized Traveling Salesman Problem (GTSP) variant,
the solution may possibly contain multiple vertices for each cluster. In the paper, we will always refer to the
symmetric versions of these problems unless differently specified.

Both GTSP and E-GTSP are NP-Hard, since they contain TSP in the special case in which all clusters are
singletons. Furthermore, the two problems are equivalent when the edge costs of the input graph satisfy the
triangle inequality; indeed, in this case the optimal GTSP solution always contains exactly one vertex for each
cluster (see [10]).

E-GTSP and GTSP have been both widely studied in the literature; for instance [8-10, 14, 15, 17-19].
A heuristic method with remarkable performances for E-GTSP, called GLKH, was proposed in [13].

In this paper we propose a general resolution framework for ACSP-UE that involves the transformation
of the input instance into an E-GTSP one and the resolution of the resulting problem with an appropriate
algorithm. In particular, we show that when GLKH is used for this step, an effective heuristic for ACSP-UE can
be obtained. Indeed, computational results show that this approach outperforms the VNS algorithm proposed
in [7] in terms of both computational time and solution quality.

The rest of the work is organized as follows. A formal definition of ACSP-UE is provided in Section 2, along
with a description of the concept of high-level solution and some related properties. The transformation from
ACSP-UE to E-GTSP is described in Section 3. The proposed algorithm, based on this transformation, is
discussed in Section 4. Section 5 resumes the results of our computational experiments, while final remarks are
contained in Section 6.

A REDUCTION HEURISTIC FOR THE ALL-COLORS SHORTEST PATH PROBLEM S2073

€1)

Cl C2 C3 C3 C4 C3 CS

1

C1 C

) =]
4 1 2 2
(D——) () O,

(c)

FIGURE 1. ACSP-UE instance and feasible solution. (a) Example graph G, (b) ACSP-UE
Solution, (c¢) High-level representation.

2. PROBLEM DEFINITION AND PROPERTIES

ACSP-UE is defined on connected, undirected, edge-weighted and vertex-colored graphs. Let G = (V, E, C)
be such a graph. Each vertex belonging to V' = {vy,...,v,} is assigned to a color belonging to C' = {¢1,...,ck}
(k < n), while a positive weight w(e;) € RT is associated to every edge e; belonging to £ = {e1,...,em}

The ACSP-UE objective is to find a path p = [of,...,v}] in G (i.e., {0}, 07} € EVie {1,...,h—1}), such
that the sum of the weights of its edges is minimized, and at least a vertex is traversed for each color of C.

As mentioned in Section 1, feasible solutions for ACSP-UE do not contain a predefined number of vertices and
edges, since they can correspond to non-simple paths with possibly multiple vertices for each color. However,
a compact, fixed-length representation for any ACSP-UE solution was introduced in [7]. In more detail, given
the solution p = [v],...,v}], we define its high-level representation to be the sequence of k = |C| vertices
p= <v{3 e ,v£>, corresponding to the first occurrence of each color in p, in the same order in which they are
encountered in the path. Note that p may be interpreted as a simple path defined on a complete graph with set
of vertices V. We associate to p the same weight of the original solution p it refers to, and to each of its edges
the sum of the weights of the edges that it replaces in p.

An example graph G with six vertices and five colors is shown in Figure la, where weights and colors
are reported next to the related edges and vertices, respectively. A feasible ACSP-UE solution is, for instance,
p = [vs, V4, V1, V2, V5, U2, Ug], with cost 9. The path p is shown in Figure 1b, where edges belonging to the solution
are shown as directed arcs to illustrate the visiting order of the vertices. The related high-level representation
is p = (v3,v4,v1, Vs, vg). The solution transformation in its high-level representation is shown in Figure 1lc.

Finally, we present two properties proven in [7] regarding optimal solutions and their high-level representation:

S2074 FRANCESCO CARRABS ET AL.

Proposition 2.1. Let p = [v],...,v}] be an optimal ACSP-UE solution, and let p = <v’f, e ,vﬁ) be its high-
level representation. The two paths share the same endpoints; that is, v = v} and v) = v}.

Proposition 2.2. Let p = [v],...,v}] be an optimal ACSP-UE solution, and let p = <vf, e ,vﬁ} be its high-
level representation. Any two consecutive vertices v! and fo m P are connected in p by their shortest path
computed on the input graph G.

3. TRANSFORMATION FROM ACSP-UE 10 E-GTSP

In this section we prove that it is possible to transform, in polynomial time, the ACSP-UE problem into
the E-GTSP one. Moreover, we will describe a general approach to derive ACSP-UE solutions from E-GTSP
ones that takes advantage of this transformation, as well as the heuristic for E-GTSP that we embedded in this
algorithm.

We first report here the formal definition of E-GTSP. Let G’ = (V', E’) be a complete and edge weighted graph
in which the vertices are partitioned in mutually exclusive clusters. E-GTSP consists of finding a minimum-cost
tour that starts and ends into a depot, and visits exactly one vertex for each cluster.

We note that, like high-level solutions for ACSP-UE, E-GTSP ones have fixed length, containing exactly one
vertex for each cluster. This observation, along with the properties of optimal ACSP-UE solutions reported in
Propositions 2.1 and 2.2, is the main intuition underlying the proposed transformation.

Let G = (V, E,C) be an input graph for the ACSP-UE problem (k = |C|). We build a complete, undirected
graph G’ = (V’, E’) with nonnegative edge weights, whose vertices are partitioned in k + 1 clusters, as follows:

V' contains V' plus one additional vertex, the depot vg. Formally V' =V U {vg}.

The depot is directly connected to all the other vertices in V' with edges whose cost is equal to zero.

For each couple of vertices v; € V,v; € V, the weight of {v;,v;} in G’ is equal to the weight of their shortest

path in G.

e Each vertex in G’ is clustered according to its color in G. That is, if v; € V is assigned to the jth color in
G (j=1,...,k), then v; belongs to the jth cluster in G’.

e The new vertex vy is the only element of the (k + 1)th cluster.

It is straightforward to see that the construction of G’ can be carried out in polynomial time. Moreover, it
is worth noting that the size of G’ is not significantly larger than the one of the original graph G, since it is a
complete graph that contains just one additional vertex (the depot vg). These properties are essential in order
to obtain a competitive ACSP-UE algorithm based on the proposed transformation.

Another interesting property of G’ is that, given that edge weights are obtained through shortest paths among
the vertices of G, the triangle inequality always holds.

In the following, given a graph G; and a feasible ACSP-UE solution x on it, we use the notation w;‘,Gl to
represent its cost. Similarly, if y is an E-GTSP solution on a graph G, its cost will be represented with the
notation w£G2. We want to demonstrate the following result:

Theorem 3.1. There exists a high-level ACSP-UE solution p in G with W;?,G < r if and only if there exists
a feasible E-GTSP solution t in G’ with wa, <r.

Proof. Let p = (vf e ,v£> be the high-level representation of a feasible ACSP-UE solution in G, with
wz‘%G < r. Now, let us build the tour ¢t = [vo,vf, . ,vf,uo] in G’. Since t visits exactly one vertex for each
cluster, it is a feasible E-GTSP solution. By construction, the edges {vo, v’} and {v?* vy} have weight zero.
Furthermore, the weight of each edge {vf , vf t1} in t is lower than or equal to the weight of the corresponding
edge in p, since weights in G’ correspond to shortest path costs in G. It follows that wa, < wﬁc <r.

Let ¢t = [vg, v, ..., vL, vo] be a feasible E-GTSP solution in G’ with wfc/ < r. We build from ¢ a feasible
ACSP-UE solution p in G as follows:

A REDUCTION HEURISTIC FOR THE ALL-COLORS SHORTEST PATH PROBLEM S2075

<

C3 C2 C3 C3 C4 C3 CS

< G)
1 1 3 2
OmO=0 () O,

(b)

FIGURE 2. Obtaining an ACSP-UE solution from an E-GTSP one. (a) E-GTSP solution in G,
(b) ACSP-UE solution in G.

(1) Let v} be the first endpoint of p;
(2) Fori=1,...,k—1, append to p the shortest path between v} and v}, in G.

It is easy to note that p spans all colors of C', and that it is therefore a feasible solution. Furthermore, by
construction, the weight of each shortest path appended to p in Step 2 has the same weight of the edge
between the same vertices in ¢. From p we derive the corresponding high-level solution p and we have that

4. =wf, < O
Wi =Wwig ST

We illustrate the transformation with an example. Let G’ be a complete graph with seven vertices and six clus-
ters, computed as described starting from the graph G shown in Figure 1la. Furthermore, let p; be the high-level
representation of the feasible ACSP-UE solution in G shown in Figure lc. The tour ¢ = [vg, v3, v4, V1, Us, Vg, Vo]
is the E-GTSP solution in G’ built from p; using the method described in the proof of Theorem 3.1,
implication. This solution is shown in Figure 2a, where dashed circles represent clusters. We note that, in this
case, wa, =7< wﬁl’g = 9. From ¢, we can build a new feasible ACSP-UE solution in G using the method
described in the proof of Theorem 3.1, implication. The new solution is ps = [vs, v1, V4, V1, V2, Vs, U2, Ug]
and its corresponding high-level solution is ps = (v3, v1, v4, V5, vg). We show py and po in Figure 2b. As expected,
wﬁz’G = wfa/ = 7. In particular, in the case of this instance, po and ¢ are the optimal solutions for ACSP-UE
in G and E-GTSP in G, respectively.

4. A NEW ALGORITHM FOR ACSP-UE

According to Theorem 3.1 and its proof, it is possible to solve any ACSP-UE problem instance by solving an
appropriately defined E-GTSP one. This constitutes a promising line of research, given the extensive amount of

S2076 FRANCESCO CARRABS ET AL.

effective exact and heuristic algorithms available in the literature for this well-known problem. In more detail,
a general resolution approach for ACSP-UE can be obtained as follows:

(1) Build the new graph G’ from G as described in Section 3;
(2) Find a feasible E-GTSP solution ¢ in G’, by applying an appropriate algorithm;
(3) Obtain a feasible ACSP-UE solution in G from ¢, as described in the proof of Theorem 3.1, implication.

For the second step of the algorithm, we opted for the recent heuristic proposed by Helsgaun [13], named
GLKH. The idea behind this heuristic is to transform the E-GTSP input instance into an asymmetric TSP one,
which is then solved using the Lin-Kernighan-Helsgaun (LKH) TSP solver [11,12]. LKH is an implementation
and improvement of the Lin-Kernighan local search algorithm [16], based on variable k-opt neighborhoods,
a generalization of 2-opt. GLKH has been proven to have impressive performances on E-GTSP benchmark
instances®. The pseudocode of the resulting algorithm, that we call A-GLKH (short for ACSP-UE Algorithm
embedding GLKH), is provided in Algorithm 1.

Algorithm 1: A-GLKH.

Input: Graph G = (V, E,C);
Output: A feasible ACSP-UE solution in G

1 G’ < buildNewGraph(G); // build G’ as described in Section 3
2 ¢« GLKH (G"); // solve E-GTSP on G’
3 p < buildPath (G,t); // build p from t as described in Section 3

4 return p

Note that we can transform A-GLKH in an exact approach for ACSP-UE, by simply replacing the GLKH
heuristic in Step 2 with an exact algorithm for E-GTSP. It can also be noted that, since the triangle inequality
always holds for G/, and exact algorithm for GTSP can alternatively be used in this case.

5. COMPUTATIONAL TESTS

In this section we compare our A-GLKH algorithm with the VNS algorithm proposed in [7] since, to the best
of our knowledge, it is the best performing ACSP-UE algorithm proposed in the literature. A-GLKH is coded
in C++, although the GLKH component is written in C. To better evaluate the performances of the heuristics,
we also report results obtained by solving, using CPLEX 12.10, the ILP formulation proposed in [7]. In order
to obtain as many optimal solutions as possible, we run CPLEX in multithread mode and with a time limit of
3 hours. All tests were performed on a machine with an Intel Core i7 processor running at 3.4 GHz and 8 GB
of RAM.

We carried out comparisons on the whole dataset proposed in [7]. In these instances, the number of vertices n
belongs to the set {25, 50, 75,100, 150}. A density parameter d, ranging in the set {0.2,0.3,0.4,0.5}, is considered.
For a given choice of n and d, the resulting number of edges m is equal to w x d. Furthermore, the number
of colors k belongs to the set {[0.1n], [0.2n], [0.3n], [0.4n]}. For each combination of parameters, five different
random instances were generated. The simplest case n = 25, k = [0.1n] = 3 was discarded. Hence, the dataset
considered in [7] is composed of 76 scenarios (parameter choices), and 380 individual instances.

Moreover, for this work we considered a new dataset of larger instances, generated by choosing n in the set
{200, 300,400}, and using the same values for the other parameters. This new dataset is therefore composed of
48 scenarios and 240 instances. In the following, we refer to the original instances (with n < 150) as small, and
to the new ones as large.

Tables 1 and 2 contain the results of the comparison between VNS and A-GLKH on the small instances. All
values reported in the tables are averages computed on the five instances corresponding to the same scenario.

2For details, see http://webhoteld.ruc.dk/~keld/research/GLKH/

http://webhotel4.ruc.dk/~keld/research/GLKH/

A REDUCTION HEURISTIC FOR THE ALL-COLORS SHORTEST PATH PROBLEM

TABLE 1. Computational results on the small instances (1).

Instances VNS A-GLKH
n m k Opt Obj Time Gap (%) Obj Time Gap (%)
25 60 5 51.4 51.4 0.00 0.00 51.4 0.47 0.00
25 90 5 37.6 37.6 0.00 0.00 37.6 0.37 0.00
25 120 5 384 38.4 0.00 0.00 38.4 0.50 0.00
25 150 5 33.2 35.0 0.00 5.42 33.2 0.45 0.00
25 60 8 81.0 81.0 0.01 0.00 81.0 0.78 0.00
25 90 8 88.4 88.4 0.01 0.00 88.4 0.99 0.00
25 120 8 80.0 80.8 0.01 1.00 80.0 0.92 0.00
25 150 8 79.2 79.4 0.01 0.25 79.2 0.97 0.00
25 60 10 141.8 141.8 0.01 0.00 141.8 0.80 0.00
25 90 10 123.2 123.2 0.01 0.00 123.2 1.19 0.00
25 120 10 103.2 103.6 0.01 0.39 103.2 1.22 0.00
25 150 10 87.8 87.8 0.01 0.00 87.8 1.72 0.00
50 245 5 30.6 30.6 0.01 0.00 30.6 0.70 0.00
50 367 5 24.8 24.8 0.01 0.00 24.8 0.65 0.00
50 490 5 25.8 25.8 0.01 0.00 25.8 0.77 0.00
50 612 5 22.6 22.6 0.01 0.00 22.6 0.85 0.00
50 245 10 85.2 85.2 0.05 0.00 85.2 2.23 0.00
50 367 10 70.2 70.2 0.05 0.00 70.2 2.11 0.00
50 490 10 69.2 69.2 0.05 0.00 69.2 2.42 0.00
50 612 10 63.8 63.8 0.05 0.00 63.8 2.85 0.00
50 245 15 153 153.0 0.12 0.00 153.0 3.61 0.00
50 367 15 125.8 125.8 0.13 0.00 125.8 4.29 0.00
50 490 15 125.4 126.2 0.12 0.64 125.4 4.17 0.00
50 612 15 104.8 105.8 0.10 0.95 104.8 4.23 0.00
50 245 20 211.8 214.8 0.21 1.42 211.8 4.81 0.00
50 367 20 191.2 191.8 0.22 0.31 191.2 5.05 0.00
50 490 20 154.2 154.8 0.21 0.39 154.2 5.10 0.00
50 612 20 159.6 159.6 0.21 0.00 159.6 5.84 0.00
75 555 8 51.4 51.4 0.07 0.00 51.4 2.21 0.00
75 832 8 46.0 46.4 0.07 0.87 46.0 2.25 0.00
75 1110 8 36.8 36.8 0.07 0.00 36.8 2.27 0.00
75 1387 8 36.8 36.8 0.06 0.00 36.8 2.38 0.00
75 555 15 111.4 112.0 0.24 0.54 1114 5.02 0.00
75 832 15 103.2 103.4 0.27 0.19 103.2 5.31 0.00
75 1110 15 89.8 89.8 0.26 0.00 89.8 6.46 0.00
75 1387 15 83.0 83.6 0.24 0.72 83.0 6.57 0.00
75 555 23 203.0 205.8 0.70 1.38 203.0 8.00 0.00
75 832 23 173.2 175.0 0.62 1.04 173.2 7.30 0.00
75 1110 23 153.4 157.4 0.64 2.61 153.4 11.26 0.00
75 1387 23 139.6 139.6 0.66 0.00 139.6 8.66 0.00
75 555 30 289.8 294.2 1.57 1.52 289.8 9.46 0.00
75 832 30 228.0 230.0 1.41 0.88 228.0 11.03 0.00
75 1110 30 208.0 208.4 1.37 0.19 208.0 12.08 0.00
75 1387 30 198.0 200.2 1.23 1.11 198.0 10.12 0.00

52077

S2078 FRANCESCO CARRABS ET AL.

TABLE 2. Computational results on the small instances (2).

Instances VNS A-GLKH
n m k Opt Obj Time Gap (%) Obj Time Gap (%)
100 990 10 59.4 60.0 0.20 1.01 59.4 3.89 0.00
100 1485 10 46.8 46.8 0.19 0.00 46.8 4.36 0.00
100 1980 10 42.4 42.4 0.20 0.00 42.4 4.22 0.00
100 2475 10 42.4 43.2 0.19 1.89 42.4 5.06 0.00
100 990 20 138.4 139.8 0.85 1.01 138.4 9.10 0.00
100 1485 20 111.0 112.0 0.81 0.90 111.2 10.19 0.18
100 1980 20 110.6 110.6 0.82 0.00 110.6 11.19 0.00
100 2475 20 96.8 97.6 0.78 0.83 96.8 13.28 0.00
100 990 30 236.8 238.8 2.56 0.84 237.6 11.95 0.34
100 1485 30 202.8 205.4 232 1.28 202.8 12.70 0.00
100 1980 30 174.4 177.0 2.25 1.49 174.4 14.05 0.00
100 2475 30 163.8 165.2 2.08 0.85 163.8 14.90 0.00
100 990 40 324.4 332.0 5.97 2.34 324.8 12.06 0.12
100 1485 40 287.6 290.2 5.34 0.90 287.8 17.44 0.07
100 1980 40 229.8 231.6 4.55 0.78 229.8 14.56 0.00
100 2475 40 228.4 231.6 4.95 1.40 228.6 21.87 0.09
150 2235 15 77.0 77.8 1.11 1.04 77.0 10.82 0.00
150 3352 15 66.6 67.0 1.06 0.60 66.6 13.60 0.00
150 4470 15 60.2 60.4 1.05 0.33 60.2 13.25 0.00
150 5587 15 56.8 56.8 1.04 0.00 56.8 16.25 0.00
150 2235 30 180.0 180.6 5.33 0.33 180.0 19.92 0.00
150 3352 30 145.6 146.2 5.03 0.41 146.0 18.12 0.27
150 4470 30 134.8 136.4 5.02 1.19 135.0 26.69 0.15
150 5587 30 130.0 130.4 4.55 0.31 130.2 24.92 0.15
150 2235 45 307.2 315.4 17.23 2.67 308.0 28.61 0.26
150 3352 45 248.4 254.6 15.53 2.50 249.4 26.73 0.40
150 4470 45 222.0 225.8 14.16 1.71 222.4 32.72 0.18
150 5587 45 200.8 203.2 15.04 1.20 201.2 3299 0.20
150 2235 60 424.6 433.4 45.87 2.07 425.0 32.93 0.09
150 3352 60 344.4 352.0 38.81 2.21 344.8 36.91 0.12
150 4470 60 303.4 308.6 39.19 1.71 303.8 39.40 0.13
150 5587 60 288.6 298.4 37.93 3.40 289.6 41.79 0.35

Under the Instances heading, we report the instances characteristics (number of vertices n, number of edges
m and number of colors k). The next column (Opt) reports the optimal solution values, provided by CPLEX.
Indeed, all small instances were solved to optimality.

The following three columns report, for VNS, the solution value (Obj), the computational time (Time) and
the percentage gaps (Gap) between the objective function values returned by the algorithm and the Opt values.

Obj(VNS) — Opt
Opt

These gaps are computed by using the formula 100 x . The final three columns report analogous

data for A-GLKH.

Looking at the gap values, it can be noticed that both algorithms are very effective, since they find solutions
that are either optimal or close to the optimal ones. VNS finds the optimal solutions only for 28 out of 76
scenarios. For 52 scenarios the gap is within 1%, while it is greater than 2% for 8 out of 76 scenarios, with a
peak equal to 5.42% (n = 25, m = 150, k = 5). Much better results are obtained by A-GLKH that finds the
optimal solutions for 60 out of 76 scenarios. On the remaining 16 cases, its gap is always lower than 0.5%. These
results prove A-GLKH to generally outperform VNS in terms of solution quality.

A REDUCTION HEURISTIC FOR THE ALL-COLORS SHORTEST PATH PROBLEM S2079

90%

80%

70%
60%
50%

40% —VNS

30% =—GTSP

% Instances Solved

20%
10%

0%
0 5 10 15 20 25 30

CPU Time (in seconds)

F1GURE 3. Performance comparison between VNS and A-GLKH on the small instances.

Regarding the computational times of the two algorithms, we note that VNS is always faster than A-GLKH,
except for the instances with n = 150 and k = 60, where the performances of the algorithms are almost identical.
However, both algorithms are very fast, always running within 45 s.

It is worth noting that the CPU time of both algorithms increases as the number of colors increases. For
instance, on the scenarios with 150 vertices we can see that increasing the number of colors from 15 to 60 raises
the VNS computational times from ~1 s to ~40 s, and the A-GLKH ones from ~10 to ~40 s. As also noted in [7],
this is an expected behavior for VNS, since its 2-opt and relocate neighborhoods have a size that depends on
high-level solutions length, which in turn is equal to k. With respect to A-GLKH, an increase in the number of
colors corresponds to an increase in the number of clusters in the related transformed E-GTSP instance. As will
be discussed in the comments related to large instances, when the size of the problem grows the performances
of VNS get much more affected by the value of k in comparison with A-GLKH.

To conclude the comments on the small scenarios, in Figure 3 we give a representation of the algorithms
capability to find optimal solutions. The horizontal axis represents CPU time in seconds, while the vertical axis
represents the overall percentage of optimally solved instances. The blue curve is associated to VNS, while the
red one is associated to A-GLKH. We note that, overall, around 40% of the instances are solved to optimality
by VNS within 3 s, but no other instance is solved to optimality by this algorithm. On the other hand, A-GLKH
reaches the same threshold (i.e. 40% of optimally solved instances) in 5 s, but it manages to solve to optimality
almost 80% of the instances in around 20 s. This comparison further highlights the higher effectiveness of
A-GLKH, which provided optimal solutions for around double the instances with respect to VNS.

The results of the comparison on large instances are reported in Table 3.

For these instances, CPLEX is able to provide optimal solutions only in some cases, mainly corresponding to
instances with 200 vertices. For n = 200 and n = 300, whenever an instance is not solved to optimality, the best
solution found (upper bound) is used to compute the average. These CPLEX solution values are reported under
the Opt/UB heading; scenarios not solved to optimality are marked with the “*” symbol. The values under the
Gap headings for the two heuristics, for these instances, are computed using the formula 100 x W,
where heu is VNS or A-GLKH. For n = 400, the CPLEX upper bounds are not reported, being very far from the

optimal solutions and therefore not meaningful. For these instances, gaps are evaluated according the formula

52080

TABLE 3. Computational results on the large instances.

FRANCESCO CARRABS ET AL.

Instances VNS A-GLKH

n m k Opt/UB Obj Time Gap (%) Obj Time Gap (%)
200 3980 20 87.0 88.2 3.36 1.38 87.0 17.60 0.00
200 5970 20 81.6 81.6 3.43 0.00 81.6 23.78 0.00
200 7960 20 76.0 76.0 3.38 0.00 76.0 24.24 0.00
200 9950 20 68.6 69.6 3.27 1.46 68.6 25.20 0.00
200 3980 40 218.4 224.8 19.61 2.93 219.4 36.09 0.46
200 5970 40 189.0 193.4 18.67 2.33 190.6 39.51 0.85
200 7960 40 170.6* 173.6 16.83 1.76 172.4 43.65 1.06
200 9950 40 156.2* 157.6 16.23 0.90 155.8 43.32 —0.26
200 3980 60 338.2 348.6 67.10 3.08 340.6 53.09 0.71
200 5970 60 296.4 305.8 65.07 3.17 298.0 57.08 0.54
200 7960 60 257.2% 263.6 58.82 2.49 258.4 62.19 0.47
200 9950 60 235.6 241.0 54.44 2.29 237.4 51.62 0.76
200 3980 80 465.6 482.4 200.86 3.61 467.0 105.51 0.30
200 5970 80 395.0 406.4 179.89 2.89 396.4 89.44 0.35
200 7960 80 360.8 370.0 169.05 2.55 362.2 77.46 0.39
200 9950 80 332.8%* 341.0 165.13 2.46 3354 106.25 0.78
300 8970 30 122.4%* 123.2 22.72 0.65 122.0 42.46 —0.33
300 13455 30 108.4* 104.0 22.59 —4.06 105.4 45.03 —2.77
300 17940 30 116* 99.2 20.97 —14.48 98.6 53.49 —15.00
300 22425 30 107* 89.0 21.47 —16.82 88.6 59.05 —17.20
300 8970 60 279.4* 286.4 149.29 2.51 281.0 80.94 0.57
300 13455 60 240.6* 241.8 137.04 0.50 239.0 76.51 —0.67
300 17940 60 214.2%* 209.8 139.50 —-2.05 210.8 93.37 —-1.59
300 22425 60 207.8* 198.0 126.27 —4.72 195.2 94.01 —6.06
300 8970 90 431%* 450.2 616.66 4.45 438.2 163.52 1.67
300 13455 90 359.2% 375.4 550.64 4.51 361.6 131.00 0.67
300 17940 90 341.8* 342.8 538.44 0.29 336.2 157.57 —1.64
300 22425 90 334.2% 329.6 487.06 —1.38 325.6 141.71 —2.57
300 8970 120 599.4* 626.6 1996.07 4.54 604.4 221.99 0.83
300 13455 120 504.8%* 522.2 1856.80 3.45 504.4 239.56 —0.08
300 17940 120 463.4%* 478.0 1769.19 3.15 461.2 238.25 —0.47
300 22425 120 437.4%* 446.0 1744.56 1.97 434.8 235.27 —0.59
400 15960 40 145.0 90.00 0.00 146.4 73.54 0.97
400 23940 40 124.0 85.15 0.49 123.4 80.85 0.00
400 31920 40 120.0 81.19 0.00 120.6 85.28 0.50
400 39900 40 112.2 78.03 0.72 111.4 86.89 0.00
400 15960 80 323.6 627.08 0.00 326.2 128.10 0.80
400 23940 80 279.0 583.05 0.00 284.0 131.99 1.79
400 31920 80 261.6 567.92 0.00 267.0 130.33 2.06
400 39900 80 248.4 515.75 0.00 251.8 129.87 1.37
400 15960 120 550.8 2989.98 3.22 533.6 248.00 0.00
400 23940 120 460.6 2805.81 1.59 453.4 223.67 0.00
400 31920 120 408.4 2612.49 2.30 399.2 208.50 0.00
400 39900 120 378.0 2674.47 1.78 3714 231.02 0.00
400 15960 160 770.2 10717.60 3.41 744.8 373.86 0.00
400 23940 160 621.2 9928.98 3.88 598.0 375.08 0.00
400 31920 160 564.4 9537.74 2.99 548.0 359.97 0.00
400 39900 160 523.6 9221.54 2.99 508.4 400.17 0.00

A REDUCTION HEURISTIC FOR THE ALL-COLORS SHORTEST PATH PROBLEM S2081

11000
10000
9000
8000
7000
6000
5000 ——VNS
4000 —— A-GLKH

3000

CPU Time (in seconds)

2000 D

1000 -

40 80 120 160
Number of colors

F1GURE 4. Computational times of VNS and A-GLKH on instances with n = 400 when the
number of colors varies.

100 x Obj(hgugj(_moi:\jf(ﬁgg)v alue) ' where “minValue” is the minimum among solution values of VNS and A-GLKH.

All other table headings have the same meaning discussed for Tables 1 and 2.

Only 5 instances with 200 vertices, corresponding to 4 scenarios, are not optimally solved by CPLEX within
the time limit. We note that A-GLKH finds optimal solutions for all 4 scenarios with k£ = 20. In all other cases,
except one (in which it is equal to 1.06%) the gap is below 1%. In one case (n = 200, m = 9950, k = 40)
the A-GLKH solution is better than the upper bound provided by CPLEX. On the other hand, VNS finds the
optimal solutions for 2 scenarios, and has gaps above 1% in 13 out of 16 cases. For 3 scenarios, the gap is greater
than 3%, with a peak of 3.61%.

For n = 300, no scenarios are solved to optimality by the solver. We still report the obtained upper bounds
as a reference for the quality of the two heuristics. In particular, A-GLKH finds a solution that is better than
the upper bound in 12 scenarios, and in the remaining 4 scenarios the gap is below 1.7%. Conversely, VNS finds
solutions below the upper bounds in 6 cases. The gap is above 2% in 6 of the remaining 10 cases, with a peak
of 4.54%.

Finally, looking at n = 400, we note that A-GLKH finds better solutions than VNS for 10 out of 16 scenarios,
and worse solutions in the remaining 6. In these 6 cases, the maximum A-GLKH gap is equal to 2.06%, while
the gap for VNS grows up to 3.88%. Overall, looking at Table 3, we observe that A-GLKH finds better solutions
than VNS for 38 out of 48 scenarios, and solutions of the same quality in 2 scenarios.

The results further highlight the higher effectiveness of A-GLKH. Furthermore, in terms of computational
efficiency, the two algorithms behave very differently, in particular when the number of colors increases. For
instance, when n = 400, m = 15960 and k is equal to 40, 80, 120 or 160 the VNS computational times are
equal to around 90, 627, 2990 or 10718 s, respectively. On the instances with the highest number of vertices
and colors, that is n = 400, k = 160, the VNS computational times are consistently high, being between around
9221 and 10718 s. Similar patterns can be seen for the other values of n, where the instances corresponding to
the highest k& values require the longest computational times. Overall, the results point out that VNS is unfit
to solve large instances with a significant number of colors.

S2082 FRANCESCO CARRABS ET AL.

On the other hand, A-GLKH appears to be much more scalable, running within 240 s in 45 out of 48 scenarios,
and in around 400 s in the worst case. Overall, the number of colors is again the factor that most influences the
performances of the algorithm, but computational times increase at a much slower pace with respect to VNS.
Figure 4 highlights this comparison, by showing how average computational times are affected by the k values
for the instances with n = 400. It is worth noting that, when & = 160, A-GLKH is an order of magnitude faster
than VNS.

6. CONCLUSION

In this work we proposed a method to transform any ACSP-UE instance into an E-GTSP one, and proved
its correctness. Based on this transformation, we proposed a general resolution scheme for ACSP-UE which
involves the resolution of the resulting E-GTSP instance. We showed that when the latter is solved through the
GLKH algorithm, we obtain a fast and effective heuristic that outperforms the best one currently known in the
literature. The proposed framework would also allow to obtain optimal solutions, by replacing GLKH with any
exact algorithm for either E-GTSP or GTSP.

REFERENCES

[1] H. Akcan and C. Evrendilek, Complexity of energy efficient localization with the aid of a mobile beacon. IEEE Commun. Lett.
22 (2018) 392-395.

[2] M.B. Akgay, H. Akcan and C. Evrendilek, All colors shortest path problem on trees. J. Heurist. 24 (2018) 617-644.

[3] A. Benkouar, Y. Manoussakis, V.Th. Paschos and R. Saad, On the complexity of finding alternating Hamiltonian and Eulerian
cycles in edge-coloured graphs. Lect. Notes Comput. Sci. 557 (1991) 190-198.

[4] A.Benkouar, Y. Manoussakis, V.Th. Paschos and R. Saad, Hamiltonian problems in edge-colored complete graphs and Eulerian
cycles in edge-colored graphs: Some complexity results. RAIRO: OR 30 (1996) 417-438.

[5] Y. Can Bilge, D. Cagatay, B. Geng, M. Sar1, H. Akcan and C. Evrendilek, All colors shortest path problem. arXiv:1507.06865.

[6] F. Carrabs, R. Cerulli, G. Felici and G. Singh, Exact approaches for the orderly colored longest path problem: Performance
comparison. Comput. Oper. Res. 101 (2019) 275-284.

[7] F. Carrabs, R. Cerulli, R. Pentangelo and A. Raiconi, A two-level metaheuristic for the All-Colors Shortest Path problem.
Comput. Opt. Appl. 71 (2018) 525-551.

[8] V. Dimitrijevi¢ and Z. Sari¢, An efficient transformation of the generalized traveling salesman problem into the traveling
salesman problem on digraphs. Inform. Sci. 102 (1997) 105-110.

[9] M. Fischetti, J.J. Salazar Gonzdlez and P. Toth, The symmetric generalized traveling salesman polytope. Networks 26 (1995)
113-123.

[10] M. Fischetti, J.J. Salazar Gonzalez and P. Toth, A branch-and-cut algorithm for the symmetric generalized traveling salesman
problem. Oper. Res. 45 (1997) 378-394.

[11] K. Helsgaun, An effective implementation of the Lin—Kernighan traveling salesman heuristic. Fur. J. Oper. Res. 126 (2000)
106-130.

[12] K. Helsgaun, General k-opt submoves for the Lin-Kernighan TSP heuristic. Math. Program. Comput. 1 (2009) 119-163.

[13] K. Helsgaun, Solving the equality generalized traveling salesman problem using the Lin-Kernighan-Helsgaun algorithm. Math.
Program. Comput. 7 (2015) 269-287.

[14] 1. Kara, H. Guden and O.N. Koc, New formulations for the generalized traveling salesman problem. In Proceedings of the 6th
International Conference on Applied Mathematics, Simulation, Modelling (ASM ’12) (2012) 60-65.

[15] G. Laporte and Y. Nobert, Generalized traveling salesman through n sets of nodes: An integer programming approach. Infor.
21 (1983) 61-75.

[16] S. Lin and B.W. Kernighan, An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21 (1973) 498-516.

[17] X.H. Shi, Y.C. Liang, H.P. Lee, C. Lu and Q.X. Wang, Particle swarm optimization-based algorithms for TSP and generalized
TSP. Inf. Process. Lett. 103 (2007) 69-176.

[18] J. Silberholz and B. Golden, The generalized traveling salesman problem: A new genetic algorithm approach. In: Vol. 37 of
Extending the Horizons: Advances in Computing, Optimization, and Decision Technologies. Operations Research/Computer
Science Interfaces Series, edited by E.K. Baker, A. Joseph, A. Mehrotra, and M.A. Trick. Springer, Boston, MA (2007)
165-181.

[19] L.V. Snyder and M.S. Daskin, A random-key genetic algorithm for the generalized traveling salesman problem. Eur. J. Oper.
Res. 174 (2006) 38-53.

https://arxiv.org/abs/1507.06865

	Introduction
	Problem definition and properties
	Transformation from ACSP-UE to E-GTSP
	A new algorithm for ACSP-UE
	Computational tests
	Conclusion
	References

