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STATIONARY ANALYSIS OF INFINITE QUEUEING SYSTEM WITH
TWO-STAGE NETWORK SERVER

R. Sudhesh1 and A. Vaithiyanathan2,∗

Abstract. As the world’s major economies and technologies have matured, they are dominated by
service-focused approach leading to study and analysis of service models for improved understanding
and efficiency. Research in this direction has been done on various parameters of the finite queues using
different approaches. The study discussed in this paper deals with the stationary behavior of two-
stage queuing system with infinite capacity where any arriving customer is serviced in two stages in a
mutually exclusion fashion. The steady state system size probabilities for the infinite capacity queueing
system with two stages of service are obtained in recursive form. Further, numerical interpretations are
presented to depict the system behavior for values of the parameters.
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1. Introduction

Extensive study of the world’s best service companies which aims to create a win-win-win situation reveals that
providing services in successive stages is a common feature. The service ranges from marketing to management,
travel to telecommunication and any day-to-day services. A real-life example of two stage service is the purchase
process in supermarkets, where the first stage is the self-service of customers collecting their items and the second
stage is the payment at the checkout. Moreover, vegetable packing process in a company undergoes two stages
for exporting a special fruit. Firstly, the product is sent for quality checking. Then, if the quality of the product
is desirable, it is further sent for the second stage of processing. Haoyu et al. [8] presented a two-stage service
replica strategy to improve the execution efficiency of the business process by shortening the response time of
request to single service and reducing interaction time among distributed services.

Information technology adopts such services in multiple locations for multiple functions. The usefulness and
application of such a system can be numerous in software architectures [1], communication system and network
servers. Analysis of queueing system of a router with two stages of service represents typical network servers
where network packets arrive and get queued to be served sequentially in two stages in a mutually exclusion
fashion. That is arrivals will be served by the first stage followed by a second stage, with only one stage being
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active at a time. Another example is the dynamism of network servers and client machines where the first
stage is processing the arriving packets at the kernel level and the second stage processing web requests. Any
existing network cloud is a network of routers which aids in directing the packets to the appropriate destination.
The primary work of the router is the forwarding of packets. The major event in this forwarding process is
the transfer of datagrams from a router’s incoming link through the input port to an outgoing link through
the output port, based on the entries in the routing table. It performs the routing function associated with
the network layer and the switching function associated with the data link layer. Each port has a buffer which
constitutes a set of queues which stores the incoming packets and outgoing packets of the port.

The input port performs the physical layer functionality of terminating an incoming physical link to a router
and the data link layer functionality needed to interoperate with the data link layer functionality on the other
side of the incoming link. It also performs a lookup and forwarding function so that a datagram forwarded into
the switching fabric of the router emerges at the appropriate output port. Control packets or packets carrying
routing protocol information are forwarded from the input port to the routers processor. This presents a scenario
wherein multiple ports along with their input and output queues are gathered together on a single line card
within a router. This can be modeled as a twin queuing system with a two-stage service, where the services are
in a mutually exclusive fashion. The first service denotes the arrival of the packet and opening the packet to read
the destination address. Forwarding the packet to the appropriate output port by comparing the destination
address with the entries in the routing table constitutes the second service. An infinite queue or infinite buffer
eliminates the loss of packets and ensures that the data reaches the destination intact.

In discrete time queue, Yang et al. [23] discussed the behavior of customers in the Geo/Geo/1 queue with
server breakdowns and repairs. Moreover, the stationary distribution and mean sojourn time of an arriving
customer of the model derived. Equilibrium behavior of Markovian queues with vacation strategy has received
considerable attention [12,22]. Krishna and Lee [11] discussed the study of the control of a server which alternates
between two phases, i.e., individual and batch phases. Yang et al. [24] presented the steady state system size
distribution for the two-stage queue with a single server and N -policy by using matrix geometric approach. In
[3] and [10], authors presented a two-stage state space approach to solve the state probabilities and sojourn
time analysis for M/G/1 queueing model. In [5], the time-dependent system size probabilities are derived when
the service is accomplished through two parallel channels with different service rate. Yu [25] discussed a model
under consideration can be viewed as an M/M/1 queue in a random environment. Equilibrium mixed strategies
are derived for the almost unobservable and fully unobservable queues. Zarrinpoor and Saber [26], formulated
a model based on a two-stage robust optimization approach in which decisions are defined in two-stages such
that a first-stage solution should be robust against the possible realizations of the disruption that can only be
revealed in a second stage.

Gopalan and Kannan [7] dealt with the analysis of transient behaviour of a two-server queueing network
subject to interstage inspection and rework. The authors have developed a stochastic model and obtained
the explicit expressions for some of the system characteristic using state-space method and regeneration point
technique. In [17, 18], Vedat Saglam et al. analyzed tandem queueing model with two stages and derived the
transient probability and loss probabilities of this model. Shin and Moon [13], provided an approximation
technique for multi-server two-stage networks with splits and blocking. Many countries are suffering severe flood
problems due to inadequate investment in their drainage system. Xinhua He and Wenfa Hu [9], investigated
distribution feature of rainstorms and draining process and used a two-stage single queue method to model
urban drainage system. Zhou et al. [28], developed a two stage tandem queuing network and introduced a
Markov arrival process to characterize the correlation of the demand in the business sector. In [6], Giorno et al.
performed the asymptotic analysis for the single server queueing model and derived the transient probabilities
for this model by considering constant arrival rates and state dependent service rates. Sudhesh [20] discussed
the transient analysis for the model “Single server with system disaster and customer impatience” with the help
of generating functions and continued fractions. For a detailed list of references for two-stage queueing models
and their application to various sectors, see review papers from [2,4, 15,16,21,27].
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An excellent study on the analysis of a finite queueing system with two-stages of service had been presented
by Salah [19]. To analyze the behavior of such system, presented two equivalent analytical models in which
derived equations for key features such as throughput, packet loss, pocket delay and server CPU utilization
and some important performance measures. In [14], Patil and Turck presented a two-queue Markov model for
a wireless sensor node. The introduction of “Value of Information” (VOI) and its non-additive data gathering
process plays an important role in decision making. The authors formulated the problem as Markov decision
process and found the exact solution by policy iteration.

This paper aims to study the equilibrium behavior of the two-stage network server. We obtain a closed form
steady state system size probabilities for the infinite capacity single server queueing system with two stages of
service. In this study, the underlying Kolmogorov difference equations are first transformed into a set of linear
algebraic equations by employing partial generating functions. Using the normalization equation, we derived
the steady-state probabilities in recursive form. Numerical illustrations are provided to understand the system
behavior.

2. Model description

In this model, the arriving customer gets service sequentially in two stages in a mutually exclusion fashion.
Consider the state space S = {(m, k), k ≥ 0, m ∈ {0, 1}}, where k represents the number of packets in the
system and m denotes the type of stage the CPU is performing. The queueing system has infinite buffer size.
Initially, the system is empty at the state (0, 0). The states (1, k) and (0, k) denotes the states where the CPU
is busy handling stage 1 and stage 2 respectively. Consider the tasks carried out at stage 2 which include
network layer functionalities of examining the packet headers for errors, looking up forwarding tables, and
then forwarding the packet. On the other hand, stage 1 is responsible for merely data link layer functionalities
and notifying the arrival of a new packet. Arrival occurs according to geometric distribution with parameter λ
and the service completions occurs according to geometric distribution with parameter µ1 and µ2 for the state
(1, k) and (0, k) respectively. For network servers and hosts, µ1 < µ2 in practice, since the service time of stage
1 (1, k) is on average shorter than that of stage 2 (0, k) as the amount of processing at stage 2 is more involved.
we assume, initially that the system is empty at the state (0, 0). Denote 1− λ, 1− µ1 and 1− µ2 as λ̄, µ̄1 and
µ̄2 respectively. The state transition rate diagram is depicted in Figure 1.

The one step transition probabilities of the states are as follows:
Case 1: if Xn = (0, k), k = 2, 3, 4, . . . ,

Xn+1 =


(0, k) with probability λ̄µ̄2 + λµ2

(0, k + 1) with probability λµ̄2

(1, k − 1) with probability λ̄µ2.

Case 2: if Xn = (0, 1)

Xn+1 =


(0, 1) with probability λ̄µ̄2 + λµ2

(0, 2) with probability λµ̄2

(0, 0) with probability λ̄µ2.

Case 3: if Xn = (0, 0)

Xn+1 =

{
(0, 0) with probability λ̄
(1, 1) with probability λ.
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Figure 1. State transition diagram for an infinite queue with two stages of service.

Case 4: if Xn = (1, k), k = 1, 2, 3, . . . ,

Xn+1 =


(1, k) with probability λ̄µ̄1 + λµ1

(1, k + 1) with probability λµ̄1

(0, k) with probability λ̄µ1.

Let πj,k be the steady state probability of the server in the state j and there are k customers in the system,
where j = 0, 1 and k = 1, 2, . . . and π0,0 be the empty system size probability.

A system of difference equations can be written as follows

π0,0 = λ̄µ2π0,1 + λ̄π0,0, (2.1)
π1,1 = λπ0,0 + λ̄µ2π0,2 +

[
µ̄1λ̄+ λµ1

]
π1,1, (2.2)

π1,k = λµ̄1π1,k−1 + λ̄µ2π0,k+1 +
[
µ̄1λ̄+ λµ1

]
π1,k, k ≥ 2 (2.3)

π0,1 = λ̄µ1π1,1 +
[
µ̄2λ̄+ λµ2

]
π0,1 (2.4)

π0,k = λ̄µ1π1,k + λµ̄2π0,k−1 +
[
µ̄2λ̄+ λµ2

]
π0,k, k ≥ 2 (2.5)

since π is a stationary distribution

∞∑
k=0

π0,k +
∞∑

k=1

π1,k = 1. (2.6)

Define the partial stationary probability generating function of the system as

G0(z) =
∞∑

k=0

π0,kz
k, G1(z) =

∞∑
k=1

π1,kz
k, |z| ≤ 1. (2.7)
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On applying (2.7) in (2.1)–(2.5), we get[
1− λµ̄2z − λ̄µ̄2 − λµ2

]
G0(z) = λ̄µ1G1(z) +

(
1− λ̄µ̄2 − λµ2

)
π0,0 − λµ̄2z

and
λ̄µ2

z
G0(z) =

[
1− λµ̄1z − λ̄µ̄1 − λµ1

]
G1(z) +

(
1− λ̄+

λ̄µ2

z
− λz

)
π0,0.

It immediately follows that,

G0(z) =
λ̄µ1

(
λz + λ̄µ2 − λz2

)
−
(
z − λµ̄1z

2 − λ̄µ̄1z − µ1λz
) (

1− λµ̄2z − λ̄µ̄2 − λµ2

)
λ̄2µ1µ2 −

(
z − λµ̄1z2 − λ̄µ̄1z − µ1λz

) (
1− λµ̄2z − λ̄µ̄2 − λµ2

) π0,0

G1(z) =

(
1− λµ̄2z − λ̄µ̄2 − λµ2

) (
λz − λz2

)
λ̄2µ1µ2 −

(
z − λµ̄1z2 − λ̄µ̄1z − µ1λz

) (
1− λµ̄2z − λ̄µ̄2 − λµ2

)π0,0.

Then we can obtain G0(1) and G1(1) as follows

G0(1) =
λµ2 − µ1µ2(1 + λ)

λ(µ1 + µ2)− µ1µ2(1 + λ)
π0,0

G1(1) =
λλ̄µ2

µ1µ2(1 + λ)− λ(µ1 + µ2)
π0,0.

Using equation (2.6), i.e., G0(1) +G1(1) = 1, we can get the following result:

π0,0 =
λ(µ1 + µ2)− µ1µ2(1 + λ)
λ2µ2 − µ1µ2(1 + λ)

with the condition

λ

µ1
< 1 and

λ

µ2
< 1. (2.8)

From equations (2.1), (2.4) and (2.2), we deduce that

π0,1 =
λ

λ̄µ2
π0,0

π1,1 =
[

1− λ̄µ̄2 − λµ2

λ̄µ1

]
λ

λ̄µ2
π0,0

π0,2 =
[(

1− λ̄µ̄1 − λµ1

λ̄µ2

)(
1− λ̄µ̄2 − λµ2

λ̄µ1

)
λ

λ̄µ2
− λ

λ̄µ2

]
π0,0.

From equation (2.3) and (2.5), we get

π0,k+1 =
1− λ̄µ̄1 − λµ1

λ̄µ2
π1,k −

λµ̄1

λ̄µ2
π1,k−1, k ≥ 2

π1,k =
1− λ̄µ̄2 − λµ2

λ̄µ1
π0,k −

λµ̄2

λ̄µ1
π0,k−1, k ≥ 2.

For the sake of notation convenience, we define

λ

λ̄µ2
= k1,

1− λ̄µ̄1 − λµ1

λ̄µ2
= k2,

λµ̄1

λ̄µ2
= k3,

1− λ̄µ̄2 − λµ2

λ̄µ1
= k4,

λµ̄2

λ̄µ1
= k5.
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From the above assumptions we get,

π0,1 = k1π0,0, π1,1 = k1k4π0,0, π0,2 = k1[k2k4 − 1]π0,0. (2.9)

Using the above notations, one can rewrite the difference equations as follows

π0,k+1 = k2π1,k − k3π1,k−1, k ≥ 2 (2.10)
π1,k = k4π0,k − k5π0,k−1, k ≥ 2. (2.11)

Solving (2.10) and (2.11) for k = 2 and k = 3 with the values given in (2.9), we get

π1,2 = k1 [−k5 + k4(k2k4 − 1)]π0,0

π1,3 = k1

[
−k2k4k5 − k3k

2
4 + (k2k

2
4 − k5)(k2k4 − 1)

]
π0,0 = k1

[
R

(1,3)
0,1 − k4R

(1,3)
1,1 + (k2k4 − 1)R(1,3)

0,2

]
π0,0

π0,3 = k1 [−k2k5 − k3k4 + k2k4(k2k4 − 1)]π0,0 = k1

[
R

(0,3)
0,1 − k4R

(0,3)
1,1 + (k2k4 − 1)R(0,3)

0,2

]
π0,0.

From this we obtain the general solution for k > 3 in recursive form.

πi,k = k1

[
R

(i,k)
0,1 − k4R

(i,k)
1,1 + (k2k4 − 1)R(i,k)

0,2

]
π0,0, k > 3 and i = 0, 1, (2.12)

where R(i,k)
0,1 , R

(i,k)
1,1 , R

(i,k)
0,2 satisfied the recursive relations,

R
(i,k)
0,1 = k5R

(i,k−1)
1,1 − k2k5R

(i,k−1)
0,2

R
(i,k)
1,1 = k3R

(i,k−1)
0,2

R
(i,k)
0,2 = k2k4R

(i,k−1)
0,2 +R

(i,k−1)
0,1 − k4R

(i,k−1)
1,1 , k ≥ 4, i = 0, 1.

The above stationary probability exists only if λ, µ1 and µ2 satisfy the conditions defined in the equation (2.8).

3. Numerical illustrations

In order to gain more insight of the model behavior, some numerical experiments are provided in this section.
In Figures 2–5, the Equilibrium probabilities π0,k and π1,k, k ≥ 1 are plotted against the number of customers
in the system (k) with fixed arrival rate λ = 0.1 and service rate µ2 = 0.2 by varying the service rate µ1 as 0.3,
0.4, 0.5 and 0.6. We note that when number of customers increases, the probabilities πi,k (i = 0, 1) decreases
with the increase in service rates µ1 and the probability π1,k decreases gradually for the various service rates
µ1 and finally attains the saturation point more quickly than π0,k.

Similarly, Figures 6–9 exhibits the impact of varying the service rate µ2. We fix the arrival rate λ = 0.1
and the service rate µ1 = 0.2, we notice that the system size probability π0,k decreases with the increase of µ2

and attains steady state faster than the probability π1,k. From the Figures 2–9, Probability values are slowly
decreasing for the state (0, k) even though we increase the service rate µ2 due to more task carried out in stage
2. On the other hand, probability values are decreasing for the state (1, k) more faster, if we increase the service
rate µ1 due to less work assigned to stage 1.

Tables 1 and 2 shows that the increase in service rates µ1 and µ2 leads to decrease in the mean and variance
of the system. When comparing the Tables 1 and 2, it is evident that whenever the service rates (either µ1 or
µ2) increases, the average number of customers and variance for the system automatically gets reduced and
reaches the steady state.
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Figure 2. System size probabilities
for λ = 0.1, µ1 = 0.3 and µ2 = 0.2.

Figure 3. System size probabilities
for λ = 0.1, µ1 = 0.4 and µ2 = 0.2.

Figure 4. System size probabilities
for λ = 0.1, µ1 = 0.5 and µ2 = 0.2. Figure 5. System size probabilities

for λ = 0.1, µ1 = 0.6 and µ2 = 0.2.
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Figure 6. System size probabilities
for λ = 0.1, µ1 = 0.2 and µ2 = 0.3.

Figure 7. System size probabilities
for λ = 0.1, µ1 = 0.2 and µ2 = 0.4.
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Figure 8. System size probabilities
for λ = 0.1, µ1 = 0.2 and µ2 = 0.5.
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Figure 9. System size probabilities
for λ = 0.1, µ1 = 0.2 and µ2 = 0.6.

Table 1. Expected system size and Variance for various service rates µ1 corresponding to
λ = 0.1 and µ2 = 0.2.

µ1 E(Xn), Xn = (0, k) E(Xn), Xn = (1, k) V ar(Xn), Xn = (0, k) V ar(Xn), Xn = (1, k)

0.3 1.399714576 0.794262625 6.371259001 3.351868266
0.4 1.107419423 0.450350631 3.802295520 1.362051214
0.5 0.990226313 0.313786005 2.971480007 0.799953292
0.6 0.927021691 0.240631163 2.570608803 0.55233752

Table 2. Expected system size and Variance for various service rates µ2 corresponding to
λ = 0.1 and µ1 = 0.2.

µ2 E(Xn), Xn = (0, k) E(Xn), Xn = (1, k) V ar(Xn), Xn = (0, k) V ar(Xn), Xn = (1, k)

0.3 0.947954845 1.298486621 4.363703683 5.642525291
0.4 0.566893276 1.054421623 1.993015616 3.451294688
0.5 0.407407397 0.965608454 1.264052422 2.784708743
0.6 0.318816984 0.921177585 0.920892765 2.477819707

4. Conclusion

An explicit solution is given for a single server queueing network model which consists of two stages of service
with infinite capacity. In this model, steady state system size probabilities are obtained using partial generating
function and expressed in recursive form. Numerical illustration were presented to show how sensitive the system
probabilities are versus changes in parameters of the system. Performance measures such as mean variance are
tabulated for different values of µ1 and µ2. One can also extend this approach to the network with multi stages
of service for both finite and infinite capacity.

Acknowledgements. The authors are grateful to the referees for their useful suggestions that lead to the considerable
improvement in the presentation of the paper.
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