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BERNOULLI VACATION MODEL FOR MX/G/1 UNRELIABLE SERVER
RETRIAL QUEUE WITH BERNOULLI FEEDBACK, BALKING AND

OPTIONAL SERVICE

Madhu Jain1 and Sandeep Kaur2,∗

Abstract. The study of unreliable server retrial bulk queue with multiphase optional service is an-
alyzed by incorporating the features of balking, Bernoulli vacation and Bernoulli feedback. On the
occasion when the server is occupied with the service of the customers, an arriving customer finding
the long queue, can join the retrial orbit and receives its service later on by making re-attempt. The
system is reinforced with multi phase optional service along with essential service and joining customer
can opt any one of optional services after getting essential service. Furthermore, the essential/optional
service can be aborted due to abrupt failure of the server. There is an immediate support of multi
phase repair facility to take care of the failed server, but sometimes repair may be put on hold by
virtue of any unexpected cause. If the service is unsatisfactory, the customer can rejoin the queue as
feedback customer. Bernoulli vacation is permitted to the server following the respective busy period.
For evaluating the queue size distribution and other system performance metrics, supplementary vari-
able technique (SVT) is used. The approximate solutions for the steady state probabilities and waiting
time are suggested using maximum entropy principle (MEP). We perform a comparative study of the
exact waiting time obtained by the supplementary variable technique and the approximate waiting
time derived by using maximum entropy principle by taking the numerical illustration. Quasi Newton
method is used to find optimal cost. To verify the outcomes of the model, numerical illustrations and
senstivity analysis have been accomplished.
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1. Introduction

Retrial queueing models have applicability in a varied real world congestion circumstances emerging in
telecommunication systems, call centres, distribution systems, manufacturing industry and computer operating
systems, etc. The phenomenon of retrial queue may be involved in queueing scenarios in which the server occu-
pied in providing service, can be re-tried for service after a random interval by the units/customers residing in
the retrial orbit. To amplify the concept we cite the airplane landing in which pilot cannot take off the plane
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if runway is not free and has to wait for the permission of ATC to land; in such a case the pilot has to keep
circling in the sky and re-attempts to land after sometime. The features of unreliable server and balking are
also important and should be incorporated while developing the queueing model for the performance prediction
and acquiring realistic outcomes of delay situations. The feature of vacationing server is also a salient attribute
to enhance the server’s capability and to maintain the efficiency of the system at optimum cost. The server can
also utilize the vacation time for some supplementary tasks such as maintenance jobs, etc. In many practical
queueing scenarios, the arrivals may occur in groups or batches; for instance packet switching technique is used
in computer networks for transmission of data in the form of packets of variable sizes. These packets contain
the required information of data and it might be possible that packet cannot be successfully transmitted to the
destination. The concept of feedback queue can also be involved in packet transmission as some packets are
again feedback to the queue and are retransmitted to the destination. The provision of optional services along
with necessary regular service can be observed in many places including at a diagnostic lab where patients arrive
for their regular blood test and to diagnose a particular disease, there is also a provision of additional tests as
per requirement for the treatment.

An M/G/1 retrial queue inclusive of optional vacation and delayed repair is analyzed in Choudhury and Ke
[7]. In the present paper we have extended their work by incorporating some more realistic attributes namely
batch input, multiphase optional service, server breakdown, delayed and multiphase repair, Bernoulli feedback
and server vacation provision. To cite an application of our model, we illustrate its application in banking system
wherein customers arrive in batches and require multi-phases services provided at the bank’s counter such as
saving account updation, withdrawal/deposit of money, fixed deposits, loans and medical insurance, etc. It can
be observed that during the busy hours of banks, the arriving customer either may wait in the retrial orbit for
its turn or may balk from the system. Also, the employee at bank may avail regular vacation when there is no
customer. The computer system which acts as server is subject to failure due to power failure, cyber attack,
internet availability, technical issue or any unforeseen reason. The failed server needs urgent repair but delay
in repair may occur in the process of finding out the reason of failure of the system. Furthermore, the repair
is accomplished in multiphase. In bank there may be provision of customer’s feedback in case if the customer
finds its service unsatisfactory and can request for repeat its service.

Due to enormous applications, it is noticed that there is a significant amount of literature on retrial queues
and its applications with distinct assumptions to develop queueing models [1,2,24]. Gao and Wang [13] investi-
gated the non-Markovian retrial queue including impatient nature of the customers as a consequence of server
breakdown being caused by occurrence of negative units. Yang et al. [38] have examined MX/G/1 retrial queue
with server failure under J optional vacations and obtained various performance measures using supplementary
variable technique (SVT). An M/G/1 model discussed by Kim and Kim [18] was based on the concept that
the arriving customers are classified into two categories separately join retrial orbit or infinite queue during
unavailability of the server. The queue size distributions of both types of customers and waiting time distri-
bution are evaluated for the concerned system by employing Laplace–Stieltjes transform. Rajadurai et al. [25]
studied an M/G/1 retrial queueing model with multiphase service, working vacation and vacation interruptions
using supplementary variable technique.

The queueing modeling with Bernoulli feedback has also been done by some researchers under various condi-
tions to analyze the queueing characteristics [9,17,19]. An M/G/1 retrial queue having optional feedback along
with a pair of heterogeneous essential service, was investigated by Lakshmi and Ramanath [20]. Ayyappan and
Shyamala [3] have studied the bulk arrival feedback queueing model by utilizing Laplace Stieltjes transform.
Lately, Chang et al. [4] have discussed unreliable server queue with impatient customers and Bernoulli feedback
and derived steady state queue size probabilities using quasi progression algorithm. Due to real life applica-
tions of server vacation in various congestion situations such as in production system, fabricating industry and
PC operating system, many queueing analysts contributed their significant researches in queueing theory and
developed a variant of vacation queueing models [11, 12, 22, 29]. Yang and Ke [37] have analyzed the unreli-
able server non-Markovian model with server vacation under (p,N)-policy and obtained various analytical as
well as numerical outcomes along with optimized cost. Bulk arrival retrial queues with Bernoulli vacation was
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discussed by Singh et al. [30] using SVT to evaluate performance characteristics by considering the optional
service in addition to regular service. Choudhury and Deka [6] have considered the multiple vacation policy for
unreliable server MX/G/1 model using SVT to evaluate the busy period distribution, reliability functions and
other performance measures.

In many queueing scenarios, the facility of optional services can be noticed apart from regular essential
service. The example of such type of services can be seen in clinical laboratories, production management,
automobile repair stations, etc. In the queueing literature, a few researchers including Medhi [23], Wang [35],
Choudhury and Deka [5] worked on this aspect under varied assumptions. Bulk queue with multiphase services
was discussed by Jain and Bhagat [15] by considering the features of retrial, unreliable server and modified
vacation policy. Recently, Jain et al. [31] explored the bulk arrival queue with optional service by incorporating
the balking behaviour of customers, unreliable server and multiphase repairs. In this work, they have derived
the system state probabilities and distributions at steady state using supplementary variable technique. The
server breakdown is a common phenomenon in queueing systems and broken server needs the immediate repair
to resume the services without any halt. However, sometimes failed server has to wait for the repair facility due
to unavailability of spare parts or due to any other technical reason. Some queueing theorists have done research
works in different frameworks by considering unreliable server [8, 21]. MX/G/1 queueing system with reneging
having unreliable server, and multi optional services was analyzed by Jain and Bhagat [16] by employing SVT.
The balking behaviour in the arriving units may also emerged due to sudden failure of system; this concept was
incorporated in the investigation done by Singh et al. [32] for the study of queueing system with bulk input,
Bernoulli feedback, breakdown and multiphase repairs. A queueing model with server breakdown and balking
for MX/G(a, b)/1 queue with Bernoulli vacation schedule under multiple vacation policy was investigated by
Govindan and Marimuthu [14].

In many complex queueing situations, the derivation of performance measures in explicit form is a challenging
task by applying analytical methods. In aforesaid circumstances the probability distribution, waiting time
and other metrics can be evaluated by applying maximum entropy principle (MEP). Following the preamble
research work done by Shannon [26], diversified studies on queueing models were accomplished by various
researchers [28, 36] via maximum entropy principle. Recently, Singh et al. [33] developed the MX/G/1 model
under randomised vacation policy and used MEP to facilitate the comparison of analytical and approximate
results for the waiting time.

Queueing models under individual or a few of the realistic concepts viz. unreliable server, retrial, balking,
Bernoulli feedback, phase service and vacation are discussed by some researchers. However, there is need of
research work by combining all these features together due to applications of such models in real time systems
wherein these features are prevalent. In order to fill up this research gap, our proposed model is devoted to the
study of MX/G/1 retrial queueing model under the realistic concepts of (i) server breakdown, (ii) Bernoulli
feedback, (iii) optional service, (iv) Bernoulli vacation, (v) balking, (vi) delay repair (vii) multiphase repair and
(viii) service/vacation/delay/repair processes governed by i.i.d. general distributions. The remaining paper is
presented as follows. In Section 2, we have outlined the assumptions and notations to develop present MX/G/1
model. Governing equations and boundary conditions are framed in Section 3. The PGF’s and stability condition
are specified in Section 3. Section 4 is contributed for the evaluation of analytical metrics for the steady state
queue size distributions. The expressions for steady state probabilities, mean system size, reliability indices
and total cost are evaluated in Section 5. The formulation of MEP results is done in Section 6. Section 7 is
concerned with special cases deduced by fixing specific parameters. Section 8 is devoted to numerical results.
The last section provides the conclusion and future scope of the work done.

2. Model description

The batch arrival retrial queue by taking into consideration the different attributes namely balking, vacation,
Bernoulli feedback and multiphase optional services, etc. The server may encounter a sudden breakdown due
to any unexpected cause and instantly joins the repair station, where repair is completed in multi-phases after



S2030 M. JAIN AND S. KAUR

a random delay. To formulate the model mathematically, underlying assumptions and notations are described
as follows.

2.1. Assumptions

The batch arrival queueing system with optional phase service/repair, Bernoulli feedback and Bernoulli
vacation is investigated. Moreover, the discouragement factor of the units is considered while designing the
model. We outline the basic assumptions which are used to formulate MX/G/1 model mathematically to
evaluate various system indices are as follows.

(i) Arrival process and balking. The units arrive at the system in bulk according to Poisson process in random
batch size X with arrival rate λ; the probability mass function X is cj = Prob. [X = j] with c, c(2) as first
and second factorial moments. Balking may take place in units while joining the system during different
states of server. The joining probabilities of the units are b, b1, b2 and b3 in different states of the server viz.
busy, delayed repair, under repair and in vacation states, respectively.

(ii) Retrial and Bernoulli feedback. There is provision of waiting in the retrial orbit for incoming units; if
units find the server unavailable for the service, they can join the retrial orbit and repeat their attempt
of getting service at later stage. After getting the essential/optional service, if the unit is unsatisfied from
its service, then it can rejoin the original queue as a feedback unit for receiving one more regular service
and subsequently optional service with probability θ(0 ≤ θ ≤ 1); or exit from the system with probability
(1− θ).

(iii) Service process. The arriving units are served by the server for two types of services; the first type of service
is essential for all the units joining the system and after receiving essential service, the units can demand for
second type of optional services from total available l-optional services and take dth (d = 1, 2, . . . , l) phase
optional service with probability rd; or choose to depart from the system with probability r0 = 1−

∑l
d=1 rd.

(iv) Server vacation. The server is eligible to avail the vacation after each busy period under Bernoulli vacation
schedule i.e. the server can take vacation with probability p after each service completion epoch or may
continue to serve next unit with probability 1− p.

(v) Delay in repair and repair processes. The server is prone to failure as such considered to be unreliable and
may breakdown in Poisson pattern while rendering any of the essential or optional services with rates αd,
(0 ≤ d ≤ l). Due to breakdown, the server becomes unable to provide service and needs urgent repair; but
sometimes repair facility is not immediately available as such the server has to wait for repair i.e. delay in
repair occurs. In order to recover the failed system, the repair is accomplished in m-phases.

(vi) The retrial duration, essential as well as optional phase service times, delay to repair and repair times,
vacation times are i.i.d. and general distributed.

Notations used for different distributions viz. bulk arrival, retrial time and general i.i.d distributed
dth (d = 0, 1, 2, . . . , l) phase service, delay to repair and kth phase repair while failed during dth phase
service are expressed as follows:

Notations
N(t) Number of units in retrial orbit.
M(x) CDF of retrial time.
Bd(x) The CDF of dth (d = 0, 1, 2, . . . , l) phase service time, with first

two moments as βd and β
(2)
d ; d = 0 denotes the essential phase

whereas d = 1, 2, . . . , l represent optional phase services.
Dd(y), Gd,k(y) The CDF of delay in repair time and repair time, respectively of

server failed in dth phase of service (0 ≤ d ≤ l, 1 ≤ k ≤ m).
γd, γ

(2)
d First and second moments of Dd(y), (d = 0, 1, 2, . . . , l)

gdk, g
(2)
dk First and second moments of Gd,k(y)(0 ≤ d ≤ l, 1 ≤ k ≤ m).

V (x) The vacation time CDF.
v, v(2) First two moments of V (x).
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P0 Prob. that the server is idle and system is empty.
An(x)dx Prob. that there are n units in the system when server is idle and

elapsed retrial time lies in (x, x+ dx], n ∈W∞.
P 0
n(x)dx(P dn(x)dx) Prob. that there are n units in the system when server is busy

in implementing first phase essential service (dth phase optional
service) and elapsed service time lies in (x, x + dx], n ∈ W∞,
d ∈Wl.

D0
n(x, y)dy(Dd

n(x, y)dy) Prob. that there are n units in the system when server fails in
first phase essential service (dth phase optional service), wait-
ing for repair and elapsed delay time in repair lies in (y, y + dy],
n ∈W∞, d ∈Wl.

R0
k,n(x, y)dy(Rdk,n(x, y)dy) Prob. that there are n units in the system when server fails in first

phase essential service (dth phase optional service), under repair
in kth repair phase and elapsed repair time lies in (y, y + dy],
n ∈W∞, d ∈Wl, k ∈Wm.

Vn(y)dy Prob. that there are n units in the system when server is on vaca-
tion and elapsed vacation time lies in (y, y + dy], n ∈W∞.

πj Probability of j units being in the queue at service completion
epoch.

WJ The set containing numbers {1, 2, 3, . . . , J}.

For solving the model, we define the following probability generating functions (PGFs):

P d(x, z) =
∑
n≥1

znP dn(x), A(x, z) =
∑
n≥1

znAn(x)(also valid for x = 0)

Dd(x, y, z) =
∑
n≥1

znDd
n(x, y), Rdk(x, y, z) =

∑
n≥1

znRdk,n(x, y), V (y, z) =
∑
n≥1

znVn(y)(also valid for y = 0).

We use F̃ (s) as Laplace transform of any CDF F (u) and also F̃ (s) = 1− F̃ (s).
Also, f(u)du = dF (u)(F (u))−1 is hazard rate function of any CDF F (u) (Here f(·) can take values

µd(·),K(·), v(·), ηd(·), ξd,k(·) with corresponding F (·) as Bd(·),M(·), V (·), Dd(·), Gd,k(·)) with (0 ≤ d ≤ l, 1 ≤
k ≤ m).

3. Governing equations

In order to develop the model based on different assumptions and notations as described in Section 2, the gov-
erning system state equations, boundary conditions and normalizing condition are framed using supplementary
variables corresponding to elapsed time of general distributed processes.

3.1. Governing equations

λP0 = p̄

[
θ̄

(
r0

∫ ∞
0

µ0(x)P 0
1 (x)dx+

l∑
d=1

∫ ∞
0

µi(x)P d1 (x)dx

)]
+
∫ ∞

0

ν(y)V1(y)dy (3.1)

d
dx
An(x) + [λb+K(x)]An(x) = 0, n ∈W∞, x > 0 (3.2)

d
dx
P dn(x) + [λb+ αd + µd(x)]P dn(x) = λb

n∑
j=1

cjP
d
n−j(x) +

∫ ∞
0

ξd,m(y)Rdm,n(x, y)dy, n ∈W∞;

d ∈Wl ∪ {0}, x, y > 0 (3.3)
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d
dy
Dd
n(x, y) + [λb1 + ηd(y)]Dd

n(x, y) = λb1

n∑
j=1

cjD
d
n−j(x, y), n ∈W∞, d ∈Wl ∪ {0}, x, y > 0 (3.4)

d
dy
Rdk,n(x, y) + [λb2 + ξd,k(y)]Rdk,n(x, y) = λb2

n∑
j=1

cjR
d
k,n−j(x, y), n ∈W∞, k ∈Wm, d ∈Wl ∪ {0}, x, y > 0

(3.5)

d
dy
Vn(y) + [λb3 + v(y)]Vn(y) = λb3

n∑
j=1

cjVn−j(y), n ∈W∞, y > 0. (3.6)

3.2. Boundary conditions

An(0) =
∫ ∞

0

v(y)Vn+1(y)dy + p̄

[
θ̄

(
r0

∫ ∞
0

µ0(x)P 0
n+1(x)dx+

l∑
d=1

∫ ∞
0

µd(x)P dn+1(x)dx

)

+ θ

(
r0

∫ ∞
0

µ0(x)P 0
n(x)dx+

l∑
d=1

∫ ∞
0

µd(x)P dn(x)dx

)]
, n ∈W∞ (3.7)

P 0
n(0) = λcnP0 + λb

n∑
j=1

cj

∫ ∞
0

An−j(x)dx+
∫ ∞

0

k(x)An(x)dx, n ∈W∞ (3.8)

P dn(0) = rd

∫ ∞
0

µd(x)P dn(x)dx, n ∈W∞, d ∈Wl (3.9)

Dd
n(x, 0) = αdP

d
n(x), n ∈W∞, d ∈Wl ∪ {0} (3.10)

Rd1,n(x, 0) =
∫ ∞

0

ηd(y)Dd
n(x, y)dy, n ∈W∞, d ∈Wl ∪ {0} (3.11)

Rdk,n(x, 0) =
∫ ∞

0

ξd,k−1(y)Rdk−1,n(x, y)dy, n ∈W∞, d ∈Wl ∪ {0}, k ∈ {2, 3, . . . ,m} (3.12)

Vn(0) = p

[
θ̄

(
r0

∫ ∞
0

µ0(x)P 0
n(x)dx+

l∑
d=1

∫ ∞
0

µd(x)P dn(x)dx

)

+ (1− δn,1) θ

(
r0

∫ ∞
0

µ0(x)P 0
n−1(x)dx+

l∑
d=1

∫ ∞
0

µd(x)P dn−1(x)dx

)]
, n ∈W∞. (3.13)

3.3. Normalizing condition

P0 +
l∑

d=0

∑
n≥1

[∫ ∞
0

P dn(x)dx+
∫ ∞

0

∫ ∞
0

Dd
n(x, y)dx dy +

∫ ∞
0

∫ ∞
0

m∑
k=1

Rdk,n(x, y)dxdy

]

+
∑
n≥1

∫ ∞
0

An(x)dx+
∑
n≥1

∫ ∞
0

Vn(y)dy = 1. (3.14)
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4. Queue size distribution

In this section, we establish the stability condition. The PGFs for the queue size distribution under the
stability condition are also determined.

4.1. Stability condition

Lemma 4.1. At equilibrium state, stability condition of system is expressed as

κ1 + θ + cM̃(λb) < 1. (4.1)

Proof. The above stability condition is attained by following Takagi [34]. �

4.2. Joint and marginal distributions

Lemma 4.2. The PGFs for the joint distributions of server states are as follows:

A(x, z) = λbε1(M(x))e−λbxE1(z) (4.2)

P d(x, z) = Ud(x, z), d ∈Wl ∪ {0} (4.3)

V (y, z) = pE2(z)V (y) exp{−φ5(z)y} (4.4)

Dd(x, y, z) = αdUd(x, z)Dd(y) exp{−φ3(z)y}, d ∈Wl ∪ {0} (4.5)

Rd1(x, y, z) = αdUd(x, z)D̃0(φ3(z))Gd,1(y) exp{−φ4(z)y}, d ∈Wl ∪ {0} (4.6)

Rdk(x, y, z) = αdUd(x, z)D̃0(φ3(z))Gd,1(y) exp(−φ4(z)y)D̃0(φ3(z))
k−1∏
j=1

G̃d,j(φ4(z)),

d ∈Wl ∪ {0}, k ∈ {2, 3, . . .m}, (4.7)

where

F (u) = 1− F (u), for any CDF F (u)

P0 = bε1[ε2]−1, φ1(z) = λX(z), φ2(z) = bφ1(z), φh(z) = bh−2φ1(z);h = 3, 4, 5

Ud(x, z) =

{
Ω(z)B0(x) exp{−τ0(z)x}, d = 0
rdΩ(z)B̃0(τ0(z)Bd(x) exp{−τd(z)x}, d ∈ {1, 2, 3, 4, . . . , l}

Ω(z) = zbε1φ1(z)M̃(λb)[ε2S(z)]−1, Y (z) = (θz + θ̄)B̃0(τ0(z))

{
r0 +

l∑
d=1

rdB̃d(τd(z))

}
E1(z) = [z − E3(z)X(z)][ε2S(z)]−1, E2(z) = Ω(z)Y (z), E3(z) = Y (z)

{
p̄+ pṼ (φ5(z))

}
τd(z) = φ2(z) + αd

1− D̃d(φ3(z))
m∏
j=1

G̃d,j(φ4(z))

 , d = 0, 1, 2 . . . , l

χ1 = M̃(λb)
[
b̄c− 1

]
, S(z) = Y (z)

{
p̄+ pṼ (φ5(z))

}[
M̃(λb) +X(z)M̃(λb)

]
− z

ψd =

b+ αd

b1γd + b2

m∑
j=1

gdj

 , ϕd =

1 + αd

γd +
m∑
j=1

gdj

 ; 0 ≤ d ≤ l

κ1 = λc

[
β0ψ0 +

l∑
d=1

rdβdψd + pvb3

]
, κ2 = λc

[
β0 (bϕ0 − ψ0) +

l∑
d=1

rdβd (bϕd − ψd) + (b− b3)pv

]
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ε1 =
[
θ̄ − κ1 − cM̃(λb)

]
, ε2 =

[
bθ̄ + χ1 + b̄κ1 + M̃(λb)κ2

]
.

Proof. Results given in equations (4.2–4.7) can be evaluated by multiplying governing equations (3.1–3.6) by
permissible power of z and further solving along with boundary conditions (3.7–3.13) and normalizing condition
(3.14). (For detailed proof, see Appendix A). �

Lemma 4.3. The PGFs for the marginal distributions of server states are

A(z) = ε1M̃(λb)E1(z) (4.8)

P d(z) = Qd(z), 0 ≤ d ≤ l (4.9)

V (z) =
[
E2(z)pṼ (φ5(z))

]
[φ5(z)]−1 (4.10)

Dd(z) =
[
αdQd(z)D̃d(φ3(z))

]
[φ3(z)]−1, 0 ≤ d ≤ l (4.11)

Rd1(z) =
[
αdQd(z)D̃d(φ3(z))G̃d,1(φ4(z))

]
[φ4(z)]−1, 0 ≤ d ≤ l (4.12)

Rdk(z) =

αdQd(z)G̃d,k(φ4(z))D̃d(φ3(z))
k−1∏
j=1

G̃d,j(φ4(z))

 [φ4(z)]−1, 2 ≤ k ≤ m; 0 ≤ d ≤ l (4.13)

where

Qd(z) =

{
Ω(z)B̃0(τ0(z)(τ0(z))−1; d = 0
rdΩ(z)B̃0(τ0(z)B̃d(τd(z)(τd(z))−1; d ∈ {1, 2, 3, 4, . . . , l}.

Proof. Utilizing the relation
∫∞

0
e(1− F (u))du = [1 − F̃ (s)][s], the results given in (4.8–4.13) are obtained by

integrating equations (4.2–4.7) w.r.t. relevant variables. �

4.3. Stationary queue length distribution

Theorem 4.4. The PGF for stationary queue length distribution at service completion epoch is

π(z) =
[
ε1X(z)E3(z)

]
[cS(z)]−1. (4.14)

Proof. Using the probability πj , we obtain equation (5.1) as follows

πj = K0

[∫ ∞
0

ν(y)Vj+1(y)dy+p̄

{
θ̄

(
r0

∫ ∞
0

µ0(x)P 0
j+1(x)dx+

l∑
d=1

∫ ∞
0

µd(x)P dj+1(x)dx

)

+ θ(1− δj,0)

(
r0

∫ ∞
0

µ0(x)P 0
j (x)dx+

l∑
d=1

∫ ∞
0

µd(x)P dj (x)dx

)}]
; j ≥ 0. (4.15)

with normalizing constant K0.
By using π(z) =

∑
j≥0 πjz

j , equation (4.15) yields

π(z) =
[
K0bε1φ1(z)M̃(λb)E3(z)

]
[ε2]−1. (4.16)

The normalizing condition π(1) = 1 gives

K0 = ε2[λcbM̃(λb)]−1. (4.17)

Using equations (4.16) and (4.17), we acquire the result given in equation (4.14). �
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Theorem 4.5. The PGF for stationary queue length distribution at departure epoch is

ω(z) =
[
ε1X(z)E3(z)

] [
c(θ̄ + θz)S(z)

]−1
. (4.18)

Proof. Utilizing the relation ω(z) = π(z)(θ̄ + θz)−1, we obtain the above expression. �

Theorem 4.6. At arbitrary epoch, the PGF’s for the system size and orbit size, respectively are

(i) P (z) = ε1

{
M̃(λb)E1(z) + bε−1

2

}
+ pṼ (φ5(z))E2(z)[φ5(z)]−1 +

l∑
d=0

Qd(z){Λd(z) + (z − 1)}

(4.19)

(ii) O(z) = ε1

{
M̃(λb)E1(z) + pṼ (φ5(z))E2(z)[φ5(z)]−1 + bε−1

2

}
+

l∑
d=0

Qd(z)Λd(z), (4.20)

with

Λd(z) =

1 + αd

D̃d(φ3(z))(φ3(z))−1 + D̃d(φ3(z))(φ4(z))−1

1−
m∏
j=1

G̃d,j(φ4(z))

 ; 0 ≤ d ≤ l.

Proof. We have

P (z) = P0 +A(z) + z

l∑
d=0

{
P d(z) +Dd(z) +

m∑
k=1

Rdk(z)

}
+ V (z) (4.21)

O(z) = P0 +A(z) +
l∑

d=0

{
P d(z) +Dd(z) +

m∑
k=1

Rdk(z)

}
+ V (z). (4.22)

Utilizing the above relations (4.21) and (4.22), we get the results given by equations (4.19) and (4.20). �

5. Performance measures

In this segment, various performance metrics of the concerned queueing model are acquired as follows.

5.1. Steady state probabilities

Long run probabilities of the model are primary features to analyze the behaviour of the system. The server
state probabilities of being in idle, accumulation, busy, delay in repair, under repair and vacation states are
denoted by P (I), P (N), P (Bd), P (Dd), P (Rd) and P (V ), respectively.

Theorem 5.1. The steady state probabilities at distinct server’s status are as follows:

(i) The server is idle and system is empty.

P (I) = (θ̄)−1(θ̄ − ρ)− χ3 = E(I)[E(C)]−1. (5.1)

(ii) The server is in accumulation state.
P (N) = χ3. (5.2)

(iii) The server is in busy state while rendering essential service.

P (B0) = χ2β0 = E(B0)[E(C)]−1. (5.3)
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(iv) The server is in busy state while rendering dth phase optional service.

P (Bd) = rdχ2βd = E(Bd)[E(C)]−1, d ∈Wl. (5.4)

(v) The server is in busy state.

P (B) = χ2

(
β0 +

l∑
d=1

rdβd

)
. (5.5)

(vi) The server is in vacation state.

P (V ) = pχ2v = E(V )[E(C)]−1. (5.6)

(vii) The server is waiting for repair when failed while rendering essential service.

P (D0) = α0χ2γ0β0 = E(D0)[E(C)]−1. (5.7)

(viii) The server is waiting for repair when failed while rendering dth phase optional service.

P (Dd) = αdrdχ2γdβd = E(Dd)[E(C)]−1, d ∈Wl. (5.8)

(ix) The server is waiting for repair.

P (D) = χ2

(
α0β0γ0 +

l∑
d=1

αdrdγdβd

)
. (5.9)

(x) The server is under kth phase repair when failed while rendering essential service.

P (R0
k) = α0χ2g0kβ0 = E(R0k)[E(C)]−1, k ∈Wm. (5.10)

(xi) The server is under kth phase repair when failed while rendering dth phase optional service.

P (Rdk) = αdχ2rdgdkβd = E(Rdk)[E(C)]−1, d ∈Wl, k ∈Wm. (5.11)

(xii) The server is under repair.

P (R) =
m∑
k=1

χ2

(
αdg0kβ0γ0 +

l∑
d=1

αdrdgdkβd

)
, (5.12)

where

λe =
[
λbθ̄M̃(λb)

] [
bθ̄ + χ1 + b̄κ1 + M̃(λb)κ2

]−1

, χ2 = λec(θ̄)−1

χ3 =
{
λe[κ1 + θ + c− 1]M̃(λb)

}[
λbθ̄M̃(λb)

]−1

, ρ = λec

[
β0ϕ0 +

l∑
d=1

rdβdϕd + pv

]
[E(C)]−1 = λec

[
(θ̄)−1(θ̄ − ρ)− χ3

]
.

Proof. Equations (5.2–5.4), (5.6–5.8), (5.10) and (5.11) are evaluated by taking limit z = 1 in equations (4.8–
4.13). Also, equation (5.1) is obtained on utilizing the expression given by

P (I) = 1−

[
l∑

d=0

[
P (Bd) + P (Dd) +

m∑
k=1

P (Rd)

]
+ P (V ) + P (N)

]
.
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Now, (5.5), (5.9) and (5.12) are obtained using following relations:

P (B) =
l∑

d=0

[P (Bd)], P (D) =
l∑

d=0

[P (Dd)], P (R) =
m∑
k=1

l∑
d=0

[P (Rdk)].

Note that λe is the effective arrival rate and is determined by using

λe = λP0 + λb

(
l∑

d=0

P d(1) +A(1)

)
+ λb1

(
l∑

d=0

Dd(1)

)
+ λb2

m∑
k=1

(
l∑

d=0

Rdk(1)

)
+ λb3V (1).

Also, estimated cycle length is E(C) = E(I) + E(H) with E(I) = (λec)−1, E(H) =
∑l
d=0[E(Bd) + E(Dd) +

E(Rd)] + E(V ). �

5.2. Mean system size

Theorem 5.2. The mean queue length (Ldep) at departure epoch is

Ldep = κ1 + c(2)(2c)−1 + S′′(1)(2ε1)−1, (5.13)

where

S′′(1) =

[
2θ
(
κ1 + cM̃(λb)

)
+ c(2)M̃(λb) +

l∑
d=1

rd

{
2β0βd(λc)2ψ0ψd − βdτ ′′d (1) + 2pvb3βdc2ψd

+ 2βdλ(c)2ψdM̃(λb)
}
− β0τ

′′
0 (1) + 2β0λc

2ψ0M̃(λb) + pv(2)(λb3c)2

+ pvλb3

{
c(2) + 2λβ0c

2ψ0 + 2c2M̃(λb)
}

+
l∑

d=1

rdβ
(2)
d × {ψdλc}

2 + β
(2)
0 {ψ0λc}2

]

ψ0 =

b+ α0

b1γ0 + b2

m∑
j=1

g0j

 ;ψd =

b+ αd

b1γd + b2

m∑
j=1

gdj

 ; 1 ≤ d ≤ l

τ ′′d (1) = −

λbc(2) + αd

2b1b2(λc)2γd

m∑
j=1

(gdj) + 2(λb2c)2
m∑
k=2

k−1∑
j=1

(gdjgdk)

+
[
λb1c(2)γd + (λb1c)2γ

(2)
d

]
+

m∑
j=1

[
λb2c(2)gdj + (λb2c)2g

(2)
dj

] ; 0 ≤ d ≤ l.

Proof. The expression (5.13) is obtained by using Ldep =
(

dω(z)
dz

)
z=1

. �

Theorem 5.3. The mean system size (Lq) at arbitrary epoch is

Lq = ε1(ε2)−1

[
M̃(λb){−ε1χ4 − (θ̄ − κ1 − c)S′′(1)}[2ε2

1]−1 + χ2χ7 + bM̃(λb)

×

{
λc

(
M0 +

l∑
d=1

{rdλcβ0βdψ0ϕd +Md}

)
(ε1)−1+χ6 ×

(
ε1(λc(2) + 2λc) + λcS′′(1)

)
[2ε2

1]−1

}

+ bpM̃(λb)b−1
3 {−ε1χ5 + λb3vcS

′′(1)}[2ε2
1]−1

]
, (5.14)



S2038 M. JAIN AND S. KAUR

where

χ4 = −

(
S′′(1) + M̃(λb)

{
c(2) + 2

l∑
d=1

rdβdλc
2ψd + 2β0λc

2ψ0 + 2pvλb3c2 + 2θc

})

Md = λc(2−1)

(
βdαd

{
b1γd + b2

(
m∑
i=1

gdi + 2
m∑
k=2

k−1∑
i=1

gdigdk

)
+ 2

m∑
i=1

gdiγdb1

}
+ β

(2)
d ψdϕd

)
; 0 ≤ d ≤ l

χ5 = −

[
2(θ + 1)λb3cv + 2b3v(λc)2

(
β0ψ0 +

l∑
d=1

rdβdψd

)
+ v(2)(λb3c)2 + vλb3c(2)

]

χ6 =

(
β0ψ0 +

l∑
d=1

rdβdψd

)
, χ7 =

(
β0 +

l∑
d=1

rdβd

)
.

Proof. Lq can be obtained by using Lq =
(

dP (z)
dz

)
z=1

. �

Theorem 5.4. The mean orbit size (Lo) at arbitrary epoch is

Lo = ε1(ε2)−1

[
M̃(λb){−ε1χ4 − (θ̄ − κ1 − c)S′′(1)}[2ε2

1]−1 + bM̃(λb)

{
λc

(
M0

+
l∑

d=1

{rdλcβ0βdψ0ϕd+Md}

)
(ε1)−1 + χ6 ×

(
ε1(λc(2) + 2λc) + λcS′′(1)

)
[2ε2

1]−1

}

+ bpM̃(λb)b−1
3 {−ε1χ5 + λb3vcS

′′(1)}[2ε2
1]−1

]
. (5.15)

Proof. Using the expression Lo =
(

dO(z)
Oz

)
z=1

, we get result given in equation (5.15). �

Remark. Using Little’s formula, we get mean waiting time

(i) at departure epoch Wdep = Ldep(λec)−1 (5.16)
(ii) at arbitrary epoch Wq = Lq(λec)−1. (5.17)

5.3. Reliability indices

Reliability indices for unreliable server queueing system can be used for the estimation availability and failure
frequency of the system. These indices facilitate the imperative features required for the improved designing
and upgrading of the system. Reliability indices under the steady state conditions are obtained as follows:

(i) Availability

Theorem 5.5. The availability of the server is

Av = b[ε1 + λcM̃(λb)χ7][ε2]−1. (5.18)

Proof. The availability given in equation (5.18) is obtained by using the following relation:

Av = P0 +
l∑

d=0

∫ ∞
0

P d(x, 1) dx = P0 + lim
z→1

[
l∑

d=0

P d(z)

]
.

�
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(ii) Failure frequency

Theorem 5.6. The failure frequency of the server is

Ff = χ2

{
α0β0 +

l∑
d=1

αdrdβd

}
. (5.19)

Proof. The equation (5.19) can be obtained by using

Ff =
l∑

d=0

αd

∫ ∞
0

P d(x, 1) = lim
z→1

[
l∑

d=0

αdP
d(z)

]
.

�

5.4. Cost analysis

Cost function per unit time can be expressed in terms of the following cost elements incurred per unit time
on different activities:

Ch Holding cost of unit joining the system.
CS Start up cost.
CBd

Cost incurred on the server while rendering dth phase.
CDd

(CRd
) Cost incurred on server when waiting for repair/under repair in case when the server

breakdown occurs in dth phase.
Cv Cost for keeping server on vacation.

Expected total cost (TC) per unit time:

TC = ChLq + [E(C)]−1

[
CS +

l∑
d=0

{CBd
E(Bd) + CDd

E(Dd) + CRd
E(Rd)}+ CvE(V )

]
. (5.20)

6. Maximum entropy principle

In this section, we employ the maximum entropy principle to obtain approximate waiting time. The entropy
function is framed as follows:

Z = −P0 logP0 −
∑
n≥1

{
An logAn −

l∑
d=0

(
P dn logP dn + logDd

n +Rdn logRdn
)
− Vn log Vn

}
. (6.1)

The maximum entropy results are obtained by maximizing the entropy function (6.1) using Lagrange’s multiplier
method, subject to the following constraints.

P 0
0 +

∑
n≥1

{
An +

l∑
d=0

(
P dn +Dd

n +Rdn
)

+ Vn

}
= 1 (6.2a)

∑
n≥1

An = η1 ≡ A(1) (6.2b)

∑
n≥1

P dn = η2d ≡ P d(1); d ∈Wl ∪ {0} (6.2c)

∑
n≥1

Dd
n = η3d ≡ Dd(1); d ∈Wl ∪ {0} (6.2d)
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n≥1

Rdn = η4d ≡ Rd(1); d ∈Wl ∪ {0} (6.2e)

∑
n≥1

Vn = η5 ≡ V (1) (6.2f)

∑
n≥1

(
nAn +

l∑
d=0

{
nP dn + nDd

n + nRdn
}

+ nVn

)
= Lq. (6.2g)

Theorem 6.1. The MEP approximate results for various system state probabilities of the system are

Ân = η1Γ (6.3a)

P̂ dn = η2dΓ; d ∈Wl ∪ {0} (6.3b)

D̂d
n = η3dΓ; d ∈Wl ∪ {0} (6.3c)

R̂dn = η4dΓ; d ∈Wl ∪ {0} (6.3d)

V̂n = η5Γ (6.3e)

where, δ = η1 +
∑l
d=0 (η2d + η3d + η4d) + η5,Γ = δ

(Lq−δ)
(Lq) .

Proof. Following the Lagrange’s multipliers approach, the entropy function (6.1) and constraints (6.2a–6.2g),
we get

Z = − P0 logP0 −
∑
n≥1

{
An logAn +

l∑
d=0

(
P dn logP dn +Dd

n logDd
n +Rdn logRdn

)
+ Vn log Vn

}

− α1

P 0
0 +

∑
n≥1

{
An +

l∑
d=0

(P dn +Dd
n +Rdn) + Vn

}
− 1

− α2

 ∞∑
n≥1

An − η1


−

l∑
d=0

α3d

∑
n≥1

P dn − η2d

+ α4d

∑
n≥1

Dd
n − η3d

+ α5d

∑
n≥1

Rdn − η4d

− α6

∑
n≥1

Vn − η5


− α7

∑
n≥1

(
nAn +

l∑
d=0

{
nP dn + nDd

n + nRdn
}

+ nVn

)
− Lq

 , (6.4)

where α1, α2, α3d, α4d, α5d, α6 and α7 are Lagrange’s multipliers for respective constraints given as (6.2a–6.2g).
Now differentiating partially equation (6.4) with respect to P0, An, P

d
n , D

d
n, R

d
n, Vn and equating the outcomes

to zero, we obtain

−(1 + logP0)− α1 = 0⇒ P0 = e−(1+α1) (6.5a)

−(1 + logAn)− α1 − α2 − nα7 = 0⇒ An = e−(1+α1+α2+nα7); n ∈W∞ (6.5b)

−(1 + logP dn)− α1 − α3d − nα7 = 0⇒ P dn = e−(1+α1+α3d+nα7); n ∈W∞, d ∈Wl ∪ {0} (6.5c)

−(1 + logDd
n)− α1 − α4d − nα7 = 0⇒ Dd

n = e−(1+α1+α4d+nα7); n ∈W∞, d ∈Wl ∪ {0} (6.5d)

−(1 + logRdn)− α1 − α5d − nα7 = 0⇒ Rdn = e−(1+α1+α5d+nα7); n ∈W∞, d ∈Wl ∪ {0} (6.5e)

−(1 + log Vn)− α1 − α6 − nα7 = 0⇒ Vn = e−(1+α1+α6+nα7); n ∈W∞, d ∈Wl ∪ {0}. (6.5f)



BERNOULLI VACATION MODEL FOR MX/G/1 S2041

Denote ξ1 = e−(1+α1), ξ2 = e−α2 , ξ3d = e−α3d , ξ4d = e−α4d , ξ5d = e−α5d , ξ6 = e−α6 , ξ7 = e−α7 and substituting
these values in equations (6.5a–6.5f), we obtain

P0 = ξ1, An = ξ1ξ2ξ
n
7 , P

d
n = ξ1ξ3dξ

n
7 , D

d
n = ξ1ξ4dξ

n
7 , R

d
n = ξ1ξ5dξ

n
7 , Vn = ξ1ξ6ξ

n
7 ; 0 ≤ d ≤ l. (6.6)

Using the expressions given in equations (6.6) and (6.2b–6.2f), we get

ξ1ξ2ξ7 = η1(1− ξ7) (6.7a)
ξ1ξ3dξ7 = η2d(1− ξ7) (6.7b)
ξ1ξ4dξ7 = η3d(1− ξ7) (6.7c)
ξ1ξ5dξ7 = η4d(1− ξ7) (6.7d)
ξ1ξ6ξ7 = η5(1− ξ7). (6.7e)

Utilizing equations (6.6) and (6.7a–6.7e) in equations (6.2a) and (6.2g), we get

ξ1 = 1− δ, ξ7 =
Lq − δ
Lq

· (6.8)

�

Theorem 6.2. The approximate expected waiting time of the units is

W ∗q = χ72−1
(
c(2)(c)−1 − 1

)
+
∑
n≥1

[
l∑

d=0

{(
γ

(2)
d (2γd)−1 + gd

)
D̂d
n +

(
g

(2)
d (2gi)−1

)
R̂dn

}

+
(
v(2)(2v)−1

)
V̂n

]
+ χ7

∑
n≥1

{
Ân +

l∑
d=0

{
nP̂ dn + nD̂d

n + nR̂dn

}
+ nV̂n

} . (6.9)

Proof. The elaborated proof is given in Appendix B. �

Remark. The deviation between Wq and W ∗q is obtained using

Dev(%) =
|Wq −W ∗q |

Wq
× 100. (6.10)

7. Special cases

Certain results of existing queueing models available in literature can be established by fixing some specific
parameters.

Case (i). Bulk queue with server breakdown, retrial, optional service and vacation.

By fixing, l = 1 and θ = 0 in equation (4.18), we obtain

ω(z) =
[
ε1X(z)B̃0(τ0(z))

{
r0 + r1B̃1(τ1(z))

}{
p̄+ pṼ (φ5(z))

}]
[cS(z)]−1. (7.1)

Above result is same as obtained in the model given by Singh and Kaur [27].

Case (ii). Unreliable server retrial queue with vacation.
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By letting P (X = 1) = 1, b = b1 = b2 = b3 = 1, ri = 0; 1 ≤ i ≤ l, θ = 0,m = 1, the equation (4.18) provides

ω(z) =
(
M̃(λ)− ρh

)
z̄B̃0(τ0(z))

{
p̄+ pṼ (λz̄)

}[
M̃(λ)z̄B̃0(τ0(z))

{
q + pṼ (λz̄)

}
− z
[
1−

{
p̄+ pṼ (λ(z̄)

}
B̃0(τ0(z))

]]−1

; (7.2)

where
ρh = λ [β0(1 + α0(γ0 + g01)) + pv] , τ0(z) = λz̄ + α0

(
1− D̃0(λz̄)G̃0,1(λz̄)

)
.

The above outcome is same as established by Choudhury and Ke [7].

Case (iii). Queue with server breakdown and delay in repair.

By fixing P (X = 1) = 1, m = 1, θ = 0, l = 1, b = b1 = b2 = b3 = 1, p = 1, M̃(λb) = 1, expression (4.18)
reduces to

ω(z) = [(1− ρh)z̄Θ(z)] [Θ(z)− (z)]−1 ; ρh = λc [β0 (1 + α0(γ0 + g01)) + r1β1 (1 + α1(γ1 + gi1))] ,

τi(z) = λz̄ + αi

(
1− D̃i(λz̄)G̃i,1(λz̄)

)
; i = 0, 1 and Θ(z) = B̃0(τ0(z))

{
r0 + r1B̃1(τ1(z))

}
. (7.3)

The above result (7.3) corresponds to the result derived in [10].

8. Numerical illustrations

In this section, we examine the impact of varying parameters on various operational characteristics of queueing
model. For numerical illustration, we take the distributions for batch arrival as geometric with parameter e and
for service time as k-Erlangian with parameter µd. The repair time is considered to follow Gamma distribution
with parameters (hdj1 , hdj2); 0 ≤ d ≤ l, 1 ≤ j ≤ m. Furthermore the delay time for repair and retrial time
follow the exponential distributions with corresponding parameters σd(0 ≤ d ≤ l), $ respectively. The vacation
is assumed to follow deterministic distribution with parameter ϑ. To compute the numerical results, we fix
parameters related to distributions as σd = 6µd, hdj1 = hdj2(µd3)−1; 0 ≤ d ≤ l, 1 ≤ j ≤ m.

Following are the values of default parameters to examine the behaviour of different performance measures:

c = 2, l = 2,m = 3, µ = 1.8, µ0 = µ, µ1 = 1.5µ, µ2 = 1.5µ, λ = 1.2, k = 2, ϑ = 40, p = 0.2, θ = 0.02,
b = 0.4, b1 = 0.25, b2 = 0.3, b3 = 0.35;α = 0.01, α0 = α, α1 = 0.1α, α2 = 0.2α,$ = 20, hdj1 = 2.

8.1. Steady state probabilities

Tables 1–3 display the effect of various parameters on probabilities of various system states. From
Table 1, it can be inspected that the long run probabilities P (I), P (V ) and P (N) increase (decrease) while
P (B), P (D), P (R) decrease (increase) with the increment in µ(λ). Tables 2 and 3 summarize the probabilities
P (I), P (N), P (B) which seems to reduce on increasing the parameters α and p. On the other side, the proba-
bilities P (R), P (D) show an increment for growing values of (α,$) while no significant change are noticed in
the value P (R), P (D) by increasing the parameters (θ, p). The effects of the parameters α and p on P (V ) are
also displayed in Tables 2 and 3. We notice that the probabilities P (V ) and P (B) increase for the increment in
(θ,$). Also, P (I) decreases (increases) with an increase in θ($), on the contrary P (N) increases (decreases)
with the growth in the values of θ($).

8.2. Reliability indices

Table 4 exhibits the impact of failure rate α on the reliability indices of the server for increasing the number
of phases (l) of optional services. The decreasing trends noticed in Av and Ff with the increased values of α
and l also match with experience in real time systems.
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Table 1. The probabilities of server’s status on varying λ and µ.

λ µ P (I) P (B) P (D) P (R) P (V ) P (N)

1.2

1.6 0.03979 0.90183 0.00070 0.00419 0.00519 0.04831
1.7 0.06386 0.87767 0.00064 0.00383 0.00537 0.04863
1.8 0.08665 0.85476 0.00059 0.00353 0.00554 0.04893
1.9 0.10828 0.83301 0.00054 0.00326 0.00570 0.04922
2.0 0.12882 0.81232 0.00050 0.00302 0.00585 0.04949

1.3

1.6 0.00664 0.93120 0.00072 0.00432 0.00536 0.05176
1.7 0.03040 0.90732 0.00066 0.00396 0.00555 0.05210
1.8 0.05296 0.88463 0.00061 0.00365 0.00573 0.05242
1.9 0.07440 0.86303 0.00056 0.00337 0.00590 0.05273
2.0 0.09481 0.84245 0.00052 0.00313 0.00607 0.05303

Table 2. The probabilities of server’s status on varying Θ and α.

Θ α P (I) P (B) P (D) P (R) P (V ) P (N)

0.02

0.01 0.08665 0.85476 0.00059 0.00353 0.00554 0.04893
0.02 0.08471 0.85269 0.00117 0.00704 0.00553 0.04886
0.03 0.08277 0.85063 0.00175 0.01053 0.00551 0.04880
0.04 0.08085 0.84858 0.00233 0.01400 0.00550 0.04873
0.05 0.07893 0.84654 0.00291 0.01746 0.00549 0.04867

0.04

0.01 0.07738 0.86292 0.00059 0.00356 0.00559 0.04996
0.02 0.07544 0.86081 0.00118 0.00710 0.00558 0.04989
0.03 0.07351 0.85871 0.00177 0.01063 0.00556 0.04982
0.04 0.07159 0.85662 0.00236 0.01414 0.00555 0.04975
0.05 0.06967 0.85454 0.00294 0.01763 0.00554 0.04968

Table 3. The probabilities of server’s status on varying $ and p.

$ p P (I) P (B) P (D) P (R) P (V ) P (N)

10

0.1 0.06577 0.83234 0.00057 0.00343 0.0027 0.09518
0.2 0.06466 0.83083 0.00057 0.00343 0.00538 0.09512
0.3 0.06356 0.82932 0.00057 0.00342 0.00806 0.09506
0.4 0.06246 0.82782 0.00057 0.00342 0.01073 0.09500
0.5 0.06137 0.82633 0.00057 0.00341 0.01339 0.09494

20

0.1 0.08781 0.85633 0.00059 0.00353 0.00277 0.04896
0.2 0.08665 0.85476 0.00059 0.00353 0.00554 0.04893
0.3 0.08550 0.85320 0.00059 0.00352 0.00829 0.04890
0.4 0.08436 0.85164 0.00059 0.00351 0.01104 0.04887
0.5 0.08322 0.85008 0.00058 0.00351 0.01377 0.04884

8.3. Mean queue length

From Table 5, we have examined that for all service phases, mean queue lengths Ldep, Lq and Lo become
long for increasing the parameters θ and λ. But for fixed values of θ and λ, the queue length metrics Ldep, Lq
and Lo decrease as the number of service phases for (k) of the Erlangian distribution increases
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Table 4. Av and Ff on varying α and l.

α
l = 0 l = 1 l = 2

Av Ff Av Ff Av Ff

0.01 0.9398 0.0072 0.9425 0.0065 0.9428 0.0065
0.02 0.9363 0.0144 0.9393 0.0130 0.9397 0.013
0.03 0.9327 0.0215 0.9361 0.0194 0.9365 0.0194
0.04 0.9292 0.0286 0.9329 0.0258 0.9334 0.0258
0.05 0.9257 0.0357 0.9298 0.0322 0.9303 0.0322

Table 5. Ldep, Lq and Lo on varying Θ and λ for different distributions.

Θ λ
M/M/1 M/E2/1 M/D/1

Ldep Lq Lo Ldep Lq Lo Ldep Lq Lo

0.02

1.0 7.92 8.30 7.52 7.73 8.03 7.25 7.54 7.76 6.98
1.1 10.19 10.70 9.87 9.90 10.31 9.49 9.60 9.93 9.11
1.2 14.06 14.68 13.83 13.59 14.11 13.25 13.11 13.53 12.68
1.3 22.17 22.91 22.02 21.31 21.93 21.05 20.45 20.96 20.07
1.4 50.00 50.87 49.96 47.78 48.53 47.61 45.57 46.18 45.27

0.04

1.0 8.32 8.73 7.94 8.11 8.45 7.65 7.91 8.16 7.37
1.1 10.90 11.44 10.61 10.58 11.03 10.20 10.26 10.62 9.79
1.2 15.52 16.17 15.31 14.99 15.54 14.68 14.45 14.91 14.04
1.3 26.20 26.99 26.09 25.17 25.84 24.94 24.14 24.69 23.79
1.4 78.06 79.05 78.13 74.55 75.40 74.48 71.04 71.76 70.84

8.4. Mean waiting time

For our queueing model, waiting time is also an imperative performance measure. In Table 6, we have provided
the numerical results for the mean waiting time Wq and approximate waiting time W ∗q evaluated from analytical
and MEP approaches, respectively. By varying parameters, Wq,W

∗
q and absolute percentage error are obtained;

the maximum error is noticed to be 10.43%.
Figures 1–4 show the impact of λ, µ, θ and $ on Wq for distinct values of number of optional services. In

Figures 1–4, it is observed that Wq attains higher values with the growth in λ(θ), while decreases with growth
in µ($). It can be viewed from these figures that there is notable increase in Wq for higher values of l.

8.5. Cost analysis

In this section, we provide the sensitivity analysis of cost function and optimal cost via quasi Newton method
by varying different parameters.

To compute the cost function (TC) for varying specific parameters, we consider the following set of default
cost components:

Ch = $5/day, Cs = $500/day, Cbi
= $35/unit, Cdi

= $20/day, Cri
= $40/unit, CV = $30/day.

(i) Sensitivity analysis

From Tables 7 and 8, it can be noticed that for increasing the arrival rate (λ), total cost (TC) first decreases
then increases for fixed values of l, θ and k. By fixing λ and l, TC seems to lower down with the growth in θ
and k. The noteworthy trend of TC on varying µ is shown in Table 9; the convex nature of cost function with
respect to µ in the feasible range of µ is observed. For exact values of µ and l, TC increases on raising the value
of θ. In Tables 7–9, we observe that TC reveals significant change for l = 1 and 2.
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Table 6. Wq and W ∗q for varying parameters.

Parameters
l = 1 l = 2
Wq W ∗

q error (%) Wq W ∗
q error (%)

λ

1.10 8.73 8.00 8.41 9.88 9.10 7.85
1.15 9.72 8.93 8.13 11.2 10.33 7.76
1.20 11.00 10.11 8.08 13.00 11.94 8.10
1.25 12.71 11.64 8.47 15.56 14.10 9.39

$

17.00 11.47 10.44 9.00 13.64 12.39 9.14
19.00 11.14 10.20 9.33 13.18 12.07 8.41
21.00 10.87 10.02 7.84 12.83 11.83 7.83
23.00 10.67 9.88 7.41 12.55 11.63 7.35

Θ

0.01 10.54 9.79 7.14 12.37 11.50 7.03
0.02 11.00 10.11 8.08 13.00 11.94 8.10
0.03 11.50 10.46 9.05 13.69 12.43 9.23
0.04 12.05 10.84 10.06 14.48 12.97 10.43

µ

1.70 14.16 12.96 8.47 17.58 15.84 9.92
1.80 11.00 10.11 8.08 13.00 11.94 8.10
1.90 9.04 8.28 8.45 10.38 9.54 8.04
2.00 7.70 7.01 9.08 8.68 7.94 8.47

p

0.10 10.87 10.03 7.79 12.83 11.83 7.79
0.30 11.12 10.19 8.37 13.16 12.06 8.42
0.50 11.39 10.37 8.95 13.52 12.29 9.05
0.70 11.66 10.55 9.53 13.88 12.54 9.69

Figure 1. Wq for varying different
values of λ.

Figure 2. Wq for varying different
values of µ.

(ii) Quasi Newton method to find optimal cost

In order to find optimum cost for our present model, we consider cost as a function of service rate (µ)
and mean vacation time (v) with all other parameters keeping as fixed. Optimal values of service rate µ and
mean vacation time (v) which minimize the cost TC (µ∗, v∗) are denoted by (µ∗, v∗). Then unconstraint cost
minimization problem can be expressed in terms of µ and v as

TC(µ∗, v∗) = Min
µ,v

TC(µ, v). (8.1)

For some fixed initial values of (µ, v), quasi Newton method is used for searching the optimal value of (µ, v) in
the feasible range so as to minimize the total cost TC(µ, v) i.e. to evaluate TC (µ∗, v∗). Quasi Newton method
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Figure 3. Wq for varying different
values of θ.

Figure 4. Wq for varying different
values of ω.

Table 7. TC on varying (λ, l) for different service phases.

λ
k

l = 1 l = 2
M/M/1 M/E2/1 M/D/1 M/M/1 M/E2/1 M/D/1

0.90 165.49 164.55 163.61 158.43 157.45 156.48
0.95 161.25 160.15 159.05 154.51 153.37 152.22
1.00 157.30 156.02 154.73 151.09 149.74 148.39
1.05 153.86 152.36 150.85 148.45 146.85 145.25
1.10 151.23 149.45 147.68 147.01 145.09 143.18
1.15 149.80 147.69 145.58 147.41 145.08 142.76
1.20 150.20 147.66 145.11 150.69 147.81 144.93
1.25 153.43 150.30 147.16 158.75 155.09 151.43
1.30 161.29 157.33 153.37 175.58 170.70 165.82
1.35 177.46 172.25 167.03 211.09 204.08 197.08
1.40 210.87 203.51 196.14 299.36 287.64 275.92

is used in the direction of finding minimum value of cost with some fixed tolerance (say ε). The steps of quasi
Newton method algorithm are as follows:

Algorithm

Step 1. For fixed values of other parameters, let Ψj = [µ, ν]T .
Step 2. Start with some initial trial value Ψj for j = 0 and evaluate TC(Ψ0).
Step 3. Compute cost gradient ∇TC(Ψj) = [∂TC/∂µ, ∂TC/∂v]T

∣∣
Ψj

and the cost Hessian matrix is

H(Ψj) =
[
∂2TC/∂µ2 ∂2TC/∂µ∂ν
∂2TC/∂ν∂µ ∂2TC/∂ν2

]∣∣∣∣
Ψj

.

Step 4. Find the new trial solution Ψj+1 = Ψj − (H(Ψj))−1∇TC(Ψj).
Step 5. Set j = j + 1 and repeat the steps 3 and 4 until Max

(
|∂TC/∂µ|, |∂TC/∂v|

)
< ε where ε is minimum

accepted tolerance, say ε = 10−7.
Step 6. Find the global minimum value TC (µ∗, v∗) = TC(Ψj).

Implementing the quasi Newton method in Table 10, we display the optimal solution (µ∗, v∗) along with
optimal cost TC (µ∗, v∗) for M/M/1,M/E2/1 and M/D/1 models taking l = 1 and 2 and varying values of the
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Table 8. TC on varying (λ, l) for different values of Θ.

λ
l = 1 l = 2

Θ = 0.02 Θ = 0.04 Θ = 0.06 Θ = 0.02 Θ = 0.04 Θ = 0.06

0.90 164.55 160.59 156.71 157.45 153.8 150.27
0.95 160.15 156.35 152.67 153.37 149.95 146.72
1.00 156.02 152.46 149.11 149.74 146.69 143.92
1.05 152.36 149.20 146.34 146.85 144.36 142.29
1.10 149.45 146.88 144.76 145.09 143.47 142.49
1.15 147.69 146.01 145.03 145.08 144.8 145.61
1.20 147.66 147.35 148.20 147.81 149.76 153.66
1.25 150.30 152.25 156.25 155.09 161.08 171.00
1.30 157.33 163.31 173.33 170.70 185.05 209.09
1.35 172.25 186.36 210.12 204.08 240.25 311.33
1.40 203.51 237.97 305.01 287.64 416.92 923.23

Table 9. TC on varying (µ, l) for different values of Θ.

µ
l = 1 l = 2

Θ = 0.02 Θ = 0.04 Θ = 0.06 Θ = 0.02 Θ = 0.04 Θ = 0.06

1.55 186.04 211.21 255.96 245.31 321.85 521.82
1.60 165.38 178.09 198.84 193.79 224.62 281.96
1.65 154.85 161.57 172.47 169.69 185.15 210.84
1.70 149.66 152.99 158.81 157.22 165.56 179.04
1.75 147.65 148.82 151.63 150.76 155.16 162.57
1.80 147.66 147.35 148.20 147.81 149.76 153.66
1.85 149.04 147.66 147.13 147.09 147.39 149.04
1.90 151.40 149.20 147.65 147.87 146.98 147.07
1.95 154.46 151.61 149.27 149.71 147.92 146.87
2.00 158.05 154.67 151.70 152.32 149.82 147.91
2.05 162.04 158.22 154.73 155.50 152.43 149.82

parameters p, λ, θ, α and $. In order to find the optimum solution using quasi Newton algorithm the feasible
ranges of µ has chosen to lie in the range [2, 6] and ν in range [1, 2].

The trends of TC for varying different sensitive parameters are depicted in Figures 5–8. In Figures 5 and 6,
optimal total cost TC∗ are attained as $141.67 and $143.22, respectively, along with corresponding optimal
parameter values (λ∗ = 1.05, µ∗ = 1.75) and (λ∗ = 1.1, p∗ = 0.9), respectively. From Figures 7 and 8, it is also
seen that TC∗ are $141.45 and $145.84 with respective optimal parameter values (λ∗ = 1.05, θ∗ = .07) and
(µ∗ = 2.2, θ∗ = 0.16).

From numerical illustrations above, we observe the impact of parameters on performance indices in the system
and know that the results are coincident with the practical situations.

9. Conclusion

The unreliable server MX/G/1 retrial queue investigation includes many realistic features altogether viz.
optional feedback, vacation, multi-optional service, balking, server breakdown, delay in repair and multi phase
etc. The assumptions of general distributions for phase services, delay in repair/repair, retrial processes, vaca-
tion etc. make our model practically plausible to deal with non-Markovian model and depict many queueing
scenarios in more appropriate manner. The applications of retrial bulk model studied can be found in many real
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Table 10. Optimal (µ∗, v∗) and TC on varying (l, p, λ, θ, α,$) for different phases and optional
services.

M/M/1 M/E2/1 M/D/1
l p µ∗ v∗ TC µ∗ v∗ TC µ∗ v∗ TC

1
0.2 3.3540 1.9634 142.99 3.0375 1.7502 142.19 2.7217 1.4878 41.20
0.3 6.2160 1.9848 139.34 5.3460 1.8625 139.10 4.4772 1.6928 138.77

2
0.2 3.4258 1.9230 142.84 3.1204 1.7188 142.08 2.8155 1.4707 141.14
0.3 6.2887 1.9626 139.29 5.4489 1.8434 139.06 4.6104 1.6808 138.75

l λ µ∗ v∗ TC µ∗ v∗ TC µ∗ v∗ TC

1
1.3 3.5786 1.8021 147.26 3.243 1.6029 146.42 2.9081 1.3582 145.37
1.4 3.8051 1.6644 151.35 3.4502 1.4777 150.47 3.0960 1.2484 149.36

2
1.3 3.6558 1.7644 147.10 3.3318 1.5737 146.29 3.0085 1.3422 145.30
1.4 3.8876 1.6291 151.18 3.5451 1.4503 150.34 3.2031 1.2334 149.29

l θ µ∗ v∗ TC µ∗ v∗ TC µ∗ v∗ TC

1
0.04 3.4613 1.9402 142.79 3.1353 1.7338 142.04 2.8098 1.4798 141.09
0.06 3.5755 1.9169 142.59 3.2392 1.7172 141.86 2.9035 1.4715 140.96

2
0.04 3.5356 1.9012 142.65 3.2208 1.7034 141.92 2.9067 1.4631 141.02
0.06 3.6524 1.8791 142.45 3.3277 1.6878 141.76 3.0037 1.4554 140.90

l α µ∗ v∗ TC µ∗ v∗ TC µ∗ v∗ TC

1
0.02 3.3106 1.9321 142.87 2.9948 1.7126 142.05 2.6799 1.4419 141.02
0.04 3.2258 1.8682 142.62 2.9119 1.6357 141.75 2.5992 1.3475 140.65

2
0.02 3.3842 1.8932 142.72 3.0795 1.6833 141.94 2.7754 1.4277 140.97
0.04 3.3033 1.8323 142.49 3.0000 1.6107 141.66 2.6977 1.3398 140.62

l $ µ∗ v∗ TC µ∗ v∗ TC µ∗ v∗ TC

1
5 4.2590 1.7596 140.32 3.8682 1.5952 139.80 3.4780 1.3941 139.16
10 3.6221 1.8922 142.05 3.2836 1.6963 141.36 2.9459 1.4557 140.50

2
5 4.3526 1.7284 140.22 3.9754 1.5711 139.72 3.5988 1.3810 139.12
10 3.7004 1.8551 141.92 3.3738 1.6675 141.26 3.0476 1.4399 140.44

Figure 5. TC for varying (λ, µ).
Figure 6. TC for varying (λ, p).

time systems such as in manufacturing and assembly organizations, telecommunication network, health care
system, banking and computer network, etc. The supplementary variable technique (SVT) used facilitates vari-
ous performance metrics explicitly which are computationally tractable also. MEP approach has also employed
to demonstrate the scope of evaluating the operational characteristics of complex systems for which explicit
analytical results cannot be derived. The present model can be modified by including admission control policy,
working vacation policy, etc.
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Figure 7. TC for varying (λ, θ).
Figure 8. TC for varying (µ, θ).

Appendix A.

Proof of Lemma 4.2. In order to analyze the model mathematically, the technique of probability generating
function is used for solving governing equations. Upon multiplying the equations (3.2), (3.4–3.6) by appropriate
power of z and then summing for all values of n, we have

A(x, z) = A(0, z)(1−M(x)) exp{−λbx} (A.1)

Dd(x, y, z) = Dd(x, 0, z)[1−Dd(y)] exp{−φ3(z)y}; 0 ≤ d ≤ l (A.2)

Rdk(x, y, z) = Rdk(x, 0, z)[1−Gd,k(y)] exp{−φ4(z)y}; 0 ≤ d ≤ l; 1 ≤ k ≤ m (A.3)
V (y, z) = V (0, z)(1− V (y)) exp{−φ5(z)y}. (A.4)

In the similar manner, from equation (3.10), we obtain

Dd(x, 0, z) = αdP
d(x, z); 0 ≤ d ≤ l. (A.5)

Now, using (3.11) and (3.12) in similar manner and using (A.3), we obtain

Rd1(x, 0, z) = Dd(x, 0, z)D̃d(φ3(z)); 0 ≤ d ≤ l (A.6)

Rdk(x, 0, z) = Rdk−1(x, 0, z)G̃d,k−1(φ4(z)); 0 ≤ d ≤ l; 2 ≤ k ≤ m. (A.7)

Putting k = 2 in equation (A.7) and using (A.6), then continuing recursively for k = 3, 4, . . . ,m, we have

Rdk(x, 0, z) = Dd(x, 0, z)D̃d(φ3(z))
k−1∏
j=1

G̃i,j(φ4(z)); 0 ≤ d ≤ l, 2 ≤ k ≤ m. (A.8)

Also, by utilizing (A.5) in (A.6) and (A.8), we get

Rd1(x, 0, z) = αdP
d(x, z)D̃d(φ3(z)); 0 ≤ d ≤ l (A.9)

Rdk(x, 0, z) = αdP
d(x, z)D̃d(φ3(z))

k−1∏
j=1

G̃i,j(φ4(z)); 0 ≤ d ≤ l, 2 ≤ k ≤ m. (A.10)

On solving the equation (3.3) and using equations (A.10), we have

P d(x, z) = P d(0, z)[1−Bd(x)] exp{−τd(z)x}; 0 ≤ d ≤ l. (A.11)
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Using (3.8), (3.13) and (A.11), we obtain

P d(0, z) = rdP
0(0, z)B̃0(τ0(z)); 1 ≤ d ≤ l (A.12)

V (0, z) = p(θz + θ̄)

{
r0 +

l∑
d=1

rdB̃d(τd(z))

}
P 0(0, z)B̃0(τ0(z)). (A.13)

Using (3.7) and (3.1), (A.11–A.13), we get

A(0, z) = z−1(θz + θ̄)P 0(0, z)B̃0(τ0(z))

{
r0 +

l∑
d=1

rdB̃d(τd(z))

}{
q + pṼ (φ5(z))

}
− λP0. (A.14)

Similarly, in equation (3.8) using the equation (A.1), we have

P 0(0, z) = λP0X(z) +A(0, z)
[
M̃(λb) +X(z)

(
1− M̃(λb)

)]
. (A.15)

Using equation (A.14) in (A.15), we get

P 0(0, z) = zP0φ1(z)M̃(λb)(S(z))−1. (A.16)

By using equation (A.16) in equation (A.15), we get

A(0, z) = λP0

[
z −X(z)

(
θz + θ̄

)
B̃0(τ0(z))

{
r0 +

l∑
d=1

rdB̃d(τd(z))

}{
p̄+ pṼ (φ5(z))

}]
(S(z))−1. (A.17)

By utilizing equations (A.5) in (A.2) and (A.9), (A.10) in (A.3), we get

Dd(x, y, z) = αdP
d(x, z)[1−Dd(y)] exp{−φ3(z)y}; 0 ≤ d ≤ l. (A.18)

Rd1(x, y, z) = αdP
d(x, z)D̃d(φ3(z))[1−Gd,k(y)] exp{−φ4(z)y}; 0 ≤ d ≤ l. (A.19)

Rdk(x, y, z) = αdP
d(x, z)D̃d(φ3(z))

k−1∏
j=1

G̃i,j(φ4(z))[1−Gd,k(y)] exp{−φ4(z)y};

0 ≤ d ≤ l, 2 ≤ k ≤ m. (A.20)

Using (A.1), (A.4), (A.11), (A.18–A.20) in normalizing condition (3.14) and further using (A.12), (A.13) and
(A.16), (A.17), we can obtain value of P0 as

P0 = bε1[ε2]−1. (A.21)

Now, combining (A.1) and (A.17), and using the value of P0 we have result given in equation (4.2).
Similarly, utilizing P0 in equation (A.16) and further substituting the outcome in (A.11), we can easily obtain

equation (4.3) and hence equations (4.4–4.6). �

Appendix B.

Proof of Theorem 6.2. In order to find the approximate expected waiting time of test unit U, for different server
status is obtained as follows:
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(a) Idle state

Upon arrival of unit U, if the server is in idle state I, then the server immediately turned on to busy state.
In this case, the unit U, has to wait due to that unit preceding him in the same group. Thus, the mean waiting
time of the unit U, in idle state is given as

WI =

(
β0 +

l∑
d=1

rdβd

)
2−1

(
c(2)(c)−1 − 1

)
. (B.1)

(b) Busy state

In the busy state, while the server is rendering the essential/optional service, test unit U has to wait for (i)
the service time of those n units in front of him, (ii) additional waiting time due to the unit preceding him in
the same group. Thus mean waiting time in busy state while rendering essential/optional service is

WB =

(
β0 +

l∑
d=1

rdβd

)[
n+ 2−1

(
c(2)(c)−1 − 1

)]
. (B.2)

(c) Delayed repair state

Upon arrival of test unit U, if the server is broken down while rendering the essential/optional service of the
unit and waiting for repair, then the test unit U will wait (i) residual delay time, (ii) mean repair time, (iii)
service time of those n units in front of him and (iv) additional waiting time due to the unit preceding him in
same group. Thus mean waiting time for unit in delay repair state Dd(d = 1, 2 . . . l) is

WDd
= γ

(2)
d (2γd)−1 + gd +

(
β0 +

l∑
d=1

rdβd

)[
n+ 2−1

(
c(2)(c)−1 − 1

)]
. (B.3)

(d) Repair state

If server is failed while rendering the essential/optional service of the unit, the test unit U will wait for the
(i) residual repair time, (ii) service time of n units in front of him and (iii) additional waiting time due to unit
preceding him in same group. Thus mean waiting time for Rd(d = 1, 2 . . . l) state is

WRd
= g

(2)
d (2gd)−1 +

(
β0 +

l∑
d=1

rdβd

)[
n+ 2−1

(
c(2)(c)−1 − 1

)]
. (B.4)

(e) Vacation state

During the vacation state, test unit U will wait for (i) residual vacation time, (ii) for the service time of those
n units in front of him and (ii) additional waiting time due to the unit preceding him in same group. Thus mean
waiting time in vacation state is

Wv = v(2)(2v)−1 +

(
β0 +

l∑
d=1

rdβd

)[
n+ 2−1

(
c(2)(c)−1 − 1

)]
. (B.5)

On utilizing equations (B.1–B.5) and summing up waiting time of test unit in idle state, busy state, delayed
to repair state, repair and vacation state, we obtain the approximate mean waiting time in the service system
given in equation (6.9). �
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