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IMPERFECT PRODUCTION SUPPLY CHAIN MODEL CONSIDERING
PRICE-SENSITIVE DEMAND AND QUANTITY DISCOUNTS UNDER FREE

DISTRIBUTION APPROACH

Hemapriya Selvaraj∗ and Uthayakumar Ramasamy

Abstract. During production process, we may experience with some imperfect things disregarding
every single precautionary measures. The imperfect things are each of two dismissed promptly at the
season of production or reworked and sold as great ones or customers are given plenty discount to keep
up the generosity of the organization. This article considers about this practical circumstances and
includes price-sensitive demand. As production propels, we have defective items as a part of result. The
customer’s demand is pretended to be price-sensitive dependent to increment the quantity of offers, and
the vendor offers a quantity discount to persuade the buyer to purchase more amounts. Here, the lead
time demand follows a free distribution. Therefore, the integrated model is used to find the optimizing
values for the total number of shipments, order quantity, safety factor and retail price. An efficient
iterative algorithm is designed to obtain the optimal solution of the model numerically and sensitivity
analysis table formulate to show the impact of different parameter.
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1. Introduction

In this globalised economy, business professionals are mostly interested to establish integration or coordination
among the participating entities in order to enhance their supply chains performance. Over the past few epochs of
research on Economic Production Quantity (EPQ) models, the heaps of disputes have appeared. The traditional
EPQ model is often considered some unrealistic and idealistic assumptions. Thus, the development of the
manufacturing inventory models needs a certain amount of relaxation from these types of assumptions to
represent the actual realistic scenario to the manufacturing industries. The foremost unrealistic assumption in
using the EPQ models is that a machine can work always perfectly but in reality, a production process may
not always be perfect due to facility defect, lack of facility maintenance, damage in transit, transportation
delay, etc., but also may face the situation of sudden machine breakdown/failure at any random point in the
duration production run. These imperfect items may affect the customer service level and company’s profit
margin and goodwill or reputation. It is, therefore, worth studying the effect of non-conforming or defective
items on inventory decisions. To resolve the issue, the buyer may perform a 100% screening process to identify
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and it can be reworked at that instant moment with an extra cost. Sarkar and Giri [10] has been devoted
to the study of stochastic supply chain model with imperfect production and controllable defective rate. Dey
and Giri [3] proposed an integrated inventory model with imperfect production process to study the effects of
reducing defective rate. Annadurai and Uthayakumar [2] developed a periodic review inventory model under
controllable lead time and lost sales reduction.

Quantity discount is a common practice in retail sales and provides economic advantages for both the buyer
and vendor. The vendor will be able to benefit from sales of larger quantities by reducing the unit order and
setup costs. In many cases quantity discounts can provide the buyer lower per-unit purchase cost, lower ordering
costs, and decreased likelihood of shortages. The traditional quantity discount models are solely focused from
the buyer’s point of view to determine the optimal strategy. Giri and Sarker [5] developed a coordinating a
multi-echelon supply chain under production disruption and price-sensitive stochastic demand. Mandal and
Giri [9] developed a two-warehouse integrated inventory model with imperfect production process under stock-
dependent demand and quantity discount offer. Jazinaninejad et al. [6] developed a Coordinated decision-
making on manufacturer’s EPQ based and buyer’s period review inventory policies with stochastic price-sensitive
demand [13] developed a EPQ model for returned/reworked inventories during imperfect production process
under price-sensitive stock-dependent demand. Lin and Ho [8] proposed an integrated inventory model with
quantity discount and price-sensitive demand. Agrawal and Yadav [1] proposed a price and profit structuring
for single manufacturer multi-buyer integrated inventory supply chain under price-sensitive demand condition
[14] developed a Pricing strategy for deteriorating items using quantity discount when demand is price-sensitive.
Sarkar et al. [12] proposed an impact of safety factors and setup time reduction in a two-echelon supply chain
management. Sarkar et al. [11] investigated the effects for variable production rate on quality of products in a
single-vendor multi-buyer supply chain management.

Different researcher developed different types of model under the consideration of imperfect production system
with safety stock, price-sensitive demand, but no one developed any model for single-vendor single-buyer for
defective products involving price-sensitive demand under free distribution. In addition, we consider that the
defective follows probability distribution function such as uniform distribution. Therefore, this research paper
intends to fill this remarkable gap in the inventory literature. There is a big research gap in this direction, which
is fulfilled by this research.

2. Problem description

In this chapter, the retailer offers different price discounts to his customers. Moreover, the demand for a
product is considered as price-sensitive. The pricing strategy discussed here is one in which the vendor offers a
quantity discount to the buyer. Then the buyer will adjust his retail price based on the purchasing cost, which
will influence the customer demand as a result. The main objective of this study is to determine the order
quantity, retail price and the number of shipments from vendor to the buyer in one production run to maximize
the total profit. Finally, we solve numerical examples to substantiate the theoretical results of the underlying
model and extend the numerical example by performing a sensitivity analysis of the model parameters and
discuss managerial insights.

3. Model description

In this chapter, when retailer offers different price discounts to his customers. Moreover, the demand for a
product is considered as price-sensitive. The pricing strategy discussed here is one in which the vendor offers a
quantity discount to the buyer. Then the buyer will adjust his retail price based on the purchasing cost, which
will influence the customer demand as a result. The main objective of this study is to determine the order
quantity, retail price and the number of shipments from vendor to the buyer in one production run to maximize
the total profit. Finally, we solve numerical examples to substantiate the theoretical results of the underlying
model and extend the numerical example by performing a sensitivity analysis of the model parameters and
discuss managerial insights.
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4. Notations and assumptions

4.1. Notations

We need the following notations and assumptions, to enhance the mathematical model of this proposed
model. The following terminology is used:

Parameters

A Buyer’s ordering cost per item per year.
hb1 The holding cost rate for defective items per item per year.
hb2 The holding cost rate for non-defective items per item per year.
hv The vendor’s holding cost per item per year.
y Defective rate amid the lot-size Q.
S The vendor’s setup cost per item per year.
P Production rate per unit time.
x Screening rate.
tT Transportation time.
π Stock out cost per unit of shortage.
pi Buyer’s purchase cost per unit depends on Q, i = 0, 1, 2, . . . , k.
c Unit production cost.
k2 Backup factor of batch 2, 3, . . . ,m.
ts Setup and transportation time.
tT Transportation time.
F The transportation cost for buyer per unit.
s Buyer’s screening cost.
N Number of defective items during a production cycle.
R Rework cost per unit item.
η(P ) Slipped by time that the procedure goes “out-of-control”.
t Actual production run time.
w A unit part weight.
d Transportation distance.
γ Discount aspect for LTL shipments, 0 ≤ γ < 1.
Fx The freight rate for every mile for full truckload (FTL).
Fy The freight rate for every mile for partial load.
wx Full truckload (FTL) shipping weight.
wy Actual shipping weight.

Variables

Q Size of the shipment from the vendor to the buyer.
k1 Backup factor of batch 1.
ri Unit retailing price for buyer is, ri = (1 + Ω)pi, with markup rate Ω > 0, i = 0, 1, . . . , k.
n Number of lots in which the item are delivered from the vendor.

4.2. Assumptions

The following hypothesis are need to be considered in this model are:

(1) This is a single-vendor and single-buyer integrated supply chain model.
(2) Replenishments are made when the on hand inventory reaches the reorder point r (the inventory is reviewed

continuously).
(3) The buyer orders a lot size of nQ units and the vendor produces the items. In n equal sized shipments these

items are delivered to the buyer.
(4) The demand rate is lesser than the vendor’s production rate of non-defective items (i.e., P (1− y) > D).
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(5) The demand rate D(ri) = αr−δi is the function of retail price where α > 0 is a scaling factor, and δ > 1 is
the index of price elasticity.

(6) After the production system, the elapsed time goes “out-of-control” is an exponentially distributed random
variable and the mean of the exponential distribution is a decreasing function of the production rate.

(7) The unit purchase cost for buyer is defined by:

p =


p0 for q0 ≤ Q < q1,
p1 for q1 ≤ Q < q2,
...
pk for qk ≤ Q < qk+1.

where p0 > p1 > . . . pk > 0 and 0 = q0 < q1 < q2 < . . . < qk < qk+1 =∞ is the arrangement of price-break
quantities.

(8) The safety backup supply during the first batch is,

s1 = k1σ
√
L(P,Q) = k1

√
ts +

Q

P

and the safety backup supply during the second batch is,

si = k2σ
√
L(tT ) = k2σ

√
tT

which gives the relation between safety backup supplies as similar as in chapter 7 is,

k2 = k1

√
ts + Q

P

tT

for batches 2, 3, . . . ,m.

5. Mathematical model

This section derives the total cost involved in integrating the lot size policies between a vendor and a buyer.
The mathematical approach is similar to Dey and Giri [3]. The buyer orders size nQ of non-defective item to the
vendor. In order to reduce the production cost, the vendor produces these nQ item at one set-up and transfer
of Q items at each regular interval Q(1−y)

D . Therefore the length of complete production cycle is nQ(1−y)
D . The

screening process is implemented by the buyer to separate defective and non-defective items with the finite
screening rate x per unit time.

5.1. Buyer’s perspective

Since A be the ordering cost per order, so AD
nQ(1−y) will be the ordering cost per unit time. The expected on

hand inventory per unit time is Q
2 + SS, where SS = kσ

√
L. But the order quantity Q have y percentage of

defectiveness. Therefore the buyer separates the inventory as perfect items and defective items. Therefore, the
expected holding cost is,

nQ(1− y)
D

[
kσ
√
L+

Q(1− y)
2

+
DQy

2x(1− y)

]
·

Consequently, the average inventory level of defective items after the screening time in a cycle is,

nQ2y

[
1− y
D
− 1

2x

]
·



IMPERFECT PRODUCTION SUPPLY CHAIN MODEL S1837

Furthermore, the shortage cost for one order cycle is,

Dπ

Q
E(X1 − r1)+ +

Dπ(n− 1)
Q

E(X2 − r2)+.

The total freight cost per year given by,

Fy = Fx + αFx

(
wx − wy
wy

)
, 0 < α ≤ 1.

where α indicated as a discount factor for LTL shipments and the anticipated total freight cost every year which
is the characteristic of shipping weight and distance with adapted inverse yields is expressed as,

F (D, q1, w, d) =
D

Q(1− y)
γFxwxd+Ddw(1− γ)Fx.

So as to build up the relationship between the process quality and the production rate, we pretended that f(P )
as an increasing function of P and it denotes the number of failure of production process with an increased
production rate. Appropriately, 1/f(P ) denotes the mean time to failure and it becomes a decreasing function
of the production rate P [7]. Therefore from the above analysis, it shows that when the production rate is
increased, the mean time to failure decreases.

During the production cycle, the number of defective units is,

D =
{

0 if η ≥ t
α∗P (t− η(P )) if η ≤ t .

Therefore during the production cycle, the expected number of defective units is stated as,

E(D) = α∗P

[
Q

P
+

1
f(P )

e−(
Qf(P )

P ) − 1
f(P )

]
·

For the small value of f(P ), using the Maclaurin series we obtain, E(D) = ηf(P )Q
2

2P and thus the expected
rework cost is given by, RD

QE(D) = RDηf(P ) Q2P .
Subsequently, the unit purchase price of the buyer is p = pi, the expected total profit for the buyer per unit

is

ETPb(Q, ri, n) = sales revenue – ordering cost – transportation cost – holding cost
− backorder cost – screening cost – purchase cost – freight cost
− crashing cost – rework cost

= riD −
D(A+ nF )
nQ(1− y)

− hb1
{
Qy − DQy

2x(1− y)

}
− hb2

{
r −DL

+
Q(1− y)

2
+

DQy

2x(1− y)

}
− πDE(X1 − r1)+

Q(1− y)
− Dπ(n− 1)E(X2 − r2)+

Q(1− y)

− sD

(1− y)
− piD −

D

Q(1− y)
γFxWxd−Ddw(1− γ)Fx −

DR(L)
nQ(1− y)

−RDηf(P )
Q

2P
· (5.1)

5.2. Vendor’s perspective

Since S is the setup cost per setup, therefore SD
nQ(1−y) will be the setup cost per unit time. the average level

inventory holding cost for the vendor is similar to Dey and Giri [3] which is given by,
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In this manner, the average inventory holding cost for the vendor can be,

hv
Q

2

[
n

(
1− DP

1− y

)
− 1 +

2DP
1− y

]
·

Finally R(L) is the lead time crashing cost, so that DR(L)
Q(1−y) will be the total crashing cost for the entire production

cycle. Subsequently, the vendor’s unit selling price is p = pi, the expected total profit per unit time for the
vendor is,

ETPv(Q,n) = sales revenue – setup cost – holding cost – inspection cost

= D(pj − c)−
SD

nQ(1− y)
− hv

Q

2

[
n

(
1− DP

1− y

)
− 1 +

2DP
1− y

]
− ID. (5.2)

Conjunct with the relevant costs mentioned above, the expected annual total profit per unit time of the integrated
system is expressed as follows:

JETP(Q, ri, n) = ETPb(Q, ri, n) + ETPv(Q,n)

= rjD −
D(A+ nF )
nQ(1− y)

− hb1
{
Qy − DQy

2x(1− y)

}
− hb2

{
r −DL+

Q(1− y)
2

+
DQy

2x(1− y)

}
− πDE(X1 − r1)+

Q(1− y)
− Dπ(n− 1)E(X2 − r2)+

Q(1− y)
− sD

(1− y)

− D

Q(1− y)
γFxWxd−Ddw(1− γ)Fx −

DR(L)
nQ(1− y)

−RDηf(P )
Q

2P

−Dv − SD

nQ(1− y)
− hv

Q

2

[
n

(
1− DP

1− y

)
− 1 +

2DP
1− y

]
− ID. (5.3)

As referenced before, the retail prices for the buyer is ri = (1 + Ω)pi, and we take the markup rate Ω as a
decision variable rather than the ri, therefore the joint expected total profit per unit time is given by,

JETP(Q, ri, n) = (1 + Ω)pjα[(1 + Ω)pj ]−δ −
α(A+ nF )
nQ(1− y)

[(1 + Ω)pi]−δ − hb1
[
Qy − DQy

2x(1− y)

]
− hb2

[
R−DL+

Q(1− y)
2

+
Qyα

2x(1− y)
[(1 + Ω)pi]−δ

]
− παE(X1 − r1)+

Q(1− y)

× [(1 + Ω)pi]−δ −
πα(n− 1)E(X2 − r2)+

Q(1− y)
[(1 + Ω)pi]−δ −

sα[(1 + Ω)pi]−δ

1− y

× α[(1 + Ω)pi]−δ

Q(1− y)
γFxWxd− α[(1 + Ω)pi]−δdw(1− γ)Fx −

α[(1 + Ω)pi]−δR(L)
Q(1− y)

− αc[(1 + Ω)pi]−δ −
Sα[(1 + Ω)pi]−δ

nQ(1− y)
− hv

Q

2

[
n

(
1− αp[(1 + Ω)Pi]−δ

1− y

)
− 1 +

2αP [(1 + Ω)pi]−δ

1− y

]
− Rη[(1 + Ω)pi]−δf(P )Q

2P
− Iα[(1 + Ω)pi]−δ. (5.4)

Since the probability distribution of X is unknown, we cannot find the exact values of the expected shortage
quantity E(X1 − r1)+ and E(X2 − r2)+. Hence we use the minimax distribution free approach to solve this
problem. The problem is

min
Q,k,Ω,n

max
Φ∈R

JETC(Q, k,Ω, n).
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To this end, we need the following proposition that was asserted by Gallego and Moon [4].

E(x1 −R1)+ ≤ 1
2

{√
σ2L(P, q1) + (r −DL(P, q1))− (r −DL(P, q1))

}
=
σ
√
ts + q1

P

2

{√
1 + k2

1 − k1

}
(5.5)

E(x2 −R2)+ ≤ 1
2

{√
σ2L(tT ) + (r −DL(tT ))− (r −DL(tT ))

}
=
σ
√
tT

2


√

1 + k2
1

ts + Q
P

tT
− k1

√
ts + Q

P

tT

 · (5.6)

Using equation (5.4) and inequality (5.5) and (5.6), we get

JETP(Q, k,Ω, n) = (1 + Ω)piα[(1 + Ω)pi]−δ −
α(A+ nF )
nQ(1− y)

[(1 + Ω)pi]−δ − hb1

[
Qy − DQy

2x(1− y)

]

− hb2

[
kσ

√
ts +

Q

P
+
Q(1− y)

2
+

Qyα

2x(1− y)
[(1 + Ω)pi]−δ

]
−
πασ

√
ts + Q

P

2Q(1− y)

×
{√

1 + k2
1 − k1

}
[(1 + Ω)pi]−δ −

πα(n− 1)σ
√
tT

2Q(1− y1)


√

1 + k2
1

ts + Q
P

tT
− k1

√
ts + Q

P

tT


× [(1 + Ω)pj ]−δ −

sα[(1 + Ω)pj ]−δ

1− y
α[(1 + Ω)pi]−δ

Q(1− y)
γFxWxd− α[(1 + Ω)pi]−δ

× dw(1− γ)Fx −
α[(1 + Ω)pi]−δR(L)

Q(1− y)
− Sα[(1 + Ω)pi]−δ

nQ(1− y)
− hv

Q

2

×

[
n

(
1− αp[(1 + Ω)Pi]−δ

1− y

)
− 1 +

2αP [(1 + Ω)pi]−δ

1− y

]
− Rη[(1 + Ω)pi]−δf(P )Q

2P

− αc[(1 + Ω)pi]−δ − Iα[(1 + Ω)pi]−δ. (5.7)

6. Solution methodology

The necessary condition for the total profit per unit time in equation (5.7) to be maximum are ∂JETP
∂Q = 0,

∂JETP
∂k = 0 and ∂JETP

∂Ω = 0.

∂JETP
∂Q

=
1
Q2

 (A+ nF )B
n(1− y)

− πBσ{
√

1 + k2
1 − k1}

2(1− y)

[
Q

2P
√
ts + Q

P

−
√
ts +

Q

P

]
+
BγFxWxd

(1− y)

+
BR(L)
(1− y)

+
SB

n(1− y)
− π(n− 1)σ

√
tTB

2(1− y)

k1

√
ts + Q

P

tT
−

√√√√1 + k2
1

(
ts + Q

P

tT

)
− π(n− 1)σ

√
tTB

2Q(1− y)

[
1

2
√

1 + k2
1( ts+ Q

P

tT
)
− k1

2P
√
tT (ts + Q

P )

]
− hb1

[
1− B

2x(1− y)

]
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− hb2

[
kσ

2P
√
ts + Q

P

+
(1− y)

2
+

yB

2x(1− y)

]
− hv

2

[
n

(
1− BP

(1− y)

)
− 1 +

2BP
(1− y)

]

− RηBf(P )
2P

=
H1

Q2
− H2

Q
−H3 (6.1)

∂JETP
∂k

= − σ
√
ts +

Q

P

{
hb2 +

πB

2Q(1− y)

[{
k1√

1 + k2
1

− 1

}
+ (n− 1)

×

k1

√√√√ ts + Q
P

tT + k2
1(ts + Q

P )
− 1


 (6.2)

∂JETP
∂Ω

= α
[
(1 + Ω)pi − c− I

][
(1 + Ω)pi

]−δ +

[
− (A+ nF )
nQ(1− y)

+
hb1Qy

2x(1− y)
− hb2Qy

2x(1− y)

−
πσ
√
ts + Q

P

2Q(1− y)

{√
1 + k2

1 − k1

}
− π(n− 1)σ

√
tT

2Q(1− y)

{√
1 + k2

1

(
ts + Q

P

tT

)

− k1

√
ts + Q

P

tT

}
− s

(1− y)
− γFxWxd

Q(1− y)
− dw(1− γ)Fx −

R(L)
Q(1− y)

− S

nQ(1− y)
+
hvQPn

2(1− y)
− hvQP

(1− y)
− Rηf(P )Q

2P

]
α[(1 + Ω)pi]−δ. (6.3)

Taking the first order derivative of equations (6.1) to (6.3) with respect to Q∗, k∗ and Ω∗ which gives,

Q∗ =
H1

H2 +H3Q
(6.4)

k∗ =
πnα[(1 + Ω)pi]−δ − 2hb2Q(1− y)

π[(1 + Ω)pi]−δ
[

1√
1+k2

1

+ (n− 1)
√

ts+ Q
P

tT +k2
1

(
ts+ Q

P

)] (6.5)

Ω∗ =
δ

(δpi − pi)

 (A+ nF )
nQ(1− y)

+
(hb2 − hb1)Qy

2x(1− y)
+
πσ
√
ts + Q

P

(2Q(1− y))
{
√

1 + k2
1 − k1} − c− I

+
π(n− 1)σ

√
tT

2Q(1− y)


√√√√1 + k2

1

(
ts + Q

P

tT

)
− k1

√
ts + Q

P

tT

+
s

(1− y)
+
γFxWxd

Q(1− y)

+ dw(1− γ)Fx +
R(L)

Q(1− y)
+

S

nQ(1− y)
+

hvQP

2(1− y)
(2− n)− Rηf(P )Q

2P

− 1. (6.6)

In order to examine the effect of n on JETP(Q, k,Ω, n), we take the first and second partial derivatives of
equation (5.7) with respect to n. That is,

∂JETP
∂n

=
αA

n2Q
[(1 + Ω)pi]−δ +

Sα[(1 + Ω)pi]−δ

n2Q(1− y)
− hv

Q

2

[
1− αP [(1 + Ω)pi]−δ

(1− y)

]
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− πασ
√
tT [(1 + Ω)pi]−δ

2Q(1− y)


√

1 + k2
1

(
ts + Q

P

tT

)
− k1

√
ts + Q

P

tT


∂2JETP
∂n2

= − 2αA
n3Q(1− y)

[(1 + Ω)pi]−δ −
2Sα[(1 + Ω)pi]−δ

n3Q(1− y)
< 0. (6.7)

Therefore for fixed integers (Q, k,Ω, n), the function of JETP(Q, k,Ω, n) is concave in n.

6.1. Solution algorithm

On the basis of the above discussions, the following solution algorithm can be used to determine an optimal
solution.

6.2. Algorithm

Step 1. Let n = 1.
Step 2. For each pi, i = 0, 1, 2, . . .m, perform steps 2a–2c.

Step 2a. Set Ωi1 = 0 and ki1 = 0. Substituting Ωi1 and ki1 into equation (6.4) to evaluate Qi1.
Step 2b. Utilize Qi1 and pi to evaluate the values of Ωi2 and ki2. Repeat steps 2a and 2b until no changes

occur in the values of Qi, Ωi and ki.
Step 3. For i = 0, 1, 2, . . . ,m− 1.

Step 3a. If qi ≤ Qi < qi+1, then Qi is an optimal solution. Set Q(n)
i = Qi, Ω(n)

i = Ωi and k
(n)
i = ki, then

substitute the values of Q(n)
i ,Ω(n)

i and k
(n)
i into equation (5.7) to evaluate JETP(Q(n)

i ,Ω(n)
i , k

(n)
i ).

Step 3b. If Qi > qi+1 then Qi is not a feasible solution. Thus JETP(Q(n)
i ,Ω(n)

i , k
(n)
i ) = 0.

Step 3c. If Qi < qi, set Q
(n)
i = qi, using Q

(n)
i and pi to evaluate the values of Ω(n)

i and k
(n)
i from

equations (6.5) and (6.6). Then substituting the values of Q
(n)
i , Ω(n)

i and k
(n)
i to determine the

JETP(Q(n)
i ,Ω(n)

i , k
(n)
i ).

Step 4. For i = m, perform steps 4a and 4b.
Step 4a. If Qm ≥ qm, then Qm is an optimal solution. Set Q(n)

m = Qm, Ω(n)
m = Ωm and k

(n)
m = km.

Substituting the values of Q(n)
m ,Ω(n)

m and k
(n)
m in equation (5.7) to evaluate JETP(Q(n)

m ,Ω(n)
m , k

(n)
m ).

Step 4b. If Qm < qk, set Q(n)
m = qm, and using the values of Q(n)

m and pi to evaluate the values of
Ω(n)
m and k

(n)
m from equations (6.5) and (6.6). Then substituting the values of Q(n)

m , Ω(n)
m and the

JETP(Q(n)
m ,Ω(n)

m , k
(n)
m ).

Step 5. Find JETP(Q(n),Ω(n), k(n)) = Maxi=0,1,...,m JETP(Q(n)
m ,Ω(n)

m , k
(n)
m ).

Step 6. Set n = n+ 1, repeat steps 2–5 to get JETP(Q(n),Ω(n), k(n)).
Step 7. If JETP(Q(n),Ω(n), k(n)) ≤ JETP(Q(n−1),Ω(n−1), k(n−1)), then go to step 8 otherwise go to step 6.
Step 8. Set JETP(Q(n),Ω(n), k(n)) = JETP(Q(n−1),Ω(n−1), k(n−1)) and JETP(Q(n),Ω(n), k(n)) is the expected

total profit then (Q∗,Ω∗, k∗) is the set of optimal solutions.

7. Numerical example

To illustrate the solution procedure and the results, let us apply the proposed algorithm to solve the
following numerical examples. These examples are based on the following parameters in appropriate units.
P = 3200 units/year, A = $50 per order, S = $400 per order, hv = $4 units/year, hb1 = $6 units/year,
hb2 = $10 units/year, s = $0.25 per unit, x = 2152 units/time, w = $20 per unit, y = 0.22, π = $100 per
unit, α = 100 000, c = $7 per unit, I = $12 per unit, δ = 1.6, ts = 0.09, tT = 1.9, d = 400 miles, γ = 0.11246,
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Table 1. Expected total profit for an optimal solution.

n R Q Ω k JETP

2 0 14 492 265.9007 1.418 82 673
2 5.6 14 581 257.6999 1.377 83 190
2 22.4 14 846 233.5950 1.253 84 734
2 57.4 15 399 184.7330 1.003 87 987
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Figure 1. Graphical representation of Table 1.

Fx = 0.000101343, wx = 9999 lbs, a0 = 0.015, b0 = 0.025 and the unit purchase cost is defined as follows:

p =


20 for 0 ≤ Q < 10 000,
17 for 10 000 ≤ Q < 12 000,
16 for 12 000 ≤ Q < 14 000,
15 for 14 000 ≤ Q < 16 000.

Here, the number of failures during production process with an increased production rate f(P ) follows a uniform
distribution with probability density function is,

f(P ) =
{

1
b0−a0

, a0 ≤ P ≤ b0
0 otherwise

.

Thus we have,

E(P ) =
a0 + b0

2
= 0.02.

Now, applying the algorithm for this model and the outcomes of the solution procedure are outlined in Table 1.
From the Table 1, we observe that the optimal values are Q∗ = 15399, Ω∗ = 184.7330 and k∗ = 1.003. Therefore
the purchase cost per unit is p∗ = $15, the retailing price is r∗i = $2785.995 and joint expected total profit is
JETP(Q∗,Ω∗, k∗, n) = $87987. The graphical representation for the Table 1 is illustrated in Figure 1.
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Table 2. Effects of changes in parameters.

Parameters Changes in % JETP

+20% 97 224
P +10% 92 556

−10% 83 133
−20% 77 833
+20% 88 477

S +10% 87 887
−10% 86 094
−20% 84 260
+20% 87 211

π +10% 87 501
−10% 90 656
−20% 97 614
+20% 90 170

R +10% 89 059
−10% 86 946
−20% 85 940
+20% 88 647

F +10% 88 320
−10% 87 661
−20% 87 336
+20% 88 456

A +10% 88 224
−10% 87 756
−20% 87 519
+20% 89 280

d +10% 88 629
−10% 87 348
−20% 86 711

8. Sensitivity analysis

In this section, we extend some managerial implications based on the sensitivity analysis of various key
parameters of the numerical example. We investigates the effects of changes in the value of the parameters on
optimal values Q, Ω, k and JETP. The sensitivity analysis is performed by changing each parameter values,
taking one parameter at a time and the remaining values of the parameters are unchanged with the following
data P , s, π, R, F , A and d. The results are exhibited in Table 2 and the corresponding figures are depicted in
Figures 2–8, respectively. The following inferences can be made from the results in Table 2.

(1) In Table 2, a small changes in the production rate, there is a great effect in the total profit of the integrated
system.

(2) Table 2 shows that the joint expected total profit decreases as the parameter π increases. This result is
expected because higher backorder cost may amplify the total profit.

(3) In Table 2, the joint expected total profit is highly sensitive to changes in parameters R and d, moderately
sensitive to changes in parameters S, F and A, respectively.



S1844 S. HEMAPRIYA AND R. UTHAYAKUMAR

Production rate (P)

-20% -10% 0 10% 20%

J
o
in

t 
E

x
p
e
c
te

d
 T

o
ta

l 
P

ro
fi
t 
(J

E
T

P
)

104

7.5

8

8.5

9

9.5

10

Figure 2. Impact of changes in P on total profit.

Setup cost (S)
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Figure 3. Impact of changes in S on total profit.
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Backorder cost ( )
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Figure 4. Impact of changes in π on total profit.

Rework cost (R)
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Figure 5. Impact of changes in R on total profit.
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Transportation cost (F)
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Figure 6. Impact of changes in F on total profit.

Ordering cost (A)
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Figure 7. Impact of changes in A on total profit.
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Transportation distance (d)
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Figure 8. Impact of changes in d on total profit.

9. Conclusion

In this chapter, we present an imperfect production supply chain model considering that the market demand
is sensitive to the retail price and the vendor offers a quantity discount to the buyer. Here all defective/imperfect
quality items are reworked after the regular production process. An efficient algorithm is proposed to obtain
the optimal solutions under different conditions so as to maximize the total profit. The numerical example is
provided to illustrate the proposed algorithm and the solution procedure. From Figures 2–7, we conclude that
the small changes in the production rate and setup cost, there is a great effect on the total profit and the total
profit increases moderately when rework cost, transportation cost and ordering cost increases. From Figure 4,
the total profit decreases when price discount increases and from Figure 8, the total profit increases when
transportation distance increases. The sensitivity analysis is performed to various key parameters to study the
impact on optimal solutions and the managerial implications are also discussed.
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