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RANDOM MACHINE BREAKDOWN AND STOCHASTIC CORRECTIVE
MAINTENANCE PERIOD ON AN ECONOMIC PRODUCTION INVENTORY

MODEL WITH BUFFER MACHINE AND SAFE PERIOD

Brojeswar Pal1 and Subhankar Adhikari2,∗

Abstract. In this paper, we have developed an economic production quantity (EPQ) model in which
production is executed mainly by the original machine. But when the system faces disruption, the
buffer of it continues the production. Here, we incorporate a fixed Safe Period running policy, in which
the machine runs interruptedly, whenever production commences. The disruption of the system may
occur at any moment of the time horizon over the safe period, and then, it will go under the corrective
maintenance policy. Here, we take that both of the time of disruption and period of maintenance are
continuous random variables. We have discussed the model under different safe period duration with
corresponding disruption situations. Our main objective is to minimize the expected average total cost
for all the cases concerning the production lot size. The model has also been illustrated numerically
with some examples. To examine the robustness of the solution of this model, we discuss the sensitivity
analysis for the parameters.
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1. Introduction

The machine is inevitable in a production system. Since the smooth running of it during the production
period is not a reliable incident, we can state that there is a close relationship between the production system
and its disruption. From a manufacturer’s point of view, disruption is not a desirable thing. So it is expected that
the manufacturer should use a reliable machine such that there are some recovery policies during the machine
disruption situation. “Safe Period” is one of those policies in which the system can run interrupted. For example,
the sewing machine making brand Singer provides such a period in which the chance of breakdown is negligible.
The garment industry is depended heavily on the sewing machine. It is evident that if offered “Safe Period” falls
within the production time, then there will be chances of disruption. Then corrective maintenance is implied
to bring the machine in working condition. The length of the maintenance period is quite unpredictable, as it
depends on the intensity of the breakdown. If corrective maintenance’s period is too long, the manufacturer
may experience shortages of inventory, which hampers the goodwill/reputation of the business. Due to highly
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competitive market situations, people have many options to fulfill their demands from different sources. So during
the stock-out period, the amount of lost sales has a significant contribution to increasing the average total cost of
the system. To overcome these sorts of problems, the company may implement the concept of a buffer machine.
It will run throughout the corrective maintenance period as a substituted one. It is quite reasonable that the
production cost of an item by the buffer machine is higher than that of the original machine. Therefore, the
manufacturer has to bear an extra cost for hiring the machine. But drop-out of customers during the stock-out
situation can be avoided to maintain the goodwill of the business, which is one of the most crucial criteria in
the present market scenario.

Now our following discussion consists of different previous research works in the machine breakdown envi-
ronment accompanying various repair periods and maintenance policies.

2. Literature survey

In a production system, failure and maintenance of a system are the most important things. Chelbi and Ait-
Kadi [4] formulated a production inventory model considering random failures along with the determination
of periodic preventive maintenance period and buffer stock level. Giri and Dohi [10] studied a production
inventory model, where they assumed that both the machine breakdown and corrective repair time are random,
and the production rate is a decision variable. Later, Darwish and Ben-Daya [8] developed a two-stage imperfect
production-inventory model (PIM) considering the effect of inspection error and the preventive maintenance
policy. Kenne et al. [13] described an inventory model where production planning was dependent on the age
of the unreliable machine. After that, two types of inspection policies under the machine breakdown situation
were considered by Giri et al. [3]. Boschian et al. [2] studied a simulation model consisting of two machines
acting simultaneously in a random failure situation. A Markov decision model for the deteriorating system was
developed by Karamatsoukis and Kyriakidis [12]. Chiu [6] formulated an imperfect PIM with a random machine
breakdown taking failure in the period of reworking for the defective items. Nourelfath [16] developed a multi-
product, multi-period PIM, together with random machine failure taking random production rate and customer
service level. Sana [20] considered an imperfect production system with costless repairing warranty, where he
incorporated the concept of buffer inventory level during preventive maintenance. A PIM, where preventive
maintenance was non-cyclical, was studied by Fitouhi and Nourelfath [9]. Chiu [6] developed a production
planning problem where the number of machine breakdown per unit time was a discrete random variable that
follows a Poisson distribution. A significant review paper was written by Horenbeek [11], mainly keeping in mind
the effect of different maintenance policies on the inventory system. Wee and Widyadana [24] considered that
the unavailable time of the production was a random variable that follows uniform or exponential distribution.
A discontinuous multi-delivery policy with the failure-prone machine was studied by Chiu et al. [7] in an
integrated economic manufacturing quantity model. Rafiei et al. [19] studied a production-inventory system
consisting of two parallel machines where both demand and lead time were random variables. Luong and Karim
[15] developed an integrated PIM for deteriorating items considering both times to machine breakdown and
repair as random variables that follow an exponential distribution. Kim and Glock [14] discussed the functioning
of multiple parallel machines with variable production rates in a two-stage problem. Taleizadeh et al. [23]
considered a discrete shipment in a vendor and buyer integrated model under a defective production system
with a random breakdown of machines. Peymankar et al. [18] showed that in a machine breakdown situation,
the external supplier was a better option for the manufacturer. They also studied three types of incidents under
machine failure situations: emergency replenishment, revenue-sharing contract, and price discount contract.
Besides, Pal et al. [17], Shi [21], Taleizadeh et al. [22], Cheng et al. [5], Bahria et al. [1], etc. studied different
models in this direction.

The novelty of our proposed work compared to the existing pieces of literature has been discussed in the
following Table 1.

Here, the following assumptions are taken up to develop the model.
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Table 1. Comparison of the work with the existing paper.

Author(s) No of

random

variables
used

Maintenance policy:

preventive

maintenance (PM),
corrective

maintenance (CM)

Stochastic

maintenance

period

Safe period

strategy whenever

production
commences has

been taken into

consideration

Use of buffer

machine during

the maintenance of
original machine

Chelbi and Ait-Kadi [4] Two Both Yes No No
Giri and Dohi [10] Two CM Yes No No

Chakraborty et al. [3] Three Both Yes No No

Chiu [6] One CM No No No
Nourelfath [16] Two CM Yes No No

Pal et al. [17] Three CM Yes No No

Chiu et al. [7] One CM No No No
Luong and

Karim [15]

Two CM Yes No No

Peymankar et al. [18] Two CM Yes No No
Our work Four CM Yes Yes Yes

Assumptions

(1) A single-stage inventory model is considered with an infinite time horizon.
(2) Two machines are involved in the production system. One is termed as the original machine and another is

buffered. Both machines have the same rate of production.
(3) Original machine starts the production. When this machine is disrupted, it will be brought under corrective

maintenance and that time the production will be carried on by buffer machine.
(4) Disruption of buffer machine is not allowed.
(5) The concept of “Safe Period” is taken into consideration for the original machine. After “Safe Period”,

disruption of the original machine may take place at any time.
(6) Corrective maintenance periods are considered as a random variable with finite range.
(7) The production cost of a unit by buffer machine is more than that of the original machine.
(8) The cost of hire of buffer machine is included in the setup cost. This cost has to be bearded even if a buffer

machine is not used for a single time within the inventory cycle.
(9) Shortages are not possible as buffer machine works always during the corrective maintenance period of the

original machine.

Notations

The following notations are used throughout the paper.

P Rate of production.
R Rate of demand.
α Safe Period.
τ1 Random variable which denotes the time when first disruption occurs.
δ1 Random variable which represents the length of the first corrective maintenance period.
τ2 Random variable which denotes the time period starts from the end of first corrective maintenance

up to second disruption.
δ2 Random variable which represents the length of the second corrective maintenance period.
M1 Upper bound of the first corrective maintenance period.
N1 Upper bound of the second corrective maintenance period.
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tp Total production time.
h Holding cost per unit item.
k Set-up cost.
T Length of the inventory cycle.
Q Ordering lot-size.
Cm Cost for the corrective maintenance per unit time.
C1 Cost per unit item produced by the original machine.
C2 Cost per unit item produced by the buffer machine.
I1 Inventory level during production time.
I2 Inventory level when there is no production.
f1 Probability density function of τ1.
f2 Probability density function of δ1.
f3 Probability density function of τ2.
f4 Probability density function of δ2.
ITB Expected number of items produced by Buffer machine.
ITO Expected number of items produced by Original machine.
tO Expected run time of Original machine.
tB Expected run time of Buffer machine.

2.1. Problem definition

A single-stage inventory problem on an infinite time horizon is considered with two machines (original and
buffer) while only one runs at a time. Production starts at the beginning of the cycle by the original one, which
may face the problem of disruption. When the original one breaks down, it will be bought under corrective
maintenance immediately. During this time, production continues uninterruptedly by the buffered machine. The
original one has a safe running period, i.e., whenever production commences, the system will run uninterruptedly
for a period. After elapsing the safe period, disruption of the original machine may happen at any moment. The
length of a corrective maintenance period, which generally depends on the intensity of the breakdown of the
production system, is considered as a continuous random variable.

2.2. Model formulation and analysis of the model

Here, the offered “Safe period” α is assumed as a fixed time interval. According to the length of the α,
different cases may arise. As the production system works smoothly within the safe period, we discuss the cases
whether the period lies within the production-run time or not. In this paper, we have assumed that maximum
disruption situations may occur two times. Therefore, the following cases arise

Case 1: tp
3 < α <

tp
2 , the number of disruption of the original machine is at most two.

Case 2: tp
2 ≤ α < tp, the number of disruption of the original machine is at most one.

Case 3: tp ≤ α, the disruption of the original machine is not occurred.

Case 1: tp
3
< α < tp

2

In this case, the first disruption of the original machine occurs at time t = τ1 after the end of the “Safe
period” time limit. Now, two situations may arise: disruption occurs within production run-time (tp) or after
that time, i.e., Sub Case 1.1: α < τ1 < tp and Sub Case 1.2: tp ≤ τ1.

Sub Case 1.1: α < τ1 < tp

Here, the original machine works for the period [0, τ1], and after that, the buffer machine continues the
production process until the completion of the corrective maintenance (δ1) of the original machine. Considering
the range of τ1 and δ1, following three sub cases arise: Sub Case 1.1.1: τ1 + δ1 < tp − α, Sub Case 1.1.2:
tp − α ≤ τ1 + δ1 < tp and Sub Case 1.1.3: tp ≤ τ1 + δ1.
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Sub Case 1.1.1: τ1 + δ1 < tp − α

In this sub-case, there is the possibility for a second-time disruption of the original machine as the remaining
production run time after the first corrective maintenance is greater than α. Therefore, the following two
situations can appear: Sub Case 1.1.1.1: τ1 + δ1 + τ2 < tp and Sub Case 1.1.1.2: τ1 + δ1 + τ2 ≥ tp.

Sub Case 1.1.1.1: τ1 + δ1 + τ2 < tp

In this sub-case, the original machine again goes under the second disruption after running a period of length
τ2 measured from the finish of the first corrective maintenance, but total production is still not completed.
Therefore, the production is again continuing by the buffer machine, and the original one is sent for maintenance.
According to the ranges of τ1, δ1, τ2 and δ2, two sub cases arise: Sub Case 1.1.1.1.1: τ1 + δ1 + τ2 + δ2 < tp and
Sub Case 1.1.1.1.2: tp ≤ τ1 + δ1 + τ2 + δ2.

All the sub-cases under Case 1 are exhibited in the following tree diagram:
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Figure 1. Inventory level (vertical axis) versus time (horizontal axis) for the Sub Case 1.1.1.1.1.

Sub Case 1.1.1.1.1: τ1 + δ1 + τ2 + δ2 < tp

In this sub-case, the original machine falls in the disruption at time t = τ1 and t = τ1 + δ1 + τ2 and it is
immediately brought up under corrective maintenance in each time. The Buffer machine is used for the time
interval [τ1, τ1 + δ1] and [τ1 + δ1 + τ2, τ1 + δ1 + τ2 + δ2] to continue the production system in the absence of the
original one. Production is completed by the original machine when it runs for the third time during the period
[τ1 + δ1 + τ2 + δ2, tp]. The logistic diagram of this case is given in Figure 1.

Differential equation governing inventory level in the period [0, tp] and [tp, T ] is given by respectively

dI1
dt

= P −R and
dI2
dt

= −R.

Solution of the differential equations with respect to the conditions I1 (0) = 0 and I2 (T ) = 0 is given by
respectively

I1(t) = (P −R)t (2.1)
I2(t) = R(T − t). (2.2)

Here, the inventory holding cost is

h

 tp∫
0

I1(t) dt+

T∫
tp

I2(t) dt

 =
h(P −R)Q2

2PR
· (2.3)

[
By using tp =

Q

P
and T =

Q

R

]
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Figure 2. Inventory level (vertical axis) versus time (horizontal axis) diagram for the
Sub Case 1.1.1.1.2.

The buffer machine is used twice for the time intervals [τ1, τ1 + δ1] and [τ1 + δ1 + τ2, τ1 + δ1 + τ2 + δ2]. So the
buffer machine runs for total time (δ1 + δ2), which is equal to the total corrective maintenance period of the
original machine. As it has production rate P , the number of items produced by it is P (δ1 + δ2).

Sub Case 1.1.1.1.2: tp ≤ τ1 + δ1 + τ2 + δ2

This sub-case differs from Sub Case 1.1.1.1.1 since buffer machine finishes the production when it runs during
the second corrective maintenance period for the original one. Therefore, the original machine runs a total τ1+τ2
time, and the buffer one continues the rest of the production (Fig. 2). Hence, the number of items produced by
the buffer machine is P {tp − (τ1 + τ2)}.

Sub Case 1.1.1.2: τ1 + δ1 + τ2 ≥ tp

Here, the original machine faces only one disruption during the whole production run time. Therefore, the
buffer machine continues the production during only the corrective maintenance period [τ1, τ1 + δ1] of the
original one (Fig. 3). So the number of items produced by the buffer machine is Pδ1.

Sub Case 1.1.2: tp − α < τ1 + δ1 < tp

In this sub-case, second-time disruption is not possible for the original machine as {tp−(τ1 + δ1)} < α but the
original machine finishes the production when it runs second time after completion of corrective maintenance
(Fig. 4). Here, the buffer machine runs for time δ1 and produces Pδ1 number of items.
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Figure 3. Inventory level (vertical axis) versus time (horizontal axis) diagram for the
Sub Case 1.1.1.2.2.

Figure 4. Inventory level (vertical axis) versus time (horizontal axis) diagram for the
Sub Case 1.1.2.

Sub Case 1.1.3: tp ≤ τ1 + δ1

In this sub-case, only one disruption has occurred for the original machine at time τ1, and after that, the
buffer machine finishes the rest of the production process as the corrective maintenance is not completed within
the production time (Fig. 5). So, the number of items produced by the buffer machine is P (tp − τ1).
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Figure 5. Inventory level (vertical axis) versus time (horizontal axis) diagram for the
Sub Case 1.1.3.

Figure 6. Inventory level (vertical axis) versus time (horizontal axis) diagram for theSub Case 1.2.

Sub Case 1.2: tp ≤ τ1

Here it is evident from the range of τ1 that no disruption is possible within the production time. So inventory
plies up at a rate P − R throughout the period [0, tp] and then diminishes to zero at a rate −R during the
interval [tp, T ]. In this sub-case, the buffer machine stays ideal throughout the cycle period (Fig. 6).
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So expected number of items produced by the buffer machine when α lies between tp
3 and tp

2 is given by
the ITB1

ITB1 =
∫ tp

α

([∫ tp−α−τ1

0

〈∫ tp−(τ1+δ1)

α

{∫ tp−(τ1+δ1+τ2)

0

P (δ1 + δ2)f4 dδ2

+
∫ N1

tp−(τ1+δ1+τ2)

(Q− Pτ1 − Pτ2)f4 dδ2

}
f3 dτ2 +

∫ ∞
tp−(τ1+δ1)

Pδ1f3 dτ2

〉
f2 dδ1

]

+

[∫ tp−τ1

tp−α−τ1
Pδ1f2 dδ1

]
+

[∫ M1

tp−τ1
(Q− Pτ1)f2 dδ1

])
f1 dτ1 (2.4)

and the expected corrective maintenance time period ECMT1 is given below

ECMT1 =
∫ tp

α

([∫ tp−α−τ1

0

〈∫ tp−(τ1+δ1)

α

{∫ tp−(τ1+δ1+τ2)

0

(δ1 + δ2)f4 dδ2 +
∫ N1

tp−(τ1+δ1+τ2)

(δ1 + δ2)f4 dδ2

}
f3

× dτ2 +
∫ ∞
tp−(τ1+δ1)

δ1f3 dτ2

〉
f2 dδ1

]
+

[∫ τp−τ1

tp−α−τ1
δ1f2 dδ1

]
+

[∫ M1

tp−τ1
δ1f2 dδ1

])
f1 dτ1. (2.5)

Therefore the expected maintenance cost is Cm ECMT1.
In this case, the total expected cost is the sum of the setup, holding, and production cost by the original

machine, production cost by the buffer machine, and cost for corrective maintenance, i.e.,

ETC1 = k +
h(P −R)Q2

2PR
+ C1(Q− ITB1) + C2 ITB1 + Cm ECMT1. (2.6)

Then expected total cost per unit time is denoted by EATC1 and described by

EATC1 = ETC1/T where T =
Q

R
· (2.7)

Figure 7. Inventory level (vertical axis) versus time (horizontal axis) for the Sub Case 2.1.1.
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Case 2: tp
2

≤ α < tp

Under this circumstance, at most one disruption of the original machine is possible. Considering possible
ranges of the random variable τ1, two sub cases arise: Sub Case 2.1: α < τ1 < tp and Sub Case 2.2: tp ≤ τ1.

Sub Case 2.1: α < τ1 < tp

In this sub-case, the buffer machine starts production immediately after the broken down of the original one,
but the total running time is dependent on the corrective maintenance period. The time by which the original
machine will be ready for production in the inventory cycle is given by τ1 + δ1. Then two possible sub-cases are
Sub Case 2.1.1: τ1 + δ1 < tp and Sub Case 2.1.2: tp ≤ τ1 + δ1.

All the sub cases under Case 2 are shown in the following tree diagram:

Sub Case 2.1.1: τ1 + δ1 < tp

In this sub-case, the original machine breaks down at time t = τ1, and it again runs after time δ1 within the
production run time. During the corrective maintenance period δ1, the buffer machine continues the production
and the number of items produced by Pδ1 (Fig. 7).

Sub Case 2.1.2: tp ≤ τ1 + δ1

This sub-case is different from the above concerning the corrective maintenance of the original machine. Here
the maintenance period is not completed within the production run time (Fig. 8). After the breakdown of the
original machine, the buffer machine finishes the rest of the production by the period [τ1, tp].

Sub Case 2.2: tp ≤ τ1

This sub case is similar to the Sub Case 1.2.
The expected number of items produced by the buffer machine when α lies between tp

2 and tp is given by

ITB2 =

tp∫
α




tp−τ1∫
0

Pδ1f2 dδ1

+


M1∫

tp−τ1

(Q− Pτ1) f2 dδ1


 f1 dτ1 (2.8)
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Figure 8. Inventory level (vertical axis) versus time (horizontal axis) for the Sub Case 2.1.2.

and the expected corrective maintenance period ECMT2 is

ECMT2 =

tp∫
α




tp−τ1∫
0

δ1f2 dδ1

+


M1∫

tp−τ1

δ1f2 dδ1


 f1 dτ1. (2.9)

Therefore, the expected total cost for this case is

ETC2 = k + Cm ECMT2 +
h (P −R)Q2

2PR
+ C1(Q− ITB2) + C2 ITB2 (2.10)

and the expected average total cost per unit time is given by

EATC2 = ETC2/T where T =
Q

R
· (2.11)

Case 3: tp ≤ α

In this case, no disruption is possible for the original machine as the “Safe Period” exceeds production run
time. So there is no use of buffer machine.

Total cost is composed of the sum of three components: set-up cost, holding cost, and production cost of the
items produced by the original machine. So total cost is given by

TC = k +
h(P −R)Q2

2PR
+ C1Q. (2.12)

One interesting fact is that the expression (2.12) can be obtained from the relation (2.6) by putting Cm = 0
and ITB1 = 0. Also, this can be obtained from (2.10) by putting Cm = 0 and ITB2 = 0.

The average total cost per unit time is ATC = TC/T, where T =
Q

R
· (2.13)
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In this paper, it is assumed that the random variables τ1, τ2, δ1 and δ2 follow the uniform distribution and given
by

f1 = f (τ1) =
{ 1
a−α when α < τ1 < a

0 else where

f3 = f (τ2) =
{ 1
b−α when α < τ2 < b

0 else where

f2 = f (δ1) =
{ 1
M1

when 0 < δ1 < M1

0 else where

f4 = f (δ2) =
{ 1
N1

when 0 < δ2 < N1

0 else where.

Let a = α+ e1, b = α+ e2 and α = βQ
P . As a result, the range of the Cases 1–3 converts to 1

3 ≤ β ≤
1
2 (Case 1),

1
2 ≤ β ≤ 1 (Case 2) and β ≥ 1 (Case 3).

Now, using the probability density function of the random variables, the expected average cost (2.7) for the
Case 1 can be simplified as

EATC1 = W1 +W2Q+W3Q
2 −W4Q

3 −W5Q
4 +

W6

Q
(2.14)

where

W1 =
R(2C1e1P + CmM1(1− β))

2e1P
, W2 =

{e1h(P −R) + (C2 − C1)R(1− β)2}
2e1P

,

W3 =
R (1− β)

{
CmN1

(
7β2 − 5β + 1

)
− 2 (C2 − C1) e2P (1− β)2

}
12e1e2M1P 3

,

W4 =
(C2 − C1)R (1− β)

(
15β3 − 17β2 + 7β − 1

)
24e1e2M1N1P 3

,

W5 =
(C2 − C1)R(1− β)

(
31β4 − 49β3 + 31β2 − 9β + 1

)
120e1e2M1N1P 4

, W6 = kR.

Similarly, for Case 2 and Case 3, the cost functions (2.11) and (2.13) can be written respectively as

EATC2 = E1 + E2Q− E2
3Q+

E4

Q
(2.15)

where

E1 =
R(2C1e1P + CmM1(1− β))

2e1P
, E2 =

{e1h(P −R) + (C2 − C1)R(1− β)2}
2e1P

,

E3 =
(C2 − C1)R(1− β)3

6e1M1P 2
, E4 = kR

and

ATC = C1R+
kR

Q
+
hQ(P −R)

2P
· (2.16)

Proposition 2.1. For Case 1, the expected average cost function is minimum at Q = Q1, if the following
inequality is satisfied.

6W3 − 12W4Q1 − 20W5Q
2
1 +

2W2

Q1
> 0.
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Proof. Differentiating equation (2.14) with respect to Q we have

d
dQ

(EATC1) = W2 + 2W3Q− 3W4Q
2 − 4W5Q

3 − W6

Q2

and
d2

dQ2
(EATC1) = 2W3 − 6W4Q− 12W5Q

2 +
2W6

Q3
·

For necessary condition of optimization, we have d
dQ (EATC1) = 0. Let Q = Q1 be the solution of the previous

equation. Then Q1 satisfies the following equality W2 + 2W3Q1 − 3W4Q
2
1 − 4W5Q

3
1 = W6

Q2
1

. From the sufficient

condition of optimality of cost function, we find that Q1 will be optimal lot size if d2

dQ2 (EATC1)
∣∣∣
Q=Q1

> 0.

Now,

d2

dQ2
(EATC1)

∣∣∣
Q=Q1

= 2W3 − 6W4Q1 − 12W5Q
2
1 +

2W6

Q3
1

= 2W3 − 6W4Q1 − 12W5Q
2
1 +

2
Q1

(
W6

Q2
1

)
·

Substituting W6
Q2

1
by W2 + 2W3Q1 − 3W4Q

2
1 − 4W5Q

3
1, and after algebraic manipulation we have

d2

dQ2
(EATC1)

∣∣∣
Q=Q1

= 6W3 − 12W4Q1 − 20W5Q
2
1 +

2W2

Q1
·

So EATC1 is minimum at Q = Q1 if d2

dQ2 (EATC1)
∣∣∣
Q=Q1

> 0 i.e., if

6W3 − 12W4Q1 − 20W5Q
2
1 +

2W2

Q1
> 0.

Hence the proposition is established. �

Proposition 2.2. For Case 2, the expected average cost function is minimum at Q = Q2 if the inequality
Q2 <

E2
3E3

is satisfied.

Proof. Differentiating equation (2.15) with respect to Q we have

d
dQ

(EATC2) = E2 − 2E3Q−
E4

Q2
,

and
d2

dQ2
(EATC2) = −2E3 +

2E4

Q3
·

For necessary condition of optimization, we have d
dQ (EATC2) = 0. Let Q = Q2 be the solution of the previous

equation. Then Q2 satisfies the equality E2−2E3Q2 = E4
Q2

2
. Q2 will be optimal lot size if it satisfies the condition

d2

dQ2 (EATC2)
∣∣∣
Q=Q2

> 0.

Now

d2

dQ2
(EATC2)

∣∣∣∣
Q=Q2

= −2E3 +
2E4

Q3
2

d2

dQ2
(EATC2)

∣∣∣∣
Q=Q2

=
2
Q2

(
E4

Q2
2

− E3Q2

)
.
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Replacing E4
Q3

2
by E2 − 2E3Q2, we have

d2

dQ2
(EATC2)

∣∣∣∣
Q=Q2

=
2
Q2

(E2 − 3E3Q2).

Therefore, expected average total cost function is minimum at Q = Q2 if d2

dQ2 (EATC2) is positive at Q = Q2,
i.e., when Q2 <

E2
3E3

. It should be noted that both E2 and E3 are positive since

C2 > C1 and β < 1.

Hence the proof. �

Proposition 2.3. For Case 3, the average total cost function is minimum at Q = Q∗.

Proof. The necessary condition for minimization for this case is given by d
dQ (ATC) = 0. Differentiating equation

(2.16) with respect to Q and equating the obtained expression to zero we get optimal lot size Q =
√

2kPR
h(P−R) .

Again, d2

dQ2 (ATC) =
{
h(P−R)

P

} 3
2 1√

2kR
when Q = Q∗,=> d2

dQ2 (ATC) > 0 since P > R.
Hence the proof. �

3. Numerical analysis

The following numerically data is used to test the validity and applicability of the proposed model:
Production rate P = 1000 units/time, demand rate R = 600 units/time, setup cost k = $600 per setup,

production cost for the original machine C1 = $1.5 per unit item, production cost for the buffer machine
C2 = $2 per unit item, corrective maintenance cost Cm = $2 per unit time, holding cost h =$1.0 per unit per
unit time, e1 = 0.5, e2 = 0.5, upper bound of the first corrective maintenance period M = 0.75, upper bound of
the second corrective maintenance period N = 0.75.

Case 1: When α lies between tp
3

and tp
2

Here, we consider β = 0.45 i.e., α = 0.45tp. The optimal results for this case are discussed in the Table 2.
The sufficient condition of the optimality is also satisfied since d2

dQ2 (EATC1) at Q = Q∗ is given by
0.000266> 0. Also, the graphical representation of the expected average total cost (EATC1) function (Fig. 9)
is convex. From Table 2, we observe that the buffer machine used 24% of the production run time for this case.

Case 2: When α lies between tp
2

and tp
Here, we consider β = 0.8 i.e., α = 0.8tp. The optimal results for this case are discussed in the Table 3.
The results of Table 3 are optimal since the value of d2

dQ2 (EATC1) at Q = Q∗ is given by 0.000317 > 0. Also,
we can say by graphically from Figure 10 that the expected average total cost (EATC2) function is unimodal.
From the Table 3, we observe that the buffer machine used 4.6% of the production run time for this case.

Case 3: When α is greater than or equal to tp

In this case there is no disruption possible for original machine within production time. The optimal results
for this case are discussed in the Table 4.

The value of d2

dQ2 (ATC) at Q = Q∗ is given by 0.000298 > 0, which is the condition of optimality. Again,
Figure 11 deals that the average total cost (ATC) function is unimodal.
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Table 2. Optimal results of Case 1.

Order quantity Q∗ = 1286.80 unit
Expected number of items produced by original machine ITO1∗ = 972.25 unit
Expected number of buffer item produced ITB1∗ = 314.55 unit
Cycle length T ∗ = 2.14 unit
Production run time t∗p = 1.29 unit
Expected run time of original machine t∗O = 0.98 unit
Expected run time of buffer machine t∗B = 0.31 unit
Expected average total cost EATC1∗ =$1511.01
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Figure 9. Expected average total cost versus lot size for Case 1.

Table 3. Optimal results of Case 2.

Order quantity Q∗ = 1311.80 unit
Expected number of items produced by original machine ITO2∗ = 1250.99 unit
Expected number of buffer item produced ITB2∗ = 60.81 unit
Cycle length T ∗ = 2.19 unit
Production run time t∗p = 1.31 unit
Expected run time of original machine t∗O = 1.25 unit
Expected run time of buffer machine t∗B = 0.06 unit
Expected average total cost EATC2∗ =$1450.88
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Figure 10. Expected average total cost versus lot size for Case 2.

Table 4. Optimal results of Case 3.

Order quantity Q∗ = 1341.64 unit
Cycle length T ∗ = 2.24 unit
Production run time t∗p = 1.34 unit
Average total cost ATC∗ =$1436.66

Observations

(1) From the numerical results of Cases 1–3, we find that that the expected average cost reduces as the working
period of the buffer machine reduces.

(2) When the safe period of production system increases, the ordering lot sizes along with the cycle length
increase in the fixed demand rate.

(3) In Case 1 buffer machine is used 19.4% more than Case 2 concerning the production run time, but the
expected average total cost is increased by only 4.1%.

All the numerical calculations have been done with the help of the Software “Mathematica 9”.

4. Sensitivity analysis

In this section, we test the feasibility of the developed model. We will examine the behavior of the expected
average total cost (EATC1), lot size (Q), the expected number of items produced by the buffer (ITB1), and
original machine (ITO1) when values of different parameters are altered. It should be noted that the Safe period
of the original machine may fall in a different region of the time horizon of the inventory cycle. As Case 1 is
comparatively complicated than the other cases, here we only discuss the sensitivity analysis of Case 1.
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Figure 11. Average total cost versus lot size for Case 3.

From Figure 12a, we observe that EATC1 and ITB1 are decreasing, and Q and ITO1 are increasing with the
increasing value of β. As β increases, the working period of the buffer machine reduces. The produced items by
the buffer machine reduce if the values of β increases. Consequently, the value EATC1 decreases since the cost
of items produced by the buffer machine are more than that of the original machine.

When the production rate (P ) increases, Q decreases rapidly. In this situation, the EATC1 increases, and
the ITO1 and ITB1 decrease, where the decreasing rate of ITO1 more than ITB1 (Fig. 12b). As the production
cost of a unit by buffer machine is more than that of the original machine, the EATC1 must be high with higher
values of P .

With the increasing demand rate (R), both Q and EATC1 increase. When the demand rate increases, the
manufacturer has to produce more quantity to fulfill the demand. Also, ITO1 and ITB1 increase with the higher
demand rate (see Fig. 12c).

When set-up cost (k) increases, the EATC1, Q, ITO1, and ITB1 increase (Fig. 12d). The enormous set-up
cost generally reduces the number of cycles. As a result, a bigger lot is desirable in this situation.

From Figure 12e, we observe that EATC1 increases while Q decreases enormously with higher values of
holding cost (h), i.e., when holding cost increases, the items which are going to be held, must order smaller in
size. Also, it is observable from the figure that both ITO1 and ITB1 decrease when h increases.

From Figure 12f, it can be observed that both EATC1 and Q increase as C1 increases. But the variation is
much more for EATC1. Also, ITO1 increases at a faster rate than ITB1 with higher values of C1. It should be
noted that for any particular lot, ITO1 is much more than ITB1. As a consequence of this, EATC1 increases
widely when C1 increases.

With the increase of C2, EATC1 increases while Q decreases and both ITB1 and ITO1 decreases slightly
(Fig. 12g). The smaller lot size is preferable when C2 increases. As if Q is small, then tp reduces for a fixed
value of P . Ultimately, usage of buffer machine will be lessened.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 12. (a) Q, EATC1, buffer and original item versus β. (b) Q, EATC1, buffer and original
item versus production rate. (c) Q, EATC1, buffer and original item versus demand rate.
(d) Q, EATC1, buffer and original item versus setup cost. (e) Q, EATC1, buffer and original
item versus holding cost. (f) Q, EATC1, buffer and original item versus cost of original item.
(g) Q, EATC1, buffer and original item versus cost of buffer item.
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5. Managerial insights

From the sensitivity analysis, the manager of a company may get some idea of his future strategy by which
he can reduce the average total cost of his organization and improve his business.

Insight 1

As cost reduction/minimization is the perspective of this model, one manager should try to reduce several
cost components like setup cost, holding cost, the production cost of the items produced by the original and
buffer machine to minimize the expected average total cost of the system.

Insight 2

Another decisive question: What will be the size of the ordering lot? There are two options: either he should
opt for the smaller or larger lot size. He should prefer a bigger lot when setup cost, demand rate, and cost of
items produced by the original machine is emerging. The manager should go for a smaller lot for higher holding
costs, production rate, and production cost of the item produced by the buffer machine.

6. Conclusions

Here we presented a single-stage production-inventory model where two machines, namely original and
buffered, are involved in the manufacturing process. The original machine obeys the principle of the Safe Period.
After spending the Safe Period, the original machine faces the problem of random breakdown, and that time,
the buffer machine works throughout the repairing period. Analyzing all possible ranges of the Safe Period, we
derive the different cost functions, and then we study the analytical, as well as numerical discussion for finding
the optional decisions. Numerical examples are exhibited and compared, considering all different cases.

The main improvement of this model is to study the inclusion of two systems properly in a disrupted environ-
ment. The main finding of this model is to study two machines in a disrupted environment. We have discussed
different cases considering variable ranges of Safe Period as it may fall anywhere on the time horizon in the
inventory cycle. The cost of production of a unit of buffering machine is more than that of the original one. As
a result, the expected average charge for the buffer system also increases. But from the numerical study, one
significant thing can be observed that the increase rate in the average expenditure is not the same proportion
with its increment in the use of the buffer machine. We also note that a smaller lot is preferable whenever the
working span of the buffer machine increases. Buffer machines can work as a good substitute for the original
machine during the latter’s corrective maintenance, which is also random here. Consequently, the introduction
of the buffer machine is an option for the manufacturer to overcome the stock-out situation. Ultimately, this
saves the good-will of a business, which is very important in a competitive market situation in the present
scenario.

We can extend the model in many ways. One may consider the unreliable production system and incorporate
the reworking of defective items with this model. We may study this model, imposing the effect of deterioration.
Another development of this model can be made by taking the price-sensitive demand pattern.

Acknowledgements. The authors would like to express their gratitude to the editors and referees for their valuable
suggestions and corrections to enhance the clarity of the present article.
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