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INTEGER AND CONSTRAINT PROGRAMMING APPROACHES FOR
PROVIDING OPTIMALITY TO THE BANDWIDTH MULTICOLORING

PROBLEM

Bruno Dias1,∗, Rosiane de Freitas1, Nelson Maculan2 and Philippe Michelon3

Abstract. In this paper, constraint and integer programming techniques are applied to solving band-
width coloring problems, in the sense of proving optimality or finding better feasible solutions for
benchmark instances from the literature. The Bandwidth Coloring Problem (BCP) is a generalization
of the classic vertex coloring problem (VCP), where, given a graph, its vertices must be colored such
that not only adjacent ones do not share the same color, but also their colors must be separated by a
minimum given value. BCP is further generalized to the Bandwidth Multicoloring Problem (BMCP),
where each vertex can receive more than one different color, also subject to separation constraints.
BMCP is used to model the Minimum Span Channel Assignment Problem (MS-CAP), which arises in
the planning of telecommunication networks. Research on algorithmic strategies to solve these prob-
lems focus mainly on heuristic approaches and the performance of such methods is tested on artificial
and real scenarios benchmarks, such as GEOM, Philadelphia and Helsinki sets. We achieve optimal
solutions or provide better upper bounds for these well-known instances, We also compare the effects of
multicoloring demands on the performance of each exact solution approach, based on empirical analysis.
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1. Introduction

Let G = (V,E) be an undirected graph. A k-coloring of G is an assignment of colors {1, 2, . . . , k} to the
vertices of G so no two adjacent vertices share the same color. The chromatic number χG of a graph is the
minimum value of k for which G is k-colorable. The classic vertex coloring problem (VCP), which consists in
finding the chromatic number of a graph, is a well-known combinatorial optimization problem which belongs to
NP-hard complexity class [10,12,14].

One of the main applications of such problems consists of assigning channels to transmitters in a mobile
wireless network. Each transmitter is responsible for the calls made in the area it covers and the communication
among devices is made through a channel consisting of a discrete slice of the electromagnetic spectrum. However,
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Figure 1. Example of channel assignment and its modeling as an instance of Bandwidth
Coloring Problem.

the channels cannot be assigned to calls in an arbitrary way, since there is the problem of interference among
devices located near each other using approximate channels. Given this scenario, channels must be assigned to
calls so interference is avoided and the spectrum usage is minimized [17,27,28].

Thus, the channel assignment scenario can be modeled as a graph coloring problem by considering each
transmitter as a vertex in a simple undirected graph and the channels to be assigned as the colors the vertices
will receive. Some more general graph coloring problems were proposed in the literature in order to take the
separation among channels into account, such as the T-coloring problem, also known as the Generalized Coloring
Problem (GCP) [8,13], which was one of the first combinatorial optimization approaches to channel assignment,
where each edge is assigned a given forbidden set such that the absolute difference between colors given to each
incident edge is in the set. The scenario where stations may need more than one channel, that is, vertices in the
corresponding graph may have a demand of more than one color, is modeled as the set T-coloring problem [8],
in which there is also a forbidden set for each vertex so that the absolute difference between colors assigned to
the same vertex must not be in its forbidden set.

A special case of T-coloring consists of forbidden sets containing only consecutive integer numbers starting
from zero (that is, sets of form {0, 1, 2, . . . , d}, or, equivalently, intervals [0, . . . , d] ⊂ Z), which means the
absolute difference between colors assigned to each vertex must be greater or equal a certain value. This case
is known in the literature as the Bandwidth Coloring Problem (BCP) [18, 20, 21, 24], since this requirement
occurs with respect to frequency bands in a wireless network. An example of channel assignment instance and
its corresponding model as a BCP instance is shown in Figure 1. Note that the edges are only assigned the
upper interval bound di,j .

The separation constraints in the BCP can be seen as a type of distance constraint, so we can see the
channel assignment as a type of distance geometry (DG) problem, since we have to place the channels in
the transmitters respecting some distances imposed in the edges, where a coloring x : V → N, such that
∀{i, j} ∈ E, |x(i) − x(j)| ≥ di,j , must be found [6, 7]. This theoretical model can be used to derive integer
and constraint programming models based on characteristics from the problem as well as previous works with
similar problems.

The main contribution of this paper consists of the use of integer and constraint programming models to
provide exact solutions to BCP, applying them to existing instances, including ones based on real channel
assignment scenarios. There are many algorithms for BCP in the literature, including some based on classic
metaheuristics, including simulated annealing [3], local search [9], evolutionary algorithms [20] and tabu search
[8, 18]. However, there is no optimality guarantee in these methods. Using integer and constraint program-
ming approaches, we were able to prove the optimality of some solutions found by heuristic methods, such as
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the multistart iterated tabu search proposed in [18], and obtain better upper bounds for some problems, includ-
ing optimal solutions for open instances. In this process, we also found some inconsistencies in the literature
with respect to the quality of some approximate algorithms, where the heuristic presented solutions better than
the optimal ones found by an exact method.

The remainder of this paper is organized as follows. Section 2 formally defines the Bandwidth Coloring Prob-
lem and discusses its characteristics. Section 3 gives a mathematical formulation in constraint programming
based on theoretical distance geometry models, and also gives an integer programming formulation for com-
parison. Section 4 shows results of some experiments done with implementations of the mathematical models.
Finally, in Section 5, final remarks are made and next steps of ongoing research are stated.

2. Bandwidth Coloring definitions and models

The Bandwidth Coloring Problem (BCP) can be stated as follows. Given an undirected graph G = (V,E)
where, for each edge (i, j) ∈ E, there is a positive integer di,j , each vertex i must receive a color x(i) and, for
each edge (i, j) ∈ E, the condition |x(i)− x(j)| ≥ di,j must hold.

This problem is a special case of T-coloring [13], since we can build a T-coloring instance from any
BCP instance by setting the forbidden set of an edge (i, j) ∈ E to Ti,j = {0, 1, . . . , di,j}, The constraint
|x(i)− x(j)| /∈ Ti,j is, then, the same as the one from BCP, that is, the former corresponds to a T-coloring
instance with forbidden sets consisting of consecutive values.

The constraints imposed on BCP are a kind of distance constraint, so it can be modeled using concepts from
distance geometry (DG) [4–6]. The fundamental Distance Geometry Problem (DGP) has, as input, a graph
G = (V,E) such that for each edge (i, j) ∈ E, a distance di,j ∈ R+ is attributed to it and an embedding
x : V → Rn must be found such that ||x(i) − x(j)|| = di,j for all (i, j) ∈ E. When n = 1, we have 1-DGP,
which is equivalent to 1-Embeddability [25]. If the condition ∀(i, j) ∈ E, di,j ∈ N also holds, then we have the
Discretizable Distance Geometry Problem (DDGP) in one dimension, or 1-DDGP. Based on this model, we can
formalize the following coloring problem.

Definition 2.1 (Minimum Equal Coloring Distance Geometry Problem (MinEQ-CDGP)). Given a simple
weighted undirected graph G = (V,E), where, for each (i, j) ∈ E, there is a weight di,j ∈ N, find an embedding
x : V → N such that |x(i)− x(j)| = di,j for each (i, j) ∈ E whose span S, defined as S = maxi∈V x(i), that is,
the maximum used color, is the minimum possible.

By substituting the equality constraint in MinEQ-CDGP into an inequality (greater than or equal) and
considering only one dimension for the embedding and only its positive integer points, a DG model for BCP
can be derived, as defined below.

Definition 2.2 (Minimum Greater than or Equal Coloring Distance Geometry Problem – MinGEQ-CDGP
[4, 5]). Given a simple weighted undirected graph G = (V,E), where, for each (i, j) ∈ E, there is a weight
di,j ∈ N, find an embedding x : V → N such that |x(i)−x(j)| ≥ di,j for each (i, j) ∈ E whose span (maxi∈V x(i))
is the minimum possible.

The MinGEQ-CDGP is equivalent to BCP, since, for each vertex i ∈ V , the point x(i) assigned to it in
MinGEQ-CDGP corresponds to its color in BCP. A special case when, for all (i, j) ∈ E, we have di,j = β, where
β ∈ N. When β = 1, we have a VCP instance, where colors between adjacent vertices must only be different
among each other. The input graph can be stated only by its vertices, edges and the β value. The corresponding
DG model is stated below and exemplified in Figure 2.

Definition 2.3 (Minimum Greater than or Equal Coloring Distance Geometry Problem with Constant Dis-
tances – MinGEQ-CDGP-Unif). [4,5]: Given a simple weighted undirected graph G = (V,E), and a nonnegative
integer β, find an embedding x : V → N such that |x(i)−x(j)| ≥ β for each (i, j) ∈ E whose span (maxi∈V x(i))
is the minimum possible.
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Figure 2. Examples of instances for MinGEQ-CDGP (BCP) and MinGEQ-CDGP-Unif
problems. Note that the MinGEQ-CDGP-Unif instance used is also a VCP one.

A variation of BCP is the Bandwidth Multicoloring Problem (BMCP), which is also a special case of set
T-coloring, where the vertex i has an associated color demand qi and a weight di,i, such that it receives qi colors
(instead of just one). Let x(i, k) be the k-th color assigned to vertex i (with 1 ≤ k ≤ qi). Then, for each pair of
colors x(i, k) and x(i,m) associated to i, the constraint |x(i, k) − x(i,m)| ≥ di,i must be respected in BMCP.
An equivalent problem to BMCP is the Minimum Span Channel Assignment (MS-CAP) [1, 17], also known as
Minimum Span Frequency Assignment (MS-FAP) where channels correspond to colors and devices to vertices.
However, the input consists of positions for these devices and reuse distances, where, based on the distance
between two devices, the separation between colors is calculated. If this input is converted into a graph where
edges are weighted according to this separation, then it becomes a BMCP instance.

For BMCP, we can extend MinGEQ-CDGP as shown below.

Definition 2.4 (Minimum Greater than or Equal Multicoloring Distance Geometry Problem – MinGEQ-Multi-
CDGP). Given a simple weighted undirected graph G = (V,E), where, for each (i, j) ∈ E, there is a weight
di,j ∈ N, and, for each vertex i ∈ V , there are weights qi, di,i ∈ N find an embedding x : V → 2N such
that |x(i)| = qi; letting x(i, k) be the k-th color assigned to i then for each (i, j) ∈ E, 1 ≤ k ≤ qi and
1 ≤ m ≤ qj , |x(i, k) − x(j,m)| ≥ di,j ; and, for each i ∈ V , 1 ≤ k, l ≤ qi, |x(i, k) − x(i, l)| ≥ di,i; whose span
(maxi∈V, 1≤k≤qi

x(i)) is the minimum possible.

As is the case with all multicoloring problems, there is an equivalence between MinGEQ-CDGP and MinGEQ-
Multi-CDGP, that is, an instance of MinGEQ-Multi-CDGP can be converted into MinGEQ-CDGP by repli-
cating each vertex i into a clique of qi subvertices. Each edge in the clique has a distance imposed on it equal
to di,i from the original MinGEQ-Multi-CDGP instance, and each subvertex is adjacent to all other vertices
that the original vertex also was adjacent to. Figure 3 shows an example of this conversion. By employing
this transformation, any algorithm for MinGEQ-CDGP can be used for MinGEQ-Multi-CDGP. However, if the
algorithm does not explore specific characteristics of multicoloring, its runtime will be much higher [18,22].

In Figure 4, we show the hierarchy of coloring problems shown in this section and which ones are the focus
of this paper. We refer the reader to [5] for more information about other distance coloring models.

3. Constraint and integer programming approaches

The distance geometry approach for graph coloring problems with distances is directly mapped to a constraint
programming (CP) approach, since it addresses the graph coloring problem with distances as an embedding of
the graph in one dimension, that is, a labeling of the vertices with natural numbers indicating its projection on
the line, such that the distances of the segments defined by the edge weights of the graph are met, and such



IP AND CP FOR PROVIDING OPTIMALITY TO BMCP S1953

Figure 3. Example of MinGEQ-Multi-CDGP instance and its transformation into a MinGEQ-
CDGP instance.

Figure 4. Hierarchy of graph coloring problems with distance constraints. The problems
explored in this paper are highlighted by the dashed polygon.

that the total range is minimized (the span of colors is minimized). In this way, a mathematical technique that
handles these segments or distance constraints is very useful, which is the case for the constraint programming
model. We also present a traditional integer programming formulation, to compare both approaches.

Thus, the first formulation presented is based on constraint programming, which will be denoted by MinGEQ-
CDGP-CP and is proposed in this work by directly using the problem definition.

Let xi be an integer variable consisting of the color assigned to vertex i. Then MinGEQ-CDGP-CP is
defined as:

Minimize max
i∈V

x(i) (3.1)

Subject to |x(i)− x(j)| ≥ di,j (∀(i, j) ∈ E) (3.2)
x(i) ∈ Z∗ (∀i ∈ V ) (3.3)
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The objective (3.1) is to minimize the maximum used color among all vertices (the coloring span). Con-
straint set (3.2) involves weighted edges with inequality constraints. For each variable xi, the initial domain
(before constraint propagation) D(xi) consists of all integers between 1 and a given upper bound U , that is,
D(xi) = [1, . . . , U ]. Note that all initial domains are the same. This model has O(|V |) variables (one for each
vertex) and O(|E|) constraints (one for each edge), since it captures the essential definition of the problem.

A special CP model can be stated for the case when all distances are the same (MinGEQ-CDGP-Unif) and
the input graph is complete, using a specific global constraint. We propose such model, denoted by MinGEQ-
CDGP-Unif-CP, which is defined as:

Minimize max
i∈V

x(i) (3.4)

Subject to allMinDistance({x(i) : i ∈ V }, β) (3.5)
x(i) ∈ Z∗ (∀i ∈ V ) (3.6)

The allMinDistance global constraint used in (3.5) takes as its arguments a set of variables and a number w,
which is the minimum distance to be respected, and ensures that, for all pairs of variables y and z in the set, the
condition |y − z| ≥ w is valid, which is the case for each vertex and its neighbors. This special case has O(|V |)
variables and only one global constraint. This formulation has fewer constraints and is able to use specialized
propagators. We note that allMinDistance is a generalization of the classical allDifferent global constraint, such
that when the constant w (that is, the distance to be respected) is set to 1, the result of both constraints would
be the same. However, there is no guarantee that the algorithms for separating allDifferent will be used in this
scenario.

For MinGEQ-Multi-CDGP, a CP formulation can be constructed by using characteristics from both previ-
ously shown models. As discussed in Section 2, a multicoloring problem can be converted into a coloring with
single demands by transforming a vertex i into a clique of qi vertices, each adjacent to all other vertices that
were adjacent to i. By using this, we have that, essentially, each vertex consists of a small MinGEQ-CDGP-
Unif subinstance, where the larger graph (that is, considering the constraints imposed on the original edges
between different vertices), if its multicoloring demands are ignored, is a MinGEQ-CDGP instance. Based on
this combination, we propose the following CP formulation, denoted by MinGEQ-Multi-CDGP-CP:

Minimize max
i∈V

1≤k≤qi

x(i, k) (3.7)

Subject to |x(i, k)− x(j,m)| ≥ di,j (∀(i, j) ∈ E, 1 ≤ k ≤ qi,
1 ≤ m ≤ qj) (3.8)

allMinDistance({x(i, k) : 1 ≤ k ≤ qi}, di,i) (∀i ∈ V ) (3.9)
x(i, k) ∈ Z∗ (∀i ∈ V, 1 ≤ k ≤ qi) (3.10)

In MinGEQ-Multi-CDGP-CP, constraints (3.8) ensure that colors assigned to different vertices respect the
distance imposed on edges. Constraints (3.9) require that different colors assigned to the same vertex respect
the minimum distance di,i between each other (using the allMinDistance global constraint, since they form a
small MinGEQ-CDGP-Unif subinstance). This formulation has O(|V |qmax) variables (where qmax = maxi∈V qi,
that is, the largest color demand in the graph), since, for each color needed to each vertex, there is a variable,
and O(|E|qmax) constraints.

The second mathematical formulation approach is an integer programming model, which will be denoted by
MinGEQ-CDGP-IP. It is based on models defined in [17], where we modified the formulation in order to make
it more compact. A similar formulation was proposed independently in [19]. Two sets of variables are used:

– xic =
{

1 if color c is assigned to vertex i;
0 otherwise.

– zmax = value of maximum color used in the solution (the coloring span).
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Using these variables, MinGEQ-CDGP-IP is defined as follows:

Minimize zmax (3.11)

Subject to
U∑

c=1

xic = 1 (∀i ∈ V ) (3.12)

xic + xje ≤ 1 (∀(i, j) ∈ E; 1 ≤ c, e ≤ U | |c− e| < di,j) (3.13)
zmax ≥ cxic (∀i ∈ V ; 1 ≤ c ≤ U) (3.14)
xic ∈ {0, 1} (∀i ∈ V ; 1 ≤ c ≤ U) (3.15)
zmax ∈ R (3.16)

In MinGEQ-CDGP-IP, the objective (3.11) is to minimize the value of variable zmax, which will be the
coloring span. Constraint set (3.12) ensures that all vertices must be colored. Constraint set (3.13) ensures that
the absolute difference between the colors assigned to adjacent vertices is less than the distance given by the
weight of the respective edge, then only one of the vertices can receive that color. Constraints (3.14) require
that variable zmax be greater than or equal to any color used, so it will be the maximum color used. Constraints
(3.15) require that variables in the set xic use only values 0 and 1, while constraint (3.16) states that zmax is a
free variable, although its value will always be an integer, since, at the optimal solution, zmax = cxic for some
i ∈ V and c ∈ J1, UK. The value U denotes the upper bound for colors to be used, since variables are indexed
by vertex and color, so the color set must be limited. This IP model has O(U |V |) variables (one for each pair
of color and vertex) and O(U |V |+ U2|E|) constraints, that is, it has pseudopolynomial size.

For MinGEQ-Multi-CDGP, the integer programming model can also be changed to accomodate multicoloring
demands. Such modified formulation, which will be denoted as MinGEQ-Multi-CDGP-IP, is obtained by making
two modifications to the previous model. The first one is changing the RHS of constraints (3.12) from 1 to qi,
which ensures that, instead of receiving only one color, each vertex i will receive qi colors. The second one is
expanding the set of constraints (3.13) in order to add new ones for ensuring that the same vertex i avoids using
colors that violate the distance di,i, that is, there will be one constraint for each (i, j) ∈ E; 1 ≤ c, e ≤ U such
that |c − e| < di,j and also for each i ∈ V ; 1 ≤ c, e ≤ U such that |c − e| < di,i. Note that this is equivalent
to having an edge (i, i) for each vertex i, which would make the new constraints be automatically included in
the original constraint set. The full MinGEQ-Multi-CDGP-IP formulation we propose is given below. These
modifications do not impact the asymptotic size of the formulation.

Minimize zmax (3.17)

Subject to
U∑

c=1

xci = qi (∀i ∈ V ) (3.18)

xic + xje ≤ 1 (∀(i, j) ∈ E; 1 ≤ c, e ≤ U | |c− e| < di,j) (3.19)
xic + xie ≤ 1 (∀i ∈ V ; 1 ≤ c, e ≤ U | |c− e| < di,i) (3.20)
zmax ≥ cxic (∀i ∈ V ; 1 ≤ c ≤ U) (3.21)
xci ∈ {0, 1} (∀i ∈ V ; 1 ≤ c ≤ U) (3.22)
zmax ∈ R (3.23)

Another formulation that can be used to solve MinGEQ-Multi-CDGP (and MinGEQ-CDGP) is based on the
one by [11], which was originally proposed for channel assignment problems. Instead of using a single integer
variable to track the coloring span (zmax in the above IP formulations), a set of binary variables are used instead,
as defined below:

– uc =
{

1 if color c is the maximum one used in the solution;
0 otherwise.
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Table 1. Summary of constraint and integer programming formulations.

Formulation Type Problem # Vars # Constr.

MinGEQ-CDGP-CP BCP O(|V |) O(|E|)
MinGEQ-CDGP-Unif-CP Constraint

programming
BCP w/
Unif. Dist.
(Complete
graphs)

O(|V |) O(|V |)

MinGEQ-Multi-CDGP-CP BMCP O(|V |qmax) O(|E|qmax)

MinGEQ-CDGP-IP BCP O(U |V |) O(U |V |+ U2|E|)
MinGEQ-Multi-CDGP-IP Integer

programming
BMCP O(U |V |) O(U |V |+ U2|E|)

MinGEQ-Multi-CDGP-IP-
FullBinary

BMCP O((U |V |) + U) O(U2|V |+ U |V |+ U2|E|)

The resulting model, which we will denote as MinGEQ-Multi-CDGP-IP-FullBinary, is then given by:

Minimize
U∑

c=1

cuc (3.24)

Subject to
U∑

c=1

xci = qi (∀i ∈ V ) (3.25)

xic + xje ≤ 1 (∀(i, j) ∈ E; 1 ≤ c, e ≤ U | |c− e| < di,j) (3.26)
xic + xie ≤ 1 (∀i ∈ V ; 1 ≤ c, e ≤ U | |c− e| < di,i) (3.27)

U∑
c=1

uc = 1 (3.28)

xic + ue ≤ 1 (∀i ∈ V ; 1 ≤ c, e ≤ U | c > e) (3.29)
xci ∈ {0, 1} (∀i ∈ V ; 1 ≤ c ≤ U) (3.30)
uc ∈ {0, 1} (∀1 ≤ c ≤ U) (3.31)

In MinGEQ-Multi-CDGP-IP-FullBinary, constraint sets (3.25), (3.26) and (3.27) are the same as sets (3.18),
(3.19) and (3.20) from MinGEQ-Multi-CDGP-IP. Constraints (3.28) ensure that only one color can be the
maximum one used. The set of constraints (3.29) require that, if a certain color is the maximum one used, then
no vertex can receive a color higher than the maximum. This formulation has O((U |V |) + U) variables and
O(U2|V |+ U |V |+ U2|E|) constraints, making it larger than MinGEQ-Multi-CDGP-IP.

A summary of the constraint and integer programming formulations described in this section is given in
Table 1.

3.1. Upper bounds for color sets

Both CP and IP models need a finite color set, which, as shown previously, consist of an interval of integers
[1, . . . , U ], where U is an upper bound for the coloring span. A trivial value for U can be calculated by summing
the distances imposed on all edges plus 1, that is, U =

∑
(i,j)∈E di,j +1. However, this upper bound is very weak,

since, by summing all distances, we are ignoring the fact that colors can be reused by vertices not adjacent to
each other, which makes the coloring span become a large value far from optimum. This also makes the color
set have a large cardinality, which has a huge impact on the computing performance of these models, especially
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the IP model, since the number of variables and constraints are proportional to the upper bound, which can
lead to out-of-memory scenarios.

A better value for U is given by preprocessing the input graph, where a heuristic which does not need an explicit
upper bound is applied to it. The span of the resulting solution is used as the value U when assembling CP and IP
models for the input graph. A greedy algorithm for coloring the input graph can be used for this, where the vertices
are processed following an order based on their color demands – vertices with higher demands are colored first.
A color for a vertice i is determined by first setting its color candidate as numCol[i] × di,i + 1, where numCol[i]
is the number of colors already assigned to i, and checking if it violates any separation constraint with any of its
neighbor vertices. If a violation occurs, the color candidate is incremented by 1 and this checking is made again until
a feasible color is found. The color is then assigned to i and, if its demands are not fully satisfied, an additional color
is calculated and assigned to it. This is repeated until the graph is fully colored. Algorithm 1 gives pseudocode for
this greedy heuristic. The upper bound is, then, the span of the solution returned by this method.

Algorithm 1. Greedy heuristic for generating starting solutions for BCP and BMCP.
Require: graph G (with set V of vertices and set E of edges), distances d : E ∪ {(i, i) : i ∈ V } → Z≥0, color demands

q : V → N.
1: function GreedyStartingSolution(G = (V, E), d, w)
2: V ′ ← V
3: for each i ∈ V do
4: numCol[i]← 0
5: colorAssign[i]← ∅
6: while V ′ 6= ∅ do
7: i← arg maxv∈V ′ qv

8: while numCol[i] < qi do
9: candColor ← (numCol[i]× di,i) + 1

10: violated← true
11: while violated = true do
12: violated← false
13: for each j ∈ V − (V ′ ∪ {i}) do
14: for each k ∈ colorAssign[j] do
15: if |k − candColor| < di,j then
16: violated← true
17: candColor ← candColor + 1
18: break
19: if violated = true then
20: break
21: colorAssign[i]← colorAssign[i] ∪ {candColor}
22: numCol[i]← numCol[i] + 1
23: V ′ ← V ′ − {i}
24: return colorAssign

4. Computational experiments

The constraint and integer programming formulations were implemented in C++ using IBM/ILOG CPLEX
solver, version 12.5.1, and its CP Optimizer component. The resulting programs were executed in a Microsoft
Azure A9 Virtual Machine, consisting of Intel Xeon E5-2670 processors (16 cores @ 2.6 GHz), 112 GB of RAM
and Ubuntu Linux 14.04.1 LTS operating system. Both formulations used the standard parameters of the solver,
but using only one thread, and each instance was limited to 48 hours of CPU time (172 800 s).

We used two benchmarks from the literature in our experiments. The first set of literature instances is known
as GEOM, generated by Michael Trick [26] for BCP and its multicoloring variant, BMCP, and consists of 33
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Figure 5. Graph layout of instance GEOM20b.

Figure 6. Cellular networks used in Philadelphia and Artificial (55-cell) instances.

instances of three types: GEOMn are sparse graphs, while GEOMna and GEOMnb are denser graphs (where
n is the number of vertices in the instance). An example of graph from this set of instances is given in Figure 5,
where the graph from instance GEOM20b is shown.

The second set of instances consists of the classic Philadelphia (21 stations) and Helsinki (25 vertices) problems
for MS-CAP, based on cellular networks from the cities of the same names, and an artificial problem (55 vertices)
that extends a Philadelphia instance, as seen in [2,6,15]. The cellular models (hexagonal cells) for Philadelphia
and artificial instances are given in Figure 6.

We remark that, for MS-CAP instances, the graph induced by the cellular network is not directly used as
BCP/BMCP instances. Rather, another one is determined from the network layout, called interference graph,
which takes into account the minimum distance between each pair of cells. The instances defined on such
networks are based on a two-band buffering system, that is, each cell interferes only with others situated at
most 2 units of distance apart [1]. To exemplify this concept, the interference graph for the 21-cell Philadelphia
network is given in Figure 7. Since these instances are defined for BMCP only, we applied the suggestion by the
authors of the GEOM instances in these as well to generate BCP instances.

When constructing the models for each instance, we executed the preprocessing discussed in Section 3.1 in
order to obtain a feasible solution and an upper bound. To further help the solvers, we fed the entire starting
solution to them, namely, we passed the solution as a starting point to CP Optimizer and as a MIP start to
CPLEX, instead of only using the span as an upper bound. This is especially important for CPLEX, since it
guarantees that an optimality gap is calculated as soon as the enumeration starts.
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Figure 7. Interference graph for the 21-cell Philadelphia network. The distances imposed on
the edges, as well as multicoloring demands, which would define loop edges, were omitted in
the graph.

Figure 8. Number of vertices × CPU time needed to prove optimality (if found) for each
method on GEOM instances.

The first results presented are for BCP. Table 2 shows the results for the GEOM BCP instances, where
underlined values for the span (in Best Found and Best Reported columns) indicate that it is proved to be
optimal using at least one of the exact approaches (CP or IP). Since the BCP variants are also used in the
literature, we compared our results with the Discropt heuristic framework in [24] and the multistart iterated
tabu search heuristic in [18] to verify the correctness of the solutions by the CP and IP formulations. For all
sparse instances (the ones without “a” or “b” in the name), the constraint programming implementation was
able to prove optimality. However, we emphasize that, for some instances, no method achieved the best solution
presented in [24]. As noted in [18], no other work has obtained the same results, while our exact approaches
reached the same best solutions for these instances obtained by other authors, which leads us to believe there
is a mistake in [24], as marked in Table 2.

Table 3 shows the results for MS-CAP (Philadelphia, Helsinki and Artificial) instances without considering
multicoloring demands. We note that, for each Philadelphia constraint matrix Ci

21 where i is odd, by dropping
the multicoloring demands, the instances become equal, since the only difference among them is the separation
between colors of the same vertex. The same occurs for each even i. Given that, we grouped together results
for each odd i (1, 3, 5 and 7) and for each even i (2, 4, 6, 8). Again, the CP formulation reaches optimality for
each instance much faster, although runtimes are small due to the size of these relaxed instances.
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Table 2. Results for the constraint and integer programming formulations applied on literature
BCP instances (GEOM set). Underlined results in “Best Found” columns are optimal values.

Instance

|V | |E| Phan

and
Skiena

[24]

Lai and

Lu [18]

Constr. Progr. (CP

Optimizer)

Integer Progr. (CPLEX)

Best

reported

Best

reported

Best

found

Time (s) Best found Best LB Gap (%) Time (s)

GEOM20

20

40 20* 21 21 0.00 21 21.000 0.00 0.33

GEOM20a 57 20 20 20 0.02 20 20.000 0.00 0.95

GEOM20b 52 13 13 13 0.01 13 13.000 0.00 0.09

GEOM30

30

80 27* 28 28 0.05 28 28.000 0.00 0.88

GEOM30a 111 27 27 27 0.05 27 27.000 0.00 8.06
GEOM30b 111 26 26 26 0.03 26 26.000 0.00 2.27

GEOM40
40

118 27* 28 28 0.05 28 28.000 0.00 1.97
GEOM40a 186 38 37 37 1.39 37 37.000 0.00 278.66

GEOM40b 197 36 33 33 2.06 33 33.000 0.00 252.39

GEOM50

50

177 29 28 28 0.26 28 28.000 0.00 21.44

GEOM50a 288 54 50 50 374.42 50 50.000 0.00 3457.25
GEOM50b 299 40 35 35 144.69 35 35.000 0.00 8494.52

GEOM60

60

245 34 33 33 1.12 33 33.000 0.00 45.73

GEOM60a 339 54 50 50 684.59 50 50.000 0.00 16 755.65

GEOM60b 426 47 41 41 22 915.94 41 41.000 0.00 134 996.77

GEOM70
70

337 40 38 38 2.39 38 38.000 0.00 533.53
GEOM70a 529 64 61 61 24 798.03 ≤62 38.000 38.71 172 815.55

GEOM70b 558 54 47 47 534.65 ≤49 44.0000 10.20 172 834.40

GEOM80

80

429 44 41 41 8.18 41 41.000 0.00 3019.18

GEOM80a 692 69 63 63 87 770.77 ≤65 39.0000 40.00 172 803.55

GEOM80b 743 70 60 60 54 320.89 ≤66 21.0000 68.18 172 800.25

GEOM90
90

531 48 46 46 55.18 46 46.000 0.00 7768.62
GEOM90a 879 74 63 63 130 050.12 ≤72 7.000 90.28 173 100.57

GEOM90b 950 83 69 ≤69 172 800.00 ≤85 2.1127 97.51 172 802.83

GEOM100

100

647 55 50 50 545.79 50 50.0000 0.00 78 836.94

GEOM100a 1092 84 67 ≤70 172 800.01 ≤85 3.0863 96.37 172 824.54

GEOM100b 1150 87 72 ≤71 172 800.02 ≤101 2.2271 97.75 172 840.38

GEOM110

110

748 59 50 50 2982.24 50 50.0000 0.00 170 043.88

GEOM110a 1317 88 72 ≤73 172 800.01 ≤97 2.1963 97.70 172 811.66

GEOM110b 1366 87 78 ≤79 172 800.01 ≤99 2.2208 97.76 172 821.35

GEOM120
120

893 67 59 59 10 778.18 ≤60 24.0000 60.00 173 296.11
GEOM120a 1554 101 82 ≤84 172 800.01 ≤110† 2.1039 98.09 173 181.91

GEOM120b 1611 103 84 ≤85 172 800.01 ≤113† 2.1245 98.12 173 187.16

*Results lower than the obtained optimum – possibly wrong in the corresponding work. †No solution found by B&C, but
CPLEX returns the initial greedy heuristic solution.

The next experiments are for BMCP. For these instances, a trivial lower bound can be calculated as
L = max[(di,i(qi − 1)) + 1], as shown by [2]. This value is also inserted in the models by adding a single
constraint requiring that the objective value be greater than or equal to L, which helps the enumeration end
faster when the optimal solution has span equivalent to this lower bound, especially when using CP. It also
enables IP to report an optimality gap even when the root node takes too much time to find even the linear
relaxation solution.

Table 4 shows results obtained for the GEOM instances. We compared our results for these instances with
the same multistart iterated tabu search heuristic from [18], where the algorithm for BCP is applied to BMCP
instances by expanding the vertices into cliques as shown in Section 2. Furthermore, Table 5 shows results
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Table 3. Results for the constraint and integer programming formulations applied on litera-
ture MS-CAP instances (Philadelphia, Helsinki and Artificial) without multicoloring demands.
Underlined results in “Best Found” columns are optimal values. Since IP reaches all optimal
solutions, the best LB has been omitted in the table.

Const.
matrix

|V | |E| Constr. Progr. (CP optimizer) Integer Progr. (CPLEX – B&C)

Best found Time (s) Best found Time (s)

C1
21, C3

21, C5
21

and C7
21

21 102
7 0.40 7 0.87

C2
21, C4

21, C6
21

and C8
21

9 0.06 9 2.66

C1
25 25 134 8 4.71 8 1.90

C1
55 55 362 7 0.79 7 30.63

Table 4. Results for the constraint and integer programming formulations applied on literature
BMCP instances (GEOM set). Underlined results in “Best Found” columns are optimal values.

|V | |E| Trivial LB

Lai and Lu [18] Constr. Progr. (CP Optimizer) Integer Progr. (CPLEX – B&C)

Instance Best reported Best found Time (s) Best found Best LB Gap (%) Time (s)

GEOM20

20

40 91 149 ≤149 172 800.01 149 149.0000 0.00 15.17

GEOM20a 57 91 169 ≤169 172 800.01 169 169.0000 0.00 18.49

GEOM20b 52 21 44 44 476.92 44 44.0000 0.00 1.58

GEOM30

30

80 91 160 ≤160 172 800.01 ≤160 159.0000 0.62 172 830.72

GEOM30a 111 91 209 ≤215 172 800.01 ≤211 189.0000 10.43 172 813.47

GEOM30b 111 21 77 ≤77 172 800.00 77 77.0000 0.00 41.87

GEOM40

40

118 91 167 ≤168 172 800.01 167 167.0000 0.00 1192.28

GEOM40a 186 91 213 ≤225 172 800.01 213 213.0000 0.00 111 262.08

GEOM40b 197 21 74 ≤74 172 800.00 74 74.0000 0.00 17 027.77

GEOM50

50

177 91 224 ≤226 172 800.02 224 224.0000 0.00 52 450.85

GEOM50a 288 91 314 ≤332 172 800.03 ≤361 95.5218 73.54 172 820.13

GEOM50b 299 21 83 ≤85 172 800.00 ≤87 52.0000 40.23 172 819.47

GEOM60

60

245 91 258 ≤259 172 800.02 258 258.0000 0.00 156 987.80

GEOM60a 339 91 356 ≤380 172 800.03 ≤448 93.5801 78.93 172 813.01

GEOM60b 426 21 113 ≤117 172 800.01 ≤125 34.0000 72.80 172 897.07

GEOM70

70

337 91 270 ≤284 172 800.03 ≤305 94.2092 69.11 172 804.56

GEOM70a 529 91 467 ≤483 172 800.05 ≤578 91.0000 84.26 172 839.51

GEOM70b 558 21 116 ≤123 172 800.01 ≤134 22.7359 83.03 172 805.88

GEOM80

80

429 91 381 ≤395 172 800.04 ≤511 95.2644 80.19 172 809.70

GEOM80a 692 91 361 ≤382 172 800.05 ≤479 91.0000 81.00 172 885.02

GEOM80b 743 21 139 ≤145 172 800.01 ≤170 23.0547 86.44 172 820.56

GEOM90

90

531 91 330 ≤342 172 800.05 ≤423 93.2736 77.73 172 811.82

GEOM90a 879 91 375 ≤392 172 800.07 ≤452 91.0000 79.87 172 830.60

GEOM90b 950 21 144 ≤156 172 800.01 ≤212 22.2574 89.50 172 844.07

GEOM100

100

647 91 404 ≤426 172 800.07 ≤493 94.2797 80.88 173 190.69

GEOM100a 1092 91 442 ≤465 172 800.08 ≤596 91.0000 84.73 172 871.84

GEOM100b 1150 21 156 ≤169 172 800.02 ≤220 21.0000 90.45 172 810.33

GEOM110

110

748 91 381 ≤399 172 800.07 ≤500 91.0000 81.80 172 840.98

GEOM110a 1317 91 488 ≤527 172 800.10 ≤610 91.0000 85.08 173 095.42

GEOM110b 1366 21 204 ≤207 172 800.01 ≤250 22.0001 91.20 172 835.82

GEOM120

120

893 91 396 ≤427 172 800.06 ≤505 93.9762 81.39 172 923.18

GEOM120a 1554 91 554 ≤585 172 800.16 ≤641 91.0000 85.80 173 312.14

GEOM120b 1611 21 189 ≤202 172 800.01 ≤247 21.8723 91.14 172 852.82
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Table 5. Results for the constraint and integer programming formulations applied on literature
MS-CAP instances (Philadelphia, Helsinki and Artificial). Underlined results in “Best Found”
columns are optimal values. Since IP reaches all optimal solutions, the best LB has been omitted
in the table.

Const.

matr.

Demd.

vect. |V | |E| Lower

bound

Chakraborty

[2]

Kendall

and

Mohamad

[15]

Kim

et al. [16]

Constr. Progr.

(CP Optimizer)

Integer Progr.

(CPLEX – B&C)

Best

reported

Best

reported

Best

reported

Best found Time (s) Best found Time (s)

C1
21 D1

21

21 102

533 533 533 533 533 4.20 533 0.50

C1
21 D2

21 309 309 309 309 309 1.34 309 1.22

C2
21 D1

21 533 533 533 533 533 10.53 533 308.04

C2
21 D2

21 309 309 309 309 309 625.93 309 165.54

C3
21 D1

21 457 457 457 – 457 3.96 457 0.39

C3
21 D2

21 265 265 265 – 265 3.54 265 1.52

C4
21 D1

21 457 457 457 – 457 41.24 457 202.01

C4
21 D2

21 265 265 265 – ≤ 266 172 800.06 265 214.01

C5
21 D1

21 381 381 381 381 381 3.23 381 0.29

C5
21 D2

21 221 221 221 221 221 100.81 221 5.09

C6
21 D1

21 381 463 435 427 ≤ 449 172 800.08 427 6827.49

C6
21 D2

21 221 273 268 253 ≤ 266 172 800.04 253 2026.67

C7
21 D1

21 305 305 305 – 305 12.85 305 1.10

C7
21 D2

21 177 197 185 – ≤ 180 172 800.06 180 24.54

C8
21 D1

21 305 465 444 – ≤ 435 172 800.07 427 1185.27

C8
21 D2

21 177 278 271 – ≤ 267 172 800.06 253 1116.45

C1
25 D3

25 25 134
21 73 73 – ≤ 73 172 800.00 73 1.10

C1
25 D4

25 89 121* 200 – ≤ 200 172 800.07 200 2.18

C1
55 D5

55 55 362
309 309 309 – 309 11 078.95 309 460.12

C1
55 D6

55 71 79 72 – 71 6.33 71 28.56

*Results lower than the obtained optimum – possibly wrong in the corresponding work.

for the MS-CAP (Philadelphia, Helsinki and Artificial) instances in their original forms (that is, including
multicoloring), which were compared with the constructive heuristic from [2], the local search algorithm from
[15] and the memetic algorithm from [16].

For BMCP, the efficiency between CP and IP is practically reversed: most instances are solved to optimality
faster with IP than CP. In fact, for the MS-CAP instances, we were able to obtain all optimal values using
IP. This is explained by taking into account, as discussed in Section 3, that the IP model is able to consider
multicoloring demands without expanding the number of vertices, only having to change a set of constraints
and add another set for the different colors for each vertex. However, the CP model has to grow more, since,
essentially, a BMCP instance is treated as a special BCP one, since the number of variables increases and a
new set of constraints is introduced. Figure 8 shows this difference in efficiency between methods. However, CP
still has an advantage in BMCP: when it is unable to solve a problem to optimality in the given time limit, the
solution that it returns has a better quality than the one found by IP (that is, the coloring span of the solution
found by CP is lower than the one found by IP). This happens because CP has explicit information about which
colors each vertex can assume, instead of calculating such colors.
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Table 6. Number of branches and fails (for CP) and of global cuts of each type (for IP) applied
to GEOM instances with unit demands.

Instance
Num.
Vert.

Const. Prog. (CP Optimizer) Integer Progr. (CPLEX)

# Branches # Fails #
Clique
cuts

#
Implied
bound
cuts

# MIP
rounding
cuts

#
Zero-half
cuts

# Gomory
fractional
cuts

GEOM20
20

972 462 9 15 0 8 10
GEOM20a 4667 2298 3 27 0 2 9
GEOM20b 2224 1096 14 7 0 5 0
GEOM30

30
10102 4782 13 62 0 4 31

GEOM30a 9024 4353 25 473 0 20 60
GEOM30b 6651 3210 9 194 0 11 49
GEOM40

40
9965 4699 13 130 0 3 56

GEOM40a 206960 98635 43 4 117 3 1
GEOM40b 275519 131721 14 543 0 30 15
GEOM50

50
57869 27159 27 0 0 9 0

GEOM50a 40966958 19591854 227 13 138 12 0
GEOM50b 14438962 6973218 564 3 6 18 0
GEOM60

60
178478 82471 63 0 0 0 2

GEOM60a 59350249 28292260 241 19 182 28 24
GEOM60b 1700740733 807817043 1691 25 176 23 0
GEOM70

70
320560 148877 128 0 12 3 1

GEOM70a 1662200599 781294815 881 6 192 20 0
GEOM70b 301138496 143985463 1171 21 226 46 5
GEOM80

80
2173324 1008986 372 5 131 19 0

GEOM80a 8859155916 4149659761 761 30 389 85 5
GEOM80b 3687195162 1739030200 480 29 303 138 0
GEOM90

90
3841482 1748958 471 2 223 31 9

GEOM90a 8424930433 3953124503 143 3 411 349 0
GEOM90b 6454145085 3036820947 317 11 417 93 0
GEOM100

100
33141115 15198269 702 11 221 54 27

GEOM100a 6622094014 3084753118 330 2 1367 2162 245
GEOM100b 5409742123 2511274478 130 301 0 567 136
GEOM110

110
12496119255 5760860721 426 16 320 54 2

GEOM110a 5930484572 2724545532 151 501 0 619 79
GEOM110b 4177753606 1922426902 118 754 0 460 0
GEOM120

120
637959908 289378147 1015 19 357 128 8

GEOM120a 5560296354 2542244856 172 782 0 678 0
GEOM120b 4003420813 1841115383 273 1258 0 959 0

We also detected a mistake in [2], where the heuristic result presented in it for constraint matrix C1
25 and

demand vector D4
25 is better (with objective function value 121) than the exact solutions obtained by both CP

and IP (with objective function value 200). In fact, no other work in the literature obtained a solution with
span lower than 200.

Finally, the numbers of branches and paths that do not reach a solution in the CP enumeration and generated
cuts of each type in the IP enumeration are given in Tables 6 and 7 for instances with unit color demands and in
Tables 8 and 9 for instances with multicoloring demands. We note that there is not a clear correlation between
the instance size and this data, indicating that these parts of the algorithms are sensitive to the individual
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Table 7. Number of branches and fails (for CP) and of global cuts of each type (for IP) applied
to MS-CAP instances (Philadelphia, Helsinki and Artificial) without multicoloring demands.

Instance
Num.
Vert.

Const. Prog. (CP Optimizer) Integer Progr. (CPLEX)
# Branches # Fails #

Clique

cuts

#
Implied

bound

cuts

# MIP
rounding

cuts

# Zero-
half cuts

#
Gomory

fractional

cuts

C1
21, C3

21, C5
21 and C7

21 21
49177 24602 3 5 0 9 0

C2
21, C4

21, C6
21 and C8

21 6033 2970 5 5 0 58 3

C1
25 25 176565 87496 0 0 0 0 0

C1
55 55 49096 24214 0 0 0 0 0

Table 8. Number of branches and fails (for CP) and of global cuts of each type (for IP) applied
to GEOM instances with multicoloring demands.

Instance
Num.
Vert.

Const. Prog. (CP Optimizer) Integer Progr. (CPLEX)

# Branches # Fails #

Clique
cuts

# Implied

bound cuts

# MIP

rounding
cuts

# Zero-half

cuts

# Gomory

fractional
cuts

GEOM20
20

1847656377 823996186 26 33 0 22 0
GEOM20a 2060224899 926128135 35 378 0 92 91

GEOM20b 23433594 11236673 19 28 0 47 49

GEOM30

30

1594445634 702092983 345 1 7 29 0

GEOM30a 778845728 343378790 1234 6 189 3 0
GEOM30b 4336696005 2043720645 23 96 0 17 53

GEOM40

40

1101215203 477955956 186 287 0 158 0

GEOM40a 853750393 376905743 131 7 322 4 0

GEOM40b 2915214186 1378502269 361 1 4 2 0

GEOM50
50

858223844 366277155 575 0 79 31 0
GEOM50a 373860395 159472193 183 446 0 235 4

GEOM50b 2205618883 1031493835 1498 2 295 7 0

GEOM60

60

884613825 374341633 468 1 34 38 0

GEOM60a 327100218 135221648 1109 335 0 1213 0
GEOM60b 1625337918 741993923 143 3 456 7 0

GEOM70
70

480579106 200225715 497 1363 0 275 0
GEOM70a 178618063 71625162 0 0 0 0 0

GEOM70b 1153010252 520892432 133 2 645 165 29

GEOM80
80

491579072 131225337 786 1842 0 1343 85
GEOM80a 206713326 84260206 0 0 0 0 0
GEOM80b 972753631 434139515 328 1065 0 690 97

GEOM90

90

289804704 110251804 1321 0 0 1894 0

GEOM90a 203904382 82252836 0 0 0 0 0

GEOM90b 677312582 300211365 344 481 0 877 0

GEOM100
100

219953270 80390988 0 0 0 0 0
GEOM100a 134018202 52245146 0 0 0 0 0
GEOM100b 511570190 224573165 0 0 0 0 0

GEOM110
110

170668054 64299043 0 0 0 0 0
GEOM110a 113908674 41331333 0 0 0 0 0

GEOM110b 409339582 177985395 0 0 0 0 0

GEOM120
120

207980564 81060477 0 0 0 0 0
GEOM120a 82058712 30432596 0 0 0 0 0

GEOM120b 386743755 164997551 0 0 0 0 0
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Table 9. Number of branches and fails (for CP) and of global cuts of each type (for IP) applied
to MS-CAP instances (Philadelphia, Helsinki and Artificial).

Const.
Matr.

Demd.
Vect.

Num.
Vert.

Const. Prog. (CP Optimizer) Integer Progr. (CPLEX)

# Branches # Fails #
Clique
cuts

#
Implied
bound
cuts

# MIP
rounding
cuts

# Zero-
half cuts

# Gomory
fractional
cuts

C1
21 D1

21

21

2555 504 0 0 0 0 0

C1
21 D2

21 469 4 0 0 0 0 0

C2
21 D1

21 6610 1505 0 0 0 0 0

C2
21 D2

21 822377 309790 0 0 0 0 0

C3
21 D1

21 2451 504 0 0 0 0 0

C3
21 D2

21 2874 505 0 0 0 0 0

C4
21 D1

21 20982 5811 0 0 0 0 0

C4
21 D2

21 44845827 17108454 0 0 0 0 0

C5
21 D1

21 2305 504 0 0 0 0 0

C5
21 D2

21 158368 50239 0 0 0 0 0

C6
21 D1

21 180812651 65917318 160 4 210 116 0

C6
21 D2

21 347622756 121153772 170 1 37 159 0

C7
21 D1

21 4106 505 0 0 0 0 0

C7
21 D2

21 352244757 132070514 4 0 0 8 35

C8
21 D1

21 199948906 75399919 163 1 379 224 0

C8
21 D2

21 451729822 146753868 225 204 0 190 0

C1
25 D3

25 25
2435656356 1064961796 2 134 0 81 143

C1
25 D4

25 374343491 115700707 0 0 0 0 0

C1
55 D5

55 55
7809104 2371461 0 0 0 0 0

C1
55 D6

55 27897 9552 0 0 0 0 0

values of distances and demands in the instances. We also conjecture that the input graph layout also impacts
in the enumeration, since some known cuts applied to coloring problems, such as clique cuts [23], are derived
according to the graph to be colored.

5. Concluding remarks

In this paper, we addressed channel assignment in wireless networks as special graph coloring with distance
constraints, and explored some feasibility properties on them, by proving some specific graph classes which admit
or do not admit solutions. The special coloring problems with distance constraints were modeled by distance
geometry being considered as the general problem. We have assigned the vertices on the real line, according to
the distances between adjacent vertices. Beyond that, we have described feasibility conditions for some classes
of graphs.

We employed constraint and integer programming formulations, which were implemented using computational
OR tools, and applied them to instances from the literature in order to verify which mathematical modeling tool
is best for these distance coloring models. Since the constraints from the problems are naturally transported
to constraint programming, its implementation reaches the optimal solution much faster than the integer pro-
gramming one for BCP instances. However, for BMCP, due to needing the expansion of color demands into
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additional variables, constraint programming becomes slower than integer programming, which does not need
such expansion.

Ongoing and future works include improving the CP formulation by domain reduction and more specific
constraints, and also use hybrid methods, combining both CP and IP, as well as heuristics, in order to solve
the distance coloring models faster. The study of the problems posed to specific classes of graphs, in order to
establish the characterization of feasibility conditions for them, is subject of the research in progress.
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