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AN ILS-BASED HEURISTIC APPLIED TO THE CAR RENTER SALESMAN
PROBLEM

SAvio S. Diast*, Lumpi G. SIMONETTI! AND LUIZ SATORU OCHI?

Abstract. The present paper tackles the Car Renter Salesman Problem (CaRS), which is a Traveling
Salesman Problem variant. In CaRS, the goal is to travel through a set of cities using rented vehicles
at minimum cost. The main aim of the current problem is to establish an optimal route using rented
vehicles of different types to each trip. Since CaRS is AP-Hard, we herein present a heuristic approach
to tackle it. The approach is based on a Multi-Start Iterated Local Search metaheuristic, where the
local search step is based on the Random Variable Neighborhood Descent methodology. An Integer
Linear Programming Formulation based on a Quadratic Formulation from literature is also proposed
in the current study. Computational results for the proposed heuristic method in euclidean instances
outperform current state-of-the-art results. The proposed formulation also has stronger bounds and
relaxation when compared to others from literature.
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1. INTRODUCTION

A broadly studied problem in the Combinatorial Optimization field is the Traveling Salesman Problem (TSP).
This ANP-Hard problem focus on finding a Hamiltonian cycle at minimum cost in an edge-weighted graph [7].
The TSP suits several real-world situations, and it triggers significant interest in its variants and in the problem
itself. Some recent TSP variants introduce the possibility of several salesmen to cover all vertices, known as
Multiple TSP [1]. Others introduce optional vertices, known as hotels, in which the salesman may start or finish
a trip in order to satisfy a trip length constraint, such as the TSP with Hotel Selection [27]. For a more general
survey on TSP and its variants, see Ilavarasi and Joseph [14].

A frequently studied area in recent Combinatorial Optimization literature is the car rental business, due to
its significant growth in the last few years [8,23]. Most of this literature concentrates on the companies’ side,
aiming: profit maximization [25]; vehicle fleet planning [8,13,15,20]; or vehicle demand forecast [5]. However,
the consumer side has been less prioritized. Thus, a recently assessed TSP variant regarding this matter is the
Car Renter Salesman Problem (CaRS) [10].
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The CaRS concerns tourists who are willing to visit some places (or cities) at minimum cost. Such cost
depends on the type of rented vehicle and some extra fees. CaRS was initially proposed as a classical TSP
generalization, having applications on tourism, transport, and manufacturing fields, modeling critical situations
in the vehicle renting department for tourism, and also on flexible manufacturing [9].

Initially described as a tourism-driven problem, CaRS has its application drawn directly from the Car Rental
Industry. Albeit, this is an oversimplified scope for this problem, as CaRS suits in public transportation and
manufacture processes. In public transportation, the vehicles symbolize different options of transportation, e.g.,
subways, buses, trains, airlines. While in manufacturing processes, different machines can perform equivalent
tasks but with different performances and at different costs, depending on some criteria. CaRS also suits in
Multilayer Circuits design, as specific robots with different setup costs better assemble some components. Hence,
in this paper, we consider the nomenclature and definitions of the problem as firstly proposed in the literature,
i.€., in a tourism-driven outlook.

In CaRS, the renter (or tourist) must travel through a set of places or cities using a vehicle. There is a set of
vehicle types available, and the tourist can choose any car for any trip. We herein understand “trip” as a fraction
of the Hamiltonian Cycle traveled using the same vehicle type. Thus, all trips together lead to a solution. Notice
that, by definition, intersections between different trips are not allowed. Accordingly, many variants may emerge
by taking some constraints into account: vehicle type availability, places to return a vehicle type, number of
uses for a vehicle type, and a version wherein the vehicle return fee is a time function.

Another way of seeing CaRS is comparing it with the Clustered TSP [2], where the fundamental difference
between the two problems is that in the Clustered TSP, the total number of used vehicles is given, represented
by the clusters. Thus, vertices in a cluster match vertices for a vehicle to cover. One could also compare CaRS
with the Multiple TSP, where the return fee could account for the weight of returning to the depot vertex. Also
note that, in the Multiple TSP, every vehicle has a set starting point, and the number of vehicles used is a
problem constant. The Colorful TSP [28] also shares similarities with CaRS, contrasting that edges have only
one possible vehicle or transport company (color), the goal is to minimize the number of colors, and there is no
continuity guarantee in the colors of incident edges.

Since CaRS is a generalization of the TSP, where one must choose the set of optimal vehicles to cover edges
in the Hamiltonian cycle, its optimization version is also N'P-Hard [10]. Thus, the task of solving CaRS is
non-trivial, since there is no known algorithm able to find optimal solutions in polynomial time for such class
of problems. Therefore, as exact approaches require a high computational effort to solve this problem, making
them prohibitive in most cases, the use of heuristics stands as an alternative. In that scenario, metaheuristics
attempt to solve the problem, often leading to high-quality solutions in a shorter computational time.

There are some heuristics available in the literature to deal with CaRS. A GRASP (Greedy Randomized Adap-
tive Search Procedure) using VND (Variable Neighborhood Descent) as a local search method was presented
along with a Memetic Algorithm by Goldbarg et al. [10] to deal with euclidean and non-euclidean instances. The
Transgenetic Algorithm [11] is a metaheuristic inspired by the mutualistic intracellular endosymbiotic evolution.
Tt is the state-of-the-art of the euclidean instances concerning this problem. More recently, da Silva and Ochi [3]
proposed an Evolutionary Algorithm (EA) and a Mixed Integer Linear formulation. However, this formulation
worked only as a local search mechanism within the EA algorithm, leading to a hybrid heuristic, which is the
current state-of-the-art of the non-euclidean instances.

Goldbarg et al. [11] also proposed a Quadratic Formulation, which optimally solved instances up to 16 vertices
and two vehicles. The authors have reported the formulation as linearized, but with no linearization method
present in the paper. Also, the formulation lacks crucial constraints for truly modeling the problem. Hence,
this paper will further explore this formulation as a way to fix it. More recently, Goldbarg et al. [12] presented
an exact study with three new formulations for CaRS. In this study, the first formulation proposed intends
to correct the one presented by Goldbarg et al. [11]. The second one wrongly formulates CaRS, enforcing any
feasible solution to use at least two vehicles, while the last assumes that there are only non-negative renting
coefficients. This paper presents results for those formulations by testing them in a set of 50 instances. da Silva
Menezes et al. [4] presented a CaRS variant with prize collection along with a Memetic Algorithm.



CAR RENTER SALESMAN PROBLEM

S1727

Vehicle 1 @ Vehicle 2 Cost = 117 @Y
e 7 .
S \ 13\ 22 / .]3\
/7 1 \ ~ / ~
/ [} \ 4
s \ /
;o \ @ ~ o @
v 1 \ ///
v ! o i) v
: N
/// llv //v\))\/ i Q 3/ “\;‘ /// i
/ A P SN > 4 /
S AT SN R O\ R / 5
Pl . ¥ :
L~ 4 N I
1 [T L | 1 1 |
18 K723 2 2 "o
---23705s 15 @—15
a b. c
FIGURE 1. Operational costs and feasible solution for an instance with n = 5 and |C| = 2.

(a) Vehicle 1. (b) Vehicle 2. (¢) Cost = 117.

The following section of this paper presents a formal definition of the problem at hand (Sect. 2). An Integer
Linear Formulation study is described in Section 3, followed in Section 4, by the heuristic methods developed.
Section 5 presents computational results for both approaches, along with comparisons to the current state-of-
the-art. Finally, the conclusion and some insights about future research are available in Section 6.

2. PROBLEM DESCRIPTION

Given a graph G = (V, E), where V (|V| = n) is a set of vertices representing cities and F is the set of edges
between any pair of vertices in V. A set of different vehicle types C' is available in each city. For any ¢ € C' and
any ¢,j € V:

— Dj;: operational cost for traveling from ¢ to j using vehicle type ¢, or weight of edge (4,4) using ¢;
— I return fee to be paid if a car type c is rented in vertex i and returned in vertex j.

The goal is to find a Hamiltonian cycle at minimum cost by taking into account the operational costs and
return fees. The tourist should start and finish the cycle in the initial vertex. Thus, it is mandatory renting
the first vehicle in v; and returning the last one in v;. Outside those restricted cases, the tourist may rent and
return vehicles at any vertex, any moment, in its route.

The problem considered in this paper complied with the following features and constraints:

— A vehicle can be rented and returned in any vertex;

— A vehicle type can be rented once at most, i.e., if a vehicle of type ¢ returns, that vehicle should not be
rented again. Note that, in this problem, there is only one vehicle per type. So, in this text, both “vehicle”
or “vehicle type” descriptions are alike;

— Return fees do not rely on graph topology or any other constraints;

— Operational costs are symmetric, i.e., Df; = Dj;. However, there is no guarantee of whether Fj; = F7;.

Figure 1 shows an example of an instance as an edge-weighted graph with five vertices and two vehicles.
Where, Figures 1la and 1b show the traveling operational costs between each pair of vertices for vehicles 1 and
2, respectively. Also, Figure lc shows a feasible solution with its respective cost. The returns fees associated
with every vehicle and their possible renting/returning place are in Table 1.

In the solution presented in Figure 1c, a vehicle of type 2 covers the first trip starting at vertex 1 (renting),
traveling through vertex 2, and finishing in vertex 5 (returning). This trip contributes 35 to the total cost of
the solution. The second trip, using vehicle 1, starts where the last trip ended (vertex 5), travels across vertices
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TABLE 1. Return fees for instance with n =5 e |C] = 2.

Vehicle 1 Vehicle 2
Vertices U1 V2 V3 V4 Vs U1 V2 V3 Va4 Vs
VU1 26 26 28 28 30 11 14 10 12 10
V2 24 24 26 26 28 26 20 28 30 30
V3 30 30 30 32 34 14 20 24 18 18
V4 30 30 32 30 34 20 26 22 15 24
Vs 30 36 38 38 30 20 26 22 24 30

4 and 3, and finishes at vertex 1. This trip sums 52 of operational costs plus 30 of return fee, totaling 117 of
total solution cost.

It is essential to notice that a feasible solution from classical TSP using any available vehicles is also a feasible
solution for CaRS. That happens because one may choose a single vehicle to cover the whole route, and thus
making a single trip. For instance, the same route presented in Figure 1c. would cost 93 + 26 = 119 if traveled
using vehicle 1, and 107 + 11 = 118 if traveled using vehicle 2. Also, if one wishes to produce a solution renting
a vehicle type multiple times, thus virtually making multiple vehicles of a type, it suffices to copy its coefficients
as a new vehicle in instance data.

3. INTEGER LINEAR PROGRAMMING FORMULATION

As stated before, the Integer Quadratic Programming Formulation applied to CaRS was proposed by Goldbarg
et al. [11]. This formulation, referred herein as (P1), has a non-linear objective function and incorrectly models
the problem. Those problems were partially assessed in Goldbarg et al. [12], while this section explores these
details and propose some solutions.

In the following formulation, variable x{,; takes value 1 if ¢ is visited in k-th order by vehicle ¢, and 0 otherwise.
y; takes value 1 if ¢ is rented in vertex i, and 0 otherwise. Finally, 2} takes value 1 if ¢ is returned in vertex j,
0 otherwise.

The original formulation (P1) is non-linear, which makes the application of exact algorithms for integer linear
programming impractical. The authors did not report the linearization method implemented. Hence, we propose
a linearization in order to avoid this problem. Consider two new sets of variables for this formulation: w;, takes
value 1 if vehicle c is rented in ¢ and returned in j, i.e., yjzj = 1, 0 otherwise; and hj;, takes value 1 if the
edge (i,7) is used by vehicle ¢, i.e., 22;11 5D veo xf;cﬂ)j =1, 0 otherwise. In the new formulation, named
as (P2), a vehicle does not visit its returning vertex, as the next vehicle in the route visit this vertex since it is
its renting vertex.

(P2)min Y [ > DGAG+ YD Fhuwi+ ) Fhuws; (3.1)

ceC \(5,j)€E ieV\{1} jeV\{i} Jev

Subject to: Z inz =1, Vie V\ {1} (3.2)

ceC k=2

Z Z xh; =1, VE=2,...,n (3.3)

ceCiev\{1}

D afi =1 (3.4)

ceC

dyi=1 (3.5)

ceC
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Vie V\ {1} (3.7)
Vee C,Vie V\ {1} (3.8)
Vee O (3.9)
Vee C,Vie V\ {1} (3.10)
Vee C,VieV\ {1} (3.11)
Vie V\ {1} (3.12)

Ve e C,Vie V,Vj € V\{1},

i#Vk=1,...,n—1 (3.13)

Vi,jEV,i#j (3.14)
Vee C,\VieV (3.15)
Vee C\Vj eV (3.16)
Vee O (3.17)
Vee C,ve e C\ {c} (3.18)
Vee C,VieV\ {1} (3.19)
Vee C,Vie V\ {1} (3.20)
VeeC (3.21)
VeeC (3.22)

Vee Ok =1,...,n,

VieV (3.23)
Yee O,VieV (3.24)
Vee C\VjeV (3.25)
Vee C\Vi,j €V (3.26)
Ve € C,Vi,j € V,i # j. (3.27)
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Notice that when (P1) was firstly proposed, v1 was the last visited vertex, i.e., > x5, = 1. Here, vy is
the first visited vertex, in order to make the formulation simpler. Also, note that w;; = 0,Vi # 1.

The objective function (3.1) in the formulation above aims to minimize the sum of operational costs and
return fees of all used vehicles. Now, the proposed sets of variables prevent variable multiplication from the
original objective function in (P1). Constraints (3.2) assure that each vertex is visited in a different order
and by one vehicle only. Constraints (3.3) follow a generic visitation order for every vertex, except for the
initial one set in constraint (3.4). Constraints (3.5) and (3.6) make sure of the rental and returning of only one
vehicle in origin. Constraints (3.7) guarantee that, if one returns a vehicle in any vertex other than the origin,
this vertex must be renting point of a new vehicle. Constraints (3.8) guarantee an edge leaving any vertex
should it be visited by vehicle ¢, with constraints (3.9) and (3.10) being special cases for the initial vertex. As
constraints (3.11) and (3.12) ensure an edge arriving at any visited vertex, should it not be rented there by
vehicle ¢. In constraints (3.13), vehicle ¢ can cover an edge only if j is visited immediately after 4, with ¢ also
visiting 4. Constraints (3.14) ensure that an edge can at most be covered by a vehicle once. Then, constraints
(3.15) and (3.16) presents the links among variables y5, 25, and wg;. Constraints (3.17) assure that one vehicle,
at most, can be rented in every vertex. Constraints (3.18) show that, if there is no other vehicle rented, a vehicle
can be rented and returned in v;. Constraints (3.19) state that a vehicle does not visit the returning vertex
itself, though the next vehicle in the route does. Constraints (3.20) and (3.21) assure that if a vehicle visits a
vertex, it is renting place eligible. At last, constraints (3.22) state that, if a vehicle returns in vy, that vehicle
alone visit the last vertex in the cycle. Constraints (3.23) to (3.27) are variables integrality constraints.

Constraints (3.17) to (3.22) were presented herein and added to (P2) as a way to cover the missing cases
from the original formulation (P1) since, without them, the formulation would not generate a feasible search
space and a proper optimal solution. Some examples of constraint absent from (P1) are link among variables
Tg,;, Y5, and 27; prevention of a vehicle from being rented and returned in the same vertex other than in vy;
multiple rents of a vehicle type, and; rent of multiple vehicles in the same vertex.

4. PROPOSED ALGORITHM

We propose a heuristic method since there is no knowledge of polynomial-time algorithms for optimally solve
the problem at hand. Also, exact methods demand a significantly higher computational cost as instances grow
in size, as can be seen in Section 5. In order to tackle CaRS, Algorithm 1 describes a heuristic based on Iterated
Local Search (ILS) [17] using a Multi-Start approach (MILS). The MILS algorithms have been successfully used
in the literature to tackle several TSP variants [24,26].

Algorithm 1: MILS(input, msSmax, #Smax, @, seed).

1 begin
2 §*—0; f(s7) — o0
3 for i< 1,...,MSmax do
4 s « build_sol(input, «, seed)
5 for j «— 1,...,4lSmax do
6 s’ « outer RVND(s’, seed)
7 if f(s') < f(s*) then
8 | st~
9 end
10 s’ « perturbation(s’, seed)
11 end
12 end
13 Return s*

end

-
'




CAR RENTER SALESMAN PROBLEM S1731

Initially, the algorithm generates a solution using a greedy randomized criterion for each one of the mspyax
iterations based on input data from the instance (line 4). The built solution is then refined through the ilsyax
applications of a local search method (line 6) and perturbed (line 10) to escape from a local optimum. The
acceptance criterion is exclusively elitist in lines 7-9, 7.e., a solution generated according to the local search
method will only be accepted if it is better than the current optimum.

The following subsections explore in full detail the solution representation, construction, local search, and
perturbation methods.

4.1. Solution representation
We define two data structures in order to represent a solution properly:

— route: a n-dimensional array with the vertices visitation order, such that routel[i] € V,Vi=10,...,n —1;

— v_pos: an array of dimension 3 x |C/|, with the following information about every trip: vertex position inside
route to rent a vehicle; vertex position inside route to return a vehicle; and the vehicle type. This array
also keeps vehicles’ usage order. The remaining positions are nullified when the number of trips is smaller
than the number of vehicles available.

Thus, the solution presented in Figure 1 is represented as route = [1,2,5,4, 3] and v_pos = [(0, 2,2), (2,5, 1)].
Notice that the returning point in the last trip is an invalid position in the route array. It happens because the
last vehicle returns to the first vertex in order to close the cycle.

4.2. Constructive procedure

Algorithm 2 shows the initial solution construction step used in the present paper. This algorithm presents
a greedy randomized behavior, like the one proposed by Feo and Resende [6]. The idea of such a method is to
build a diversified and well-distributed route in vertices using all vehicle types available. Thus, the local search
will have a vast search space for the achievement of better solutions.

Firstly, the algorithm starts the Candidate List (CL) using all vertices except for the vy in the graph, and it
starts the set of empty trips using all vehicles available (lines 2 and 3). The algorithm assigns an equal number
of vertices to every vehicle (lines 4 and 5), except when |—g‘ is not integer; in this case, the exceeding vertices
go to the last vehicle. Then, a trip is built for every vehicle, renting in vy first.

The algorithm chooses a vehicle randomly from the set of empty trips, with the trip set to start from its
renting vertex (lines 8-10). A Restrict Candidate List (RCL) is created in the next step (lines 11-14) using all
elements in CL satisfying equation (4.1), in order to randomly choose a vertex to return the current vehicle,
and rent a new one. Notice that, if there is only one vehicle left, its returning place shall be v; due to problem
definition. The r; is the returning vertex of vehicle ¢ in the current trip s¢, 7o is the renting vertex of vehicle ¢
in the current trip, and « is a parameter outlining the minimum requirement to a vertex r become a possible
returning place for ¢ in equation (4.1).

CL jecr: "™ jecLy ™

RCL = {r cCL|F;, < jnelin (Fr,;) +a|max(Fy ;) — min (F} )] } . (4.1)

Chosen the renting and returning vertices of the vehicle, the trip is then individually set. For that, the

algorithm assesses every vertex in the CL through its insertion in every position of the trip. Such assessment is

conducted through equation (4.2), based on Penna et al. [22], to avoid late insertion of vertices located away
from the renting and returning places of the current vehicle.

zj — ’y(D%k + Dz,,_l) if insertion in the beginning
glc,k,ry,me) = D§ — ’Y(Df;Qk + Dzrl) if insertion in the end . (4.2)

(ka —+ D]ccj — ij) — ’y(Dﬁzk + Dzrl) if insertion in the middle
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Algorithm 2: build_sol(input, «, seed).

1 begin
2 Initialize CL
3 Let S = {s',...,5/°} be a set of empty trips
4 fori—1,...,|C|=1do wy — |5
5 | wger < [l
6 v S — 0
7 while S # () do
8 Select s¢ € S at random
9 S — S —{s%
10 ¢ —s°U{r}
11 if S =0 then RCL « {vi}
12 else Create RCL
13 T < 11
14 r1 <« random element from RCL
15 CL «— CL —{r1}
16 while CL # 0 and |s°| < wse do
17 k' «— argmin{g(c, k,71,72)}
kECL
18 s¢ — sCU{k'}
19 CL « CL —{k'}
20 end
21 S — SuUs”
22 end
23 Return S
24 end

Equation (4.2) evaluates possible positions to insert vertex k, where ¢ and j refer to the previous and following
vertices referring to the position of vertex k, respectively. Parameter v weights the distance influence of vertex
k on the renting and returning vertices if inserted in the current trip, and takes a value at random from set
{0.00,0.05,0.10,...,1.65,1.70}. Previous experiments in Subramanian and Battarra [26] defined this set.

A vertex k' € CL representing the lowest function value g(c, k,r1,72) will be added to its corresponding
position in trip s¢ and removed from CL. Thus, recur on this step until s¢ reached its maximum number of
vertices (lines 16-20), then adding it to the end of route S (line 21). Finally, with the trips of all vehicles, the
algorithm returns S as a solution.

4.3. Local search

For the local search methodology, we propose a random Variable Neighborhood Descent. It is a classical
VND variation proposed by Mladenovié and Hansen [18]. In this methodology, the order of application of the
neighborhoods is random rather than manual, as in classical VND. In the literature, Penna et al. [22] used a
similar approach.

The neighborhood structures are divided into two groups in the present paper, depending on their application
goal, namely outer-trip and inner-trip. The outer-trip neighborhoods make moves in the reference solution s by
taking into account trips performed by different vehicles, whereas the inner-trip neighborhoods only account for
moves on the same trip. The following subsections will further detail the implemented neighborhoods.

Algorithm 3 shows the methodology that sets the application order of the outer-trip neighborhoods randomly
(line 2). With NUM_OUT_NEIGH being the amount of outer-trip neighborhoods, in every iteration the randomly
chosen i-th neighborhood is applied to the reference solution (line 5). If the reference solution improves using the
current neighborhood, then an inner-trip RVND will be applied over the recently found best solution leading
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to a neighborhood count reset (lines 6-9). When the algorithm finds no best solution through the current
neighborhood, the next randomly set outer-trip neighborhood is applied (line 10). The execution finishes and
leads to the best solution found so far when all outer-trip neighborhoods are applied, finding no improvement.

Algorithm 3: outer RVND(s, seed).

1 begin
2 OuterNeighborhoodList < random_start(seed)
3 1—0
4 while ¢ < NUM_OUT_NEIGH do
5 s' « apply_neigh(OuterNeighborhoodList[i], s)
6 if f(s") < f(s) then
7 s« s
8 s « inner_ RVND(s, seed)
9 10
10 else i —i+1
11 end
12 Return s
13 end

If Algorithm 3 improves the reference solution in outer-trip fashion, it calls Algorithm 4 in order to attempt
to improve the reference solution for each trip individually. Algorithm 4 has a similar working to that of

Algorithm 3, but using only inner-trip neighborhoods and its amount (NUM_IN_NEIGH). Also, returning the best
neighbor.

Algorithm 4: inner_ RVND(s, seed).

1 begin
2 InnerNeighborhoodList «— random_start(seed)
3 1+ 0
4 while ¢ < NUM_IN_NEIGH do
5 s’ « apply_neigh(InnerNeighborhoodList|i], s)
6 if f(s") < f(s) then
7 s «— s
8 10
9 else 1 —i+1
10 end
11 Return s
12 end

4.3.1. Outer-trip neighborhoods

We present in this paper nine outer-trip neighborhoods. Of those, seven are a A-interchange adaptation. The
A-interchange schemes are classical Vehicle Routing Problem (VRP) [19] neighborhood structures. In this paper,
we propose two new neighborhoods as an attempt to change the size of the trips and vehicle usage.

The neighborhood structures use exhaustive search, taking all possible combinations (or neighbors) into
account, in order to obtain the best solution, i.e., the best improvement strategy. Neighborhoods based on the
A-interchanges do not consider the renting or returning vertices for modifications. Let s* and s¥ be trips such

that s* #£ s¥ since the following neighborhoods apply only to outer-trips. These neighborhoods consider all pairs
of trips. Thus, we define the neighborhood structures as follow:

— Swap(1,1): swaps one vertex v; € s with another vertex v; € s¥. Thus, applying the move, v; € s¥ and
v; € s*.
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Initial Solutmn@(”” Swap(2,2) @ o Shift(1) @(””’

FIGURE 2. Outer-trip neighborhoods. (a) Initial solution. (b) Swap(1,1). (c¢) Swap(2,2).
(d) swap(2,1). (e) Shift(1). (f) Shift(2). (g) Exchange. (h) E&C.

— Swap(2,2): swaps two adjacent vertices v;,v;41 € s* with two other adjacent vertices v;,v;41 € sY. Thus,
applying the moves, v;, v;11 € s¥ and v;,vj41 € s*.

— Swap (3, 3):swapsthreeadjacent verticesv;, viy1, viy2 € s” withthreeotheradjacent verticesv;, vjy1,vj42 € sY.
Thus, applying the moves, v;, Vi1, Vi42 € s¥ and v, v11, V42 € s7.

— Swap(2,1): swaps two adjacent vertices v;,v;4+1 € s” with one vertex v; € sY. Thus, applying the moves,
V3, Vi1 € ¥ and v; € s”.

— Shift(1): shifts one vertex v; € s* to trip s¥. All positions in the trip are considered to insert v; € sY,
except for the renting and/or returning places.

— Shift(2): shifts two adjacent vertices v;,v;4+1 € s* to trip s¥. All positions in the trip are considered to
insert v;, v;41 € sY, except for the renting and/or returning places.

— Shift(3): shifts three adjacent vertices v;, v;i+1,vir2 € $* to trip s¥. All positions in the trip are considered
to insert v, viy1, Vit2 € sY, except for the renting and/or returning places.

— Vehicle Exchange: swaps trips between two vehicles. Let ¢; be the vehicle performing trip s* and c; per-
forming trip s¥. Thus, by applying the move, vehicle ¢; will perform trip s¥, and vehicle ¢; will perform
trip s*. Notice that, when this neighborhood applies some moves, one must reevaluate the whole solution,
because of the vehicles renting and returning vertices change, as well as edge weights in each trip.

— Extend & Contract (E&C): modifies the renting and returning places of adjacent trips. Evaluation should
occur to the moves in order to address every vertex changed in the trip. The idea is to extend the trip of
one vehicle and contract the trip of another.

Figure 2 holds examples of some outer-trip neighborhoods with Figure 2a presenting an initial solution for
reference in every neighborhood move applied. Also, Figure 3 displays the changes made in the data structures
used to represent the solution after every neighborhood move. In Figure 2b, trips 1 and 2 swaps vertices 4
and 7 through Swap(1,1) while in Figure 2c, Swap(2,2) swaps vertices 6 and 4 by vertices 7 and 8 of their
trips. Figure 2d performs a Swap(2,1) example where vertices 10 and 6 are swapped by vertex 7. Shift (1)
and Shift(2) examples are in Figures 2e and 2f, where vertex 4 is shifted to a position after vertex 5 in trip 2,
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FIGURE 3. Solution representation changes for outer-trip neighborhoods. (a) Initial.
(b) Swap(1,1). (c) Swap(2,2). (d) Swap(2,1). (e) Shift(1). (f) Shift(2). (g) Exchange.
(h) E&C.

in first example, and vertices 6 and 4 is shifted to a position after vertex 5 in trip 2. Figure 2g shows an example
of the Vehicle Exchange neighborhood and Figure 2h presents an Extend & Contract (E&C) instance. In this
case, the first trip extends from vertex 5 (vehicle returning place) to vertex 8. Thus, the vehicle performing trip
1 will be rented at vertex 1 and returned at vertex 8, whereas the vehicle of trip 2 will be rented at vertex 8
and returned at vertex 1.

It is crucial emphasizing that exchanging vertices between trips guides the search for a better overall route, in
edge cost, as this favors vehicles with better costs for some portion of the graph. In that direction, neighborhoods
that exchange vehicle types or their renting/returning places better contribute to the setup costs. Also, due to
the exchanging nature of these neighborhoods, they are prone to perform better when the triangle inequality
holds, i.e., for euclidean instances. While one may find that difficult to achieve in non-euclidean instances, as
seen in experimental results.

The size of neighborhoods based on M-interchanges is O(n?). Neighborhood Vehicle Exchange has size
O(|C|?) and neighborhood E&C, O(|C|). Regarding the neighborhoods herein proposed, which handle trip
changes directly, a computational effort of O(n) stands due to the need for reevaluation of a non-constant
portion of the solution. On the other hand, in the other neighborhoods, this reevaluation process may be
conducted in O(1).

4.3.2. Inner-trip neighborhoods

We propose eight inner-trip neighborhoods. They are all based on the classical A-interchanges proposed for
the VRP. The best improvement strategy is also employed to search for better solutions. Excepting for Reverse,
all other neighborhoods do not consider the renting and returning vertices. Thus:

— Swap(1,1), Swap(2,2), Swap(3,3), Shift(1), Shift(2), Shift(3): similar to those described in the
previous section, however, the moves are performed in the vertices of the same trips, only, i.e., s* = sY.

— 2-0pt: deletes two non-adjacent edges and adds another two edges to the selected trip in order to make a
new route. That may change orientation on a portion of the trip since some vertices will be visited early but
at no solution cost whatsoever.

— Reverse: reverses the trip of a vehicle ¢, with the trip now starting at its previous returning place and
finishing at its previous renting place. This neighborhood is valid only if F}; > F};, because reversing the

orientation in vehicle trips itself does not affect the solution cost, since they are symmetric. Thus, no other

modification, other than its start and finish places, is made on the trip. Notice that this neighborhood is
only applied if |C| > 2 because changing the renting place from the first trip and the returning place from
the last trip would result in an infeasible solution.

Figure 4 presents examples of an initial solution (Fig. 4a), as well as moves made by neighborhoods 2-0pt
(Fig. 4b) and Reverse (Fig. 4c). Moreover, Figure 5 illustrates the changes made in the data structures used to
represent the solution after every move. In Figure 4b, trip 1 has edges (6,4) and (5, 7) removed with new edges
(6,5) and (4,7) added to it. While in Figure 4c, trip 2 has a reverse move performed, where vertex 8 is the new
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FIGURE 4. Inner-trip neighborhoods. (a) Initial solution. (b) 2-opt. (c) Reverse.
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FIGURE 5. Solution representation changes for inner-trip neighborhoods and perturbation.

Vehicle Injection :

FIGURE 6. Vehicle injection perturbation. (a) Initial solution. (b) Vehicle Injection.

renting place of the vehicle. Size of neighborhoods Swap, Shift, and 2-Opt is O(n?), with a constant time for
solution reevaluation. As for neighborhood Reverse, it has a size of O(C'), with O(n) for solution reevaluation.

4.4. Perturbation

We adapt three outer-trip neighborhood structures as perturbation mechanisms: Shift (1), Swap(1,1), and
Vehicle Exchange. The vertices and trips (or vehicles) in these structures are randomly selected, in opposition
to the improvement guiding local search. Thus, the move is unpredictably applied and, in most cases, getting
worse solutions, but allowing escape from local optima.
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We also propose a new perturbation mechanism called Vehicle Injection. This perturbation starts by
selecting two vehicles. Let s¥ = {vk, V(rt1), Vkt2)s -+ V(ktp)} € S be the trip covered by the vehicle z in a
feasible solution S, where v; and v, is the renting and returning place, respectively; also let y be a vehicle
available in the instance that is not performing any trip in solution S, thus s¥ = @. The idea is to build trip sY,
inserting vehicle y into the solution, using a portion of vertices from s”. For that, select at random a starting
point to sY, either vy or v(j4p) from s*, suppose vi. Then, randomly assign the number of vertices in s* to be
covered by sY, suppose m. Thus, after the perturbation, s7,sY € S, where s* = {V(kym)s V(ktm+1)s - -+ > Viotp) }
and s¥ = {Vk, V(k41), - - - V(k+m) } - Figure 6 shows the injection of a new vehicle on the first trip. The injected trip
starts in the returning point (vertex 7), covering three vertices from the first trip. Among the four perturbation
herein presented, a single one is randomly chosen and applied in every iteration. See Figure 5 for changes
reference in solution representation.

5. COMPUTATIONAL RESULTS

The heuristic tests happened in an architecture Intel i7-870 2.93 GHz with 8 GB RAM, while the exact
approaches occurred in the same architecture with 16 GB RAM. The operating system used was Ubuntu 14.04
64-bit. All approaches are coded in C++ language and compiled with g+4 4.8.2. All tests performed in a single
thread. The integer linear programming model ran using the IBM ILOG CPLEX 12.6.1 framework as a solver
platform. For tests, CPLEX standard preprocessing, heuristics, and cuts parameters were disabled.

A preliminary test using the irace package [16] with 20 arbitrarily-chosen instances helps define the MILS pa-
rameters. These training instances, taken from the CaRSlib (http://www.dimap.ufrn.br/lae/en/projects/
CaRS.php), vary in size and are separated from those used for testing and comparisons. It was possible running
500 experiments in the irace configuration. The Restricted Candidate List outlining parameter o was set to
take values in interval « € [0.01,0.99], the Multi-Start iterations limit parameter msmax € {5,6,...,29,30} and
the ILS iterations limit parameter ilsmax € {20,21,...,69,70}. The returned values are a = 0.47, mspax = 28
and #lsyax = 61.

Test with the methods proposed also occurred in another set of instances, proposed by Goldbarg et al. [11]
and used in tests by da Silva and Ochi [3] and Goldbarg et al. [12]. Those instances were provided through e-mail
by authors. Explanation of instances configuration and generation methods is in the first paper. The instances
for this problem follow a euclidean and a non-euclidean pattern in order to define distances between vertices.
Consider the euclidean set to assess the heuristic method proposed, in comparison to current state-of-the-art,
since the EA algorithm proposed by da Silva and Ochi [3] did not lead to good results when tested in this set.

In order to check the efficiency of the neighborhoods presented in Section 4.3, Table 2 shows the results of a
study. The tests carried in this study used a subset of 20 instances from the ones in the literature. This study
presents two sets of experiments. One uses each neighborhood structure individually as the local search for the
heuristic, starting from the same initial solution. The other set of experiments runs the full RVND, as described
in the previous section, and enumerates pieces of information about every neighborhood when used.

Associated to each neighborhood in Table 2, the columns in Single mean: Sol, the average solution obtained
on those 20 instances executing the neighborhood as single local search method; T (s), the average time needed
to reach the solution using the neighborhood as single local search; Avg (%), the average of proportional im-
provement applying the neighborhood to a given reference solution during execution as single local search. For
the columns RVND: #Usage, the number of times in which the RVND uses the referred neighborhood for im-
proving a reference solution inside RVND; Avg (%), the average of marginal improvement when applying the
neighborhood to a reference solution inside RVND as a whole, i.e., given the number of times it was called
inside RVND, how much (on average) does the neighborhood improved the reference solution.

Table 2 shows that all neighborhoods have a similar average computational time, when executed standalone,
except for the neighborhoods Exchange and E&C. This behavior is explained due to these neighborhoods’ nature,
since they modify a more meaningful portion of the route, thus requiring a more considerable effort in recalculat-
ing the solution cost. The extra effort rewards with an average improvement higher than other neighborhoods.
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TABLE 2. Neighborhoods’ efficiency study.

Neighborhood Single RVND
Sol T(s) Avg(%) #Usage Avg(%)

Outer-trip

Swap(1,1) 6453.55 1.52 9.69 2665 3.18
Swap(2,2) 6417.15 2.80 10.29 862 5.32
Swap(2,1) 6392.60 1.45 10.46 2283 4.11
Swap(3,3) 6474.95 1.56 11.34 516 7.75
Shift (1) 5942.80 1.34 8.45 8052 1.73
Shift(2) 6256.30 2.14 8.73 3230 2.87
Shift(3) 6151.00 1.56 9.32 1994  4.18
Exchange 6760.75 3.01 12.43 139  36.88
E&C 6661.95 7.18  11.37 725 6.59
Inner-trip

Swap(1,1) 6763.90 1.93 2.73 11889 0.68
Swap(2,2) 6750.05 1.11 2.47 4552 0.95
Swap(3,3) 6889.00 1.53 2.15 3572 1.19
2-opt 6666.80 1.03 2.29 21859 0.89
Reverse 6959.30 2.44 0.98 277 1.08
Shift (1) 6639.55 1.36 3.08 12321 0.72
Shift(2) 6695.65 1.24 2.71 11764  0.91
Shift(3) 6756.30 1.38 2.64 8038 1.07

It is worth noticing the general inefficiency of Inner-trip neighborhoods, as a single, in achieving a good average
solution when compared to the Outer-trip’s. However, these neighborhoods are more used than outer-trips due
to their definition, limiting application to each trip separately.

Furthermore, neighborhood Exchange has the best average improvement, both as single and in full RVND
setting. Although, this neighborhood is the least used because of the rarity of cases in which it applies. Also,
note it has the worse solution value when used as a single local search due to its nature that does not allow
much neighborhood depth.

Table 3 shows the results obtained with the formulation proposed in the current paper for solving instances
with a small number of vertices. The goal is to prove optimality of some instances and show that results found
through MILS are of high quality and of shorter computational time than exact methods.

Instance information is in the column Instance of the tables in the current section. The name and number
of vertices are listed, respectively, in columns Name and n, while the number of vehicles in |C|. Columns
Reported (P1) present the results as reported by Goldbarg et al. [11], who used formulation (P1) (Tab. 3). Even
with some demonstrated missing constraints, the reported results are feasible, according to previous e-mail
contact with the authors regarding this subject. Those results reportedly used the GNU GLPK solver version
4.47 in a computer presenting architecture Intel i5 with 8 GB RAM, running an Ubuntu Linux 12.04 64-bit
operating system. Columns Formulation (P2) show results obtained through formulation (P1) after corrections
and linearization herein proposed. Columns MTZ [3] present results obtained running the formulation proposed
by da Silva and Ochi [3] as an exact approach in this paper since that formulation served only as a local search
procedure before. Finally, the columns MILS show heuristic results for the appropriate instances in a single
execution. Those columns show the best UB from each method, i.e., the best feasible solution found, and the
amount of time (in seconds) needed, T (s). The best upper bound or proved optimal of each instance is boldface
highlighted. The instances where the upper bound value contains an « symbol mean an execution terminated
by out of memory.
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TABLE 3. Results for small instances.

Instance Reported (P1)  Formulation (P2) MTZ [3] MILS

Name n [C] UB T(s) UB T(s) UB T(s) UB T(s)
Mauritanial0e 10 2 540 0.20 540 0.03 540 0.15 540 0.01
MauritanialOn 10 2 571  0.90 571 0.03 571 3.43 571 0.02
Colombialle 1 2 620 2.30 620 2.17 620 0.22 620 0.02
Colombialln 11 2 639 0.20 639 0.06 639  42.68 639 0.03
Angolal2e 12 2 719 2.50 719 1.70 719 0.58 719 0.02
Angolal2n 12 2 656 17.40 656 0.16 656 1074.56 656 0.02
Perul3e 13 2 672 1.00 672 0.12 672 0.34 672 0.03
Perul3n 13 2 693 17.40 693 0.10 693  305.31 693 0.03
Libial4e 14 2 730 13.50 730 0.10 730 2.58 730 0.03
Libial4n 14 2 760 247.90 760 0.12 760 27856.00 760 0.06
Congol5e 15 2 756 2.50 756 2.72 756 3.23 756 0.06
Congol5n 15 2 886 0.80 886 0.29 886 25867.79 886 0.04
Argentinal6e 16 2 955 45.90 955 67.53 955 16.13 955 0.08
Argentinal6n 16 2 894 176.50 894 2.08 897 52969.02 894 0.06
BrasilRJ14e 14 2 294  49.20 294 5.66 294 19.59 294 0.02
BrasilRJ14n 14 2 167 32.00 167 0.53 167  6716.38 167 0.03
BrasilRN16e 16 2 375 31.80 375 1.02 375 39.45 375 0.03
BrasilRN16n 16 2 188 1.30 188 0.73 188 83.08 188 0.09
BrasilPR25e 25 3 509  70000.00 508 24.45 508 5019.14 508 0.34
BrasilPR25n 25 3 227 70000.00 226 23.36 227  55188.31 226 141
BrasilAM26e 26 3 469  70000.00 467 2935.92 467  54406.41 467 0.08
BrasilAM26n 26 3 202 70000.00 202 2182.27 201*  47677.81 202 1.04
BrasilMG30e 30 4 547  70000.00 529 245.74 542 70000.00 529 0.88
BrasilMG30n 30 4 276 70000.00 275  70000.00 272%  62798.61 271 271
BrasilSP32e 32 4 656  70000.00 610  70000.00 841%  3352.53 588 1.64
BrasilSP32n 32 4 261  70000.00 254 5254.49 266 70000.00 254 2.81

Formulation (P2) was able to find all previously proved optimal solutions and to prove optimal of other
instances under significantly smaller computational effort. The MILS was able to reach all previously and newly
proved optimal solutions, as well as to propose new upper bounds to instances not yet optimally solved. Never-
theless, the exact methods start to struggle when the number of vehicle types rises, e.g., instance BrasilSP32e.
As can be seen in Table 3, even with the difference of architecture of (P1), our linearized formulation (P2)
has shown to be competitive and more robust than the others. When ran through an exact method, MTZ
formulation seems to be unstable and have memory issues, although able to find optimal solution for some
instances.

Following the recent results in the literature, Table 4 presents a comparison between (P2) and the two
best formulations presented by Goldbarg et al. [12]. Those formulations were also implemented in the same
environment as (P2) with CPLEX tuning parameters disabled, in order to check formulations’ strength. As
employed in Goldbarg et al. [12], this experiment set a time limit of 10000s. In this table, the column GAP
accounts for the relative difference between upper bound and lower bound found when the execution ended,
either by timeout, out of memory, or optimality criteria. Column LR accounts for the CPLEX linear relaxation
in the root node of the branch-and-bound tree. Note that this information may not be the pure linear relaxation
of the model itself since even with preprocessing and other CPLEX parameters turned off, the black box solver
may use unknown private information to boost its processes.

As seen in Table 4, (P2) still has good results for those new instances tested, especially when one compares
its linear relaxation with the UB. However, the formulations proposed by Goldbarg et al. [12] have better overall
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performances for instances with more number of vertices. Table 5 presents a broader study comparing (P2) and
formulation DFJ from Goldbarg et al. [12]. In this study, the MILS heuristic UB is given to the solver for each
formulation, comparing those formulations performance, and its gaps from LR. For Table 5, column: LB is the
best lower bound obtained when the execution ended; Heuristic presents the MILS heuristic upper bound given
to the formulation; LR (%) presents the gap from the linear relaxation in root node to the given UB; LR (s)
presents the time, in second, spent to solve the LR; Nodes presents the number of nodes of the branching tree.

The results presented in Table 5 shows how the linear relaxation of Formulation (P2) gives a better edge
to the branch and bound. An example of this is in non-euclidean instances, where the more considerable gap
between the LR and Heuristic UB was 8.82%. Thus, at the end of the time limit, it has a smaller gap between
the bounds than those from Formulation DFJ, being able to solve five instances in the root node optimally.
The number of nodes generated in the branching tree is also significantly shorter in Formulation (P2), which
in the case of larger instances, leads to an out-of-memory problem for Formulation DFJ. Finally, Formulation
(P2) was also able to reach higher lower bounds in all instances, except one. Finally, Formulation (P2) showed
competitive results against state-of-the-art, being also robust when dealing with larger instances in comparison
with state-of-the-art.

For every instance, the heuristic executes 30 times using different seeds, with the seed value set as the
execution number in the discrete interval [1,30]. Other approaches from the literature also ran 30 executions.
Avg is the average result in all executions. Best is the best solution for all executions. T (s) is the average
computational time required to find the reported solution. GAP = 100(S; — S2)/S2, wherein: Sy is the MILS
result, and Sy is the best result reported in the literature (either best or average solution) for the corresponding
instance, which is the relative difference between two heuristics in the following tables. The heuristics presenting
the best results in every instance are boldface highlighted.

Table 6 shows the average and best results of the euclidean instances found in 30 executions of the method
proposed in the present paper (MILS). The results are compared to a Memetic Algorithm (MA) [10] and to a
Transgenetic Algorithm (TA) [11], which is the state-of-the-art of euclidean instances. The gap here measures
over average results for all approaches. Those results from the literature were also coded in C++ and found in
a computer presenting architecture Intel Xeon QuadCore W3520 2.8 GHz with 8 GB RAM running a Scientific
Linux 5.5 64-bit operating system.

Some observations can be drawn from Table 6 since the performance of architectures from both MA/TA and
MILS are comparable [21]. Table 6 shows that MILS leads to high-quality bounds demanding a computational
time much smaller than previous heuristics. Average GAP compared to the state-of-the-art is negative, where
24 out of 30 instances account for better average performance, a fact that required about four times shorter
computational time. The results show that MILS reaches the best solutions in 25 out of 30 instances, thus
providing new best solutions to 10 of them.

The MILS assesses non-euclidean instances as a complimentary study in order to find its performance along-
side existing literature. Table 7 shows the best solution results of non-euclidean instances. The results are
compared to TA and to a hybrid Evolutionary Algorithm (EA + ALSP) [3], which is the state-of-the-art of
non-euclidean instances. These EA + ALSP results were found in a computer presenting architecture Intel i7
3630-QM 2.4 GHz with 8 GB RAM running a Windows 8.0 64-bit operating system. CPLEX 12.6.1 was also
used as a MIP optimizer in this method.

The MILS shows competitive results, although the goal of the current study is to propose a heuristic able
to tackle euclidean instances, in comparison to non-euclidean instances previously found in the literature [21].
Although the solution lost in quality against the non-euclidean EA + ALSP heuristic, it was still able to reach
good solutions in shorter computational time, with an average GAP of 0.75%. MILS also outperformed TA in
the non-euclidean instances and was able to prove optimality in two new instances.

At last, the results presented in this section explored the problem thoroughly. In the heuristic approach,
the MILS has proven competitive with current state-of-the-art, outperforming previous literature for euclidean
instances, while struggling in solution quality for non-euclidean instances. It happened despite no major neigh-
borhood invention, leaving an opportunity for a broader neighborhood study that better suits the heuristic.
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TABLE 7. Best results for non-euclidean instances.

Instance TA EA + ALSP MILS

Name n [C] Best T (s) Best T (s) Best GAP T (s)
BrasilRJ14n 14 2 167  2.00 167 0.60 167 0.00% 0.03
BrasilRN16n 16 2 188  4.00 188 0.60 188 0.00% 0.09
BrasilPR25n 25 3 226 16.00 226 10.60 226 0.00% 141
BrasilAM26n 26 3 202 16.00 202 10.60 202 0.00% 1.04
BrasilMG30n 30 4 271 32.00 271 21.30 271 0.00% 2.71
BrasilSP32n 32 4 254  39.00 254 26.00 254 0.00% 3.28
BrasilRS32n 32 4 269  40.00 269 26.60 269 0.00% 2.81
BrasilCO40n 40 5 576 84.00 576 56.00 575 -0.17% 8.96
BrasilNO45n 45 5 551 104.00 548 69.30 546 —-0.36% 12.50
BrasilNE50n 50 5 618 147.00 611 98.00 618 1.15% 14.74
Canoas30n 30 4 376  37.00 376 24.60 376 0.00% 2.87
Santos50n 50 5 392 153.00 382 102.00 382 0.00% 14.48
Macapa80n 80 5 616 624.00 599 416.00 608 1.50% 58.27
Londrinal00n 100 3 1186 1107.00 1146 738.00 1153 0.61% 121.83
Osascol00n 100 4 993 999.00 964 666.00 974 1.04% 133.46
Cuiabal40n 140 4 1339 2718.00 1293 1200.00 1313 1.55% 367.98
PortoVelhol60n 160 3 1426  4595.00 1382 1200.00 1399 1.23% 561.09
Aracaju200n 200 3 1942 7349.00 1839 2400.00 1868 1.58% 1248.27
Teresina200n 200 5 1410  8884.00 1343 2400.00 1369 1.94% 1649.99
Cuiaba300n 300 5 2222 37391.00 2100 3600.00 2129 1.38% 1611.77
att48nA 48 3 993 134.00 988 89.30 988 0.00% 11.92
berlin52nA 52 3 1326  181.00 1303 120.60 1305 0.15% 17.46
ch130n 130 5 1696  2831.00 1632 1200.00 1664 1.96% 390.05
d198n 198 4 3188 11993.00 3036 2400.00 3069 1.09% 1617.16
kroB150n 150 3 2966  4472.00 2845 1200.00 2876 1.09%  494.01
prl07n 107 5 1698  1589.00 1631 1054.30 1653 1.35% 221.14
rat99nB 99 5 1399 1310.00 1349 873.30 1371 1.63% 141.00
rd100nB 100 4 1412 1251.00 1357 834.00 1360 0.22% 156.19
st70nB 70 4 910 415.00 879 276.60 904 2.84%  44.57
w100nB 100 4 1670 1166.00 1615 777.30 1630 0.93% 175.30
Average 2989.43 729.72 0.75% 302.88

As in the exact approach, the studies comparing the proposed integer linear formulation proved new optimal
solutions with its strong linear relaxation. Albeit, that brings some time limit drawbacks in larger instances, as
a heavier linear model demands more time to find a feasible solution. So, the tests giving the heuristic upper
bound to the CPLEX solver aiming for the best lower bound, concluded that the formulation proposed is better
suited.

6. CONCLUSIONS

The current paper presented a new approach in an attempt to solve the Car Renter Salesman Problem using
a methodology based on the Iterated Local Search metaheuristic, including an intensive local search procedure
along with the classical and novel neighborhood structures. This paper also presented a linearization for a
quadratic integer formulation along with some sets of constraints that allowed the previous formulation to
be optimally solved efficiently using integer linear programming solver, also proving optima in five previously
unproven instances. As some instances were optimally solved, it was verified MILS’s efficiency in returning good
solutions at a significantly shorter computational time when compared to the exact approaches.
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We also conducted a study comparing the linearized formulation herein proposed with some new formulations.
In this study, the proposed formulation proved to be capable of reaching reasonable solutions, and also has a
better linear relaxation when compared to the other ones from the literature. As a way to check that, and to try
solving more significant instances for the problem, we set the MILS heuristic upper bound to both formulations.
The results have shown that the proposed formulation was able to give better lower bounds than others from
literature due to its better linear relaxation, also resulting in a significantly smaller branching tree to be explored.

Tests using euclidean instances proved that MILS was capable of accomplishing its goal as it presented very
competitive and efficient results in this set of instances, and outperformed the previous state-of-the-art. In some
cases, MILS was even able to set upper bounds better than previous literature demanding smaller computational
effort. The MILS was tested in non-euclidean instances and compared to previous literature as a sideway
experiment. Although it was not the goal of the present study, the results were positive. Notwithstanding, the
heuristic was not able to outperform the state-of-the-art, but it was able to show good quality results in a
shorter period-of-time. In some cases, it even presented new best solutions.

Overall, the algorithm showed good results for exploring CaRS. However, there is still room for improvement,
mostly to the non-euclidean instances. Different constructive methods may provide different results in this set.
It is also worth noticing the effortless adaptability of the proposed method to CaRS variants since it relies on
the ILS methodology, a metaheuristic known for its simplicity.

The current state-of-the-art for this problem still has room for improvement in both exact and heuristic
approaches. For heuristic approaches, the proposal of new neighborhood structures that cover and refine the
presented MILS aiming to tackle non-euclidean instances or a new populational heuristic that works with
penalized infeasible solutions. With that in mind, one could trade computational effort for a more extensive
search that better explores the solution space. Also, for exact approaches, the proposal of new models based on
classical TSP modeling, exploring the key features and differences between these problems. Moreover, one could
try different ways to attack the problem on the exact spectrum, exploiting the extensive literature approaches
on similar problems. One significant example is the Column Generation employed in several variants of TSP
and VRP problems.
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