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ON PRICING AND BUNDLING DECISIONS FOR STACKELBERG GAMES IN
PARALLEL CHANNELS OF SUBSTITUTABLE COMPOSITES

SINA KEYHANIAN, ABBAS AHMADI* AND BEHROOZ KARIMI

Abstract. The paper describes competition within a supply network with parallel distribution chan-
nels. Each supply chain in the network is composed of a manufacturer and a retailer. Manufacturers
sell two complementary products to the retailers, who then deliver to the end consumers. All players
can bundle or not bundle their products assuming that the retail market presents the products in a
mixed bundling setting. The motivation of this study is to mainly analyze the impact of cost reduction
via manufacturers, on how the whole supply network will behave. We have modeled and solved partly
and fully sequential game structures well known as Bertrand and Stackelberg games, where the pre-
ceding movers are considered to have more market power. Mathematical and numerical analyses reveal
interesting propositions and managerial insights for decision makers who are practicing cost cutting
strategies. The combination of different ordinal structures have led to exact mathematical comparisons
among 24 games. Results indicate both manufacturers and retailers are better off with simultaneous
pricing games. This promotes the concept of coordination through layer and channels of the network.
Cost reduction with compensation increases payoffs when applied by the manufacturer whose comple-
mentary products’ manufacturing costs are more distanced. It is also shown that retailers enjoy a retail
advantage on one product at its best when playing retailer leading Stackelberg games.
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1. INTRODUCTION

Managerial decisions are now more sophisticated than ever. Supply networks offer different opportunities for
consumers to meet their needs. With the rise of startup companies, big companies have lost their monopolistic
leadership in the market. The competitions are observed in different layers and distribution channels. The
channels provide products with vertically differentiated features that also improve continuously through time.
Many manufacturers’ products such as Toyota and BMW are distinguishable among customers by the means
of their vertical differentiation [16]. When a customer compares the two products, the various features of each
automobile and their quality helps him/her make the purchasing decision. The aspect can also be widely observed
in many service industries such as Uber [19] (ride-hailing companies in general) and airline services [14]. In fact,
online services have grown so well, that it is now a common market behavior when competing new startup
companies are launched on many areas, parallel to other incumbent companies.
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In such settings, substitutability and complementarity are the two important criteria that shape the market
based on consumers’ tastes. The consumers are likely to show interest if the complementary products are
presented as bundles, and they will probably show more interest if they are free to choose from where they
can buy the components of that bundle. The prices that retailers set on these individual or bundled products
play a crucial role on how consumers’ purchasing behavior can be. The retail prices themselves are affected
by wholesale prices set by suppliers or manufacturers from an upstream level. Plurality of players leads to
more complexity for decision makers. Nevertheless, especially under a decentralized setting where players seek
to maximize their own benefit, it gives them the advantage to be able to examine various scenarios such as
simultaneous or sequential moves, first or second mover’s advantage and how these can be coordinated in order
to maximize chain profits.

In this paper, we consider a supply network with two parallel channels, each including a manufacturer and
a retailer. Each manufacturer produces two complementary products and only sells to one of the retailers. The
products are requisite complementary to each other [22], therefore consumers are committed to purchase one
unit of both. A realistic and tangible example of such products that are also inclined to form a composite is
hardware and software, or basically mixed bundling of complementary information goods [23]. Mixed bundling
[35], is a case where, customers can buy the components of the bundle separately, as well as a bundle. However,
there is also an option of pure bundling [11], where the components of the bundle are not offered separately.

In service industries mixed bundling also appears to be an appealing option. For instance, in airlines and
tourism [27], the service providers (considered as the suppliers or manufacturers), and the online agencies who
have direct contact with customers and sell the offered packages (considered as retailers) fit the assumptions of
this study.

We consider the corresponding products are also mutually substitutable making four available composites: two
are direct complementary products and the other two are indirectly complementary to each other. The parallel
structure of the supply network both in its inter-layer relations and product portfolio configuration necessitates
the consideration of asymmetric settings for costs. By solving the supply network configuration under partially
and fully sequential game structures, we have provided valuable managerial insights. Interestingly, some of our
insights are aligned with previous studies, and some of them are not due to the existence of bundling strategy
choice alongside with other assumptions. Some of the main ideas of this paper are inspired by a study done
by Economides [8]. He proposed a same configuration of products in a duopoly under the concept of parallel
vertical integration. By mathematical analysis he revealed that mixed bundling is the dominant strategy for
both firms in a duopoly. In our paper, we try to extend these results for duopolistic manufacturers and retailers
under parallel settings.

The main contributions of our paper are listed as follows:

(1) We approach the model of a supply network consisting in two competing parallel channels with sophisticated
game models.

(2) We introduce the concept of cost reduction with compensation. This helps analyze the impact of cost
reduction even in cost asymmetry settings.

(3) Three bundling structures are established for the supply chain, which is a combination of no bundling, pure
or mixed bundling strategies for both manufacturers and retailers, eventually leading to 24 different game
models, each optimized with exact solutions.

(4) We have considered market power (leader/follower) inside each game, and mathematically derived valuable
propositions that shed light on how manufacturers and retailers behave on pricing and bundling decisions
within different ordinal movements.

(5) We have specifically scrutinised the profit changes (gains) among different game structures/scenarios and
revealed the tendencies of each player in the supply network.

The remainder of the paper is organized as follows: Section 2 provides the previous relevant research on the
subject. Section 3 describes the problem. Section 4 discusses the Bertrand models of our paper, their game
structures and optimal solutions. Section 5 presents a similar discussion for Stackelberg games with partially
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TABLE 1. Some relevant studies that consider decentralized models of pricing and/or bundling
in duopolies or supply chains.

Research SM R M NP SIP SCP NB PB MB CM
Choi [7] v 1 2 2 v X v X X X
Economides [8] X - 2 4 v v v v v X
Wu et al. [30] v 2 1 2 v X v X X X
Wei et al. [28] v 1 2 2 v v v X X X
Chakravarty et al. [5] X 1 n n v X v v X v
Zhao et al. [34] v 1 2 2 v X v X X v
Giri et al. [10] v 1 2 2 v v v v X X
Jafari et al. [13] X n 1 1 v X v X X v
Pan and Zhou [24] X 1 1 2 v v v v X X
This article v 2 2 4 v v v v v X

Notes. SM: Sequence of moves, R: Retailer(s), M: Manufacturer(s), NP: Number of products, SIP: Sell individual
products, SCP: Sell composite products, NB: No bundling, PB: Pure bundling, MB: Mixed bundling, CM: Centralized
model(s) (Cooperative).

and fully sequential moves. Section 6 provides comparative analysis both mathematically and numerically on
different possible aspects of the models alongside with mathematical propositions, corollaries and numerical
insights. Section 7 summarizes results and findings, with recommendations for future possible developments
and generalizations of this study.

2. LITERATURE REVIEW

There are a number of studies relevant to pricing and bundling decisions, separately and together, in different
game structures designed for supply chains with market power. Table 1 is a brief chronological list for comparison
between some valuable studies in this field. In this paper, we use pure bundling and no bundling as the wholesale
strategy at retailer-manufacturer interlayer, as well as mixed bundling and no bundling as the retail strategy
at retailer-consumer level. A few set of works [5,6,10], consider bundling for both retailers and manufacturers.

Keyhanian et al. [15] incorporate the composite product concept that is considering a demand group for
consumers who want to buy both complementary products. Yan et al. [32] use a similar concept of individual
and composite purchasing in an asymmetric setting with two retailers and one supplier. Choi [7] discusses
different Bertrand and Stackelberg game structures with market powers for linear and nonlinear demands. The
literature followed by his pioneer work, mostly consider manufacturer leading and retailer leading Bertrand
(MSB and RSB), manufacturer leading and retailer leading Stackelberg (MSS and RSS) games. Some recent
researchers approach the problem in the field of green supply chain. Peng and Zhang [21], assuming that one
of the manufacturers practices green manufacturing, show that Bertrand models have the lowest outcomes for
manufacturers while the retailers gain more profit. Xue and Zhang [31] discuss the benefits that retailers can
achieve from an integrated supply chain of green products. They also conclude an equilibrium case of a power
trade-off among the manufacturer and the retailer.

Wei et al. [28] perform a valuable study in regards to selling products separately and together. For func-
tionally complementary products, they show that in both Bertrand and Stackelberg games the leaders achieve
more profits, however, chain profit in both manufacturer and retailer leading Stackelberg games is higher than
Bertrand games. Later, in a supply chain with duopolistic manufacturers, Zhao et al. [34] show that in Bertrand
games, maximum profit is not affected by different market powers. Amir and Stepanova [3] discuss asymmetric
linear costs in pricing decisions of a Bertrand duopoly where sequential moves are possible. They specifically
work on the second mover’s advantage, but also discuss in what conditions, whether the first or second mover’s
advantage survive. Aust and Buscher [4], find out that channel leadership is not always in the benefit of the
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manufacturer. They reach this insight in a duopoly of retailers with a common manufacturer where cooperation
is also allowed.

Although assumed to be non-cooperative, decentralization can also come along with coordination and incen-
tive alignment [12,13,17]. Many decentralized settings of supply chain discussed in literature consider centralized-
brought results as a benchmark for evaluating the price variables in different configurations. There are examples
for both channel power structure pricing models in decentralized supply chains without bundling strategies
[18,20,26,29,33], and for pricing models with bundling strategies that have considered different game theoretic
conditions along with centralized settings [10]. Some researches consider horizontal and vertical competition
within the Bertrand and Stackelberg structures [30]. They determine ordinal relationships of optimal variables
and also changes in profits as a function of retail substitutability.

3. PROBLEM DESCRIPTION

In a dual channel and two-layer supply chain of two retailers (retailer 1 and retailer 2) and two manufacturers
(manufacturer 1 and manufacturer 2), the manufacturers provide two base products, each at its own wholesale
price. Manufacturer ¢ produces products Ai and Bi with unit manufacturing costs ca; and cp;, respectively
and wholesales them to retailer ¢ at wholesale prices wa;, wp;, 7 = 1,2. We consider that each retailer can only
buy the products from one of the suppliers. Here, the supplier happens to be using the same index as the
retailer. Retail prices, pa; and pp; are set by the retailers for the products they receive. Furthermore, assume
that product types A and B are complementary products and that the corresponding products of suppliers
are substitutable with each other in terms of their types, i.e. A1 and A2 are substitutable, A1 and Bl are
complementary, Al and B2 are complementary, Bl and B2 are substitutable. This setting is also known as
parallel vertical integration [9].

The consumers purchase their desired products under a mixed-pure bundling (MPB) setting. That is, they
are bound to buy a composite product consisting of both A and B; however from which retailer to buy each of
these two base product types from, is an arbitrary choice for the consumers. A consumer may buy both product
types A and B from retailer 4, or buy product type A from retailer i and product type B from the other retailer.
Product A is useless without its complementary product B and wice versa.

The concept of mixed-pure bundling is fairly different from the mixed bundling used in the literature [8,25]. In
the bundling literature, mixed bundling means the consumers can buy the bundle or the components separately.
A consumer either buys a bundle or a composite of two complementary products. In fact, this is a mixed
bundling strategy at retailer/manufacturer level which comes out to be a pure bundling offer in the consumer
level; whether in the context of bundles or composites.

The firms that decide to bundle can only bundle their own products; own-bundling. Cross-bundling is not
allowed due to decentralization. Based on bundling literature [8,25] the available strategies are pure, mixed and
no bundling which we have arranged them into two strategies of mixed-pure bundling and no bundling. If one
bundles products Ai and By, (i,7) € {1,2} x {1, 2}, based on the fact that whether it is wholesaling or retailing,
then the prices of the bundle would be v;; or s;;, respectively. The bundle prices should apply in the inequalities
vi; < wa; +wp; and s;; < pa; + ppj; otherwise, the bundling assumption will not qualify as a distinct strategy,
[1]. All the firms have prefect information about demands and costs and seek to maximize their own profits.
This assumption leaves the problem with decentralized structures. The supply chain is depicted as given in
Figure 1.

Let s?jb = pai+pp; denote the price of a composite consisting of retailer i’s product A and retailer j’s product
B, which is not offered as a bundle and thus equals the sum of its components’ prices. Let s?j < pai + PBj
denote the price of that same composite which is now offered as a bundle. The general demand function of a
composite is given as follows:

Dij =a—0si; +v Z Smn, (3.1)

(m,n)€{(1,1),(1,2),(2,1),(2,2)}
A(m,n)#(i,j
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F1cURE 1. A dual channel supply chain with complementary and substitutable products.

where D;; is the demand of the composite in which product type A is purchased from retailer ¢ and product
type B is purchased from retailer j, parameter « is the intercept, 0 and ~ are the price-effect and cross-price
effect respectively.

We use the term composites deliberately to avoid getting mistaken with bundling, as the consumer might buy
the two products A and B from separate firms while they are not offered as a bundle. If offered as a bundle, still the
couple would form a composite. In other words, the defined market can offer two types of bundles and four types of
non-bundle composites. The bundles are A1B1 and A2B2 at retail prices s11 and sq2, and wholesale prices v11 and
Va9, respectively. The non-bundle composites are A1B2 and A2B1 and in case not provided as bundles, A1B1 and
A2 B2 also each form a non-bundle composite. For example, if products Al and B1, and A2 and B2 are both offered
as bundles by the retailers, the set of demand functions would be as shown in equation (3.2).

D1y = a— fBs11 +7v(pB1 +paz) +7 (par +pp2) + 522

D1y = a— B (pa1 +pB2) +7 (PB1 + paz) + vs11 + S22 (3.2)
Doy = a— B (pp1 +paz) + 7 (par +pe2) + 7511 + 7522 ’
Doy = a — 322 + v (pB1 +paz) + 7 (pa1 + pp2) + 511

This formulation was used by Economides [8], to discuss bundle pricing in the case of retailer competition.
Similar to that study, we also assume that increasing prices of all four composites will decrease their demands
which leads us to the assumption of g > 3~.

In case of calculating D;; for instance, the demand has a negative relation with bundle {Al, B1}’s price
which is s11 < pa1 + pp1, and positive relation with the other competing composites consisting of non-
bundles {A1, B2}, {A2, B1} priced at pa1 + pp2 and pas + pp1, respectively, and bundle {A2, B2} priced at
S22 < pa2 + pp2- The wholesale prices are not present in demand settings. They show their impact when we
evaluate both manufacturers and retailers profit. This is dependent on whether the manufacturers bundle the
offered composites or not. For example, if the manufacturers also bundle the composites (knowing that the
retailers also have bundled, as in case MBRB in Fig. 4), then the profits gained by each manufacturer and
retailer are calculated as shown in equation (3.3).

mm1 = (v11 — ca1 — ¢p1) D11 + (war — ca1) D12 + (w1 — ¢g1) Do

mmz2 = (wpe — ¢p2) D12 + (Wa2 — ca2) D21 + (Va2 — caz — ¢p2) Dao (3.3)
mr1 = D11 (s11 — v11) + D12 (pa1 — wai1) + D21 (pp1 — wp1) '
Tre = Dag (S22 — v22) + D21 (pa2 — waz) + D12 (pp2 — wp2)



S1662 S. KEYHANIAN ET AL.

TABLE 2. Structures of games and their corresponding decision variables, due to different
bundling decisions among each layer of the supply network.

MBD RBD Abbreviation Figure MDV RDV
N N MNRN 4, first scenario from left WAL, We1,  PAL,PBI,
wA2,WB2. PA2,PB2-
w w PA1,PB1,
N MB MNRB 4, second scenario from left AL, WEL, PA2, PB2,
wA2,WB2.
811, S22.
WA1,WB1,  PA1,PBI1,
MB MB MBRB 4, third scenario from left WA2, WB2, PA2, PB2,
V11, VU22. S11, S22.

Notes. RBD: Retailers’ bundling decision (N: not bundling, MB: mixed bundling), MBD: Manufacturers’ bundling deci-
sion (N: not bundling, B: mixed bundling), RDV: Retailers’ decision variables, MDV: Manufacturers’ decision variables.

where for i € {1,2}, ma; and 7wg; represent profits of manufacturer ¢ and retailer i, wa; and wp; represent
wholesale prices set by manufacturer i for products A and B, and, ca; and cp; represent production costs
incurred by manufacturer ¢ to manufacture products A and B, respectively.

For instance, for manufacturer 1 (M1), the sales is consisted of selling bundle {A1, B1}, and selling them
separately. Manufacturer 1’s separate sales of product A corresponds to D15 (the consumers who buy product A
from retailer 1 and product B from retailer 2), and his/her separate sales of product B corresponds to Dy (the
consumers who buy product A from retailer 2 and product B from retailer 1). However, manufacturer 1’s sales
of the bundle {A1, B1} corresponds to Dj; where she also incurs both costs ca;,cp;. The cost that retailers
incur, is actually the wholesale price at which they bought the products from their corresponding manufacturer.

Here we highlight the differences among the game structures designed in this study. Each game’s structure is
a combination of market power, move sequences and bundling decisions. The different bundling decisions that
happen in each layers of supply network are shown in Table 2. Because the customers are also offered with the
choice to buy the products separately from whichever retailer they prefer, in all cases where bundling happens,
it is in fact in a form of mixed bundling. Therefore both individual product prices and their bundle prices are
present in the modeling in those cases.

Market power and move sequences might seem to be describing the same concept, but in this study we use
a different point of view for each. They trigger two different types of Stackelberg behavior in a supply network.
Market power undertakes the inter-layer Stackelberg games in which leadership is in control of retailers or
manufacturers. While, move sequences represent the intra-layer Stackelberg games in which for example, within
the manufacturing level, manufacturer 1 sets his/her prices before manufacturer 2. Meanwhile Bertrand games
reflect the concept when for a layer, these move sequences are merged into simultaneous moves. In order to
comprehensively capture the behavior of move sequences in the supply network, we consider all possible and
distinct permutations of market power, sequence moves and bundling decisions through inter-layer and intra-
layer relations in the supply network.

The Bertrand games describe the following situations (Fig. 3).

— MSB: In this structure, manufacturers set prices simultaneously, and retailers set prices simultaneously.
However, the manufacturers hold market leadership/more market power. Therefore, first the manufacturers
set their prices and then it is the retailers’ turn to set their prices.

— RSB: In this structure, retailers set prices simultaneously and manufacturers set prices simultaneously.
However, the retailers hold market leadership/more market power. Therefore, first the retailers set their
prices and then it is the manufacturers’ turn to set their prices.
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In MSS-RS and RSS-MS games both Bertrand games and Stackelberg games are present in most parts of

the game. First a Stackelberg game is played within the “leader” layer, then a Bertrand game is played within
the “follower” layer.

MSS-RS: In this structure, manufacturers set prices sequentially, while retailers set prices simultaneously.
Meanwhile, the manufacturers also hold market leadership/more market power than the retailers. However,
without loss of generality (w.l.0.g) it is assumed that within the manufacturing layer, manufacturer 1 sets
his/her price first and then manufacturer 2 sets his/her price. After that, the retailers set their prices.
RSS-MS: In this structure, retailers set prices sequentially, while manufacturers set prices simultaneously.
Meanwhile, the retailers also hold market leadership/more market power than the manufacturers. However,
w.l.o.g it is assumed that within the retailing layer, retailer 1 sets his/her price first and then retailer 2 sets
his/her price. After that, the manufacturers set their prices.

In MSS and RSS games no simultaneous moves are present and all of the game moves are completely sequen-

tial, whether within layers or between the two layers of supply network. Distinct permutations of these sequential
moves have led us to add a Greek numbering suffix to each of the structures in order to distinguish their differ-
ences.

MSSi&zii: This structure represents MSSi and MSSii which however are two different cases, but w.l.o.g reflect
the same insights. In both of these structures the manufacturers hold market leadership/more market power
than the retailers. For example, in MSSi first manufacturer 1 sets his/her price, then manufacturer 2, then
the retailer 2 who is in the same supply chain that manufacturer 2 appears to be sets his/her price, and finally
retailer 1 sets his/her price. The same trail happens in MSSii but in reverse starting from manufacturer 2
setting his/her price.

MSSiii&iv: This structure represents MSSiii and MSSiv which however are two different cases, but w.l.o.g
reflect the same insights. Again, in both of these structures the manufacturers hold market leadership/more
market power than the retailers. For example, in MSSiii first manufacturer 1 sets his/her price, then man-
ufacturer 2. But this time, retailer 1 who is in the opposite supply chain, makes the next move, and finally
retailer 2 sets his/her price. The same trail happens in MSSiv but in reverse starting from manufacturer 2
setting his/her price.

RSSi&ii: This structure represents RSSi and RSSii which however are two different cases, but w.l.o.g reflect
the same insights. In both of these structures the retailers hold market leadership/more market power
than the manufacturers. For example, in RSSi first retailer 1 sets his/her price, then retailer 2, then the
manufacturer 2 who is in the same supply chain that retailer 2 appears to be sets his/her price, and finally
manufacturer 1 sets his/her price. The same trail happens in RSSii but in reverse starting from retailer 2
setting his/her price.

RSSiii&iv: This structure represents RSSiii and RSSiv which however are two different cases, but w.l.o.g
reflect the same insights. Again, in both of these structures the retailers hold market leadership/more market
power than the manufacturers. For example, in RSSiii first retailer 1 sets his/her price, then retailer 2. But
this time, manufacturer 1 who is in the opposite supply chain, makes the next move, and finally manufacturer
2 sets his/her price. The same trail happens in RSSiv but in reverse starting from retailer 2 setting his/her
price.

These structures form 24 different game structures that we use to perform the comparative analysis among

games and extract behavioral insights of different players within the supply network.

4. DECISIONS IN BERTRAND GAMES

4.1. The manufacturing leading Bertrand game (MSB)

When the manufacturers are more powerful, they set the prices first and based on those prices the retailers set

their optimal prices. Therefore, in order to maximize the manufacturers’ profit, we have to assume a backward
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FI1GURE 2. The structure of channels and layers in the whole supply network.

method. First the best response retail prices to any sets of wholesale prices are obtained. Then based on those
prices, the optimal wholesale prices and profits of manufacturers are calculated. The structure of the game is
shown in equation (4.1).

{ max w1 (Wai, W1, Py (W )pBl( 0),p
WAL, WB1 (

a2 (W), p
max Tpr2 (wA27wB27pA1(w) i), p (U_”) (117) ’

)

)
PA1,PB1,WA1, wB1) s

)-

WA2,WB2
(pjﬂ(w%p*Bl(w)) = argmax gy (
. . (pa1,pB1) (4 1)
(P (W), phe(W)) = argmax mra (a2, PB2, WA2, WB2 ’
(paz2,pB2)

The vector w represents quadruple (w1, wp1, wa2, wp2). The left arrow in equation (4.1) demonstrates a reverse
approach for response optimization. Because manufacturers are the price leaders (first movers) here, they have
the benefit of optimizing their response (wholesale prices) based on the estimated response of retailers (retail
prices). Therefore, equation (4.1) first captures the optimal retail prices assuming that wholesale prices are set
by the manufacturers and thus known to the retailers. The outcome will be off course in terms of the known
variables of the system which are the components of @w. However, if the retailers or manufacturers choose to
bundle their products, the variables s11, 22 and v11, ves will be added to the formation in equation (4.1). After
achieving the optimal equations of retail prices, by replacing these equations in their relevant variable in set
of profit functions like equation (3.3), we have a set of equations that are purely in terms of wholesale prices
(whether separate wholesale prices labeled by w, or bundle wholesale prices labeled by v, or both). In Section 4.2,
it is shown that how this result is achieved (Figs. 2 and 3).

4.2. No bundling in the MSB game

When neither manufacturers nor retailers offer bundling (case MNRN in Fig. 4), the demand and profit
functions are given by equations (4.2) and (4.3), respectively. Because of the absence of bundling, variables s
and v, which reflect the bundle prices for retailers and manufacturers, respectively, are not present in these
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equations.

D1y =a— 3% (pa1 +pB1) +7 X (par +pp2) +7v X (paz +pB1) +7 X (Paz + pB2)

D1y = a— X (pa1 +pB2) +7 X (par +pp1) +7v X (paz +pB2) +7 X (Paz + 1) (4.2)

D3y = a— 3 x (paz +pB1) +7 X (paz +pp2) +v X (par +pB1) +7 X (Pa1 + pB2)

Diy = a— 3 X (paz +pp2) +7 X (paz +pp1) +7v X (par +pB2) +7 X (Pa1 + pB1)

mm1 = (wa1 —ca1) (D11 + Di12) + (wp1 — ¢g1) (D11 + Da1)

T2 = (Wa2 — ca2) (Do 4 Daz) + (wp2 — cpa) (D12 + Do) (4.3)
= (pa1 —wa1) (D11 + Di12) + (pB1 — wp1) (D11 + Da1)

Tre = (Pa2 — waz) (D21 + Da2) + (pB2 — wp2) (D12 + Dag) .

By replacing the demands in equation (4.3), the profit functions are simplified in terms of prices as shown in
equation (4.4).

1 = (wp1 —cp1) (2a — (B = 37)par — (B — 37) paz — (26 — 27) pp1 + 47pB2)
+ (war — ca1) (2a — (26 — 2y) pa1 + 4ypaz — (B — 37) 1 — (6 — 37) pB2)
2 = (Wp2 — cp2) (20 — (B = 37) paz — (B — 37) par — (26 — 2v) pp2 + 47pB1)
+ (waz —ca2) (2o — (28 — 2y) paz + 4ypar — (8 — 37) pe2 — (B — 37) pB1)
Tr1 = (par —wa1) 2o —2(8 =) pa1 +4ypaz — (B —37) pp1 — (B — 37) pB2) (4.4)
+ (pB1 — wB1) (20 = (B8 = 37) par — (B — 37) paz — 2(B+ ) pB1 + 4YpB2)
Tre = (pa2 —wa2) (2o —2(8 — ) paz +4ypar — (B —37) pp2 — (6 — 37) pB1)
+ (pp2 — wp2) 2o — (B — 37) paz — (B — 37) pa1 — 2(B +7) pB2 + 4vpp1) -

Based on the response approach in equation (4.1), first we optimize the profits in terms of retail prices (all
prices labeled with p) with the assumption that the wholesale prices (all prices labeled with w) are given by the
manufacturers. Retailer 1 has control of prices pa1,pp1 and retailer 2 has control of prices pas, pg2. In other
words, each of retailer has two responses. Therefore, the potentially optimal retail prices or stationary points
can be obtained by solving:

Omr1 (pa1,PB1) _ OmRr1 (pa1,PB1) _ OmR2 (a2, PB2) _ OTR2 (Da2, PB2)
bAa1 PB1 PA2 bB2

=0. (4.5)

Proposition 4.1. The profit functions of retailers are concave. Therefore, the stationary points of equation
(4.5) are indeed the retail prices that maximize their corresponding profit functions.
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The proof of Proposition 4.1 can be found in Appendix A.1. Because all values but retail prices are assumed
to be given, simplifying equation (4.5), leads to four linear equations in terms of four different variables:

—4(B+7) —2(8 - 3y) 4y -3+ 3y P

—2(8—3y) —4(B+v) —B+3y 4y Ph1

4y —B+3y —4(B+7) —2(6-37) Pl
—B+3 vy =28 =3y) —4(B+7) /) \Pha (4.6)

204+2(B—v)war + (6 —37)wp

n 20+ (B =3y)war +2(B —y)ws | _
204 2(8—v)war + (6 —37) wp '
204+ (B8 —37)waz +2(8 —v) wps

Using Gaussian elimination [2], we obtain p*. For instance, p%; is shown in equation (4.7). All wholesale
prices are available in the optimal response. This means each retail price takes effect from both manufacturers’
wholesale prices. Due to the symmetric relations among prices of substitutable and complementary products,
the other solutions also have a same structure.

§ 1
PAL = 733562 — 1068y + 5112)

x (3003 — 62wa1 8% — 13wa28° + 8wp1 >

+ 22wp2 3% 4 18ary + 196w 41 B + 14w 4237y

— 16wp1 By — Rwpafy — 126wa1y” + 2Twazy?

— 2dwp1vy? + 78w3272) . (4.7

We simplify and rearrange all solutions such that the denominators are factored and coefficients are
separated price-wise. This helps significantly with the comparative analyses implemented in this research.

For example, the factor of 3532 — 10683y + 5142 is (58 — 37) (78 — 17v). Therefore, WM is the

common denominator for all optimal retail price responses. The expressions that are independent of the whole-
sale prices in the parenthesis multiplied by the common denominator, are —30a + 18ary = —6a (56 — 37)
o

which after multiplication, becomes (7537177) revealing the constant of the optimal retail price response. Finally,

Vi € {A, B},1 € {1,2}, the best response retail prices in terms of predetermined wholesale prices are:

. 200 6232 — 19637 + 1262 1362 — 143y — 27~?

Pl = 75 179 T 3GA—8m) 8179 T 3(A—3) (18177
867 — 247% — 165y 2202 — 928y + 787>

T 3(58 - 37) (18— 179) P T B (55— 39) (78— 17y) PN

)wk,?)fi

(4.8)

Because the manufacturers’ profit functions are dependent on demands, they are also dependent on retail
prices. By replacing the above best response retail prices in 71 and mps2, we obtain the manufacturers’ profit
functions in terms of wholesale price variables (cf. Appendix A). Therefore, the potentially optimal wholesale
prices or stationary points can be obtained by solving:

Omav (war, wpr) _ Omn (wai,ws1) _ Omme (wa2, wp2) _ Omme (wa2,wn2)
WAL WAL W A2 wp2

= 0. (4.9)
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A system of linear equations will be obtained similar to equation (4.6) for wholesale prices. The optimal
wholesale prices Vk € {A, B},i € {1,2} are:

. 406¢y; + 221ck 35 — 4080{14’3}\;@@ — 1866{‘4)3}\&3,%*
Whi = 1221
N 148 (chi — Ch3—i + C{A, Bk — C{A,B\k3—i) B (378 — 997)
1221 (3132 — 6657 — 3372)

66 (26 (37ﬁ - 997) ZnG{A,B} Cnj + 37« (55 - 37))

je{1,2}

* 1221 (377 — 11837 + 3772)

(4.10)

{A, B}\k represents the element which remains after subtracting k from set {A, B}. For example, if k = A,
then {A, B}\A = B, and c{4 B}\k; = CBi-

Proposition 4.2. The profit functions of manufacturers are concave. Therefore, the stationary points of equa-
tion (4.10) are indeed the wholesale prices that mazximize their corresponding profit functions.

The proof of Proposition 4.2 can be found in Appendix A.2. The optimal wholesale prices are not sym-
metric because of the difference between unit manufacturing costs. But regardless of that, a symmetry can
be seen within the solution. The coefficients switch places wherever the corresponding manufacturing cost
is. Also notice a linear combination of costs and multiples of the expressions ), . {A,B} Zje {1,2} Cnj and
(cki — Ck3—it C{A BNk — C{A7B}\k73_i). These three statements and their multiples are present in all the opti-
mal solutions helping us to ease the mathematical analysis. The optimal product retail prices are derived by
replacing equation (4.10) in equation (4.8). All the optimal solutions of this subsection that were not presented
in exact form, have been provided explicitly in Appendix B.

4.3. Bundling in the MSB game

For the MSB game when manufacturers do not bundle and retailers bundle (case MNRB in Fig. 4), variables
s11 and sg9 are added to the profit function as in equation (3.1). The demand functions are as in equation (3.2),
manufacturers’ profits are as in equation (4.3), and retailers’ profits are as in equation (3.3). With the same
approach used in result of Proposition 4.1, and equation (4.6), the best response retail prices are calculated as
follows:

. 20 83% — 3403y + 367> v (46 —97) ,
Pi() = 3155 5y) T 32850 (@8 37 T 3B~ 5) (2B — )
- 2(B-31) AR 208y + 2497 . (411)
320~ 57) (26— 37) MV T 05 5y (23— 3y) AN |
b Q@ 2(8 — 27)° 4 2(8 — 27)° ,
W) =g =5 T A sy T @B 28—
+ 7 (5 —2) WA 33— + (5= 2) )U)B,Sfi' (4.12)

(268 = 57) (28 = 3v) (28 —57) (28 — 3«
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FIGURE 4. Three scenarios composed of different bundling decisions within the supply network.

Based on these best responses, the optimal wholesale prices are:

wi; = [88° (35ar + (Tdews + 17ck,3—i — 10c{a Bp\k,i — 25¢(4,BY\k,3—i) B)
— 566" (39 + 2 (55¢k; + 1lck,3—i — Tepa, ki — 20c(a, BRk3—1) B) 7
+4° (15660 + (6295ck; + 98¢y 3—; — 7034, By\ki — 2501c(a, Bpk3—i) B) ¥
+ B2 (=T767a + (—50636ck; — 4801ck 5—; + 4028cia py\k.i + 22531 a gk a—i) B) 7>
+ 98 (37200 + (5630ck; — 104ck,3—; — 28¢( 4, B}\ki — 2933¢(a,B}\k3—1) ) 7
+9 (27 + (—2400ck; + 675ck,3—; — 524c(a py\ki + 1613c(a pyrs—i) 3) 7"
+ 9 (218c; — 350k 3—; + 360c{ 4, Bp\k,i — 279¢( A, BY\k,3—i) V']
/ [3(128% — 7082y + 1278+ — T173) (288° — 12637y + 1358+ + 99°)]. (4.13)

Case MBRB in Figure 4, considers bundling for both layers of supply network (manufacturing and retailing
layer in Fig. 2). In such setting, the profit functions will be given by equation (3.3). The best response product
and bundle retail prices are:

. 1
Pri(W) = — (2% — 3vz—,3—; + 10wk; — Swia By\k,i

15
10 + (v +v3—i3—i) B 5 (vii —v3—i3—3) 0
ba/ = e} (B—27) (20 (B—27) + U37¢,37ﬂ).
WO =Gy T ea- (8- (415)

Interestingly, the product prices are dependent on bundle wholesale prices and the cross-product price from the
other manufacturer while the best response bundle retail prices are only dependent on the bundle wholesale
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prices. The final optimal set of prices for manufacturers are:

wii; = [(1658° (a4 218 — cpa,By\k3-i5)
—83% (11 + (33cki — 2¢k,3—i + A, Bk — 18¢{a,Bk3—i) B) Y
+ B (153 + (790ck; — 106¢k,3—; + 56¢ 4, 5pk,i — 473¢(a, BP\k3—i) B) ¥
— 3 (28cr + (338cni — Ther,3—i + 42¢(a, By\ki — 223¢(a,B\k3—i) B) 7°
+ 6 (T9cri — 25¢k,3—; + 15¢(a Bk — 57Cia B k3—i) V)]
/ [3 (48 — 158y + 12+°) (48% — 1787 + 167%)], (4.16)

Ol (W) = o (2B — 37) (487 — 1587 + 129°) + (28° — 868y + 77%) (4 (cai + cBi) B
+ (=16c4; + cag—i — 16cp; + cp3—i) By + 2 (Tea; — cas—i + Tepi — ep3—i)7>)
[ [(48% = 158y + 129%) (48° — 178y + 16+7)]. (4.17)

4.4. The retailer leading Bertrand game (RSB)

Because the demands are functions of retail prices, the wholesale system of equations (such as Eq. (4.9))
returns no feasible solution. Zhao et al. [34] suggest incorporating the wholesale price in the demand function.
This is done by adding a positive margin which is enjoyed by the retailer from selling the product. The positive
margin acts like a mediator. First we replace the retail price variables by:

Pri = Wi + mai, Yk € {A B} Nie{l,2}. (4.18)

Then the wholesale prices’ best responses are derived in response to earlier known retail prices, which are set by
the retailers. These best responses include the new positive margin variable. The rearrangement ma; = px; — Wk
helps forming a new system of equations. Solving it in terms of wholesale prices, we obtain the desired best
responses devoid of mediators. Therefore, the structure of the game is:

{ pgl%);l 7R1 (PA1, PB1, Wiy (D), W (D), Wia (D), whe (D))

pg%’;z TR (Wa2, W2, W (D), Wk, (D), Whs (D), wha (D))

P (W}, (P), w1 (D), whe (D), wha (D))
= Solution of {Vk € {A,B} Ai € {1,2}, wi; = wi,(M)| My = Pri — Wki }
(wzl(m)i wgl(m)) = argimax mpri (mA17mBl7wAl7wBl)7

. Ly (wanws) (4.19)
(whs (M), why(M)) = argmax mare (Ma2, Mp2, Wa2, WE2) -
(waz,wB2)

The vector p represents quadruple (pa1, pB1,pa2,PB2). Appendix B contains the optimal solutions of this case.

5. GAMES WITH SIMULTANEOUS AND SEQUENTIAL MOVES

In this section we consider cases in which there is possibility of sequential pricings by individuals in one
and/or both the upstream and downstream of the supply chain. Six game structures can be defined, two of
which include simultaneous pricing in one of the supply network layers (see Fig. 5). Here, when manufacturers
lead the game, they play Stackelberg together and the retailers follow their decisions in a simultaneous manner.
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FIGURE 5. The RSS game (left) with manufacturers optimizing profits simultaneously (-MS)
and MSS game (right) with retailers optimizing profits simultaneously (-RS).

In the case of the classic MSS game which we call MSS-RS (Fig. 5 — right), the game structure is:

wA1l,WB1

(wjzll?w*Bl) = argmaxmpsi (U_jaﬁ%(u_j)) )
Update & = (wa1,wp1, Wiy, Whs) ,

(Whos Why) = arg max mars (W, p* ()

. UJAQ,?DEQ oo
- (970, (), Dy (1)) = awg max 7s (515) -
= . . (pa1,pB1) L )
(P2 (W), o (W) = arg max mpa (P, W) -

(paz,pB2)

The vector W represents quadruple (wa1,wp1, waz, wpe). The structure in (4.11) indicates that assuming the
manufacturers have finished playing Stackelberg, their optimal wholesale prices are determined and now it is
time for the retailers to respond to these prices simultaneously. The last action that the retailers can respond
to is the wholesale price of the second manufacturer.

Assuming that the retailers (the followers) can also play Stackelberg, we can define four extra structures for
the MSS game (see Fig. 6). As an example, the sequential game structure for the case MSSiii is given as follows:

WAL, WB1

(Wi, wiy) = argmax map (0, p* (W)
Update @ = (wa1, wp1, Wiy, Whsy) ,

(Why, Why) = argmax ma (W, p*(0)),
WA2,WB2

(p:kﬁll (ﬁ),p};l(lﬂ)) = argmax mRry (ﬁv ’lf)) ’
= (pa1,pB1) (5.2)
<« q Update p'= (pa1, pB1, P2, Ph2)
< (Pao (W), Py (W) = arg max gy (P, ) .
(paz2,pB2)

Four sequential scenarios can also be defined for the RSS game, in reverse directions, represented by RSSi,
RSSii, RSSiii and RSSiv, respectively (Fig. 7). The process of finding optimal control variables are as in MSS-
RS and RSS-MS cases. The geometrical structures of the scenarios reveal that each case has one identical
configuration (by rotation), only with switching values in the optimal price sets; MSSi and MSSii are identical,
also MSSiii and MSSiv.

Therefore, other than the MSS-RS and RSS-MS game structures (Fig. 5), we end up with another four distinct
game structures namely MSSi&ii, MSSiii&iv, RSSi&ii and RSSiii&iv. The solutions of each Stackelberg game
structure are congested mathematically and would consume a lot of pages. However, for the readers to capture
some elaboration on exact optimal prices, we have provided the solutions of MSS-RS games in Appendix C. All
exact solutions of both Bertrand and Stackelberg games can be found in Mathematica (.nb) files provided as
supplementary electronic files along with this paper.
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6. COMPARATIVE ANALYSIS AND MANAGERIAL IMPLICATIONS

The results discussed in this section can be used by managers and decision makers to either shape a supply
network with parallel distribution channels and bundling opportunities or devise future plans in an already
configured supply network with known levels of its players’ market powers.

First we accomplish mathematical and parametric analysis in Section 6.1 to ensure the strict reliability of
the insights. We perform a comparative analysis is performed on the impacts of asymmetric costs on prices
and demands. Hence the insights will also hold true for symmetric settings. The sensitivity analysis assumes a
new concept of cost reduction, along with a compensation that covers the consequences a cost reduction might
have. Section 6.2 provides a comparative analysis on the distances between different optimal prices. Section 6.3
specifically focuses on profit changes and how different players tendencies are based on this criteria. Under
numerical experiments, Section 6.4 analyzes the behavior of game models under different bundling strategies.

6.1. Sensitivity analyses on asymmetric costs

The solutions show a significant presence of the manufacturing costs in determining optimal outcomes.
A symmetric setting will mitigate the complexity of the model and also provide some relevant insights on
when there is identical conditions. However, it will ignore any possible maneuvering for the players on their
endogenous control variables (e.g. manufacturing cost). Therefore, asymmetry is essential to capture the useful
insights of the game structures discussed in this article. Here the market parameters «, 3 and v are assumed to
be exogenous and thus not controllable by either manufacturers or retailers.

We justify the cost changing scenarios by considering the concept of cost reduction. This way the results can
provide better insights for decision makers who are seeking to see whether the trouble of cost reduction is worth
it and what it will do to the optimal structure. In order to make this assumption more realistic we also have
to consider the fact that cost reduction itself incurs cost. Instead of adding additional parameters to the model
such as research and development costs which result in cost reduction, we normalize those costs into the other
product’s manufacturing cost by the same magnitude. This helps compensate the cost reduction that has just
occurred. Therefore, the concept is named cost reduction with compensation (CRC).

This assumption is mathematically equivalent to assuming that the expressions ca1 + ¢p1 + caz + cp2
and c41 + ¢cp1 — ca2 — cp2 remain constant through any cost reduction activity. For instance, when
cp1 is reduced by J, the cost for that reduction is compensated by adding § units to cai, that concludes
(ca1 +0)+ (1 — ) = ca1 + c¢p1. Thus both of the above expressions remain constant. It works the other way too
and also for when both manufacturers practice cost reduction. The two expressions appear in most of the optimal
equations. The price and demand solutions are all linear in terms of costs; therefore, by some rearrangements, the
above expressions are cornered with their corresponding coefficients, leaving behind a linear combination of costs,
which indeed determines the impact of cost reduction.

Proposition 6.1. Consider optimal retail price py; (k € {A, B} Ai € {1,2}). Let pit, B 02 and ©B? be the
coefficients of ca1,cp1,ca2 and cpa, respectively, in the leftovers of pr;, after putting aside all the expressions

in pri which are either independent of any manufacturing costs, or in terms of the expressions ) nea,B} Cnj,

je{1,2}
and ki +Cr3—i — C{A,B}\k,i — C{A,B}\k,3—i- In that case, when manufacturer 1 practices 6 units of cost reduction

for product ki, the change in that corresponding optimal retail price is equivalent to ¢ (@,E?’B}\k’i — wZi)

The same result holds for optimal wholesale prices.

Proof of Proposition 6.1 can be found in Appendix A.3. Manufacturer 1 and 2’s cost reduction practices
with compensation (which are, w.l.o.g, considered by § = 1 unit of reduction in product B’s cost) are shown
by CRC(B) for columns M1 and M2, respectively. Table 3 shows the changes in prices and demands based on
cost reductons practiced by both manufacturers, for game structures MSB and RSB. Table 4 shows the results
for M1ICRC(B), for the other game structures. The results corresponding to M2CRC(B) of these games can
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TaBLE 3. Differences in optimal prices and demands due to CRCs in Bertrand games (6 = 1).

GS MSB RSB

CRC(B1) M1 M2 M1 M2

A (pai,war) +(5/9,2/3)  +(4/9,1/3)  +(4/7,6/7)  +(3/7,1/7)
A(ppr,wp1)  —(5/9,2/3) —(4/9,1/3) —(4/7,6/7) —(3/7,1/7)
A (paz, waz) +(4/9,1/3)  +(5/9,2/3) +(3/7,1/7) +(4/7,6/7)
A (pp2, wp2) —(4/9,1/3)  —(5/9,2/3) —(3/7,1/7) —(4/7,6/7)
ADwi/(B+7v) 0 0 0 0
ADa/(B+7) +1/9 -1/9 +1/7 -1/7
AD2/(B+y) 0 0 0 0

TABLE 4. Differences in optimal prices, demands and profits due to CRCs in Stackelberg games
(M1CRC(B) and § = 1).

GS MSS — RS MSS — i&ii MSS — iii&iv
A(par,war)  +(5/12,1/2)  +(7/16,1/2)  +(3/8,1/2)
A(pp1,ws1)  —(5/12,1/2)  —(7/16,1/2)  —(3/8,1/2)
A(paz,wa2)  +(1/3,1/4) +(3/8,1/4) +(5/16,1/4)
A(pp2,wp2)  —(1/3,1/4) —(3/8,1/4) —(5/16,1/4)
ADu/(B+7) 0 0 0
ADi2/(B+7) —1/12 -1/16 -1/16
AD2i/(B4+7) +1/12 +1/16 +1/16
AD2/(B+v) 0 0 0

GS RSS — MS RSS — i&ii RSS — iii&iv
A (pai,war) +(2/5,9/10)  +(3/7,13/14) +(1/3,5/6)
A(pp1,ws1)  —(2/5,9/10)  —(3/7,13/14) —(1/3,5/6)
A(paz,wa2)  +(3/10,1/10) +(5/14,1/7)  +(1/4,1/12)
A (pp2,wp2)  —(3/10,1/10) —(5/14,1/7)  —(1/4,1/12)
ADu/(B+7) 0 0 0
ADi2/(B+7) —1/10 —1/14 —1/12
ADa/(B+7) +1/10 +1/14 +1/12
AD2/(B+v) 0 0 0

also be obtained due to symmetry observed in Table 3. Now that price changes are given, we calculate demand
changes as shown in Appendix A.3. All the numbers in Tables 3 and 4 are derived based on Proposition 6.1.

Corollary 6.2. When in parallel distribution channels within a supply network, the results of applying CRC
are different for different game structures. However, for a specific game structure, different bundling strategies
(MNRN, MNRB or MBRB) behave the same on price changes, and thus also demand changes when applying
CRC.

Corollary 6.2 follows by Proposition 6.1 and Tables 3 and 4. The indifference of cost reduction impact among
bundling decisions is basically due to the linearity of demand functions and the fact that optimal bundle prices
do not experience any change. In transition from no bundling to bundling strategies, new variables are added
to the model but because they are involved in a linear arena with previous variables, the obsolete optimal
outcomes play some sort of give and take together and their values will be distributed in a homogenous manner.
Therefore, in general we observe no change in As.
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Let Dh{A’B}\kaiCRC(k) be the demand of consumers who buy product k from manufacturer 1 and prod-

uct {A, B}\k from manufacturer 2, under a cost reduction on product k¥ with compensation performed by
manufacturer 1.

Corollary 6.3. Demands of direct composites (bundles of separate purchases consisted of complementary com-
ponents from the same retailer) do not change due to any CRCs, no matter whether it is performed on one’s
own channel products or on the other channel’s. However, the indirect composites’ demands will change and the
following relations always hold: Dkv{AvB}\k|MICRC(k) = 7Dk7{A7B}\k|MQCRC(]€)’ Dka{AaB}\k|MiCRC(k) > 0 and
D{A»B}\kvk}MiCRC(k) > 0. The result holds for all game structures, and within each structure the values do not
change due to different bundling strategies. From these results, we also conclude that the market size does not
change due to any applied CRC strategy.

Corollary 6.3, followed by Proposition 6.1 and Tables 3 and 4, will come in handy later when evaluating profit
changes in Section 6.3.

Corollary 6.4. Due to an individual cost reduction on product k of manufacturer i (k € {1,2} Ni € {1,2})
compensated by cost increase of product {A, B}\k of manufacturer i, the retail and wholesale prices change in
the following order:

Atwg s ; < Atpgs_; < Atpr; < Atwy,,

_ - _ _ 6.1
A7 wia Bpk3—i < ATPiABNE3—i < ATDiABNR < ATW{A Bk (6.1)

The price change values are all considered positive in the above inequalities, while the signs on AT and A~
mean increasing and decreasing change, respectively. The inequalities reveal that a change in a product’s cost
mostly affects its wholesale price and then its retail price, which seems clear. The interesting insight is that the
substitute’s retail price changes more than its wholesale price. A same discussion holds for their complementary
products. This result holds for all game structures and bundling strategies, and also for every k € {1,2} and
i € {1,2} we have (A_w{A,B}\k,i7A_p{A,B}\k,i) = (ATwgi, Atpy ;).

For all the manufacturer leading games, the differences between consecutive price changes in the above
ordering are equal. This is probably due to the fact that in these game structures the more powerful players are
also the direct handlers of manufacturing costs. For instance, for MSSi&ii, the differences (divided by 5 + )
are equal to 1/8 =1/2—-7/16 = 7/16 —3/8 = 3/8 — 1/4, while for RSS-MS the differences are 3/7 = 6/7—4/7,
1/7=4/7—-3/7,and 2/7T=3/7—1/7.

The optimal prices have many similar expressions. This is due to the simultaneous moves in the game struc-
tures. However, the manufacturing costs coefficients are indeed different among them. In order to understand the
sensitivity of each optimal outcome to a relevant unit manufacturing cost, we shall also consider what happens
inside these coefficients.

Let Cp: , be the part of optimal retail price py;, which is either independent of any manufacturing costs, or
in terms of the expressions ZHG{A)B} ZjE{LQ} Cnj (Simply ca1+cp1+caz+cpa), and cgi +Cr3—i — C{a, BY\kii —
C{A,B}\k,3—i (e.g. for manufacturer 1, this expression represents ca1 + c¢p1 — ca2 — ¢p2). Now let @Zﬁj be the
coefficient of c,; in py; — Cpr. (cf. Appendix A.3). Let wl‘ @Ej be the expression in the coefficient @Zj which is
dependent on 8 and v, and 9°| gazzj be the independent expression. One might expect that for game structures
where there are simultaneous moves there would be equal values for z/J1| gozlij s or even °| @sz s. Surprisingly,
that is not the case here. The main reason of this difference, is the existence of market power.

Proposition 6.5. Vk,i, no matter what the game structure is, Vj € {1,2}, the 1/11’ gaz,zjs (Ym € {A, B}) are
equal, while V°| ¢}y s are different. Also, the V| o) s are different Vjs.

Unlike the results in the cost reduction scenarios, here the results are not exactly the same for other bundling
strategies of a specific game structure. For brevity, we have just discussed the resulting corollaries for no bundling
case (MNRN). See Appendix A.4 for examples of how Proposition 6.5 is established.
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TABLE 5. The independent expressions in cost coefficients of prices in Bertrand games; scenario

MNRN.
GS MSB RSB
Vle  car cB1 CA2 cB2 cA1 cB1 cA2 cB2
PA1L 0.267 —0.288 0.237 —0.208 —0.934 —1.505 1.495 1.066
PB1 —0.288 0.267 —0.208 0.237 —1.505 —0.934 1.066 1.495
PA2 0.237 —0.208 0.267 —0.288 1.495 1.066 —0.934 —1.505

pB2 —0.208 0.237 —0.288 0.267 1.066 1.495 —1.505 —0.934
WAl 0.333 —0.334 0.181  —0.152 0.355  —0.502 0.498 0.355
wp1  —0.334 0.333 —0.152 0.181  —0.502 0.355 0.355 0.498
WA2 0.181  —0.152 0.333 —0.334 0.498 0.355 0.355 —0.502
wpe  —0.152 0.181 —0.334 0.333 0.355 0.498 —0.502 0.355

TABLE 6. The independent expressions in cost coefficients of prices in Stackelberg games;
scenario MNRN.

GS MSS-RS RSS-MS

PVl car cB1 CA2 cB2 ca1 cB1 cA2 cB2
DAL 3.456 3.039 0.213 —-0.370 0.672 0.272 0.321 —0.279
PB1 3.039 3.456 —0.370 0.213 0.272 0.672 —0.279 0.321
PA2 —4.294 —4.627 0.451 —-0.216 —0.345 —0.645 0.453 —0.247

DB2 —4.627 —4.294 —0.216 0.451 —0.645 —0.345 —0.247 0.453
WAL 0.500 0.000 0.500 0.000 0.900 0.000 0.100 0.000
wpB1 0.000 0.500 0.000 0.500 0.000 0.900 0.000 0.100
waz  —4.250 —4.500 0.500 —-0.250 —0.115 —0.215 0.818 —0.082
wpe  —4.500 —4.250 —0.250 0.500 —0.215 —0.115 —0.082 0.818

The reason that we are seeking to drive 3 and v — dependent expressions into a corner and only compare
the independent expressions is that comparing the expressions when ¢1| s are equal is a lot easier because
the insights can be derived no matter what the values of the exogenous parameters are. Tables 5 and 6 show the
values of 1°| cpZ;j s for the game structures in which there is at least one simultaneous move. Based on what was
concluded on ! ’ gozj s being different for different js, notice that when comparing the impact of individual cost
changes on these prices it is only meaningful to compare the first two columns (1° of c4; and ¢p;) separately
together, and the second two columns (¢)° of c42 and c¢p2) together. For better comparative comprehension, the
numbers in Tables 5 and 6 are prvided as decimal approximates of the exact rational numbers extracted from
the exact mathematical expressions of optimal prices; see Corollaries 6.6 to 6.8 for the comparisons.

Corollary 6.6. In optimal states of Bertrand manufacturer leading game (MSB).

— The increasing effect of an increase in a product’s cost on its own (substitute’s) retail price is lower than its
decreasing effect on its direct (indirect) complementary product’s retail price.

— The increasing effect of an increase in a product’s cost on its own (substitute’s) wholesale price is slightly
lower (higher) than its decreasing effect on its direct (indirect) complementary product’s wholesale price.

Corollary 6.7. In optimal states of Bertrand retailer leading game (RSB).

— The decreasing (increasing) effect of an increase in a product’s cost on its own (substitute’s) retail price is
lower (higher) than its decreasing (increasing) effect on its direct (indirect) complementary product’s retail
price.



S1676 S. KEYHANIAN ET AL.

TABLE 7. The coefficient of (cg; —ca,i)—(cB3—i —cas—i) In (ppi —wp,i)—(Pas—i —WA,3—:)
for different channels (CH) in different game structures.

MSB RSB MSSRS MSSi&ii MSSiii&iv. RSSMS RSSi&ii  RSSiii&iv

CHI(¢) 1/9  2/1  1/12 1/16 1/8 1/2 1/2 1/2
CH2(¢) 1/9  2/7  1/12 1/8 1/16 1/5 3/14 1/6

— The increasing effect of an increase in a product’s cost on its own (substitute’s) wholesale price is lower
(higher) than its decreasing (increasing) effect on its direct (indirect) complementary product’s wholesale
price.

Corollary 6.8. In optimal states of MSS-RS and RSS-MS games.

— The increasing (decreasing) effect of an increase in a product’s cost on its own (substitute’s) retail price is
higher (lower) than its increasing (decreasing) effect on its direct (indirect) complementary product’s retail
price.

— An increase in a product’s cost only results in an increase in its own wholesale prices and does not affect its
direct complementary product’s wholesale price.

— The decreasing effect of an increase in a product’s cost on its substitute’s wholesale price is slightly lower
than its decreasing effect on its indirect complementary product’s wholesale price.

For example, one unit of increase in ¢ 41 increases p4; and pp1 by 3.456 and 3.039, respectively (3.456 > 3.039),
while decreases pas and ppa by 4.294 and 4.627, respectively (4.294 < 4.627).

6.2. On differences between retail and wholesale prices

The optimal differences p—w are actually complicated with varying coefficients of linear combinations of costs
and nonlinear expressions of exogenous parameters. The parallel structure of the supply network again provides
us with the advantage of making this analysis easier. Cost asymmetry makes the analysis of py; — wy; alone
sophisticated. However, Proposition 6.5 sheds light on the similarities and differences of cost coefficients within
the expressions pr; — pya,By\k,i and Wk; — Wia, By\k,i- This triggers the analysis of pr; — wr — (Pra,By\ki —
w{A,B}\k,i)-

Proposition 6.9. Regardless of the base market potential (o), price effect (3) and degree of substitutability
(v), for product k of manufacturer i, we have,

Phyi — Wiy — (P{aBYki — Wi, BNk) = ¢ [(cga,Bks — Cri) — (C{aBpes—i — Ces—i)] (6.2)

where ¢ € QT is a known and different positive rational number for each game structure. In each game structure
the value ¢ does not get affected by different bundling strategies. Table 7 shows the values of { for different game
structures and because sequential moves can affect it, channels’ relevant values are separated.

The right hand side expression in equation (6.2) equals zero at symmetric settings. This reveals that under
cost symmetry, we have py; — Wki = P{a,By\k,i — W{A,B}\k,i- FOr instance, in RSSMS we have pas — waz —
(PB2 — wp2) = % [(cB2 — ca2) — (cB1 — ca1)]-

Assuming, w.l.o.g, that (ca1 — cp1) — (caz — ¢g2) > 0 or ca1 — cg1 > caz — ¢p2, we can derive some insights
from Table 7 as well. For start, it can be concluded that in every game structure and for each manufacturer,
always one of the product’s retail price is set higher in regards to its wholesale price than the difference
between its complementary product’s retail and wholesale price. We call this concept (single product), the retail
advantage. For instance, if c41 —cp1 > ca2 — cpa, the result in Table 7 shows that product channel 2 has a retail
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advantage for product B in MSSiii&iv meaning if the difference between product A’s optimal retail and wholesale
price is a positive value x, then retailer 2 is able to set product B’s retail price x -+ % [(ca1 — ¢cp1) — (a2 — ¢p2)]
higher than its wholesale price and as clear the bigger the distance between retail and wholesale price the better
for the retailer, and hence the appelation of the phrase retail advantage. The results show that this retail
advantage is possible on only one product.

Corollary 6.10. Assuming ca1 —cp1 > ca2—cpa and showing absolute values of retail advantage value (exclud-
ing the linear combination expression) by p, we have the following insights and ordinal relations derived from
Table 7,

— Retail advantage is much higher in retailer leading games than in manufacturer leading games.
— In retail leading games, retail advantage is highest in RSSi€ii game followed by other games in the following
order,
pRSS1&11 >p > pRSB. (63)
- In manufacturer leading games, retail advantage is highest in MSB game followed by other games in the
following order,

RSSMS > pRSSm&W

MSSi&ii __ pMSSiii&iv MSSRS. (64)

PMSE 5 >

Notice that the value of p has been calculated by summing up both channels’ retail advantage in a game
structure. For instance, pRSSMS = 1/2 4 1/5 = 7/10. A similar relation to equation (6.2) can also be concluded
for the difference between complementary product’s retail prices, and also the difference between their wholesale
prices.

Proposition 6.11. Regardless of the base market potential (o), price effect (8) and degree of substitutability
(v), for product k of manufacturer i, we have,

Phyi — PLA BNk = My (Chyi — C{a,B ki) + T (Ch3—i — CLA,BY\k,3—1) 5 (6.5)
Wi — WA BN ki = M (Chyi — C{aBN ki) T N (Ch3—i — C{ABPk,3—i) » (6.6

where mp, np, My, Ny are known and different positive rational numbers for each game structure. In each game
structure their values (see Tab. 8) do not get affected by different bundling strategies. Also following relations
hold,

Mp 4+ Np = My + Ny = 1, (6.7)

My — My = Ny — Ny = (. 6.8

For instance, in RSSMS we have pas — ppe = % (caz — cp2) — % (ca1 — ¢p1), and for the difference between
wholesale prices we have wjo — wps = 1% (ca2 — cB2) —1—10 (ca1 — ¢p1). Equations (6.5) and (6.6) explain how
cost asymmetry itself can change the differences in pricing. Equation (6.8) in fact results from the derivation of
equation (6.2) by subtracting equation (6.6) from equation (6.5). The readers can also verify this by using the

numbers in Tables 7 and 8.

6.3. On profit changes

It was shown in Proposition 6.1 how optimal price and demand changes are evaluated based on cost
reduction. With Propositions 6.9 and 6.11, it becomes easier now to evaluate the profit changes after
cost reduction, due to the presence of retail and wholesale price subtractions inside the profit functions.
When calculating the profit changes, we realize that if only one manufacturer practices cost reduction, the
profit change is still a function of the manufacturing costs. However, when both manufacturers practice
cost reduction this dependency is eliminated and no change in profits is observed. We call this situation,
a concurrent cost reduction (CCRC).
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TABLE 8. The coefficients m,,, m,, for different channels (CH) in different game structures.

MSB RSB MSSRS MSSi&ii MSSiii&iv. RSSMS RSSi&ii  RSSiii&iv

CH1(m,) 5/9  4/7  5/12 7/16 3/8 2/5 3/7 1/3
CHI(mw) 2/3  6/7 1/2 1/2 1/2 9/10 13/14  5/6
CH2(mp) 5/9  4/7 2/3 5/8 11/16 7/10 9/14 3/4
CH2(m.) 2/3  6/7 3/4 3/4 3/4 9/10 6/7 11/12

TABLE 9. Profit changes in different game structures.

XXmicre(p) (0)  MSB RSB MSSRS RSSMS
Aman T ® o7 166
Amarz 37 i & 100
Amp 31 5 T 3

Apa 31 5 T4 %

A Tlore s% % 1%1 1%0
XXarcro(s) (0)  MSSi&ii  MSSii&iv RSSi&ii  RSSui&iv
Aman 33 33 196 73
ATz o o % T4
AT 75 o % 3

A = 35 1o 7

A7l ere % % 11Ta36 %

A mloere 0

Proposition 6.12. Due to 6 units of cost reduction in product k by manufacturer i, the profit change for each
of the players in supply network is a different rational multiple of o fized expression:

xmicrok) (0) =6 (((cqa, Bk — ki) — (cra,Bprs—i — ces—i)) (L+ B+7) +26) . (6.9)

If the CCRC is practiced; meaning both manufacturers reduce costs simultaneously, the profits of players expe-
riences no change.

Proof of Proposition 6.12 can be found in Appendix A.7. The rational multiples for all game structures are
shown in Table 9. A7|cpe is zero for all game structures. This is due the fact that price and demand changes
based on simultaneous cost reductions are exact negatives of each other.

Notice that when we talk about CRC, only one of the manufacturers is practicing cost reduction, and the
other manufacturer applies no changes in his/her costs. The x value due to CRC from each manufacturer is as
shown in equation (6.10).

XM1CRC(B) (5)

(((car —ep1) = (ep2 — caz2)) (L + B +7) +29)
XM2cre(B) (9) | | (6.10)

=0
=0 (((caz —¢p2) — (ep1 —car)) (1 + B +7) +20).

In games MSB, RSB and RSSMS where there is simultaneous pricing inside the manufacturing layer, the
profit changes are equivalent for both manufacturers. The manufacturers might wonder who should practice
cost reduction, and who should not. Assume the situation as a classic game theoretical model as shown in
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(6.11), where 7 is the rational multiple calculated in Table 9, S (standing for Stationary) is the strategy of not
practicing cost reduction, and C' is the strategy to apply cost reduction with compensation.

Manufacturer 2

S c

S 0 rxmzcre(B) (6) \ (6.11)
Manufacturer 1 0 TXM2CRC(B) (0
TXM1CRC(B) (0) 0
TXM1CRC(B) (0) 0

Now, assume that w.l.o.g, ca1 — ¢p1 > ca2 — cp2 > 0. Therefore, xnicres) > 0 > XMmicre(B), and it can
be easily concluded that the strategy profile (C,S) is the dominant Nash equilibrium.

Corollary 6.13. Regarding cost reduction, it is in most benefit of the manufacturers, for the manufacturer that
has a higher difference among his/her complementary products’ manufacturing costs, to practice cost reduction,
while the other manufacturer should maintain his/her costs at their stationary level.

This result holds for other game structures too, regradless of whether the rational multiples (thus, profit
changes) among manufacturers are equal or not. In other words, if the mnufacturer with lower difference between
the manufacturing costs of his/her complementary products applies cost reduction, the profits will drop.

The rational multiples in Table 9 say a lot about how cost reductions affect different players and layers of
the supply network. For better interpretation of how the fractions compare to each other, we have depicted
these changes in Figures 8 and 9. The numbers in these figures are approximate decimals of their corresponding
fractions, and have been scaled to 1000 for better comparison among the gaps between profit changes. Due to
Corollary 6.13, we assume that cq1 — cg1 > ca2 — cpa, so the all the profit changes calculated in Table 9 are
positive and therefore, we call them profit gains. At first glance, the most profit gain relates to Retailer 1 in the
game structure RSSMS. However, in this scenario the manufacturers have a low profit gain compared to many
other game structures. This can be due to the fact that in RSSMS, retailers are leaders therefore they proceed
with the approach to maximize their own profits.

An interesting ordinal relation can be observed among profit gains. As we distance from the first mover(s),
the profit gain decreases. In other words, there is indeed a first mover advantage even in the case where one of
the manufacturers applies cost reduction.

For instance, in MSSiii&iv (for which w.l.o.g scenario MSSiii of Fig. 6 has been investigated), the first mover
is manufacturer 1 with 31.3, next is manufacturer 2 with 15.6, next is retailer 1 with 7.8, and finally retailer 2
with 3.9. The fractions in Table 9 can provide an even better insight on how each player’s share on profit changes
is deduced. For instance, again in the case of MSSiii&iv, the profit gets halved at each stage: é for M1, then
% X é = 6—14 for M2, then % X é = ﬁ for R1, and finally % X 1%8 = ﬁ for R2. These ordinal cost reductions
are presented in Table 10.

Corollary 6.14. When manufacturers are the leaders in pricing, the reduction of profit gain among players
experiences more intensity in comparison to when the retailers are leaders in that same game structure.

Corollary 6.14 is simply followed by the results in Table 10. In other words, for the whole supply network
to benefit from cost reduction activities, it is better for the retailers to be the first movers of pricing. This
finding can also be triggered by the fact that the retailers are neared to the end-customers than manufacturers
are. Therefore, they have a better sense of the market. Speaking of which, we have also investigated the whole
supply network’s profit changes and identified the share of manufacturers and retailers, separately, see Figure 10.
Surprisingly, the sum of profit changes conforms the same sorting achieved in Table 10.

Corollary 6.15. It is in benefit of the whole supply network to maintain simultaneous moves (cooperative
pricings) as much as possible to achieve a bigger cake for all the players to share.
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TABLE 10. Ordinal cost reduction multiples among all game structures sorted by the reduction
from first to last player.

GS Ordinal reduction From 1st to 4th
><1/2 1
RSB (R1,R2) —"(M1,M?2) 5
><1/
3 1
MSB (M1,M2) —"(R1,R2) 3
5 i
RSSMS R1 =" R2 —"(M1,M?2) i
Lo b

MSSRS M1 a2 B (R1, R2)
1 1
RSSiiikiv. Rl <3 R2 3 v1 "2 o

3 2 1
RSSikii R1 R B 2an

1 1 1
y y y
MSSi&ii M1 2 M2 PR 2 R1

1 1 1
y y y
MSSiii&iv M1 —2 M2 2 r1 2 o

MSB +74.07 - (4+98.77)
s 420 I -0
MSSRS +62.5 - (+76.4)

RSSiii&iv | +20.83 _ (+76.4)

e = o= o=

ol

MSSiii&iv +46.9 - (+58.6)
MSSikii +46.9 - (+58.6)
| | | | |
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FIGURE 10. Comparing profit gains due to M1ICRC(B) among different game structures within
different layers and whole supply network’s perspective.
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The results regarding whole supply network, although appealing, are all in favor of retailers. The manufac-
turers are the ones who actually accept the trouble of cost cutting actions. The results confirm that they prefer
a market in which more market power is granted to the manufacturing layer. If we consider the decision of
“Whether the manufacturers should set their prices simultaneously or sequentially?”, then, the manufacturers’
preferences would be as follows.

Corollary 6.16. When the retailing layer has more market power, if the retailers are playing Bertrand, the
manufacturers will be sure to choose playing Bertrand as well. The rest of the ordinal preferences of manufac-
turers in such a case is as follows:

RSB - RSSiii&iv > RSSMS - RSSikii. (6.12)

However, if the manufacturing layer has more market power, the retailers prefer playing Bertrand, no matter
the manufacturers have chosen to play Bertrand or Stackelberg. The rest of the ordinal preferences of retailers
in such a case is as follows.

MSB > MSSMS > MSSiii&iv = MSSi&zii. (6.13)

Corollary 6.16 shows that, when practicing cost reduction, the behavior of retailers and manufacturers will
eventually tend to a situation where both layers play Bertrand games, hence promoting cooperation within the
channels. Also in fully sequential games, both manufacturers prefer the iii&iv formation over i&ii. This means
after the last player of a layer has set his/her price, it is preferred that the next pricing action be performed by
the player from the opposite channel. For instance in MSSiii, the last player in manufacturing layer to set price
is M2, and the next player is R1 from the other channel. Again such a preference can be interpreted as an act
of promoting coordination (cooperation) among channels.

6.4. Numerical experiments on profits, market size and bundling gains

In some cases a player is forced to choose only one predetermined decision based on previous player’s action.
In manufacturer leading games, if the manufacturers choose to bundle, the retailers have no choice but to bundle.
Otherwise a conflict in demand balance will occur due to our discussion in Section 4. For the same reason, in
retailer leading games, if the retailers choose not to bundle then the manufacturers have no other choice than
not to bundle as well. Therefore, for the manufacturer leading games, the insights that can be achieved on
decisions are whether a retailer should bundle or not bundle in a case manufacturers chooses not to bundle.
And for the retailer leading games, insights reveal whether a manufacturer should bundle or not bundle in case
retailers choose to bundle.

Looking at the supply network as a whole, there can be two criteria for decision making; chain profit and
market size. The former is equal to total profits of firms and the latter is the total demand of all substitutable
composites and is used when the players are in the beginning stages of market development thus seek to increase
the market size as much as possible. However, it can be concluded that for each specific game structure, the
optimal market size remains the same no matter what bundling strategy the players choose. On the other hand,
demands of bundles (direct composites) behave differently from demands of indirect composites based on how
the players want to act (cooperative or competitive). Therefore, we use the chain profit criterion in this section
and analyze the changes in individual demands.

Tables 11 and 12 provide the optimal results of prices, demands and profits for different bundling strategies,
then the second mover can choose between due to the above discussion. These numerical results have been
derived for (o, 8,7) = (8,3,1) and (ca1,c¢B1,ca2,¢p2) = (1,1,1,2). Notice that 8 > 3+ holds and we have
applied the lowest possible value for price effect. This means the highest possible value for cross-price effect or
in other words the highest degree of substitution. We have also examined the results for a symmetric case of
(ca1,¢B1,ca2,c2) = (1,1,1,1) and («, 8,7) = (3,3,1) and another asymmetric case of (ca1,c¢p1,Ca2,Cp2) =
(1,1,2,2) and (o, 8,7) = (1,3,1). The derived insights here are for when the degree of substitution is at its
highest possible level and are the same for these numerical cases too. The third column under each game
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TABLE 11. Bundling (Not bundling) gain in chain’s demand and profit when the manufacturer
chooses not to bundle (retailer chooses to bundle) in Bertrand manufacturer (retailer) leading
game.

GS MSSRS (Retailers’ decision) RSSMS (Manufacturers’ decision)
Decision MNRB MNRN MNRB gain MBRB MNRB MNRB gain

S 1319.19 1304.97 +14.22  1032.36 1038.6 +6.24
>D 32 32 0 32 32 0
TM1 44417 44417 0 65.64 65.00 0.64
wM?2 590.08 590.08 0 101.96  212.20 +110.24
mR1 81.13 74.03 +7.11 328.20 333.00 +4.80
TR2 203.80 196.69 +7.11 536.56  428.40 108.16
D1y 9.50 4.17 +5.33 10.60 9.40 1.20
Dy 17.17 11.83 +5.33 19.80 18.60 1.20
Do 2.50 7.83 5.33 0.60 1.80 +1.20
Doy 2.83 8.17 5.33 1.00 2.20 +1.20

TABLE 12. Bundling (Not bundling) gain in chain’s demand and profit when the manufacturer
chooses not to bundle (retailer chooses to bundle) in Stackelberg manufacturer (retailer) leading
game.

GS MSSiii&iv (Retailers’ decision)  RSSiii&iv (Manufacturers’ decision)
Decision MNRB MNRN MNRB gain MBRB MNRB MNRB gain

S 1720.36  1708.36 12 112542  1132.53 +7.11
>D 32 32 0 32 32 0
mM1 495.125  495.125 0 91.166  90.278 —0.889
M2 871.563 871.563 0 193.542 253.139 +59.597
TR1 131.781 123.781 8 273.500 278.833 +5.333
TR2 221.891 217.891 4 567.208 510.278 —56.930
D1 9.125 3.125 6 8.833 7.500 —1.333
D22 18.875  12.875 6  21.833  20.500 —1.333
D2 1.875 7.875 —6 0.500 1.833 +1.333
Doy 2.125 8.125 —6 0.833 2.167 +1.333

structure describes the gain of the corresponding bundling structure formed by the second mover’s choice. For
instance, in RSS-MS game, when the retailer chooses to bundle, if the manufacturer chooses to bundle as well,
then the MBRB bundling structure is formed and the whole chain receives 1032.36 units of profit, while if he/she
chooses not to bundle, the MNRB structure is formed leading to 1038.6 units of profit. Hence, the MNRB gain
of 6.24 is derived. Table 12 shows the same results for one of fully sequential structures of Stackelberg games.
The results are the same for other Stackelberg structures.

The following insights are derived from Tables 11 and 12.

Numerical Insight 6.17. For constant values of exogenous parameters, the optimal market size does not
change for different game structures and bundling strategies.

Numerical Insight 6.18. Chain profits are higher in Stackelberg structures than Bertrand structures. There-
fore, in order to achieve more chain profit, at least one of the players should make their moves sequentially.

Numerical Insight 6.19. For chain profit maximization, no matter what the game structures are,
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— The increasing (decreasing) effect of an increase in a product’s cost on its own (substitute’s) retail price is
higher (lower) than its increasing (decreasing) effect on its direct (indirect) complementary product’s retail
price.

— In manufacturer (retailer) leading games, when the manufacturers (retailers) choose not to bundle (to bun-
dle), the retailers (manufacturers) choose to bundle (not to bundle).

— In retailer leading games, when the retailers choose to bundle, the manufacturers choose not to bundle.

Insight 6.19 reveals that the MNRB bundling structure works best than the other two structures when the
criteria is chain profit maximization. However, in retailer leading games, it always leads to significant loss for
one of the retailers. For instance, in the RSSiii&iv structure, the MNRB strategy is in favor of all players’ profits
(the slight decrease in M1’s profit is negligible) except retailer 2 who experiences a loss of 56.930 units. In this
example, the manufacturers receive an overall gain of 58.807, while the retailers receive an overall loss of 51.597.
The loss of retailers is lower than the gain of manufacturers. This mitigation of loss might have occurred due
to the more market power of retailers.

Numerical Insight 6.20. The MNRB bundling structure is an unstable bundling strategy profile in retailer
leading games. Meaning that the retailers (the more powerful players) are reluctant to be the first mover and
are eager to wait for the manufacturers to make their move first. The manufacturers, knowing this, are also
eager to let the retailers have their turn. This can also be known as the second mover’s advantage. Therefore,
for this strategy to be chosen a revenue sharing agreement (contractual coordination) seems necessary in order
to drive the market to a stable position.

Although the sum of demands (market size) does not change for any of the game structures, but the individual
demands change. For instance, in MSSiii&iv game, MNRB leads to 6 units of increase in demands of direct
composites while the same unit of decrease in the indirect composites’ demands.

Numerical Insight 6.21. In manufacturer leading games, if the retailers choose to bundle after the manufac-
turers have chosen not to bundle, then besides from the fact that a better chain profit is achieved, the demand
of direct composites experiences a higher level as well, while in retailers leading games the demand of indirect
composites increase. The latter and former case also resemble a cooperative and competitive behavior, respec-
tively. In fact, if the channels are willing to encourage consumers to buy direct composites (competitive) they
are better off playing a manufacturers leading game.

The above insight reveals that if the manufacturers move first, the chances of the consumers buying both
products from the same channel are higher, while if the retailers move first, the consumers will behave more
variety seeking. Insights 6.17-6.21 were derived based on the lowest value for 3. As (8 increases, and w.l.o.g
assuming that  remains constant, the retailer leading games insights do not change, but in manufacturer
leading games the MNRN strategy gradually becomes superior to MNRB strategy.

Numerical Insight 6.22. As the degree of substitutability gets lower, the retailers become more reluctant to
bundle, after observing that the manufacturers have chosen not to bundle.

6.5. Visualized numerical examples

Here, some numerical examples are visualized to provide abetter interpretation on how different scenarios
behave. The sensitivity of numerical examples is set on price effect () in order to also capture the change of
optimal behavior due to its distance from degree of substitutability (). v is set constant, therefore, higher 3
means the system is experiencing a relatively smaller ~.
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TABLE 13. Chain profit for different bundling strategies in different game structures for numer-
ical examples (the MBRB strategy returned negative profit for these numerical examples).

S MSB RSB MSSRS RSSMS

Case B MNRN MNRB MBRB MNRN MNRB MBRB MNRN MNRB MBRB MNRN MNRB MBRB
(Symm, 4.00 0.9 0.88 0.89 0.9 0.37 0.88 0.92 0.88 0.84 0.92 0.88 0.85
a=3) 3.75 2.87 2.77 2.78 2.9 1.12 2.75 2.86 2.76 2.64 2.88 2.75 2.68
(Asym:1, 3.25 212 208 207 207 84 199 214 209 205 211 205 202

o =38) 3.01 926 936 935 715 2509 719 1136 1145 1135 924 932 925
(Asym:2, 3.25 1.26 1.25 1.24 1.36 0.2 1.34 1.19 1.18 1.17 1.23 1.22 1.21
a=1) 3.01 14.5 14.7 14.6 11.5 37.1 11.6 17.51 17.64 17.49 145 14.65 14.6
S MSB RSB MSSRS RSSMS

Case 15 MNRN MNRB MBRB MNRN MNRB MBRB MNRN MNRB MBRB MNRN MNRB MBRB
(Symm, 4.00 0.9 0.85 0.82 0.91 0.87 - 0.91 0.85 0.82 0.91 0.87 0.83

o =3) 3.75 2.83 2.68 2.58 2.85 2.73 - 2.83 2.68 2.58 2.85 2.72 2.63
(Asym:1, 3.25 217 211 207 216 210 - 215.6  209.9 205.8 212 206 202

o =8) 3.01 1514 1519 1511 1332 1337 - 1422 1427 1419 1003 1010 1003.5
(Asym:2, 3.25 1.14 1.12 1.11 1.16 1.15 - 1.07 1.06 1.05 1.11 1.10 1.09
a=1) 3.01 229 23 22.85 20.3 20.4 - 21.54 21.62 2150 15.5 15.7 15.6

6.5.1. Individual and chain profits

Numerical results show that under symmetric settings, MNRN strategy always leads to highest chain profit
and also market size (chain demand). The result holds for market size in both asymmetric cases, while in those
cases there are values of 3 for which the MNRB strategy leads to highest chain profit (Tab. 13).

The results in Table 13 reveal that chain profit tends to be lower for most of MNRN strategies in retailer
leading games compared to manufacturer leading games. Lower (3, meaning higher degree of substitution leads
to higher chain profit. In asymmetric cases, MNRB is the superior strategy at the lower bound of 3. In those
cases even MBRB strategy outgoes the MNRN strategy. This holds for all game structures. Figure 11 shows a
mesh diagram of colors for better understanding of how much profit each player gains from each game structure.
In this figure, the profits have been normalized into the interval [0, 1]; the white color representing 0 and black
color representing 1. Therefore the profits that are higher are darker.

Clearly the retailers experience more profit in retailer leading games and manufacturers in manufacturing lead-
ing games. In the symmetric case, manufacturer 2’s profit tends to be higher than manufacturer 1’s profit in MSSRS
and MSSiii&iv, while in MSSi&ii manufacturer 1’s profit is higher. Although in all these games manufacturer 1
is the first mover, in MSSRS and MSSiii, retailer 2 who belongs to manufacturer 1’s channel has a simultaneous
move (final move somehow) or a strict final move by which he maximizes his outcomes. While in MSSi, retailer 1
from manufacturer 1’s channel is the one who makes the final move. The result also holds for the asymmetric case
1, but not case 2 because of the high manufacturing costs manufacturer 2 incurs. Retailer 2’s profit tends to be
higher than retailer 1’s profit in RSSMS and RSSiii&iv for the same reason that retailer 2 is not the first mover in
any of those structures.

6.5.2. Individual demands, individual and bundle prices

Although the ordinal relationships among profits do not tend to change much due to changes in degree of
substitution, the demands, individual and bundle prices experience a lot of ordinal change. As an example,
Figures 12 and 13 show the behavior of optimal demands and bundle prices, respectively for retailer leading
Stackelberg games. The order of graph labels presented in the right side are only related to the upper bound of 3,
and it can be seen that they are different for the lower bound.
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FIGURE 12. Retailer leading Stackelberg games’ optimal demand for « = 1,5 € (3,3.4),A =1,

and asymmetric case 2.
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In the examples shown in Figure 12, we have set the upper bound of 3, in a way that the final ordinal
relations are revealed. Between 3 values 3.2 and 3.4 the individual demands are struggling to find their final
place which they eventually reach at the upper bound of 3.6. Interestingly, before the demand ordinal relations
start changing, the bundle prices have found their places. This holds for the individual prices as well.

In symmetric settings, the ordinal relations of all variables do not tend to change, Figure 14. Also notice the
difference between bundle wholesale prices and bundle retail prices which tends to remain approximately the
same for all game structures.
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7. CONCLUSIONS

We analyzed pricing and bundling decisions from different aspects in a parallel-wise structured dual channel
supply chain. The products were considered requisite complementary products leading to the final configuration
of the market as two direct composites and two indirect composites. The key feature of our model was that the
consumers have freedom of choice in buying each of the components of their required composite. For instance,
a consumer can buy the hardware from one brand and the required software package from another brand.
Considering the concept of market power and the possibility of combination of simultaneous and sequential
moves in the game, we derived optimal retail and wholesale prices for two Bertrand game structures, and six
Stackelberg game structures. Bundling strategies were used in both retailer-manufacturer and consumer-retailer
relations. Our results showed interesting and reliable insights for managers who are seeking decision support
for examining impacts of cost reduction scenarios and market power structures on optimal outcomes such as
prices, demands and profits. The major findings are summarized as follows.

(1) Cost reduction with compensation did not change market size (sum of demands) but resulted in an increase
(not necessarily equivalent) for all players in the supply network. In other words, the cake does not get
bigger, just more delicious.

(2) Under cost asymmetry, coefficients of manufacturing costs played an important role in identifying the
behavior of optimal price, demand and profit changes compared to each other. Especially, meaningful rela-
tions were observed among complementary and substitutable products forming the aspect of substitutable
composites within a supply network with parallel supply channels.

(3) Cost reductions have various increasing and decreasing impacts in prices, demands and profits. Our results
showed that the increasing effect on different products and players are different than the decreasing effect
among different game structures. Meaningful relations are also derived for the comparison among comple-
mentary and substitutable products.

(4) Manufacturers incured different costs for providing their products. Our results showed that the differences
between optimal retail and wholesale prices has a meaningful relation with the gaps between the manufactur-
ing costs of complementary products. Interestingly, it was then concluded that it is in favor of manufacturers
(profit-wise) when only the manufacturer with the higher gap between his/her complementary products’
costs, practices cost reduction with compensation.

(5) The retail advantage granted to the retailer (the difference between one of the product’s retail and wholesale
prices, comparing to its complementary product), is much higher in retailer leading than manufacturer
leading game structures. The retail advantage reached its highest level when in one of the fully sequential
retailer leading games. While in manufacturer leading games, the highest level is granted when both retailers
and manufacturer play Bertrand.

(6) Profit gains due to cost reduction were in favor of the players that had more market power. As the profit
change moved along the ordinal pricing actions, it diminished based on meaningful relations with optimal
price and demand changes which were derived carefully in terms of asymmetric cost coefficients.

(7) Comparing profit changes, showed that the fully sequential models are the last preferences in both retailer
leading and manufacturer leading game structures. Both manufacturers and retailers prefered Bertrand
(simultaneous) pricing games in order to achieve the highest profit changes due to possible cost cutting
actions. This decision was also in benefit of the whole supply network’s profit.

(8) Exact propositions showed that cost reduction led to no specific distinguish among bundling strategies.
Because the optimal bundle prices (retail or wholesale) remained the same after applying cost reductions.
The bundle prices acted as an intermediary in establishing the behavior of the main retail and wholesale
prices within the supply network.

(9) Numerical insights showed that the game structure where manufacturers do not bundle and retailers bundle,
is an unstable strategy for the whole supply network, because both layers (whether manufacturing or
retailing) are reluctant to be the first movers no matter who holds more market power. Other than the
exact insights which encourage simultaneous moves, these findings promote coordination among layers
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motivating them to either both bundle or not bundle the products in order to reach a more stable and
profitable market.

In spite of linear demand functions, finite number of players and simple game structures, the optimal pricing
solutions were very complex and seemed unbreakable. Many previous researches have tackled complexity by
solving the models in symmetric settings and numerical examples. However, we showed that regardless of the
mathematical sophistication that these structures can bring, it is still possible to derive managerial insights from
masked parameters especially by applying comparative analysis on them. Therefore we encourage researchers
to develop and generalize these models in many ways as follows:

(1) Under our assumptions, the methods did not succeed in finding a feasible solution for the case where
manufacturers bundle and retailers do not bundle. The bundling strategy led to some conflicts concerning
incoordination of demands. Researchers are also encouraged to further develop assumptions and practical
methods for resolving conflicts arising from the inconsistency of the way suppliers sell to retailers and retail-
ers sell to consumers. These methods are expected to fall in the category of dynamic inventory coordination
and possible revenue sharing contracts.

(2) Marketing science can also be applied to the model in the context of consumer behavior. Considering
bigger cross-price effect for cross-composites in the demand function of a same element composite and vice
versa, means that they are more substitutable in the opinion of consumers; in other words the consumers
appreciate diversity and are willing to choose a mixed composite instead of two products from the same
brand. While lower cross-price effect can show more brand loyalty; the consumers are reluctant to buy a
mixed composite and prefer a package of same brand products which is believed to have more compatibility.

(3) We calculated and discussed insights on profit changes due to the concurrent cost reduction with compen-
sation strategy which can be considered as a coordination strategy as well. Due to the different profits for
different game structures and bundling strategies, we did not proceed with further comparative analysis
on the profits. One might be interested in applying consecutive concurrent cost reductions with compensa-
tion to observe the trajectory of profits; now made easier mathematically due to the results of this paper.
It can also lead to insights on how the profits behave in response and whether the behavior will converge
to a specific level.

(4) Eventually, we discussed various game structures with different set of rules. A very interesting problem arises
when decision makers have desired results beforehand and need to make sure the game players behave in a
way such that those outcomes are achieved. To do this, they should have the power to design the suitable
game structure and rules. Instead of asking how the players would behave, one can control and lead their
actions. This setting can be considered in the field of incentive compatibility and mechanism design. In
order to achieve an optimal mechanism design, one should first evaluate the expected profit for different
game scenarios. Then the problem would be turned into a maximzation of the expected profit subject to
constraints of incentive compatibility and individual rationality. Allocation rules can vary based on the
definition of cost reduction with compensation presented in this paper. However our study can also be
rewritten in a way that covers the assumptions of mechanism design, but still it is worth noticing that the
supply chain literature, specifically the ones discussing market powers and move sequences, lacks precise
and focused studies concerning this field.

APPENDIX A.

A.1. Proof of Proposition 4.1

Here, we examine the Hessian matrix of retailers’ profit functions for the case MSB-MNRN in Section 4.2, in
order to verify their concavity. A same analysis can be performed for all the other game models.
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For the retailers, w.l.o.g, assume the case of retailer 1. Because retailer 1 has only two control variables
(responses), namely pa; and pp1, its corresponding 2 x 2 Hessian matrix is as shown in equation (A.1).

827!'1?1 371’131
_ dp%, Opaips1
Hess mp1 (pav, o) = [ 500 e

2
OpBipa1  Oppy

_( —4B—7) —2(8-3)
B <2(ﬂ3v) —4(B—7) ) (A1)

In order to check whether the hessian matrix is indefinite, positive or negative definite, the first and second
order leading principle minors of the matrix, should be checked. Let’s name them h; and hso, respectively as
shown in equation (A.2). hs is simply the determinant of the whole Hessian matrix of equation (A.1).

hi1 = (Hess mg1);; = —4(8—7),

—4(B—-7v) —2(B—3
he = |Hess mgy1| = ’ _9 ((5 _ 377)) _4((5 - ,;Y)) ’
= 1267 — 84y — 207
=4(6+7) (33 -57). o

Due to the assumption 3 > 3, it can be verified that h; is negative and hso is positive, leading us to the result
that Hess mgr1 (pa1,pp1) is negative definite or w1 (pa1,pp1) is a concave function. A same analysis can be
performed for mro. Therefore, it is concluded that the response retail prices acquired in equation (4.8) maximize
their corresponding profit functions. O

A.2. Proof of Proposition 4.2

Notice that Because the manufacturers are pricing leaders, due to the response maximization procedure
depicted in equation (4.1), the retail prices are in fact functions of wholesale prices. Therefore, we should
replace the optimal retail prices shown in equation (4.8) inside manufacturers’ profit functions making them
independent from any other control variable than the set of wholesale prices themselves. By doing so, we achieve
manufacturer 1’s profit function as simplified in equation (A.3). In fact, this is the profit function from which
the stationary points in equation (4.10) are achieved.

1 (
3(78 —17y) (56 — 37)
— 31w powp1 2 — Ywh, (2 — 3lwaiwpe > + dwprwpe® — 204w a0y
— 204wpafy + 370w, B2y + 104w a1w A2 6%y + 598w 4 wp1 7Y
+ 175w a0wp1 B2y + 370w%, 32y + 175w a1wp2 8%y + 104wp1wpa 32y
+ 90wA1a72 + 90w31a72 — 322w31/6’72 — 380wA1wA2672
— 754w g wp1 By? — 325w 0w p1 By — 322w, By — 325w 1w B2 By

TM1 = 0waraf? + Wwpraf® — 9war’ B> + dwarwazB — 118warwp: B°

— 380w31w32ﬂ72 — 18w%173 + 288w,41w,42'y3 + 66wA1w3173

+ 237w,42w3173 — 18w%173 + 237w,41w3273 + 288w31w32’y3

+cB1 (31w,42ﬂ3 + 94w3153 — 4w32ﬂ3 — 175w,42ﬁ2’y — 37Ow31ﬁ2’y

— 104w g 3%y + 325w a2372 + 322wp1 By + 380w pa 37>

— 23Twa2y” + 18wp1vy® — 288wpay” — 6a (1567 — 3437 + 15+7)

+ way (598% — 2998%y + 3778~ — 337%) )

+ear(—dwazf? + 59wp1 7 + 3lwpaf° — 104wazf%y — 299w 6%y



PRICING AND BUNDLING DECISIONS FOR STACKELBERG GAMES S1691

— 175wp2 6%y + 380w 4237 + 37Twp1 By + 325wp2 372
— 288wa27” — 33wp1v® — 23Twpay® — 6 (1567 — 348y + 15v°)
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Similar to the retail profit function, the Hessian matrix of the function 7y is shown in equation (A.4).
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Here, the determinants h; and hy are calculated as shown in equation (A.5).

4 (473% — 1853%y + 161872 + 993)
3(78 —177) (56 — 37) ’
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ho = . (A.5)
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The expressions 78 — 177, 53 — 3~ (in the denominators), and 33 — 5y are all positive due to the assumption
B > 3v. Also, 8 > 3v = %7 > %7 which leads to 173 — 46y > 0 concluding that 1732 — 4637y + 7?2 is also
positive, therefore hqy is positive. Also, the quadratic 4732 — 1853y + 16142 is positive because 52’s coefficient
is positive and A = (—1%1)2 — 4 x 47 x 161 < 0. Therefore, the expression 3 (4752 — 1858~ + 16172) + 943 or
4733 — 1853%y + 161372 + 972 is positive, which leads to the conclusion that h; is negative. Hence, we conclude
that Hess 71 and Hess my/2 are also negative definite meaning that the wholesale price responses in equation
(4.10) maximize their corresponding manufacturers’ profits. O

hy =

A.3. Proof of Proposition 6.1

Here we pursue with a mathematical experiment of how such a result is achieved for optimal prices and
demands in the scenario MSB-MNRN. Counsider the retail price solution for pg;, as shown in equation (B.1). Let
Cpz ., be the part of optimal retail price py,;, which are either independent of any manufacturing costs, or in terms
of the expressions Zne{A’B} Zj€{1,2} Cnj (Simply ca1+cpi4cas+cpa), and cri+Cr,3-i—C{A, B}\ki —C{A,B}\k,3—i
(e.g. for manufacturer 1, this expression represents c41 + cp1 — ca2 — cp2). We examine the situation w.l.o.g for
product Al. Cp+ is shown in equation (A.6). After subtracting Cp-  from p,, the leftovers would be as shown
in equation (A.7).

c 1 (1221 (34cr + 408 (ca1 + caz + ¢cp1 + ¢p2))
p

a7 62271 78 — 17y

276768  T5A803 (473 — 1217)
—58+3y | 3152 — 6637 — 3372

> (ca1 — ca2 + cp1 — cB2)

L S6L(4B (370 = 83y) (car + cas + cp1 + cpa) + T4a (176 = T7)) (A.6)
3702 — 1188y + 3742 '
. 1
Piar = Oy, = gy (16635¢a1 +4.(3687c40 — 4490c1 — 3232cp5)) (A7)

Now due to the CRC (cost reduction with compensation) strategy, if manufacturer 1 decreases cpi by 9,
ca1 correspondingly decreases by 0. As shown in equation (A.8), the expressions ca1 + ¢p1 + ca2 + ¢p2 and
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ca1 + ¢B1 — ca2 — ¢go remain unchanged which justifies that Cp21a150 remains unchanged after applying CRC.
The only part which is affected by the CRC, is equation (A.7).

(car +6)+ (cB1 —6) +caz +cp2 = ca1 + 1 + ca2 + B2
(ca1 +6)+ (cp1 —6) — caz — cp2 = ca1 + €B1 — Ca2 — CB2. (A.8)
Let ’pjﬁu — szl‘ CRO(B1) represent the leftovers of p%, after applying cost reduction with compensation in

product B1, see equation (A.9).

|pa1 — Cp, ]CRC(BD o1 (16635 (ca1 + &) + 4 (3687caz — 4490 (cp1 — §) — 3232¢p2))

1
= (Pi1 — Cps,,) + oo (16635 + 4 x 4490)4,

62271
34595 5x 11 x 17 x 37 5
ACRC(B1) _ _ _ 25 A
= Sy 62271(S 32 x 11 x 17 x 376 95 (A.9)

Therefore, cost reduction of manufacturing product B1 by ¢ units, increases p%; by %6 . Now consider optimal
wholesale price of scenario MSB-MNRN, see equation (4.10). Cy+ | is shown in equation (A.10). After subtracting
Cy, from w},, the leftovers would be as shown in equation (A.11).

oL = 1 148 (ca1 — ca2 + ¢B1 — ¢p2) B (376 — 997)
Wi = 1221 3132 — 6637 — 3372
n 66 (2 (ca1 + caz +cp1+cp2) B(378 —99y) + 37a (56 — 37)) (A.10)
3737 — 1183~ + 372 '
Wht = Cu, = To57 (4061 +221ca0 — 408 — 186c52) (A.11)

After applying cost reduction with compensation in product B1, the leftovers of w?,will change as shown in
equation (A.12).

lwhy — Cur, |c3c<31> 591 (406 (ca1 + 6) + 221c g0 — 408 (cp1 — §) — 186¢p2)

= (wh; — Cur,) + i(406 + 408)5,

1221
814 . 2x11x37. 2

ACRCBY _ — -5 A12

= Buy, 1221°  3x11x37 3 (A.12)

Therefore, cost reduction of manufacturing product B1 by § units, increases w¥,; by %6. Considering 6 = 1,
we have the couple + (9, 3) in first row and column of Table 3. The same procedure can be proven for demand
functions, and the other couples in the Tables 3 and 4, are also derived with the same approach.

In summary, along with the defined notations, consider a same definition for notations w,’?l, w,ﬁl, w,‘;‘f, w,f?
for the coefficients of manufacturing costs in optimal wholesale prices. The optimal retail and wholesale prices

are then written in the form shown in equation (A.13).

* Al B1 A2 B2
Pri — Cpz, = Phi CA1L + Qhi CB1 + Py CA2 + Qi CB2,

Al Bl A2 B2
wi; — Cyr. = Wi €A1 + Wi €81 + W Ca2 + Wy Cpa. (A.13)

In that case, when manufacturer 1 practices § units of cost reduction for instance, for product B1, the change
in the first channel’s optimal retail and wholesale prices are § (p7! — ¢5!) and & (wii! — wPl), respectively.
The changes in demand are consequently derived based on the above expressions, and then profit changes are

dervied based on both price and demand changes. For instance, consider Dia, see equation (4.2).
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After applying CRC(B1), due to the calculated price changes in Table 3, the change in D2 is calculated
as shown in equation (A.14). The other demand changes shown in Table 3 can be obtained through a same
approach. (I

Dis =a— B (pa1 +pB2) + v (pa1 + pe1) + 7 Paz +pB2) + v (Pas + ps1)

CRC(B1) 5 4
= Dulcrepy =a—8 (<pA1 + 95> + <p32 - 95>)
5 5 4 4
+ 7 <<PA1 + 95) + (pBl - 95>) + <<PA2 + 95) + (pBl - 95>>
4 5
+ <<pA2 + 95) + (pm — 95>)
5 4 4 5
= D — - — = - — =
12 — B (9 9) + 76 (9 9>
1
= D12‘CRC(31) — Dy = ADlg = —56(ﬁ+’}/) . (A14)

A.4. Proof of Proposition 6.5

We examine the case for optimal solution p%; in game structure MSS-RS scenario MNRN, see equation (C.1).
The coefficients of c41 and c¢py in p¥; are as shown in equation (A.15).

Al _ 862215 | 28 _ B, AB(~136+35)
YAl = 249492 T 34(78—177) _ 158—97 ' 17546812

(A.15)

Bl _ 758260 | 23 s 43(—133+357)
PAL = 249292 T 34(75—177) _ 156—97 | 17B2—460B7+2

A 2 4B(—138+35 A 862215 ~ ~
We have 9| o1 = ¢! ] = 34(7[3&77) ~ Aoy T 17[7’(2—46,8'y+1)2 and ¥°[ 941 = 55155 = 3.456 # 3.039 =

;igigg = 1°| pB1. And that is how the numbers 3.456 and 3.039 in Table 6 are calculated; corresponding to
columns c41 and cp1, and row pai, respectively.

The coefficients of c42 and cps in p%; are as shown in equation (A.16). It is clear that the dependent expression

of cost coefficients c42 and cps are different from their counterparts; ¥'| 47 = ' 57 and ¢°| 42 = 2315 ~

0.213 # —0.370 = — 22380 — ¢°| B2 And that is how the numbers 0.213 and —0.370 in Table 6 are calculated;

corresponding to columns cao and cpo, and row p41, respectively.

53151 28 3
A2 _
YA Su0a02 T 31 (78—177) | 13— 9y
46 (378 — 997) (13982 — 100237 + 1227+?)
1223 (56934 — 207233 + 34146272 + 163667° — 122374)
92386 23 3
B2 _ _
P "ou0000 T 3a(TB—17) T 155 — 07
48 (378 — 997) (13952 — 10023 + 122742

T 1223(5698% — 297233 + 3414322 + 1636373 — 122341)

(A.16)

The same results can be achieved by a similar attempt for all the other optimal prices, along with their cost
coeflicients. O

A.5. Proof of Proposition 6.9

We examine the case for optimal price solutions of products A1 and B1 in game structure MSS-RS scenario
MNRB, see equations (C.5) and (C.9).
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From Proposition 6.5 we know that 1 ‘ gomJ = ¢1’ ©'p1 is true (Vm € {A, B}). Therefore, we have:

Pau-phi= Y > (ww:f—wwgi)cm

j€{1,2} me{A,B}
wi—wi = Y > (001w - 0°lwR] ) e (A.17)
je{1,2} me{A,B}

The values in Table 6 are approximates of decimals which were calculated due to the fractions such as the °
part in equation (A.15). Here we use their exact fractions for an exact comprehension of the result in equation
(A.17). Therefore, we have:

.. (517314 181139 181139 517314
Pa1=PB1= | R0 ~ 201705 806820 806820

L (365109 (105536 L (105536 365109
806820 806820 /) ) 42 806820 806820 ) P2

1
=13 (5ear + Teaz — 5epr — Tepa)
* * 1
Wa1 —Wp1 = 5 (ca1+caz —cp1 — cB2). (A.18)

Finally, we have:

1
— (bcar + Tcas — bepy — Tepa) — 3 (ca1 + ca2 —cp1 — cB2)

Par — Pp1 — (Wi —wpy) = 12

=1 (—ca1 +cB1 + caz — cB2)

1
12

And that is how the number ¢ = 1—12 corresponding to game structure MSSRS and channel 1 (CH1) in Table 7
is calculated. The same results can be achieved by a similar attempt for differences among all the other optimal
retail and wholesale prices. O

= P — Wi — (Pp1 — wp1) = 7 (g1 = ca1 — (B2 — caz)). (A.19)

A.6. Proof of Proposition 6.11

The result achieved in equation (A.18) also justifies the forms discussed in Propsoition 6.11. Here we have:

—~= —~
¥ X b 7
Pa1—Pp1= 5 (ca1 —ecB1) + - (caz — cB2)
mlw nlw
Why — Wpy = ) (ca1 —ecp1) + By (ca2 —cB2) - (A.20)

The numbers m, and m,, correspond to the values of column MSSRS for CH1 in Table 8. It is clear that
my + Ny = My + Ny = 1 and my, — my, = ny, — ny, = 75 which is the value of ¢ corresponding to MSSRS game
structure for CH1, as shown in Table 7. The same results can be achieved by a similar attempt for differences
among all the other optimal retail and wholesale prices. (I

A.7. Proof of Proposition 6.12

Because, for each bundling strategy, the structure of profit functions are the same among game structures, we
prove the result for M1ICRC(B) and profits in bundling scenario MBRB, see equation (3.3). The same procedure
can be applied for MNRN and MNRB scenarios.
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Let’s investigate the case for mys1, w.l.o.g. Assume that w?, increases by z¢ units, after M1ICRC is applied.
Then, from Tables 3 and 4 we know that w},; will decrease by =6 units Also, if D12 decreases by yd units, Doy
increases by yd units. For instance, for RSS-MS game structure z = 35 and y = 15. Therefore, we have:

T hiicre = (011 — 0) — (ca1 +0) — (cg1 — ) (D11 — 0)
+ (wa1 + 26) — (ca1 +9)) (D12 — yd)
+ ((wBl — LE(S) — (CBl — 5)) (Dgl + y6) . (A21)

By subtracting the a1 before cost reduction, from mas1|y; cres the profit change is simplified as follows:

Amyn = T — T hvincre
=0((1 =) (D21 — D12) =z +y(ca1 — cp1 — (wa1 — wp1) + 20 — 2x0)) . (4.22)

By replacing the demand functions from equation (3.2), the bundle prices are omitted and profit change is
simplified as follows:

Amyrr = ca1yd — ((par — 1) — (Pa2 — pB2)) (=1 +2) (B+7)
—yd (ep1 + (wa1 —wp1) +2(—=1+x)0). (A.23)
Recall that from equations (6.5) and (6.8) we have:
pa1 —PB1 =My (a1 — cp1) + (1 —my) (ca2 — cB2)
Pa2 — PB2 = My (Ca2 — cp2) + (1 —my) (ca1 — cB1)

= (pa1 — pB1) — (Pa2 — PB2)
= (2mp — 1) (car — cp1) + (1 = 2myp) (caz — cp2) . (A.24)

And from equation (6.6) we have:
war — wp1 = My (ca1 — cp1) + (1 —my) (caz — cp2) (A.25)

where m,, and m,, are different for each game structure as shown in Table 8. Now by replacing equations (A.24)
and (A.25) in equation (A.23), profit change is simplified as follow:

Ampn =6 (y (1 —my) + (2my — 1) (1 —2) (B4+7)) ((ca1 — ep1) — (caz — cp2)) + 2 (1 — x) yd°. (A.26)
By investigating the numbers z,y, m,, and m,, in each game structure we can easily conclude that:

y(1—my) = (2m, ~1)(1—2) = (1-2)y. (A.27)

For instance, for RSB game structure we have x = g,y = % my = % and m,, = g. Therefore, we have

y(l—my)=2x(1-3)=4,2m,-1)(1-2)=(2x2-1) (lff)zﬁand(lfm)y: (1-9)xi=41,
which are all equivalent. The rational multiple mentioned in Proposition 6.12, is in fact the above equivalent
expressions. That is how the number E is calculated corresponding to row Amps; and column RSB in Table 9.
Hence, the profit change of manufacturer 1 is as follows:

Aﬂ'Ml = (2mp — 1) (1 — :L‘) 1) ((1 + ﬂ + ’7) ((CA1 - 031) — (CAQ — 032)) + 25)
= (2mp — 1) (1 — z) xanicre(s) (0) - (A.28)

Similar result can be verified for the retailers and manufacturer 2. O



S1696 S. KEYHANIAN ET AL.

APPENDIX B. OPTIMAL RETAIL PRICES OF STRUCTURES IN SECTION 4;
BERTRAND GAMES

In Section 4 we showed some of the optimal prices in the form of best responses and in terms of optimal
wholesale or retail prices. Here the exact equations of those prices are presented, which are in terms of costs
and exogenous parameters.

B.1. MSB-MNRN

1221 (34& + 48 an{A,B} an)
fo— 116635k + 4 (36875 — 4490 3232 » jetl 2y
Pki = 53971 crit4( Ck,3 C{A,B}\k,i C{ABW\k3—i) T 8- 17y
276763 75483 (470 — 1217)
53437 | 313 — 663y — 332 (Ch1 + Cr2 = C{ABY k1 — C{A,B}\k.2)
561 (45(375-—837)§:neaa3}ij‘F74a(17ﬁ-—77)>
j€{1,2}
B.1
+ 370% — 1180+ + 3772 (B-1)
B.2. MSB-MNRB
. 142 (10a + QZnG{{A,B}} an>
* ye{1,2
Pri = 6390 -2 (66186}” —8292¢k,3-; + 83936{,4}5}\;@’1' — 68720{‘4}3}\]@,371‘) + 25— 52/
10653 (43032 — 19638 + 21992) 7108
SF 1265 1 13507 1 07 T 2g 13y ) (B R T ClABNRL ~ an)ik2)

710c (342 — 10337 + 73v%) + 58 (21482 — 77587 4 6917%) 3" nea,B} Cnj

je{1,2}
B.2
+ 1233 — 7082y + 1276892 — 7143 ’ (B.2)

si; = [a (28— 37) (568° — 31687 + 56787* — 3217%) (288 — 12637y + 13587 + 97°)
+ (B —27) (168° — 8437 + 1298+ — 519°) [8 (8ca,s — ca3—i + 8¢cp,i — cB3—;) B
+12(=39ca; + 1lcas_i — 39cpi + 1lcp3_i) B3y + 6 (205ca; — 9Tcaz_; +205¢p,; — 9Tcp3_4) 2>
+9(=151ca; +108ca3_; — 151cp,; + 108cp 3-i) B7°
+ 3(173ca,; — 182ca3-; + 173¢cp,; — 182¢p,3-:) 7"]]
/ (3(28 —5v) (28 — 37) (126° — 708y + 1278% — T17°) (283% — 1263%y + 1358+ + 99°)). (B.3)
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B.3. MSB-MBRB

pZi = —105951cy; + 158169cy, 3—; — 16275IC{A7B}\;C7¢ + 1127290{A,B}\k,3—i

102240

42 43 - 11 11
- 606 (45 ) 3605 (Ck 1+ Ck2 — C{A,BW\k,1 — C{A,B}\k 2)
40% — 150y + 1292 =28+ 3y ’ ’ A A

355 <3204 (86 —117) + 848 —7) Xone(a.By cnj> 2272 <1Oa + B2 neqa,By an)

je{1,2} . je{1,2}
462 — 175y + 1672 203 — 5y
170408 (2623% — 119737 + 1341~2)
2833 — 12632 + 135372 + 977 (k1 + Ch2 = ClaBY k1 — C{A.B}\.2)

+

80 (142a (58— 97) (28 — 37) + 8 (26282 — 119787 + 134142) - 1e(a.5) cm)
Je{1,2}

+ 12033 — 7032y + 127692 — 7143 ’

sy = [20(26 — 37) (38% — 120y + 119°) (48° — 1587y + 12°)
+ (B —27) (287 =887+ 7v°) [8(ca,i +¢B,i) B° +6 (—8ca, + cas—i — 8¢, + cpz—i) B
+ 3(3lea; —8casz_i +3lep; —8cpa_i) fY2 +2(—29ca,; + 1lcaz_; — 29cp; + 1lcg3_4) 73]]
/ (28 =57) (28 = 3y) (48> — 158y + 129%) (48> — 178y + 167%)]. (B.5)

B.4. RSB-MINRN

The best response wholesale prices are calculated as follows:

20 B+~ 26 — 6y
e i — DPki T T - B.6
Wki = 357 5y + Cki — Pri t 35— 57k 36— 57]?{,4,3}\1@,3 (B.6)

The best responses of wholesale prices in this case are independent of the mutual product type’s price from
the same manufacturer. The optimal retail prices are then calculated as follows:

172200 + 843 ) nega,B} Cnj
je{1,2}
156 — 41y

Dri = —268ck; +429¢ck 3—; — 432C{A,B}\k,i + 3066{,473}\;673_,‘ +

L
287

3444 (Cri — Cr,3—i + CLABP ki — C{A,BP\k,3—i) B
+
96+~

(B.7)

We have separated the common statement between the optimal retail prices in which there is an expression
including sum of the unit manufacturing costs. All other expressions switch coefficients based on the product
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type and the firm selling it. The final exact form of the optimal wholesale price is as follows.

1
wi; = 9 (482¢k; — 419k 3—; + 414ca Bp\ki — 470004, BY\k,3—1)
68a + 1833 nea,B} Cnj
N je{1,2} da

153263 —517) | 9(3—3)
26 (113 — 23v)
62— 136y +1°

(k1 + Chi2 — CLABNEL — CLA,B}\E.2) - (B.8)

B.5. RSB-MNRB

The optimal wholesale and retail prices of RSB-MNRB game structure are given as follows:

N 1
Pri = 119 (4826ki —419¢,,3—; + 414C{A7B}\k,i — 4706{,4’3}\;6’3,1-)
68+ 186 ) nefA.B} Cnj
je{{1,2}} ! dov 2 (Chi — Chy3—i + C{A, Bk — C{A,BN\k,3—i) B (118 —237)
153 (263 — 517) 9(3—37) 632 — 1367 + 12 ’
(B.9)

si; = [(a (238 — 457) (68% — 138y +7°) + (B —37) (B — 27) (2 (11ca; — 2ca3—; + 1lep; — 2cp,3-4) B
+ 3 (*286,41‘ + 156,473_1- — 28¢cp; + 156373_1‘) By +3 (260,41' — 256,473_2' + 26cp; — 256373_1‘) 72))]

/(268 — 517) (8 — 37) (66> — 138y ++°)], (B.10)
1
Wi = 119 (219¢k; — 121k 3—; + 117ca Bpk — 138¢(a,B)\k,3—1)
238« + 63ﬂ Zn A,B} Cnj
jee{{l,2}} ! N 20 N (Chi — Chy3—i + C{A Bk — C{A,BNk3—ii) B (130 + 27y)
306 (263 — 517) 9(68—37) 2(60% — 1367y +12)
(B.11)

Like the RSB-MNRN model, the sum of all unit manufacturing costs appears as a common statement in both
retail and wholesale prices, however, not in the optimal bundle prices. The same occurrence can also be seen in
the solutions of RSB-MBRB game.

B.6. RSB-MBRB
The optimal retail and wholesale prices for the MBRB case are obtained as follows:

1 328cy; — 123ck,3—; + 1080{1473}\]@1' — 2886{,473}\;673_1'

« L 66004308 Y (A BY Cni
pk% 385 jee{{l,Z}} J 462(61“:76’“‘3—1'4»6{A»B}\k,i*C{A,B}\k‘;;,,:)ﬁ ) (B12)
+ 1B—11y - 155
o 3o (46 — 5y) + (B — 2v) (4 (cm‘ + C{A7B}\l~c,i) 8+ (—SCM + 3¢k,3—i — 8C{A, B} \ky T 3C{A,B}\k73—i) 7)
n (45— 117) (48— 57) :
(B.13)
[ 306ck — 41£kv3—i +36c(a,By\k,i — 96C{A,BY\K,3 -
1 220a+1083 AB) Cns
RETE njee{{lv?}} J 154(eni—er3—ite(a, B ki—CaBNk3-i)B | (B.14)
+ 4p-11y - 4B—5v
vt = 408 (o + 3 (cai +cBi) B) + (—ba + (—48ca; + ca,3—i —48cpi + cB3—i) B) 7y
! (40 — 117) (48 - 57)
2(21ca; —caz—i +2leg; — cB3—i) ~? . (B.15)

(468 — 117) (48 — 57)
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APPENDIX C. OPTIMAL PRICES OF GAME STRUCTURES IN SECTION 5;
STACKELBERG GAMES

The solutions of each Stackelberg game structure are congested mathematically and would consume a lot
of pages. However, for the readers to capture some elaboration on exact optimal prices, we have provided the
solutions of MSS-RS games which also contain intra-layer sequential moves. The rest of the models’ exact
solutions can also be provided due to request. For the elaboration to help understand the insights of this paper
better, it is suggested for the readers to look for expressions that include unit manufacturing costs especially the
ones that have all four of the manufacturing costs within them. Although complicated, the parallel structure of
the supply chain has led to a combination for coefficients of most of these expressions in a way that for symmetric
costs these expressions will equal to zero. Another interesting fact about the optimal prices in Stackelberg games
is that no matter how the structure is, the prices of direct complementary products are mutually symmetric
although different with the other channel’s optimal structures.

C.1. MSS-RS-MNRN

In the MSS-RS-MNRN, where manufacturers are leading and playing Stackelberg while retailers play simul-
taneously and none of them choose to bundle, the optimal retail and wholesale prices are derived as follows.
Notice that the expressions in optimal prices have a symmetric structure for each channel but are differently
structured among them. Also, the wholesale prices of manufacturer 1 (the manufacturer who moves first in the
Stackelberg) is independent of its complementary product’s manufacturing cost. This explains the corresponding
zeros in Table 6.

17a + 2ﬂX:nE{A,B} Cnj

_ 862215¢y,1 + 53151cy 2 + 7582606{14’3}\;@71 — 92386¢( 4, B} \k,2 L jef1,2}
Pra = 249492 34 (78 — 177)
(e —erp +eqaBpnea — craBk2) B L (B47) +4(cra +cgape) B(—138 +357)
158 — 9y 17632 — 468~ + 72

| 12230 (58— 37) (318%— 6637 — 3372) — 4 (cr 2+ cia,Bp\k,2) B (378— 997) (13982 — 10028y +1227+?)
1223 (5693* — 297233y + 3414322 + 163637% — 1223~%) ’

(C.1)
17+ 2 n Cni
|, 2678370 + 281160k 2 — 288628¢(a 51 — 1346601,y 0. 2> iy
Pz = 62373 34 (76 — 177)
(emz —era Feqapyre —caBpk) B N 4 (cr1 + cqa,ppk1) B (378 —997) + o (56 — 37)
156 — 9y 2 (172 — 4637 + 12)

N 9784cr (B + ) (1362 — 3887 + 139%) + 32 (cp2 + cpa,By\k,2) B (138 — 357) (12152 — 398037 + 31342)
1223 (56934 — 297233~ + 34143272 4 1636373 — 122374) ’
(C.2)

w* = [ (310a + (569ck,1 + 259¢,2 — 310c 4, Bp\k,2) B)
—26% (423 + 2 (T43cp1 +299¢y 2 — 4444 Bpr,2) B) 7
+ 68 (11a + (569ck,1 + 135ck,2 — 434ca pyk2) B) ¥° + 2 (99 + 818 (cy1 + cr2) B) 7

+ (—1223ck,1 — 629¢,2 + 594c(a pr,2) 7] /(11388 — 59443%y + 68283 + 32728% — 24464%),
(C.3)
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. 1
’U.)}m2 = m 7207910]6)1 + 24456]6,2 - 22014C{A,B}\k,1 - 1224C{A,B}\k,2

N 2446 (4 (cr + cpappe) B3T3 —997) + o (568 — 37))
1732 — 463y + 2

L3 (ck2 + cpa,ppk,z) B(378 — 997) (138 — 35) (238 — ) + 9784a (75 — 17v) (56 — 37) (B + )

56984 — 297233y + 34143242 + 1636475 — 12237

C.2. MSS-RS-MNRB

517314cy 1 + 365109c¢y 2 + 1811396{A,B}\k,1 — 1055360{;‘73}\;6,2
Pra = 806820

38 10a + 3
+ 243 — 367 (Ck,l Ck,2 T C{A,B}\k,1 C{A,B}\k,Q) + 60 (28 — 57) ZZ@{?Z? Cnj

(ck1 4 cpappma) B (—24262 + 11438y — 1303+2) + 17 (262 + 387 — 1342)
68 (1633 — 8432y 4 129872 — 5173)

+ (791ac (B — 27) (1563* — 9208 + 17553%7* — 10863~° + 37*)

+ (ch2 +cgap2) B (—1243888° + 13547808y — 58064213%+°

+

+ 122371478%® — 126786633~ + 5164041+°)

/ (791 (4965° — 50403°y + 196203"y* — 353883 + 259655%v* + 9908+° — 71197°)),

*545790]@1 + 441666k72 — 121814C{A,B}\k,1 — 903040{14,3}\1%2
201705

10 + 6ZHE{A,B} Cnj
___F__ (k1 — Cr2 + Cfa,Bk1 — CA,BNK,2) T =
245 — 36y * ’ ’ ’ ’ ’ 60 (26 — 5v)
N 170 (38 — 47) (B — 27) + (cra + cpa,pypm) B (T78% — 34987 + 38672)
17 (1653 — 8432y + 1296~2 — 513)
+ ((cr2 + cpapp,2) B (2572243° — 273436834y + 11469404 3°y* — 237195993°~°

+ 241755183~" — 9709167+°)

+ T91a (1528° — 9363y + 15683°7* + 64537 — 36483~" + 2283+°))

/ (1582 (4963° — 50403%y + 196208'y* — 353883°7* + 25965°7* + 9903+° — 7119+°)),

136843c41 + 81923ca5 + 136843c51 + 81923¢p-
S
1 403410

10a + 5 ZnE{A,B} Cnj
N (—ca1 +ca2 —cp1+cp2) B n ez
480 — 727 40 (2 — 57)
N (ca1 + cp1) B (—8862 + 4453y — 53192) + 17a (83% — 1787 + 3+?)

68 (1633 — 8432 + 1293+2 — 513)

(C.4)
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+ (791 (5283° — 40243%y + 111063%7* — 127536%7% + 42008~* + 1251+°)
+ (cas + cp2) B (—2108163° + 23342483%y — 101522583%42 + 2168536532
— 227576643~ + 9389889+°))

/ (1582 (4963° — 50403% + 196208'7* — 353883°7* + 259655°7* + 99087° — 7119+°)) , (C.7)
10a+62n A,B Cnj
ot — —10283c41 — 493c 49 — 10283cp1 — 493cp2 (CAl — CA2 +CB1 — CBQ) ﬂ i jEe{{LQ}} !
2 28815 4803 — 72y 40 (26 — 57)

N 17 (188% — 5587 + 399%) + (ca1 + cp1) B (31857 — 14238y + 1563+?%)
68 (163 — 8432y 4 129872 — 5173)
+ ((caz + cp2) B (313283° — 3250403y + 13274523°+* — 2663943 37> + 26225583~* — 1010799+°)
+ 113ar (3685° — 25763%y + 60483°+* — 43173%7° — 238287" + 3087+°))
/ (226 (4963° — 50408 + 1962032 — 3538833 + 25965427* + 99067° — 7119+%)) , (C.8)

wy, = [88° (35c + (—=35ck.2 + 62¢a, By + 27¢{a,B\k2) 5)
— 1688 (13a + 6 (—3cx,2 + 5ea, i + 2¢(a,8)\k,2) B) 7
+366° (1740 + (—356¢k,2 4+ 545¢14 By\k1 + 189¢ia By\k2) B) V2
—953% (863c + (—2951ck 2 + 3932¢ 4, y\k1 + 981cia By \k2) B) 7
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