
RAIRO-Oper. Res. 55 (2021) S461–S480 RAIRO Operations Research
https://doi.org/10.1051/ro/2020045 www.rairo-ro.org

AN IMPROVED EVAPORATION RATE-WATER CYCLE ALGORITHM BASED
GENETIC ALGORITHM FOR SOLVING GENERALIZED RATIO PROBLEMS

C. Veeramani1 and S. Sharanya2

Abstract. This paper presents an efficient metaheuristic approach for optimizing the generalized ratio
problems such as the sum and multiplicative of linear or nonlinear ratio objective function with affine
constraints. This paper focuses on the significance of hybrid techniques, which are implemented by using
GA and ER-WCA to increase efficiency and robustness for solving linear and nonlinear generalized
ratio problems. Initially, GA starts with an initial random population and it is processed by genetic
operators. ER-WCA will observe and preserve the GAs fittest chromosome in each cycle and every
generation. This Genetic ER-WCA algorithm is provided with better optimal solutions while solving
constrained ratio optimization problems. Also, the effectiveness of the proposed genetic ER-WCA
algorithm is analyzed while solving the large scale ratio problems. The results and performance of the
proposed algorithm ensures a strong optimization and improves the exploitative process when compared
to the other existing metaheuristic techniques. Numerical problems and applications are used to test
the performance of the convergence and the accuracy of the approached method. The behavior of
this Genetic ER-WCA algorithm is compared with those of evolutionary algorithms namely Neural
Network Algorithm, Grey Wolf Optimization, Evaporation Rate - Water Cycle Algorithm, Water Cycle
Algorithm, Firefly algorithm, Cuckoo search algorithm. The evaluated results show that the proposed
algorithm increases the convergence and accuracy more than other existing algorithms.
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1. Introduction

The linear and non-linear problems are solved with various types of traditional and metaheuristic approaches.
But in real-life problems can be linear or non-linear problems. Finding solutions to such non-linear problems
is more complicated than linear problems. The nonlinear problems are formulated as the nonlinear function
with either linear or nonlinear constraints. The fractional problem also called nonlinear problems. So nonlinear
programming problems can be either nonlinear or fractional function. This paper discussed the optimum solution
for the fractional problem, which has linear and nonlinear functions in numerator and denominator. The purpose
of fractions is “the area we need in the aggregate”. For example, inventory/sales, actual cost/standard cost,
output/employee.
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The generalized ratio problems are very useful to formulate all types of real-world problems. This is because,
for example, ratios are used to solve all problems, such as finding the profit for a particular product from the
total profit in a company. So, this fractional problem is applied to various areas like economics, engineering,
business, finance, etc. In the 1978s, the theory of fractional programming problem was initially demonstrated
by S. Schaible and was used in many applications. After that, Craven proposed the next monograph in 1988.
Jamali et al. [3] proposed an approach, hybrid Improved Cuckoo Search algorithm (ICS) and Genetic Algorithm
(GA) to solve the Markov-Modulated Demand problem. Veeramani et al. [15] proposed a solution procedure to
solve fuzzy linear fractional programming problems.

Over the past years, various solution methods have been developed to solve the generalized fractional pro-
gramming problems. The generalized linear ratio problems, such as Sum or product ratio problems, are solved
using a novel unified method proposed by Phuong et al. [9]. Similarly, to solve such type of problems, Shen et
al. [13] proposed a range division and linearization algorithm. Shen et al. [11] developed a regional division and
cut algorithm for solving the sum of linear ratio problems by transformed an equivalent optimization problem.
The outcome range reduction procedure was proposed by Jiao et al. [5] for solving the SAR problem. The
process of this method is the new outcome space for denominator was range reduction and branching operations
with the help of the branch and bound algorithm. He also proposed a novel method for solving the generalized
affine multiplicative programming problem with polynomial constraints by using branch and bound method [4].
A new method of polynomial theory using Dinklelbachis algorithm was proposed for solving fractional polyno-
mial problems, by Pizzo et al. [8].

Jong [6] presented a new method for solving nonlinear sum of ratio problems in various applications. He also
proved that theoretically and numerically the sum of ratio problems is given global optimal solutions by using
the method. A generalized fractional programming problem has been solved using an efficient unified method
that was developed by Shen et al. [12]. This method is developed by using a two-part linearization method,
a sequence of linear programming relaxations that are embedded in a branch-and-bound algorithm. Chun-Feng
et al. [2] solving a sum of geometric fractional functions under geometric constraints using an efficient branch and
bound algorithm in various applications. This method was using an equivalent transformation and a new linear
relaxation technique to found global solutions. Shen et al. [14] proposed a practicable contraction algorithm to
solve the sum of the generalized polynomial ratios problem. Liu et al. [7] proposed a new global optimization
algorithm, which can better solve a class of linear fractional programming problems on a large scale by using A
output-space branch and bound algorithm.

This paper presents a Genetic ER-WCA Algorithm, which combines the Genetic Algorithm and Evaporation
Rate based Water Cycle Algorithm to solve the constrained ratio Problems. In the recommended hybridization
technique, initially, GA works with genetic operators and produces new offspring that are the good populations
of the ER-WCA algorithm. Meanwhile, the local optimal solutions produced by GA are verified using the
boundary strategy, that is, whether the solutions are still constrained by lower and upper boundaries. After
that, the ER-WCA is implemented through the generated offsprings of GA. This process is repeated until a set
of solutions arrive.

The rest of the work is organized as follows: Section 2 explains the formulation of various fractional pro-
gramming problems. Section 3 designs an algorithm for the proposed method. Section 4 illustrates the proposed
procedure through small scale numerical examples. Section 5 interprets the formulation of large scale ratio
problems and also compares the results with the existing methods for small scale numerical problems and large
scale ratio problems and Section 6 discusses a mathematical formulation of application ratio problem and the
results are proposed and Section 7 draws the conclusion of the paper.

2. problem formulation

The ratio problems are expressed by ratios of linear and nonlinear functions which are named nonlinear pro-
gramming problems (or) fractional programming problems. The general formulation of the generalized fractional



GENETIC ER-WCA FOR GENERALIZED RATIO PROBLEMS S463

programming problem is as follows [1]:

Max/Min F (x) = N(x)
D(x)

Subject to

A(x)

≤=≥
 b, x > 0,

(2.1)

where F (x) be a real-valued, concave function defined on a desirable convex compact set. That is, the numerator
and denominators are concave or convex, differentiable and non-negative functions with the constraints are also
convex or concave. The solution set S is denoted as the feasible solution set of the ratio problem, which is on
convex set

S = {x ∈ Rn : A(x) ≤ b, x > 0} and Di(x) 6= 0.

Unfortunately, most of the real-world problems have one or more fractions with distinct types of formulations.
So, the fractional programming problem is categorized as Multiple Objective Ratios, Multiplicative Ratios,
Sum-of-ratios and Fractional polynomial Optimization. This paper will be focused on the Sum and Product of
ratio problems. The formulation of these problems are as follows:

2.1. Sum-of-ratios problem (SRP)

Max/Min φ(x) =
∑r
q=1

(∑n
j=1 cqjxj+αi∑n
j=1 dqjxj+βi

)γ
Subject to∑n
j=1 aijxj

≤=≥
 bi, x > 0,

(2.2)

where φ(x) is a concave function defined throughout Rn. Also assume that the set S is non-empty and compact
convex set. That is, Ni(x) =

∑n
j=1 cqjxj + αi, Di(x) =

∑n
j=1 dqjxj + βi, x, n, r ∈ Rn, and αi, βi, γ ∈ R.

2.2. Multiplicative ratios problem (MRP)

Max/Min ψ(x) =
∏k
i=1

(∑n
j=1 cqjxj+αi∑n
j=1 dqjxj+βi

)γ
Subject to∑n
j=1 aijxj

≤=≥
 bi, x > 0.

(2.3)

Similar to the SRP problems, ψ(x) be a continuously differentiable concave function defined on convex set.
Where Ni(x) =

∑n
j=1 cqjxj + αi, Di(x) =

∑n
j=1 dqjxj + βi, x, n, r ∈ Rn, and αi, βi, γ ∈ R.

The SRP and MRP problems have many applications in worldwide, such as fuzzy pricing, cluster analysis,
cargo problems, portfolio optimization, production planning, etc. Hence, this paper will be focused on SRP,
MRP, Large-scale ratio problems. Further, a production planning area application problem also will be solved.

3. proposed algorithm

Generally, non-linear programming problems are resolved with traditional and metaheuristic methods. But,
traditional and evolutionary optimization could not achieve global optimum while solving non-linear program-
ming problems. Therefore, many hybrid mechanisms are combined and developed in two or more evolutionary
algorithms to achieve nearby global optimum. Those algorithms were executed one after another. As such, the
optimal solution of an algorithm was provided as input for the other method.
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3.1. Genetic algorithm

A genetic algorithm is a search-based optimization method that starts with a solution set (chromosomes)
called population (Pga). After the evaluation of the fitness function, the mechanism obtains the fitness value
for each individual. The GA follows the following structure, the evaluation, Selection, Crossover, and Mutation.
In the selection stage, parents are produce offspring that come into the parents features. If the parents have
better fitness, their offspring will be better than the parents and have a better chance to survive. In the Crossover
stage, mated each pair of parents, which is the second part of the first parent will be exchanged with the second
part of the second parent. In the Mutation stage, the elected individuals have reversed alleles that are if the
allele is 0, then it is changed to 1 and vice versa. The structure of stages is reiterated to produce new individuals
in each generation which are better than the preceding generations.

3.2. Bounding strategy

The proposed method is developed by connecting GA and ER-WCA algorithms (Genetic ER-WCA) for
attaining the global optimal solution. Similar to other evolutionary algorithms, our hybrid method starts with
fixed boundaries of random numbers according to the problem dimension. In this mechanism, try to update
the boundaries of the variables after the evolution process of GA. Then, the initial population of ER-WCA,
performs the boundary updating every iteration.

After reaching the local optimal population, the population is likely to move out of its borders. Therefore,
the boundary is checked after receiving the local optimal of GA. Initially, the fitness of the problem is found
by applying the values between the fixed LB and the UB. The process of a genetic algorithm is implemented
using these fitness values and achieving local optimal solutions. Now simply select good the raindrops in the
population by dint of α∗Npop, where α is the pre-determinant constant referred to as the selecting fraction, and
0 < α < 1. The search space of selected individuals depends on the initially defined LB and UB. The selecting
fraction α is used to determine the number of individuals that should be selected based on their fitness values.
Since the selecting fraction can affect the performance and convergence of the proposed method, which is set
close to 0. if it is nearer to 1, the updated boundary of the population will be close to the existing boundary
of the population. These updated boundaries being too narrow and may increase the possibility of missing the
true optimal solution. The value of α is chosen to be 0.2 for all problems, which means 20% of the individuals
are selected.

In this paper, the updated boundaries of the selected population is established with the help of multivariate
gaussian distribution. The mean and std deviation are found by using the following equations:

µi =

∑Q
j=1 xij

Q
,

σi =

√∑Q
j=1(xi,j − µ)2

Q
, (3.1)

where µ is the mean for ith variable and σi is the standard deviation for the ith variable. The probabilistic
distribution D for the ith variable is as follows:

D =
1√
2π
e

(xi−µi)
2

2σ2
i . (3.2)

Based on this probabilistic distribution D, the upper and lower bound of a variable xi are updated as follows:

flagUBi = µi + b ∗ [max{UBfix,UBD − µi}],
flagLBi = µi − b ∗ [µi −min{LBfix,LBD}], (3.3)

where UBi and LBi are the updated upper and lower bound of the variable xi, µi is the mean value of the
variable xi, UBfix and LBfix are the fixed boundaries of the variables, UBD and LBD are obtained probabilistic
distribution boundaries and b is the bounding factor, which is set to be grater than 1, but close to 1.
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3.3. Evaporation rate-water cycle algorithm

The procedure of the water cycle is the main theme of the WCA. Initially, WCA creates an initial population
named, such as raindrops. Then by evaluating the cost function, the cost of each individual (i.e., raindrops)
is obtained. The evaluated individuals are ordered as the sea, river, and streams by using the cost function
value. Then assigning the summation of the number of rivers and a single sea is in Nsr. The nominated streams
elected for each river and sea (Nsr) are selected by an intensity flow. That is, the chosen streams flow either to
the rivers or directly flow to the sea and, similarly, the nominated rivers flow to the sea. However, the solution
established by a stream is better than its connecting river, the locations of the river and stream are swapped.
Likewise, it happens for both the river and the sea. Finally, the evaporation will be performed. The evaporation
process happens both rivers and the streams, which is nearer to the sea. If the evaporation process is satisfied,
then the raining procedure should be performed. Otherwise, the value of dmax adaptively decreases. Then, some
new streams in different positions are created. This process will continue until a set of the solution has arrived.
Thus the WCA leads to an indirect move towards the best solution.

3.4. Hybrid genetic ER-WCA

The main advantage of genetic ER-WCA is to stimulate the exploitation and exploration process using GA
and ER-WCA. Generally, GA works, to find new solutions with the help of crossover and mutation operations,
which can improve the initial solutions to get optimal solutions. Because genetic operations produce offsprings
better than parents. The offsprings are generated by combining parent’s information. Similarly, WCA also
has the ability to explore in search space by using the concept of stream and river that update their position
towards the sea and the bounding strategy leads to the global optimal solution from the local optimal solution
by constraint the boundaries. By considering these advantages of algorithms, the hybrid genetic ER-WCA
is proposed to find a guaranteed global solution. In this model, GA performs first, after that WCA will be
performed. The genetic ER-WCA algorithm processes are summarized as follows:

Step 1: Genetic ER-WCA has been started to set initial population (NP ), maximum iteration (max it), number
of streams (Psr), crossover percentage (Cper), mutation percentage (Mper), Lower bound (LB) and Upper bound
(UB) for the problems.
Step 2: Initialize the random population (chromosome, P ) for GA. A random population consists of a matrix
of the population with the size of P ×N , where N is a problem dimension (i.e., Number of decision variable)
and P is population size.

A candidate = [xi1, x
i
2, . . . , x

P
N ]

Step 3: Calculate the fitness value for each chromosomes. Using the below equation,

Cga
i = f(Xi

1, X
i
2, X

i
3, . . . , X

i
Pga

), i = 1, 2, 3. . . . , Pga, (3.4)

then the chromosomes are performed gradually through selection and crossover and mutation.
Step 4: Apply roulette wheel selection on Cga

i .

P new
ga = Cga

i∑Cga
i=1 C

ga
i

·
(3.5)

Step 5: Perform crossover and mutation operations on P new
ga to produce GA’s best evaluated population (P local

ga )
with the help of Cper and Mper.
Step 6: Save the better population of P local

ga into Per−wca, where Per−wca is an initial population for ER-WCA.
Here, the better population is formed by combining the crossover and mutation offsprings. Doing this, ER-WCA
takes the advantages of GA, which leads to reaching the global optimal solution of the problem.
Step 7: Check the boundaries of the new population Per−wca using bounding mechanism.
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Step 8: Compute fitness value for Per−wca using the equation

Cer−wca
i = f(Xi

1, X
i
2, X

i
3, . . . , X

i
Per−wca

), i = 1, 2, 3, . . . , Per−wca, (3.6)

where Per−wca is a dimension of optimization problem.
Step 9: The raindrop can be represented the size of Np×Per−wca. Form initial Sea, river and streams in Per−wca

using the below equations

Total population =


x1

1 x1
2 x1

3 · · ·x1
Per−wca

x2
1 x2

2 x2
3 · · ·x2

Per−wca

...
...

...
. . .

...
xNP1 xNP2 xNP3 · · ·xNPPer−wca

 =



Sea (Cer−wca
1 )

Riv1 (Cer−wca
2 )

Riv2 (Cer−wca
3 )

Riv3 (Cer−wca
4 )

...
StrePsn + 1 (Cer−wca

Psn+1 )
StrPsn + 2 (Cer−wca

Psn+2 )
...

StrNP (Cer−wca
NP

)


(3.7)

Psn = number of rivers + 1
Pstrs = Per−wca − Psn. (3.8)

The sea, which has a minimum value of the total population and the better values of the number of rivers
are chosen as river and also the remaining values (i.e., good values) are chosen as the streams.
Step 10: find intensity flow for rivers and sea using

Ci = Cer−wca
n − Cer−wca

Psn+1
i = 1, 2, . . . , Psn, (3.9)

Psr = round| Ci∑Psr
i=1 Ci

| ∗ Pstrs i = 1, 2, . . . , Psn, (3.10)

where Psr is the number of streams that flow to the specific rivers or sea. From precipitation, most of the
raindrops are generated. Each raindrops to flow various directions towards the sea. By using this intensity flow,
the raindrops are assigned to flow the rivers and sea. Equation (3.11) interprets the streams, which tend to
move towards the rivers and the sea-based on their magnitude of flow. Hence, equations (3.10) and (3.11) will
be able to control and posses more streams.
Step 11: Find the distance V between streams and rivers randomly V ∈ (0, c × d), 1 < c < 2 and d is the
current distance. Hence, the value of V is a random number between 0 to c× d.
Step 12: Find the new position of the streams and rivers using the following equations,

~V i+1
S = ~V iS + rand ∗ C ∗ (~V iR − ~V iS), (3.11)
~V i+1
S = ~V iS + rand ∗ C ∗ (~V iO − ~V iS), (3.12)
~V i+1
R = ~V iR + rand ∗ C ∗ (~V iO − ~V iR), (3.13)

where ~V iS , ~V
i
R and ~V iO respectively be the ith position of the stream, river and sea in the search space. The new

position of the raindrops at (i + 1)th generation is updated using equations (3.11) to (3.13). similarly, rand is
the uniformly distributed number between 0 to 1 and C is the acceleration coefficient, which is 1 to 2 (near to
2). The new position of streams flowing to rivers is represented in equation (3.11). Similarly, the new location
of streams flowing to sea is represented in equation (3.12). Also, equation (3.13), represent the new position of
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rivers flowing to the sea. Here, the new position means the rivers/streams that exchange their positions with
the sea and also rivers that exchange their positions with the streams, when one solution is better than the
other one.
Step 13: Calculate the evaporation rate for only streams and rivers using

EVR = Sum(Psr)
Psn−1 × rand n = 2, . . . , Psn. (3.14)

Step 14: Check the evaporation condition among rivers and streams, also find the newly formed streams
locations using below pesudo code,

for i = 2 : Psn − 1
if(exp(−k/max it) < rand)&(PSi < EVR)

V new
S (t+ 1) = LB +

(
rand

max−it

)rand

× (UB− LB)
end
end

(P1)

where LB and UB are upper bound and lower bound of the problem. An evaporation rate is an important factor
for surface runoff water. This help to improve our research towards an optimal solution. The Pseudocode (P1)
represents if the rivers and their corresponding streams have a low evaporation rate (i.e quality solution is less),
then the raining process will help to move or flow better search area. That is, if the given condition in (P1) is
satisfied for any river, the river with its corresponding stream will be removed (i.e evaporated). After that the
new streams equal to the number of previous streams and river will be created in new positions using equation
V new
s .

Step 15: Similarly, check the evaporation condition between sea and streams/rivers, also find the newly formed
streams and rivers using the following pesudocode (P2) and (P3) respectively:

if||VO − VS || < dmax

V new
S (t+ 1) = VO(t) +

√
µ× randn(1, N)

end (P2)

if||VO − VR|| < dmax or rand < 0.1

V new
S (t+ 1) = LB +

(
rand

max−it

)rand

× (UB− LB)
end

(P3)

where the control parameter dmax is a small value. Because it encourages the search intensity near the sea.
While it is large values, it prevents more searches. Also, µ is a range coefficient, which shows that the nearer
region to the sea.
Step 16: Minimize dmax and check stopping criteria. if it is satisfied, the algorithm will be stopped, otherwise
return to Step 10.

dmax(t+ 1) = dmax(t)− dmax(t)
max it · (3.15)

4. Numerical problems

The applicability of the proposed hybrid algorithm in solving ratio functions [10] and application problem is
validated in this section. Basically, in this section four types of problems are discussed. That is the Generalized
ratio problem, Sum-of-Ratio problem, Multiplicative Ratio Problem, Large-scale ratio problems and an
application of Production problem.
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Generalized Ratio Problems (GRPs):

N1: Max Z = 4x+2y+10
x+2y+5 subject to x+ 3y ≤ 30;−x+ 2y ≤ 5;x, y ≥ 0.

N2: Max Z = 8x+7y−2.33(9x2+4y2)0.5

20x+12y−2.33(3x2+2xy+4y2)0.5

subject to 2x+ y ≤ 18;x+ 2y ≤ 16;x, y ≥ 0.

N3: Min Z = x+y+1
2x−y+3 subject to 0 ≤ x ≤ 1; 0 ≤ x ≤ 1.

Sum-of-Ratio Problems:

N4: Max Z = −x2+3x−y2+3y+3.5
x+1 + y

x2−2x+y2−8y+20

subject to 2x+ y ≤ 6; 3x+ y ≤ 8;−x+ y ≥ −1;x, y ≥ 0.

N5: Max Z = 2x+y
x + 2

y

subject to 2x+ y ≤ 6; 3x+ y ≤ 8;−x+ y ≥ −1;x, y ≥ 0.

N6: Max Z = 37x+73y+13
13x+13y+13 + 63x−18y+39

13x+26y+13

subject to 5x+ 3y = 3; 1.5 ≤ x ≤ 3;x, y ≥ 0.

N7: Max Z = −x2y0.5+2xy−1−y2+2.8x−1y+7.5
xy1.5+1 + y+0.1

−x2y−1−3x−1+2xy2+9y−1+12

subject to 2x−1 + xy ≤ 4;x+ 3x−1y ≤ 5;x2 − 3y3 ≥ 2; 1 ≤ x ≤ 3; 1 ≤ y ≤ 3.

Multiplicative Ratio Problems (MRP):

N8: Min Z =
(
x+y+1
x+y+2

)1.5

×
(
x+y+2
x+y+3

)2.1

subject to x1.1y1.6 − x1.2y1.5 ≤ 5; 1 ≤ x, y ≤ 2.

N9:
Max Z =

(
3x+y−2z+0.8

2x−y+z × 4x−2y+z
7x+3y−z

)
subject to x+ y − z ≤ 1;−x+ y − z ≤ −1; 12 + 5y + 12z ≤ 34.8

12x+ 12y + 7z ≤ 29.1;−6x+ y + z ≤ −4.1;x, y, z ≥ 0.

N10: Min Z =
(
−x+2y+2
3x−4y+5

)0.5

×
(

4x−3y+4
−2x+y+3

)0.2

subject to x+ y − z ≤ 1;x+ y = 1.5;x ≤ y; 0 ≤ x, y ≤ 1.

5. Results and discussion

This section has been discussed about the results of numerical problem, the performance comparison between
proposed with other existing algorithm, convergence rate achieved by Cuckoo Search Algorithm, ER-WCA,
Firefly Algorithm, Grey Wolf Optimization (GWO), Water Cycle Algorithm (WCA), Nural Network (NN) and
the proposed hybrid Genetic ER-WCA algorithm for numerical test problems. The numerical test problems
are solved using the proposed algorithm which has been executed in MATLAB R2015. Table 1 shows that the
parameters, which are used in the proposed algorithm.

The generalized ratio problems are solved using the proposed Genetic ER-WCA and the Obtained results
are compared with the existing algorithms as shown in the below Table 2. From Table 2, the proposed Genetic
ER-WCA gives a better solution is proved. From problem N1, the proposed algorithm proved that gives more
accuracy and the problem N2, the Genetic ER-WCA is better than other algorithms. Similarly, the problem N3,
also produce a global solution. Hence, the results of the Generalized Ratio Problems are given more accuracy
while using the proposed algorithm.
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Table 1. Parameters of the Genetic ER-WCA algorithm.

Genetic ER-WCA parameters Values

Pop size 100
Initial pop 100× 100
maxit 100
Cper 0.7
Mper 0.3
Xrate 0.4
Mutrate 0.1
dmax 1E−5
Nsr 4

Table 2. Performance comparison of the proposed algorithm and other existing algorithms for
the Generalized ratio problems.

Problem no N1(Max) N2(Max) N3(Min)

GWA
(X1; X2)

3.71428
(29.9998,0)

0.33604
(1,1)

0.3333
(0,0)

WCA
(X1; X2)

3.71428
(29.9999,0)

0.33603
(1,1.0000303)

0.3333
(0,0)

NN
(X1; X2)

3.7142
(29.9999,0)

0.33603
(1,1.0000303)

0.3333
(0,0)

ER-WCA
(X1; X2)

3.71428
(29.999,0)

0.33606
(1,1.000061)

0.3333
(0,0)

CUCKOO
(X1; X2)

3.7141
(29.983,0)

0.33605
(1,1.0001)

0.3333
(0,0)

FF
(X1; X2)

3.7142
(29.995311,0)

0.3759
(1.2763,1.27707)

0.3333
(0,0)

Genetic ER-WCA
(X1; X2)

3.7148
(29.99,0.0026)

0.3383
(0.1008,0.5645)

0.3333
(0,0)

Similarly, from Figure 1 we can analyze the proposed algorithm starts with the best solutions. Because ER-
WCA’s initial population is the solution of the genetic algorithm. Figure 1 is presenting the graphical view of
the convergence of all algorithms on ratio problems in which it can be clearly seen that the GA-WCA algorithm
is nearest to the global optima of generalized ratio problem among algorithms viz. GWA, WCA, NN, ER-WCA,
Cuckoo and FF and it also shows the fastest convergence of all. In Figure 1, NN and FF illustrate poorer
convergence than the other algorithms in the initial iterations.

Figure 2, Cuckoo Algorithm, and NN depict poorer convergence than the other algorithms in the initial itera-
tions. However, the search process is progressively accelerated during iterations for these algorithms. This shows
that the performance of ER-WCA can be boosted by the Genetic algorithm in terms of not only exploration
but also exploitation. Hence the proposed algorithm is always performed with the best solutions and also must
reach global solutions.

The sum-of ratio problem results are compared with the existing algorithms as shown in the below Table 3.
From Table 3, the proposed Genetic ER-WCA gives a better solution is proved. That is, from problems N4
and N5, the proposed algorithm proved that gives more accuracy and the problem N6 and N7, the Genetic
ER-WCA is better than other algorithms and also produce global solutions. Hence, the results of the Sum of
Ratio Problems are given more accuracy while using the proposed algorithm.
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Figure 1. Convergence curve of the proposed algorithm for problem N1.

Figure 2. Convergence curve of the proposed algorithm for problem N2.

Table 3. Performance comparison of the proposed algorithm and other existing algorithms for
Sum of Ratio Problems.

Problem no N4(Max) N5(Max) N6(Max) N7(Max)

GWA
(X1; X2)

5.3992
(0,0.8576)

6.49999
(1,3.9999)

4.0608
(1,1.7438)

5.2079 (1,1)

WCA
(X1; X2)

5.5181
(3.5e−04)

6.49999
(1,3.9999)

4.06081916
(1,1.74382)

5.20789 (1,1)

NN
(X1; X2)

5.5584
(0,0.9836)

6.499993
(1,3.999927)

4.060819
(1,1.743815)

5.20789 (1,1)

ER-WCA
(X1; X2)

5.3417
(0.1,1)

6.49999
(1,3.9999)

4.060819
(1,1.74382)

5.20789 (1,1)

CUCKOO
(X1; X2)

5.5753
(0.00067,1)

6.9999
(1,3.9999)

4.0608
(1,1.7438)

5.2079 (1,1)

FF
(X1; X2)

5.3668
(0.03835,0.89998)

6.49856
(1,3.99835)

4.0608191
(1,1.74379)

5.20789 (1,1)

Genetic ER-WCA
(X1; X2)

5.5769
(0,1)

6.6530
(1,4.3652)

4.07606568
(0.03615,1.69547)

5.20789 (1,1)
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Figure 3. Convergence curve of the proposed algorithm for problem N6.

Table 4. Performance comparison of the proposed algorithm and other existing algorithms for
Multiplicative ratio problems.

Problem no N8 N9(Max) N10

GWA
(X1; X2)

0.40652
(1,1)

1.08514
(0.9994,0.00032,0.0009408)

0.66991
(0,0)

WCA
(X1; X2)

0.4074526
(1,1.01)

1.0857137
(0.999998,0,0.0000011)

0.7782046
(0.2999998,0.3)

NN
(X1; X2)

0.41573394
(1,1.1)

1.08560537
(0.99992958,0,0.000181759)

0.66991183
(0.0000009999,0)

ER-WCA
(X1; X2)

0.496676
(1,1)

1.0857125710
(0.999996,0,0.000003734)

0.8561892
(0.5,0.500000067)

CUCKOO
(X1; X2)

0.42024205
(1,1.15)

1.0840441122
(0.99886,0,0.002807)

0.74105822
(0.1999977,0.2)

FF
(X1; X2)

0.416187695
(1,1.1050001)

1.085271258
(0.99918,0,0.0009156)

0.85621654
(0.5,0.50004665)

Genetic ER-WCA
(X1; X2)

0.406519017
(1,1)

1.086128
(0.799457,0.224592,0.224592)

0.5358867
(0.3750,0.6250)

Similarly, from Figure 3 we can analyze the proposed algorithm starts with the best solutions. Since ER-WCAs
initial population is the solution of the genetic algorithm the Genetic ER-WCA is performed well. Similarly,
Figure 3, WCA Algorithm and GWA exhibit poorer convergence than the other algorithms in the initial
iterations. Genetic ER-WCA and ER-WCA algorithms are given the better and best convergence respectively.
Hence the proposed algorithm is always performed with the best solutions and also must reach global solutions.

The Multiplicative Ratio problems are solved with the proposed algorithm Genetic ER-WCA and the eval-
uated results are compared with the existing algorithms as shown in the below Table 4. From Table 4, the
proposed Genetic ER-WCA is proved to getting a better solution. That is, from problems N8 and N9, the
proposed algorithm gives more accuracy and the problem N10, the Genetic ER-WCA is better than other
algorithms and also produce global solutions. Hence, the results of the Multiplicative Ratio Problems are given
more accuracy while using the proposed algorithm.

Table 5, shows statistical optimization results for the Generalized Ratio Problems, Sum-of ratio problems,
Multiplicative ratio problems using the Genetic ER-WCA and other algorithms. Table 5, displays the worst,
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Table 5. Comparative analysis of the statistical values of the Genetic ER-WCA algorithm
with some existing algorithms for generalized ratio problems.

Methods Best Average Worst SD

N1
(Max)

Genetic ER-WCA 3.71428 3.71428 3.69779 0.001843
GWO 3.714285 3.7119579 3.486810 0.022744
ERWCA 3.714285 3.71385959 3.6757663 0.003853
NN 3.714285 3.632658 2.173466 0.3258489
WCA 3.7142854 3.71328815 3.6190408 0.009542
CUCKOO 3.714185 3.641729 2 0.320982
FF 3.7142288 3.7099266 3.3704698 0.0345039

N2
(Min)

Genetic ER-WCA 0.3360370 0.3369841 0.3810072 0.0061905
GWO 0.336040 0.3370357 0.415519 0.00810462
ERWCA 0.336067 0.33823731 0.495007 0.0163466
NN 0.3360376 0.3388646 0.445139 0.014004667
WCA 0.336037 0.3373923 0.4654116 0.01293436
CUCKOO 0.3360585 0.3316366 0.35213134 0.0066144
FF 0.375984 0.33477380 0.5706844 0.03134298

N3
(Max)

Genetic ER-WCA 0.3333 0.3333 0.3333 3.905356 e–16
GWO 0.3333 0.333462 0.346202 0.00128695
ERWCA 0.3333 0.3333 0.3343 3.906856 e−15
NN 0.3333 0.333747 0.336131 0.00188918
WCA 0.3333 0.3333 0.33450 3.905855 e−15
CUCKOO 0.3333 0.3336357 0.35850 0.00258335
FF 0.3333 0.334096 0.36394 0.003800379

N4
(Max)

Genetic ER-WCA 5.5769 5.556542 5.4954382 6.248570e–15
GWO 5.3992 5.398145 5.300458 0.00986746
ERWCA 5.3417 5.245820 5.1908321 0.0591139
NN 5.5584 5.546395 5.2716373 0.0474975
WCA 5.5181 5.518062 5.508252 1.33897 e−04
CUCKOO 5.5753 5.574849 5.5344946 0.0040762
FF 5.3668 5.3631110 4.999637 0.0367144

average, better solutions and standard deviation (SD) of numerical functions using various methods. Further, by
observing Table 5, the genetic ER-WCA can identify the best Standard Deviation by comparing various methods.
That is, the solutions to the problems are nearer to the mean value of the solutions. So the Genetic ER-WCA
starts from near to the global solution. Hence, Genetic ER-WCA is more effective than other algorithms. Solving
large scale problems is the very complexity of the evolutionary algorithms. Not only that, these large scale
problems are used to finding the effectiveness of the algorithms. Because these problems are multidimensional,
solving this using an evolutionary method takes much time and does not achieve global optimum.

5.1. Large scale ratio problem

The evolutionary algorithms are easy to optimize the small-scale problems, but the large-scale optimization
problems are more challenging to optimize. The large-scale optimization problems are very difficult to get
the global optimum, since it may have a large number of local minimum, and each of there has non-isolated
and singular. It is represented by a huge number of decision variables with constraints. In this section, the
computational results of large scale problems are discussed to demonstrate the effectiveness of the proposed
algorithm.
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Table 5. continued.

Methods Best Average Worst SD

N5
(Max)

Genetic ER-WCA 6.49999 6.48010784 5.36529372 0.125113539
GWO 6.49999 6.476003181 4.2967931 0.220445276
ERWCA 6.49999 6.47311019 5 0.170083473
NN 6.499943 6.1929878119 4.26007576 0.62531494
WCA 6.49999 6.47251095 5 0.19177515
CUCKOO 6.4486093 6.134551866 4.09452778 0.60582439
FF 6.4985547 6.4510421138 4.730529045 0.21499959

N6
(Max)

Genetic ER-WCA 4.0760656 4.0758370 4.072884325 7.004161071e–4
GWO 4.06081916 4.0607368080 4.05258417 8.234982e−4
ERWCA 4.0608191608 4.0607373581 4.0526484 8.170666971e−4
NN 4.06081916 4.054757311 3.95904349 0.020443091
WCA 4.06081916 4.060751670 4.054106 7.71258377e−4
CUCKOO 4.0608191608 4.059986759 4.01438495 0.005856244
FF 4.0608191571 4.058598021 3.96279830 0.01255398

N7
(Max)

Genetic ER-WCA 5.207894736 5.207894836 5.207894736 8.926528984e–15
GWO 5.20789716924 5.199771692 4.395590294 0.081230444
ERWCA 5.207894736 5.207894736 5.207894736 8.926528984e−15
NN 5.2078947368 5.186291057 4.376662316 0.11171227745
WCA 5.2078947368 5.207894736 5.207894736 8.926528984e−15
CUCKOO 5.207994736 5.113827001 3.1919413716 0.373931050
FF 5.20789473 5.191854723 4.082753199 0.1137534548

N8
(Min)

Genetic ER-WCA 0.4065190179 0.465196 0.4065191178 3.9053564e–16
GWO 0.40652 0.40653042 0.4065190179 1.146278508e−4
ERWCA 0.4966769833 0.49667613 0.496680983 6.1369886e−16
NN 0.415733943 0.4162651728 0.429372790 0.00261658085
WCA 0.4074526401 0.4074526461 0.40745264617 6.69489673e−16
CUCKOO 0.42024205133 0.4204105328 0.4322666297 0.001249486
FF 0.4161876954 0.4164470865 0.4284863406 0.001557657

N9
(Max)

Genetic ER-WCA 1.08612875 1.08473460 1.00781569 0.005212032
GWO 1.085146108 1.0832542437 1.03535061 0.0068537959
ERWCA 1.0046821245 1.083738918 1.085712571 0.01086988575
NN 1.0522981125 1.0750492592 1.0856053717 0.01317977763
WCA 1.020821231914 1.0836486027 1.0857137520 0.009411251939
CUCKOO 1.0180040112 1.06947202814 1.0840441122 0.021207428
FF 0.9665088507 1.076655573345 1.0852412585 0.0233152913

N10
(Min)

Genetic ER-WCA 0.53588673 0.53669820 0.561848926 0.0031903817
GWO 0.7005291586 0.6702181949 0.669911977933 0.003261718
ERWCA 0.856189206 0.8564891467 0.881299307 0.0025412460
NN 0.6699119980 0.67370654062 0.78201423624 0.0196236431
WCA 0.7782046328 0.77833229810 0.787300507742 9.528786318e−4
CUCKOO 0.741058220 0.7444056809 0.78966544049 0.009721399377
FF 0.85621654084 0.86369442959 0.897452747 0.0198955321037

Problem N11, N12 and N13, N14, we consider the four types of randomly generated ratio problems, which are
Sum-of-Linear Ratio Problem (SLRP), Sum-of-Nonlinear Ratio Problem (SNRP), Multiplicative Linear Ratio
Problem (MLRP) and Multiplicative Nonlinear Ratio Problem (MNRP).

The elements of random developed matrix are aij , cqj , dqj , αq, βq, bi ∈ R. The co-efficient aij , cqj , dqj of the
problem are yield at interval [0, 1]. The constant co-efficient of numerator and denominator is the same random
number which is provoked at [1, 100]. Also, the elements of bi are fixed for all is 1. The randomly induced
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Table 6. considered various types of large scale problems.

Case (r, c, n) Type of problem

1 (5,30,30) Non-linear
2 (10,30,30) Non-linear
3 (5,50,50) Linear
4 (5,100,100) Linear
5 (10,50,50) Linear
6 (10,100,100) Linear

elements are fixed for all cases. The elements of the randomly generated problems will be randomly generated
by using MATLAB R2015. The number of ratios, number of constraints and number of variables can be denoted
by r, c, n respectively. Hence for given r, c, n, we test 6 instances, then discuss the objective values about the
randomly developed instance. For sum-of linear ratio problem and Multiplicative linear ratio problem, the
exponent γ value is 1 and for sum-of nonlinear ratio problem and Multiplicative nonlinear ratio problem, the
exponent of γ is fixed randomly at 0.3. From the Table 6, the considered different type of randomly generated
large scale problems are shown below.

Large-Scale Linear Ratio Problem (LS-SLRPs):

N11: Min Z =
∑r
q=1

(∑n
j=1 cqjxj+αi∑n
j=1 dqjxj+βi

)
Subject to

∑n
j=1 aijxj ≤ bi, x > 0.

N12: Min Z =
∏r
q=1

(∑n
j=1 cqjxj+αi∑n
j=1 dqjxj+βi

)
Subject to

∑n
j=1 aijxj ≤ bi, x > 0.

Large-Scale Non-Linear Ratio Problem (LS-SLRPs):

N13: Min Z =
∑r
q=1

(∑n
j=1 cqjxj+αi∑n
j=1 dqjxj+βi

)0.3

Subject to
∑n
j=1 aijxj ≤ bi, x > 0.

N14: Min Z =
∏r
q=1

(∑n
j=1 cqjxj+αi∑n
j=1 dqjxj+βi

)0.3

Subject to
∑n
j=1 aijxj ≤ bi, x > 0.

Example N11 and N12 is solved into four different cases. They are as follows: Case 1 has problem 5 ratios,
50 variables under 50 constraints, and Case 2 problem has 5 ratios, with 100 variables under 100 constraints.
Similarly, Case 3 has problem 10 ratios, 50 variables under 50 constraints, and Case 4 problem has 10 ratios,
with 100 variables under 100 constraints. The computational statistical results for four cases of Example N11
are shown in Table 7. From Table 7, it is clear that the results are proclaimed by the proposed hybrid algorithm
in case 1 and 4 violate other existing algorithms.

Similar to N11, N12 is resolved in the same four distinctive cases. Such as, 5 and 10 multiplicative ratios are
solved with 50 and 100 variables subject to 50 and 100 constraints, respectively. The computational statistical
results for four cases of Example N12 are shown in Table 8. From Table 8, according to the obtained statistical
results of four cases, the proposed method performs better than other algorithms. In cases 1 and 2, ER-WCA
and GWO algorithms are given the worst performance by comparing other algorithms, respectively. The WCA
algorithm in the 3rd case and the GWO algorithm in the 4th case perform very poorly by comparing the other
methods.

Also different type of randomly developed large scale Sum and Multiplicative Non-linear problems are con-
sidered. Therefore the exponent of general Non-linear ratio problems is fixed at 0.3. The randomly procreated
Non-linear ratio problems are solved into two different cases. They are as follows: Case 1 has 5 ratios, 30 vari-
ables with subject to 30 constraints, and Case 2 has 10 ratios, with 30 variables with subject to 30 constraints.
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Table 7. Computational statistical results for Large Scale Sum-of-Linear Ratio Problem
(LS-SLRP).

Min N11 (r, c, n) Algorithms Best Avg. Worst SD

Case 1-(5,50,50)

Genetic ERWCA 4.75949045 4.79132373 4.82285732 0.008204056
GWO 4.914125892 4.806985208 4.977942433 0.016954249
ERWCA 4.950003507 4.983158883 4.994803854 0.005111145
NN 4.949466454 4.983977246 4.999486756 0.008357551
WCA 4.964289485 4.8649389 5.015999901 0.013095756
CUCKOO 4.992858335 4.996638874 4.99696514 0.008812481
FA 4.891677401 4.904157552 4.967529799 0.017304634

Case 2-(5,100,100)

Genetic ERWCA 4.775115116 4.82321435 4.88403335 0.025180731
GWO 4.969193365 4.70901309 5.678448591 0.049817923
ERWCA 4.98986075 4.982581923 5.02789447 0.025433168
NN 4.979950473 5.007207815 5.059693696 0.020885091
WCA 4.984169837 5.01209352 5.055795009 0.016134886
CUCKOO 4.9845881 4.986271028 4.999373165 0.026141826
FA 4.979632703 5.002426179 5.133157796 0.03333708

Case 3-(10,50,50)

Genetic ERWCA 9.790821583 9.8540596 9.94807745 0.0146544758
GWO 9.937053791 9.639267133 9.625860204 0.04183607
ERWCA 9.954456313 9.97065902 10.0949875 0.020573737
NN 9.936541178 9.992379038 10.06374005 0.036966727
WCA 9.96468867 10.02747273 10.03807178 0.049706742
CUCKOO 9.991954072 9.99653549 10.00975337 0.004785722
FA 9.967757325 9.798714253 9.937579442 0.020491913

Case 4-(10,100,100)

Genetic ERWCA 9.04734680 9.12501414 9.223736063 0.03169365
GWO 9.398950816 9.363710276 9.807190527 0.086210787
ERWCA 9.920335072 9.978707447 10.03689899 0.033999055
NN 9.843224343 9.989837198 10.07267487 0.036686917
WCA 9.870204556 9.969282453 10.0201175 0.053396825
CUCKOO 9.752531558 9.761688065 9.82476604 0.04266981
FA 9.578878801 9.618758218 9.858935513 0.058449337

The computational statistical results for two cases of Example N13 are shown in Table 9. From Table 9, ac-
cording to the obtained comprehensive statistical results of two cases, the proposed method performs better
than other algorithms. In both cases, the NN algorithm is give very worst performance by comparing the other
methods.

Similar to N13, N14 is resolved in the same two cases. Such as, 5 and 10 multiplicative ratios are solved
with 30 variables subject to 30 constraints, respectively. The computational statistical results for two cases of
Example N14 are shown in Table 10. Similar to the N13, the proposed algorithm is well performed by comparing
the statistical results of others algorithm, while solving the N14. The cuckoo search algorithm in the 1st case
and the NN algorithm in 2nd case perform very poorly by comparing the other methods.

6. Application problem

A management has discontinued production of a certain unprofitable product line and this has created
considerable excess production capacity. Management is considering to devote this excess capacity to produce
one or more of three products 1, 2 and 3 in their 4 branches. The available excess capacity on the machines,
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Table 8. Computational statistical results for Large Scale Multiplicative-of-Linear Ratio Prob-
lem (LS-MLRP).

Min N12 (r, c, n) Algorithms Best Avg. Worst SD

Case 1-(5,50,50)

Genetic ERWCA 0.7168701864 0.73652151 0.77047998 0.01155075
GWO 0.814986654 0.822342196 0.924444331 0.01660128
ERWCA 0.94591658 0.977893403 1.002735944 0.069732004
NN 0.948870514 0.988548001 1.014281084 0.012086218
WCA 0.955903989 1.012036036 1.03797346 0.016299212
CUCKOO 0.977091205 1.01089893 1.033514422 0.01279304
FA 0.960780292 0.971867324 1.028260568 0.015446073

Case 2-(5,100,100)

Genetic ERWCA 0.84064856 0.88745025 0.943283114 0.008327130
GWO 0.928927155 0.933362434 1.167029629 0.042658614
ERWCA 1.014496343 1.048532766 1.114715792 0.021433234
NN 0.987348657 1.027604985 1.146678683 0.042205023
WCA 0.943305026 0.980017161 1.049613142 0.018960256
CUCKOO 0.985239721 0.985835634 0.990286213 0.009060665
FA 0.928880601 0.943647902 1.077474865 0.036241651

Case 3-(10,50,50)

Genetic ERWCA 0.809436225 0.86351842 0.947479700 0.01420033
GWO 0.97951223 1.00734198 1.131869898 0.040513646
ERWCA 0.934166538 0.958885183 1.061864952 0.024044671
NN 0.936818293 0.994314307 1.116100448 0.043418737
WCA 0.924829928 0.9973134 1.186208934 0.06367028
CUCKOO 0.993758176 0.995543998 1.006084087 0.021649532
FA 0.988466502 1.00931327 1.132126453 0.032220389

Case 4-(10,100,100)

Genetic ERWCA 0.711088990 0.767999301 0.825544737 0.013501334
GWO 0.940828674 0.969655431 1.170123488 0.050662549
ERWCA 0.98211964 1.083322633 1.129462571 0.030744941
NN 0.91287193 0.980629076 1.085780066 0.035347594
WCA 0.943736596 1.019844176 1.075485759 0.021976432
CUCKOO 0.968795716 0.97545524 1.004353917 0.03889192
FA 0.980587436 1.009398569 1.170565054 0.043955399

Table 9. Computational statistical results for Large Scale Sum-of-Non-Linear Ratio Problem
(LS-SNLRP).

Min N13 (r, c, n) Algorithms Best Avg. Worst SD

Case 1-(5,30,30)

Genetic ERWCA 4.61844553 4.62784041818 4.63809480 0.000647993
GWO 4.985218753 4.976470201 5.015193101 0.004010578
ERWCA 4.980991744 4.991948574 5.003329381 0.002749425
NN 4.991819141 4.996841183 5.008596379 0.005441922
WCA 4.990707204 4.992691023 5.008844902 0.003733282
CUCKOO 4.997609722 4.998193903 4.999971256 0.002891612
FA 4.96601759 4.969506707 4.989779008 0.005082032

Case 2-(10,30,30)

Genetic ERWCA 122.1021036 123.2354031 124.5571823 0.801257881
GWO 137.7638095 137.9840018 141.4854711 0.967172908
ERWCA 147.3466601 172.5538975 180.0787519 6.451363023
NN 146.1484807 172.9422209 186.1285575 11.63059348
WCA 145.1047471 175.6778528 195.1121517 7.077757174
CUCKOO 136.6981421 137.8161121 140.8049775 0.855013089
FA 136.6288281 137.0692078 140.2831956 0.70902999
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Table 10. Computational statistical results for Multiplicative -of- Non-Linear Ratio Problem
(MNLRP).

Min N14 (r,c,n) Algorithms Best Avg. Worst SD

Case 1-(5,30,30)

Genetic ERWCA 0.928173518 0.936480405 0.947578667 0.005188756
GWO 0.95542134 0.956540527 0.98336519 0.003813135
ERWCA 0.990478271 0.99830095 1.013581952 0.005426799
NN 0.992309519 0.99753644 1.007913492 0.004613779
WCA 0.992101654 0.994411821 1.009126581 0.003320177
CUCKOO 0.970084435 0.975703215 0.994572899 0.007582201
FA 0.96560466 0.970015961 0.989367967 0.006200266

Case 2-(10,30,30)

Genetic ERWCA 123.75867287 125.2460363 127.8554381 1.048661682
GWO 141.0822458 160.1024172 171.8114009 2.606540748
ERWCA 137.6633521 162.5440464 169.5129236 5.114714415
NN 141.6937485 161.8923548 175.5594349 9.425663766
WCA 139.5578837 163.0024834 171.6135463 5.90074494
CUCKOO 145.168135 146.425487 149.2409333 2.507357165
FA 146.6032319 147.0686147 150.6370088 1.73732626

which might limit output is summarized in the following table:

Machine type Available excess capacity
(in machine hour per week)

M1 10
M2 10
M3 10

The number of machine-hours require for each unit of the respective product is given below.

Machine type
Capacity requirement in
machine hours per unit
P1 P2 P3

M1 2 1 5
M2 1 6 3
M3 5 9 2

Also the management has a total man power 10 persons. In this 9 persons, 7 persons and 3 persons are used
to produce the products respectively. The per unit contribution of each branches is as follows:

Branches
Per unit contribution
in branches (in cost)
P1 P2 P3

A 4 3 3
B 3 0 4
C 1 2 5
D 1 5 4
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Moreover the total time needed to produce each product in each branches is as follows:

Branches
Per unit contribution
in branches (in cost)
P1 P2 P3

A 0 3 3
B 4 4 5
C 1 5 5
D 0 5 4

The management also has a fixed establishment cost and time of Rs. 50/- and 50 h for each branches re-
spectively. The management wants to maximize the sum of all branches profit on time. This leads to a sum of
linear fractional programming problem and the formulated sum of linear fractional programming problem is as
follows:

Max Z = 4x1+3x2+3x3+50
3x2+3x3+50 + 3x1+4x3+50

4x1+4x2+5x3+50 + x1+8x2+5x3+50
x1+5x2+5x3+50 + x1+2x2+4x3+50

5x2+4x3+50

subject to 2x1 + x2 + 5x3 ≤ 10
x1 + 6x2 + 3x3 ≤ 10
5x1 + 9x2 + 2x3 ≤ 10

9x1 + 7x2 + 3x3 ≤ 10, x1, x2, x3 ≥ 0.

(6.1)

The application Ratio problem is solved with the proposed algorithm of Genetic ER-WCA. The obtained
results are compared with the other existing algorithms as shown in Table 11. From Table 11, the proposed
Genetic ER-WCA is proved to getting a better solution. That is, from the application problem, the proposed
algorithm gives more accuracy and also produce global solutions. Hence, the results of the application Problem
gives more accuracy and better solutions while using the proposed algorithm.

Similarly, from Figure 4 we can observe that proposed algorithm starts with the best solutions. Since ER-
WCAs initial population is the solution of the genetic algorithm the Genetic ER-WCA is performed well.
Figure 4, NN depicts poorer convergence than the other algorithms in the initial iterations. The firefly algorithm
represents the moderate convergence than other methods in the initial iteration. Cuckoo and Genetic ER-WCA

Table 11. Performance comparison of the proposed algorithm and other existing algorithms
of the application problem.

Methods Solutions

GWA
(X1; X2)

4.080956
(1.111111110934,0,0)

WCA
(X1; X2)

4.090702945
(1.111111076979,0,0)

NN
(X1; X2)

4.0907029476
(1.11111064993,0,0)

ER-WCA
(X1; X2)

4.090702947
(1.11111111066156,0,0)

CUCKOO
(X1; X2)

4.0815
(1,0,0)

FF
(X1; X2)

4.0815
(1,0,0)

Genetic ER-WCA
(X1; X2)

4.1308113
(0.3823,0,0)
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Figure 4. Convergence curve of the proposed algorithm for application problem.

Table 12. Comparative analysis of the statistical values of the Genetic ER-WCA algorithm
with some existing algorithms for application.

Methods Best Average Worst SD

Application
(Max)

Genetic ER-WCA 4.1308113 4.10874596 3.849818061 0.06526036
GWO 4.0907029471 4.089562071 4 0.0092115895
ERWCA 4.090702947 4.08883622166377 4 0.0127563326
NN 4.0358355 4.065067647 2.846182477 0.12658785703
WCA 4.0907029455 4.08891477 4 0.0103463557
CUCKOO 4.08148148148 4.0807535850 4.063365871 0.0074230238
FA 4.08148148148 4.0790190182838 4.03191517394 0.00695109838

algorithms are given the better and best convergence respectively. Hence the proposed algorithm is always
performed with the best solutions and also must reach the global solutions.

Table 12, shows statistical optimization results for the Application ratio problem using the Genetic ER-WCA
and different methods. Table 12, displays the worst, average, better solutions and standard deviation (SD) of
problem using various methods. Further, by observing Table 12, the genetic ER-WCA can identify the best
Standard Deviation by comparing different methods. It conveys, the solutions of the problems are close to the
mean value of the solutions. So the Genetic ER-WCA starts from near to the global solution. Hence, the Genetic
ER-WCA is more effective than other algorithm.

7. conclusion

This paper proposes a hybrid algorithm, by using GA and ER-WCA for solving the generalized linear and
nonlinear ratio problems. In real life, solving the generalized ratio of linear and nonlinear problems are most
complex. Because of this complexity, the highly nonlinear problems are solved using meta-heuristic evolutionary
algorithms, but which are not guaranteed to reach the global convergence. So we proposed the hybrid algorithm
using GA and ER-WCA algorithms to reach the appropriate global optimal solution and which is compared to
an exhaustive search algorithms. In the proposed algorithm, the worst raindrops in ER-WCA are replaced with
the best chromosomes in GA. These fine chromosomes have been Inspected using a boundary mechanism and
then the process of ER-WCA is implemented. After running an iteration, the poorer chromosomes of GA are
replaced with the better raindrops of ER-WCA. The communication strategy of proposed algorithm provides
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the information flow for the raindrops to communicate in WCA with the chromosomes in GA. The performance
of Genetic ER-WCA algorithm is better than other algorithms in terms of convergence and accuracy. Finally,
proved the global convergence of the proposed algorithm using several numerical example and also verify the
superiority of the proposed hybrid algorithm.
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