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MULTI-OBJECTIVE MULTI-FACTORY SCHEDULING

JAVAD BEHNAMIAN! AND SEYYED MOHAMMAD TAGHI FATEMI GHOMI?*

Abstract. This paper introduces a multi-factory scheduling problem with heterogeneous factories
and parallel machines. This problem, as a major part of supply chain planning, includes the finding of
a suitable factory for each job and the scheduling of the assigned jobs at each factory, simultaneously.
For the first time, this paper studies multi-objective scheduling in the production network in which each
factory has its customers and demands can be satisfied by itself or other factories. In other words, this
paper assumes that jobs can transfer from the overloaded machine in the origin factory to the factory,
which has fewer workloads by imposing some transportation times. For simultaneous minimization of the
sum of the earliness and tardiness of jobs and total completion time, after modeling the scheduling prob-
lem as a mixed-integer linear program, the existing multi-objective techniques are analyzed and a new
one is applied to our problem. Since this problem is NP-hard, a heuristic algorithm is also proposed
to generate a set of Pareto optimal solutions. Also, the algorithms are proposed to improve and cover
the Pareto front. Computational experiences of the heuristic algorithm and the output of the model
implemented by CPLEX over a set of randomly generated test problems are reported.
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1. INTRODUCTION

In the context of supply chains as a major part of the globalization trend, the jobs can be viewed as various
intermediate products that are supplied from an upstream supplier and need to be further processed in one of
several factories before their delivery dates to a downstream buyer. Since the supply chain (SC) can consist of
multiple layers, including suppliers, manufacturers, distributors, retail outlets, and consumers, its planning and
scheduling can be extremely complicated.

Today, scheduling problems have been widely studied by researchers. Among these studies, the majority of
research focuses on single factory planning. But, since large workload requirements are regular in some cases,
multi-factory planning is also required.

Multi-factory production scheduling is a generalization of the single factory scheduling, which for the first
time, is introduced by Williams [26]. This model is prevalent in today’s supply chain environment. The dis-
tributed production approach enables to have flexibility because it makes factories closer to the customers,
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employ professionals, comply with local laws, reduce their costs, produce more effectively and respond to their
market changes more quickly. However, each factory is considered as an individual entity that has different
efficiency and is subject to particular constraints, e.g., machine advances, labor skills and education levels,
labor costs, government policies, taxation, nearby suppliers and transportation facilities. A practical example
of multi-factory production problems can be found in the multinational lingerie company in Hong Kong [16],
electric power generating industries [25], automotive manufacturers in Italy [12], food and chemical process
industry [24] and steel corporation in the USA with four factories [21].

In this paper, a multi-factory production network problem with a set of factories and a set of demands for each
of them is considered. Since the production processes within many industrial enterprises are distributed over sev-
eral manufacturing factories, the factories themselves are responsible for the production of their regions. In such
a system, a schedule should give enough flexibility to a local scheduler. This can be attained by transporting
the jobs from the overloaded machine to the machine which has fewer workloads. Therefore, considering the
transportation time from one factory to another is important in the scheduling process. This problem mainly
concentrates on solving two issues simultaneously: (i) determining the most suitable factory for each job; and
(ii) determining the scheduling of assigned jobs to each factory. For scheduling problems, in the first step, it is
assumed each factory can produce the same quality of the product. Since customer demands correspond to the
factories and each factory has its customers, the demands, however, can be satisfied by others by imposing some
transportation times. This can be attained by transporting the jobs from among the production networks to
guarantee a better objective function. In other words, when job transportation is allowed, a job can be executed
in another factory. It is clear that considering this assumption in the scheduling makes sense and inevitably is
more practical than those problems that do not take such an assumption into account. Here, it is also assumed
that there are transportation routes among factories and a large number of transporters with the same quan-
tity, capacity, time and cost. Absolutely, for such coordination, the communication between the entities of the
network is essential.

Parallel factories and series factories are two types of structures in the distributed production network.
In the parallel structure, the factories can be homogeneous or non-homogeneous. In the parallel structure, the
allocation of demands to a suitable factory (especially in the heterogeneous environment) is a complex problem;
therefore, the majority of literature is dedicated to homogeneous factories. Because the real-world distributed
systems are usually heterogeneous, our research assumes that the distributed scheduling (DS) network consists
of heterogeneous parallel factories in which each factory has identical machines and different factories have
different speeds. Systems of such production networks have many real-life applications, e.g., in semiconductor
manufacturing, commonly, the newer and more modern machines have faster processing speeds compared to
existing machines [9].

Interest in multi-objective scheduling has been increasing recently, but due to its complexity, the
research in this area in comparison with the single criterion problems is limited. In a real production
environment, several objectives frequently need to be taken into account, simultaneously. Among them,
due-date related objective functions are one of the most critical factors [14]. In this class, the earliness
and tardiness are significant in satisfying due dates [2] in which early completion may induce storage
costs, while tardy completion may induce penalty costs. So, in this paper, multi-objective scheduling with
a due-date related objective is considered. This paper aims to propose the mathematical-based exact algorithm to
solve the problem. Using such an exact algorithm for the complex problems obtaining an optimal solution is difficult
especially for the large-size instances. Since in reasonable computational time single factory scheduling with parallel
machines and an earliness/tardiness objective function as a simple case of multi-factory scheduling is an NP-hard
problem [10] and changing from a single objective to a multi-objective formulation is not a trivial task [13], our multi-
objective problem with several factories is also NP-hard and consequently devising heuristics and metaheuristics,
especially in the large-size instances, is highly desirable heuristic algorithms are more preferable and acceptable
in practice, because they can obtain near-optimal solutions in a reasonable time. So this paper proposes a multi-
objective heuristic algorithm and enriches it with a new methodology.
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The paper continues with a comprehensive review of related research in Section 2. Section 3 presents
a mathematical model. To solve the problem, Sections 4 and 5 propose a multi-objective algorithm and a heuris-
tic approach, respectively. Section 6 is devoted to detailed computational results. Finally, Section 7 presents
some conclusions and remarks about future researches.

2. LITERATURE REVIEW

A limited amount of literature has been dedicated to this scheduling problem. Among them, it can be referred
to Cicirello and Smith [7]. They applied wasp-like agents for distributed coordination with two factories and
parallel machines. These agents used a model of wasp job allocation to determine the new job’s acceptance of
the machines’ queue. This approach for jobs arriving is also used to determine their bidding strategies. They
benchmarked the performance of their work on a real problem, which had to assign trucks to paint booths
in a simulated vehicle paint shop. Carroll and Grosu [5] modeled selfish multi-user job scheduling as a non-
cooperative and extensive-form game in the parallel identical machines environment. In this problem, the authors
assumed that there are several users with multiple selfish jobs with the makespan of their own jobs. Due to
the absence of coordination among the users, in that study, the price of anarchy to quantify the costs was
computed. Terrazas-Moreno and Grossmann [23] dealt with simultaneous scheduling and planning problems in
a production—distribution network of continuous multi-product factories. In this problem, the geographically
distributed production network is made up of several production factories distributed in different markets. The
authors proposed a hybrid bi-level and spatial Lagrangian decomposition method.

Recently, Behnamian and Fatemi Ghomi [3] considered the multiple factories scheduling problem in which
all factories are located in a single site, and therefore, the jobs transportation times among them are neglected.
In this problem, the factories available to process the jobs have different speeds in which each factory has identical
parallel machines. To minimize the makespan of all jobs, they proposed mixed-integer linear programming
(MILP) model, the longest processing time (LPT) based heuristic and genetic algorithm (GA). In this paper,
after representing a matrix-based encoding scheme, they improved the proposed genetic algorithm with a local
search algorithm. They also developed a lower bound and showed the proposed algorithms are efficient.

Shao et al. [22] addressed a distributed no-wait flow shop scheduling problem (DNWFSP) with the makespan
criterion by using. They, firstly, investigated several speed-up methods based on the problem properties of
DNWEFSP to reduce the evaluation time of the neighborhood with O(1) complexity. Then they proposed an
improved NEH heuristic to generate a promising initial solution. In this study, several neighborhood structures
are employed to improve their proposed iterated greedy algorithms.

Inkaya and Akansel [15] considered coordinated scheduling of the transfer lots in an assembly-type supply
chain that consists of at least two stages, where the upstream stages manufacture the components for several
products to be assembled at the downstream stages. In order to enable faster flow of products through the
supply chain and to decrease the work-in-process inventory, they used the concept of lot-streaming as a means
of supply chain coordination. They also introduced a mathematical model and a genetic algorithm to minimize
the sum of weighted flow and inventory costs. A backtracking search hyper-heuristic algorithm is proposed
to solve distributed assembly permutation flow-shop scheduling problem by Lin et al. [17]. In the proposed
algorithm, ten heuristic rules are designed to construct a set of low-level heuristics and the backtracking search
algorithm is employed as the high-level strategy to manipulate the low-level heuristics. To generate a feasible
schedule, they also proposed a solution encoding and decoding scheme.

Chang and Liu [6] proposed a hybrid genetic algorithm for solving the distributed and flexible job-shop
scheduling problem with the makespan objective function. They offered a novel encoding mechanism to solve
invalid job assignments and employed a genetic algorithm to solve the flexible job-shop scheduling problems.
Also, in the proposed hybrid genetic algorithm, various crossover and mutation operators are used to increase
the probability of finding the optimal solution and diversity of chromosomes.

Wu et al. [27] studied the distributed assembly flexible job shop scheduling problem. This problem can be
decomposed into several flexible job shop scheduling problems and several single machine factory scheduling
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problems. To minimize the earliness/tardiness and the total cost simultaneously, they proposed a mixed-integer
linear programming. An improved differential evolution simulated annealing algorithm was also introduced
in which to select the offspring, the authors applied a greedy idea combined with the non-dominated sorted
selection. Zhang and Xing [28] addressed the distributed flowshop scheduling problem with finite buffer and
makespan criterion. The considered problem consists of multiple homogeneous factories and each one is set as
a permutation flowshop with limited buffers between any two adjacent machines. They proposed two constructive
heuristics for generating a good initial solution for metaheuristics and used a differential evolution algorithm to
improve it. Meng et al. [18] introduced the customer order constraint into the distributed permutation flowshop
scheduling problem. In this problem, it is assumed a set of customer orders needs to be manufactured in
a number of factories and each order composed of some defined jobs should be processed in the same factory.
To minimize makespan among factories, they proposed a mathematical model. Then, they developed three
metaheuristics, namely, a variable neighborhood descent, an artificial bee colony and an iterated greedy.
This review reveals that:

(i) A large percentage of the reviewed papers considered job shop scheduling and only a small fraction of the
literature tackles parallel machines scheduling.
(ii) A large part of the literature is devoted to homogeneous factories in the distributed scheduling problem.
(iii) The majority of researchers in multi-factory scheduling are interested in proposing heuristics and meta-
heuristics in which a large number of them are GA-based metaheuristics.
(iv) Most studies are devoted to single-objective optimization.

Note that, the real-world distributed systems usually are heterogeneous. In other words, each factory can
be considered as an entity that has various efficiency and is subject to different constraints, e.g., machine
advances, labor skills/costs and education levels, government policy, tax, nearby suppliers, and transportation
facilities. According to the above points, it can be concluded that distributed scheduling with parallel machines
and heterogeneous factories is an interesting subject. Also, in a real production environment, several objectives
frequently need to be considered simultaneously. Therefore, the multiple objectives in multi-factory scheduling
are also embedded in the present paper.

3. PROBLEM DESCRIPTION AND MATHEMATICAL MODEL

In this paper, a multi-factory production network problem with a set of parallel factories and a set of demands
for each of them is considered. Since customer demands correspond to the factories and each factory has its own
customers, the demands, however, can be satisfied by others by imposing some transportation times. This can
be attained by transporting the jobs from the overloaded machine in the origin factory to the machine which has
fewer workloads in the substitute factory to guarantee a better objective function. In this research, it is assumed
that the distributed scheduling network consists of heterogeneous parallel factories in which each factory has
identical machines and different factories have different speeds. In this paper, multi-objective scheduling with
a due-date related objective was considered, in which total completion times, as well as the sum of the earliness
and tardiness of jobs must be minimized, simultaneously.

The number of independent factories forming the production network is denoted by F' which has a specific
local job cluster. Each factory f owns a cluster C1/ and has m/ identical parallel machines with speed v/. Job
i that belongs to factory cluster f performs on factory ¢ and is denoted by jif 9 If f = q, the job is performed
locally, otherwise it is migrated and the transportation time between factory f and ¢ must be considered. The
job set performed by factory f is denoted by nf. If factory ¢ performs all its local jobs, then C1/ = nf. With
such definitions, n = 2?21 nf = 2?21 Cl’ is the number of jobs that must be scheduled on F factories.

Now the proposed model is constructed according to the following assumptions:

(1) All data used in the paper are known deterministically when scheduling is undertaken.
(2) There are n independent jobs that are available at time 0.
(3) Machines are available at all times if they are not busy, with no breakdown.
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(4) A job, once started on the machine, must be completed on it without interruption.
(5) Orders quantity will not change after getting released from customers in each region.
(

S1451

6) Two objective functions are considered in the problem definition, 4.e., the sum of the earliness and tardiness

(ET) of jobs and total completion time (TCT).

(7) The factories have a parallel structure and are heterogeneous, i.e., the production processes performed in
different factories are similar and each factory has identical machines, but the machines in the different

factories may have different speeds.

(8) Jobs can be transported between factories and no loss and damage occur during transportation between

the factories and always, an infinite number of identical transporters are ready.
(9) Loading/unloading times are not considered separately and included in transportation times.

The input parameters and decision variables are defined below.

n number of true jobs to be scheduled

i,j,k index of jobs; 4, j, k € {1,2,...,n}
f,q index of factories; f,q € {1,2,...,F}
m/ number of parallel machines in factory f

nf number of assigned jobs to factory f

p; processing time of job 4

FE; earliness of job ¢

T; tardiness of job @

d; due date of job i

v/ the relative speed of machines in factory f

t74 the transportation time to carry the jobs from factory f to factory ¢
p; " modified processing time of job 7 in factory ¢ which originally is ordered to factory f
¢! completion time of job 4 in factory f
L large positive number
Fo { 1 if job i is scheduled immediately before job j in factory f,

i~ ] 0 otherwise.
¢t ] 1if job i is assigned to factory f,
i 7 1 0 otherwise.

r ] 1if job ¢ is orginally in cluster of factory f,
i =9 0 otherwise.

It is important to notice the dummy jobs 0 and n + 1 are introduced and that their processing times are 0.
The following model translates the problem assumptions into the mathematical formulation using the above

nomenclature.

F n n
Z=Min (Y Y¢/, Y E+T;
i=1

f=1i=1

F
s.t. S oyl =1, i=1,2,...,n,
f=1

(3.1)
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F

> oaf <, j=12...,n, (3.5)
f=1

n n+1

oal+ Y ali=2-y], i=12,...,m, f=12..F (3.6)
i =0, k=1,

i#J k#j

n F

> 2wk <, i=1,2,....n, (3.7)
j=1f=1

j#i

F 3
Z(xf +x§i)§1, i=1,2,....,n—1, j>1, (3.8)
f=1
p{qzwg’((%)+2tfq), i=1,2,...n, flg=1,2,....F, (3.9)
b s fa f L L, _
cf —cf > pl fL(l—xij), i ji=0,1,...,n, i#j,  f=1,2,...F (3.10)
¢/ +E -T, =4, i=1,2,...,n, f=1,2,...,F (3.11)
E;>d; —CI, i=1,2,...,n, f=1,2,...,F, (3.12)
T, > ¢/ —d,, i=1,2,...,n, f=1,2,...,F (3.13)
ol yl €{0,1}, i,j=0,1,....,n+1, i#j, f=12,...,F (3.14)
¢l >o, i=1,2,...,m, f=1,2,...,F (3.15)
E; >0, i=1,2,...,n, (3.16)
T, >0, i=1,2,...,n. (3.17)

In the proposed mathematical model, constraint (3.1) is the objective function. Constraint (3.2) indicates
that job 4 requires only one factory for its processing. Constraint (3.3) implies that a job j is either the first
job (when i = 0) or has exactly one predecessor (job i) on one of the F factories. With assumption n > m/,
constraint (3.4) ensures that there are as many dummy jobs 0 on each of the m/ machines of every factory f.
Constraint (3.5) guarantees that job j cannot be the first job on a machine of more than one factory. Constraint
(3.6) controls that every job can be either a successor or predecessor on each machine in the factory to which
it is assigned. Constraint (3.7) shows that every job has at the most one succeeding job. Constraint set (3.8)
states that a job cannot be at the same time both a predecessor and a successor of another job. Relation (3.9)
modifies the processing time of job ¢ according to the distance between the original factory of the job which
belongs to it and the factory that the job is finally processed on and the speed of machines in the destination
factory. Constraint (3.10) establishes the relationship between the completion times of jobs i and j assigned
to the same machine. Constraint (3.11) indicates the relation among the completion time, due date, earliness
and tardiness of a job. Constraint (3.12) calculates the earliness of the jobs. Constraint (3.13) calculates the
tardiness of the jobs. Constraints (3.14) to (3.17) represent the state of the variables and parameters used in
our model. Note that the value of C’if is zero when the job i is not assigned to factory f.

4. MULTI-OBJECTIVE OPTIMIZATION

Since our model is a multi-objective problem (MOP), this section is devoted to MOP concepts. The most
important methods in the multi-objective optimization are weighted sum and e-constraint methods. These
methods are very efficient and simple approaches that have disadvantages despite their wide usages. The most
important positive property of the weighted sum method is that it requires the same computational effort as
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the single objective version of the MOP to solve. However, this method has some drawbacks, e.g., with a large
number of objectives, it is very time-consuming and, in some cases, dependent on the form of Pareto front,
it cannot generate all efficient solutions [8]. Furthermore, this method is unable to deal with the non-convex
Pareto fronts. In the second method of the MOP, the e-constraint method, all efficient solutions can be found
by appropriately specifying the upper bounds. However, determining the upper bound is usually NP-hard.
The scalarized problem in the e-constraint method is harder than the single objective version of the MOP.
Furthermore, this method will strongly require a priori knowledge of the problem, and it is not appropriate for
a large number of objective functions [1].

Now, it can be concluded that almost all the methods mentioned above have some drawbacks. In the following
subsection, the new method is introduced.

4.1. Elastic constraints method

In the elastic constraints method, the advantages of all the above methods are combined to avoid their
drawbacks. The scalarization of the problem is as follows in which the original feasible region of scheduling
problem is S and objective functions are f, and fj.

min = w, fo(x) + wpsp
st. €S
fo(@) +1l—sp =€
We +wp =1
0 <wg, wp< 1
Iy >0, 5, >0 (4.1)

where w, is the importance of the objective function a, ws are the penalty coefficients, €, is a right-hand side
of the objective function constraint and s, and [, are surplus and slack variables, respectively. In this method,
the appropriate selection of s; and [; in the elastic constraint method causes to turn the f; upper bound into
an equality constraint and penalizes the constraint violation by wy.

Some important properties of this method are summarized as follows.

Theorem 4.1. Letw > 0 and (z*, I*, s*) be an optimal solution of (4.1). Then x* is a weakly efficient solution
for the MOP.

Proof. If we assume w > 0, then we will have s} = max{0, f; (*) — ¢ }. Assume there is some 2z’ € S such
that Z(z') < Z (x*). If assume [ := max{0, ¢, — fp(2’)} and s, := max{0, fi(z') — €}, then (z/, I, ¢') is
feasible for (4.1) and has a better objective function value than (z*, I*, s*) then it contradicts the optimality
of (z*, I*, s). O

Theorem 4.2. Let w > 0 and (z*, I*, s*) be an optimal solution of (4.1). Then uniqueness of x* in all optimal
solutions and s* > 0 are two sufficient conditions for x* such that it is efficient.

Proof. If assume s* > 0 and there is 2’ € S such that Z(2') < Z (z*), then Theorem 4.1 gave a reason that
z* is weakly efficient and it is obvious that the first condition holds. Also, simultaneous holding of s* > 0 and
w > 0 imply that I* = 0. According to Theorem 4.1 and with defining s’ and I, we will have a feasible solution
(', U, ') such that we fo(2') < wefa (2*) or s, < s; then it contradicts the optimality of (z*, 0, s*). O

Theorem 4.3. Since the elastic constraints method comprises both the weighted sum and e-constraint method,
(i) if e < min{fp(z): x € S}, problem (4.1) is equivalent to a weighted sum problem; and (ii) if wy, = o0,
problem (4.1) is equivalent to a e-constraint problem.
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FIGURE 1. Solution guide mechanism.

Proof. (i) By choice of ¢, < min{fy(x): 2z € S}, any feasible solution of (4.1) must have s, > 0. In the
optimal solution, additionally, I, is 0. Thus, s, = fp(x) — €, > 0 and solving (4.1) is equivalent to solving
“minwg fo (z) + wp fo(x) — wpep”. Since the last term is constant, this is a weighted sum problem.

(ii) By choice of w, = oo, since s, must be zero in the objective function minimization, any solution (z,l, s)
of (4.1) with finite objective function value must satisfy fy(z) + Il = €, i.e., fp(z) < € with the objective
function “minw,f,(x)”. Since the coefficient w, has no effect on the model solutions, problem (4.1) is

equivalent to the e-constraint problem.
O

4.2. Improvement of Pareto front

In this subsection, to improve the obtained Pareto front of the elastic constraints method will be introduced.
In the literature, such a method is named the solution guiding method. In our proposed method, the new
Pareto optimal solutions (PS) are generated according to the information already obtained from solutions and
this procedure is repeated until no new Pareto optimal solutions are found. Figure 1 shows the details of this
procedure.

The proposed algorithm has the following steps in details:

Step 1. Relax the binary variables and solve the MOP using an elastic method. Find the set of best achievable
efficient solutions (BAS).

Step 2. Create and solve the MOP with the elastic multi-objective method.

Step 3. Confine the search’s zones and solve the specific sub-problem iteratively in the confined space (CS) to
find the new PS, as shown in Figure 2b.
To create the confined space, it is assumed that N Pareto optimal solutions have been found in Step 2.
For each couple-solution on the front, if the PS are arranged in decreasing order of z,, the following model
denoted by CP(«) for ath and (« 4 1)th PS with the confined objective values were solved:

min A fo(z) + Apsp
st. ze€S
fa(®) < za(a) + €
fo(x) +1p — sp = zp(a+1)
A+ =10<A, Ny <1,0, >0, 8 >0,e>0. (4.2)

(1Pl

Considering two cases « = 0 and a = N, totally N 4 1 problems must be solved. The constant term “€” is
required to prevent the generation of solutions previously found. If problem CP(«) proved to be infeasible,
it means that no new PS can be found in the zone determined by solutions « and « + 1 (the gray area in
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FIGURE 2. Example of new PS discovered with the solution guide mechanism.

Fig. 2b). In the case that the new PS is found, go to Step 4a, else, go to Step 4b. Note that, since the best
achievable values limit the values of z,(a+ 1) and z,(«), it is not required to confine their values in CP(«).

Step 4a. According to the iterative procedure, if the new PS can be found, insert them in the last Pareto set
for the next round of search. By “merging” and update the Pareto front and go to Step 3. Now, at least a new
couple will be obtained and it is also possible that the new PS dominates some old solutions and the newer
couples will be achieved.

Step 4b. If, in the last round of the algorithm, the specific zone determined by two adjacent solutions is
explored without giving the new PS, it is necessary to repeat exploration in the next round. Since these
zones gave no new PS in the previous runs, they must be removed from the list of PS that will be explored in
the next round. Therefore, put the current couple in the tabu list until all couples of this round are checked
and repeat Step 3.

As mentioned earlier, all single factory scheduling problems in the multi-factory environment are NP-hard
and no exact algorithm can be designed, especially for large-size instances. Solving the scheduling problem
in the real and large-sizes instances, where it is more complicated to be solved exactly, induces us to devise
a heuristic algorithm. Thus, in the next section, a new heuristic algorithm for the problem will be proposed.

5. HEURISTIC ALGORITHM: MULTI-STRUCTURE LOCAL SEARCH ALGORITHM

Population-based heuristics handle a “population” of solutions rather than a single feasible solution.
In general, these algorithms start with an initial population and use some principles (such as a mutation in
GA), and cooperation in exchange information between individuals (such as “pheromone” in an ant colony) to
improve the initial population quality. Since members of the population contribute to the evolutionary process
and the generation mechanism is parallel, the population-based methods are attractive for solving the problems.
In contrast, in neighborhood search algorithms, the generation of solutions relies upon one individual solution
and its neighbors. By using the neighborhood structure mechanism, the solving procedure iteratively projects
the neighbors into the objective space in a specific search direction by optimizing the corresponding objective
function. Basically, a local search algorithm carries out the exploration within a limited region of the search
space and facilitates the finding of a better solution without doing further investigation. This procedure is
repeated to diversify the search directions [11].

Surveying a variety of heuristics and metaheuristics used to solve combinatorial problems gives us a good idea
to propose a new algorithm. In this section, a new high-level local search algorithm which to select a candidate
solution makes use of six choices in three levels is introduced. This algorithm is called a multi-structure local
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search (MSLS) algorithm, and since essentially it is designed based on the structure of our problem, it is
expected that this heuristic to have good performance when solving the large-size instances. The MSLS is a fast
and effective search procedure that produces a systematic change in the neighborhoods.

As shown in Figure 3, an ordinary MSLS algorithm starts with an initial solution, « € S, where S is the
entire search space, and manipulates it through three-nested loops in which the search alters and explores
via three main structures, so-called “one-machine local search (OLS)”, “one-factory local search (OFS)” and
“whole-local search (WLS)”. The loops of WLS and OFS work as a refresher reiterating the OLS loop, while
the OLS loop carries out the major local search. In other words, OLS explores an improved solution within
the local neighborhood, while WLS and OFS diversify the solution by switching to another local neighborhood.
Once an inner loop is completed, the outer loop reiterates until the termination condition is met.

In the following subsection, several neighborhood structures with notation L, are defined.

5.1. Local searches

Here, three local search structures i.e., OLS with notation L! (I = 1,2,3) and Ly, OFS with notation Lz and
WLS with notation L, that are created in the following manner and used in our proposed algorithm:

(1) For Li:
— Choose machine ¢ randomly from the randomly selected factory f,
— Choose two jobs j; and jo on machine i, randomly,
— Swap jobs j; and js.
(2) For L2:
— Choose machine ¢ randomly, from the randomly selected factory f,
— Choose job j and a valid position “pos” on machine ¢, randomly,
— Transfer job j to position pos.
(3) For L3:
— Choose machine i randomly, from the randomly selected factory f,
— Choose cutting point randomly on machine ¢ to divide the sequence of job into two parts,
— Swap two parts.
(4) For Lo:
— Choose two machines i1 and i randomly from the randomly selected factory f,
— Choose job j; in i1 and job js in i5 randomly,
— Swap jobs j; and js.
(5) For Ls:
— Choose job j; and machine is randomly, where j; does not belong to is from the randomly selected
factory f,
— Choose a valid position “pos” randomly in 5 in the factory f,
— Transfer job j; to io at position pos.
(6) For Ly:
— Choose job j; randomly from the randomly selected factory f and machine is from the randomly selected
factory g, where j; does not belong to is,
— Choose valid position “pos” randomly in 29 in the factory g,
— Transfer job j; to io at position pos.

Note that in the MSLS, the algorithm always tries to use the fastest local search that available first. If, after
an iteration, a new solution is found, then another neighborhood is used (in Ly the value of s is incremented),
and every time no improvement is made, the first and the fastest local search is used (s = 1).



MULTI-OBJECTIVE MULTI-FACTORY SCHEDULING

Random initial solution

~
Il

—_
w
[

—
A

Improve solution?

|

Save new solution in the archive

v

No

Perform local search L

!

A

Improve solution?

Save new solution in the archive

!

topping criteria satisfy?

Identify the non-dominated solution in the archive

Fi1cURE 3. The flowchart of multi-structure local search algorithm.

51457



S1458 J. BEHNAMIAN AND S.M.T. FATEMI GHOMI

Objective / Objective / Objective /

A A A

(b)

0000

(@) ©

o-0—
-

°’

@
\
9*@.9
0~9-0—- ~9-9-9-

- o -

Objective 2 Objective 2 Objective 2
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5.2. Improvement of Pareto front in MSLS

After running the MSLS algorithm, one of the solution’s quality index, the spread of solutions, may not be

appropriate. The aim of this subsection is to propose a moving guide algorithm that improves the results of the
MSLS.

5.2.1. Diversity of solutions

The diversity and spread of solutions are two critical issues in multi-objective optimization. As shown in
Figure 4, typically, the spread of Pareto solutions on the Pareto front has three cases, including (a) the solutions
of the Pareto front have inadequate diversity; (b) the solutions of the Pareto front are not explored and finally;
and (c) the ideal solutions.

5.2.2. Goal-oriented guide

The main objective behind choosing a non-dominated guide for a dominated solution is to search the neigh-
borhood of a dominated solution so as to improve its position in order to relocate in the Pareto front. By
following the nearest non-dominated guide, a dominated solution is likely to obtain a better solution. This helps
to gain a better Pareto front. In the guidance of a dominated solution, as shown in Figure 5, there are several
methods for targeting, included (a) a dominated solution can follow a dominated or non-dominated solution;
and (b) a dominated solution follows the nearest non-dominated solution. A weakness of this method is that
when one solution dominates all other solutions, targeting toward a single target causes the diversity of search
to be lost. To eliminate the drawbacks of these methods, a case (c¢) was proposed in which a dominated solution
can follow either non-dominated or dominated solutions in its own region.

Now, the purpose of this subsection is to provide a technique with a low computational cost for the situation
that the results are far from the ideal solutions. The goal of this technique is to improve the dominated solution
in order to locate on the Pareto front by confining the solution space. The proposed technique uses a new
approach for generating the set of potential guides from the available dominated solutions in each iteration.
Multi-objective optimization requires a search for multiple targets to locate solutions closer to the Pareto optimal
front and improve diversity. As shown in Figure 6, in the proposed technique, the solution space is confined in
the zone CS, and this creates an opportunity to maintain the search procedure in those regions that are closer
to the Pareto-approximation front.

Typically the dominated solutions are not considered in the obtained results, but this important issue should
be taken into account since some of these solutions have special properties such as being located in the sparse
part of the Pareto front. In this part of the algorithm, if it is necessary, some of these solutions will be used.
Before proposing a technique, in detail, analyzing the distribution of the obtained Pareto solution by MSLS and
determining in what zones the spread of solutions is not appropriate is needed. Figure 6 illustrates the process
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F1cURE 6. Example of new PS discovered with the goal-oriented guide.

of the goal-oriented guide technique in which the circles and triangles represent the non-dominated and dominated
solutions, respectively. It is seen that the non-dominated solutions are missing in some zones.

In this regard, a search direction is chosen randomly for each dominated solution among the solutions located
in its zone. The PS follow their respective non-dominated or dominated solution to maintain the search space
within their zones. Three particular cases may occur: (i) by excluding the selected non-dominated solution, if
the corresponding zone is completely empty, the nearest dominated or non-dominated solution from the nearest
nonempty neighbor is selected; (ii) if the corresponding zone has a one dominated solution, this solution is guided
toward the node by extrapolating (or interpolating) from nearest existing solutions in the nearest neighbor of
the sparse zone; and (iii) if the corresponding zone is completely empty, either a non-dominated or dominated
solution from other zones is chosen and it is guided as described in (ii). This procedure is continued until the
Pareto front is close to the ideal shape or stopping criteria is met. Note that, for moving guide in this step, the
crossover-like operators can be used.

6. COMPUTATIONAL RESULTS

The literature review indicates that there is no study on the bi-objective multi-factory scheduling problem
with heterogeneous factories. Therefore, the present paper seems to be the first study in this field. So, the
improved MSLS is compared with the adaptations of an improved genetic algorithm recently proposed by
Behnamian and Fatemi Ghomi [3] for a set of randomly generated test problems. In that study Behnamian
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TABLE 1. GA parameters tuning [3].

Parameters Problems

Small Medium Large
C, 0.70 0.60 0.70
M, 0.10 0.10 0.04
Psize 200 200 200

and Fatemi Ghomi [3] have applied the parameters tuning for the crossover rate (C,) mutation rate (M, ) and
population size (Pi,e). Table 1 shows the results for different sizes of problems; small medium and large.

In this paper, the proposed algorithms are run ten times independently. The CPLEX 7.0 software is also used
to solve the mathematical model. The improved MSLS and GA were implemented in Borland C++ 5.02 and
run on an Intel Pentium IV dual-core 2.00 GHz PC with 1022 MB RAM running Microsoft Windows 7.

In multi-objective optimization, it is important to decide how the quality of solutions is evaluated because
the conflicting and incomparable nature of some of the criteria makes this process more complex. So, in this
section, firstly, the evaluation metrics are introduced and then the numerical results are reported in two separate
subsections: MILP on the small-size instances and MSLS on large-size instances.

6.1. Evaluation metrics

For evaluating the obtained solutions, in this paper, three indices as follows [4] were used. Note that, lower
values of MID and RAS are preferred, but a higher value of SNS is better (more diversity in the obtained
solutions is preferred).

(1) MID (mean ideal distance): The closeness between the Pareto solution and ideal point (0, 0) which is defined

as follows.

MID = 2=i=1% (6.1)
n

where n is the number of non-dominated solutions and ¢; = \/f% + f3,.

(2) SNS: The spread of non-dominated solutions, as a diversity measure, can be expressed by the following

relation:
n 2
SNS = \/ L (o) (62)

n—1

(3) RAS: The rate of achievement to two objectives simultaneously which is represented in relation (23).

E:L:l (fli}:in‘) + (fZiF:Fi)

n

RAS =

(6.3)
where F; = min {f1;, f2:}.

6.2. Numerical results and discussion

In this subsection, the developed MILP, MSLS and GA are evaluated on two sets of instances. The first set
is the small-size instances and designed to examine the effectiveness of the mathematical model. In the second
one, the performance of the MSLS against the GA on large-size instances is examined.

Here, the important issue is the due dates of the jobs. To generate the due date of job that belongs to cluster,
the following formula is proposed that it generates very tight due dates in which random is a random number
from a Uniform distribution over the range (0, 1) and cm/ is max {1, C1/ /m/} .

d; = (0.1 + random) x (em /v!) x (p;), i=1,2,...,n, f=1,2,...,F. (6.4)
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FIGURE 7. Pareto solutions yielded by MILP and elastic method implemented by CPLEX.
(a) Instance with 10 jobs on 2-factory. (b) Instance with 15 jobs on 3-factory.

TABLE 2. Factor levels.

Factor Levels

Number of jobs 50 100 200 500
Number of factories 2 3 5
Number of machines in each factory 2 5

Standard processing times U (50, 70) U (70, 100)

6.2.1. MILP on the small-size instances

Computational experiments are carried out to compare the results of MILP on the small-size instances and
demonstrate that the proposed model can find Pareto optimal solutions. Here, the MILP model using the
CPLEX solver is tested in two instances. The processing times of each instance are generated using a discrete
Uniform distribution from 30 to 60.

Figure 7 provides the results of the 10-job with 2-factory and 15-job with 3-factory problems, respectively.
From the computational results shown in Figure 7, it can be observed that the model can find near-optimal
solutions efficiently. This method is, however, a computationally intensive procedure and is feasible only for the
small-size instances.

6.2.2. MSLS on large-size instances

Following Behnamian and Fatemi Ghomi [3], data required for a problem consists of the number of jobs, the
number of factories, and the number of machines in each factory and the range of processing times that their
levels are listed in Table 2.

In general, all combinations of these levels are tested. However, some further restrictions are introduced. Due
to its complexity, the instance with five factories and five machines in each factory is ignored. So, there are 40
test scenarios and ten data sets are generated for each one.

For a fair comparison between algorithms, similar to Ruiz and Stuetzle [20] and Ramanauskas et al. [19]
studies, we have allocated equal time for the algorithms. Furthermore, due to several runs, we experimentally
are aware that computational time has a direct relation with the number of factories, the number of jobs and
the number of machines in each factory. So based on researches in the literature, the stopping criterion used

1/2
for all algorithms is set to a computation time (CPU time) limit fixed to (n X (F 2?21 ms ) ) seconds for

algorithms. This stopping criterion is not only responsive to the number of factories but also is sensitive towards
the rise in the number of jobs and the number of machines at each factory.
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TABLE 3. Evaluation of obtained solutions for large size instances.

Jobs Instance Algorithm and index
MID SNS RAS
GA MSLS GA MSLS GA MSLS
1 21118.75 13051.95 989.371 87.513 0.167  0.508
2 24 022.86 12920.87 1652.153 66.530 0.266 0.721
3 25668.02 12781.08 1275.201 98.039 0.153  0.753
4 23058.26 12728.94 1367.013 91.000 0.184 0.724
50 jobs 5 15912.18 13047.19 697.816 76.567 0.614 0.824
6 20045.61 13287.49 837.968 86.899 0.120  0.386
7 21628.71 13440.03 1052.473 87.775 0.116  0.493
8 2237291 13087.83 1162.374 80.854 0.158 0.574
9 23079.07 13298.39 1264.984 95.378 0.157 0.491
10 24147.23 13107.09 1371.245 85.819 0.172  0.677
1 59 033.83 50523.48 447.815 176.549 0.082 0.517
2 59 569.68 50152.49 325.814 318.709 0.109 0.378
3 58 560.13 52939.17 559.496 248.907 0.184 0.466
4 60 826.26 51539.57 328.475 190.200 0.087  0.397
100 jobs 5 57671.38 50921.76 357.716 273.608 0.114  0.499
6 60627.97 52018.22 285.062 328.199 0.117 0.332
7 57109.97 49754.08 527.511 220.205 0.099 0.489
8 61787.16 53005.12 608.171 308.575 0.081 0.453
9 58200.52 48 186.65 909.538 270.176 0.098 0.603
10 61431.01 52 886.72 300.866 249.418 0.070 0.444
1 304 597.46 180538.52  7958.944 779.658 0.131 0.418
2 268 838.28 179396.06  334.042 1399.587 0.126  0.253
3 226 827.29 180308.98  3900.617 574.250 0.317  0.210
4 270193.42 187776.00  2393.788 922.474 0.089  0.038
200 jobs 5 292772.86 183172.70  2846.380 213.395 0.008 0.227
6 285062.78 179408.98  6500.727 801.019 0.094 0.176
7 262 674.38 178 711.64  1940.751 389.683 0.051  0.009
8 260307.49 186315.89  1156.127 202.413 0.591  0.203
9 275 382.96 185023.65  4800.215 1158.635 0.251 0.163
10 222254.75 180514.74  5914.733 264.625 0.245 0.248
1 1809329.85 1211252.1 31374.301 8416.726 0.037  0.258
2 1855759.85 1191234.7 38577.023 14066.788 0.154 0.419
3 1845380.06 1237259.0 28851.034 10306.685 0.179 0.415
4 1837733.96 1476014.0 28588.734 8482.296 0.435 0.062
500 jobs 5 1794738.27 1346822.3 28473.096 7857.409 0.576  0.133
6 2023422.56 1333836.4 59021.761 11197.513 0.072 0.009
7 2298323.68 1325310.8 84795.500 3069.009 0.022 0.144
8 1699541.12 1337581.1 16254.984 10266.789 0.038 0.016
9 1586999.21 1222285.8 2715.093 6993.524 0.128  0.256
10 1952172.80 1414805.6 54789.678 5844.314 0.158  0.080
Average 1870340.14 1309640.2 37344.120 8650.105 0.180 0.179

In this part of the computational experiments, some large-size instances are generated in order to compare the
performance of our proposed heuristic algorithm and GA. Using about 40 test problems, some useful comparisons
were made to compare the quality of solutions considering indices MID, RAS and SAS. Table 3 represents the
comparison results for F = 3, m/ = (4,3,5) and vf € [1, 1.2]. The processing times of each instance are

generated using a discrete Uniform distribution from 70 to 100.
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TABLE 4. Kruskal-Wallis ANOVA table for methods with MID index.

Source df  Sum of square Mean square x?  Prob > 2

Method 1 2000 2000 3.7 0.0543
Error 78 40660 521.282
Total 79 42660

TABLE 5. Kruskal-Wallis ANOVA table for methods with SNS index.

Source df  Sum of square Mean square x> Prob > x?
Method 1 8241.8 8241.8 15.26  9.3551e-005
Error 78 34418.2 441.26

Total 79 42660

TABLE 6. Kruskal-Wallis ANOVA table for methods with RAS index.

Source df  Sum of square Mean square X Prob > x?
Method 1 8425.5 8425.51 15.6  7.81085e-005
Error 78 342325 438.88

Total 79 42658

The preliminary results indicate a considerable potential to obtain good solutions through the implementation
of the MSLS. From the results shown in Table 3, it is clear that a significant difference exists between MSLS and
GA, especially when index MID is considered. The GA is capable of generating more diverse solutions, according
to the SNS index. Also, it can be seen, MSLS and GA have similar results when index RAS is concerned. To
verify the statistical validity of the results shown in Table 3 and confirm which the best algorithm between
MSLS and GA is, a Kruskal-Wallis test as a non-parametric method has been performed in which the different
algorithms as a factor and the response variable as an index value are considered. Note that, the parametric
equivalent of the Kruskal-Wallis test is the one-way analysis of variance (ANOVA). A significant Kruskal-Wallis
test indicates that at least one sample stochastically dominates one other sample. The obtained results are shown
in Tables 4-6 and Figures 8-10.

From the data stored in Tables 5 and 6, it is clear that a significant difference exists between MSLS and GA.
Hence, regarding the MID index, Table 4 shows there is no significant difference exists within algorithms at the
95% confidence level.

As it is also seen in Table 3, considering index MID, the efficiency of the algorithms becomes worse. However,
this trend reverses concerning the second criterion, i.e., regarding the SNS index, the spread of non-dominated
solutions increases. Moreover, regarding the RAS index, again, the rate of simultaneous achievement to two
objectives, improves. This table also shows our proposed algorithm can be applied in the instance with 500 jobs
in ten factories. This matter reveals the importance of proposing a heuristic to obtain good solutions in a short
computational time for large-size instances. Figures 11-13 show the mean plot and least significant difference
(LSD) intervals at the 95% confidence level for the interaction between the type of algorithm and the number
of jobs for three indices.

As shown in Figures 11 and 12, MID and SNS have an increasing trend when the number of jobs increases.
From the information shown in Figure 13, it is clear that both algorithms have robust behavior when the number
of jobs changes.
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7. CONCLUSIONS AND FUTURE RESEARCH

This paper considered a multiple objectives multi-factory scheduling problem with parallel machines.
A mathematical model was presented for the problem and after proposing an appropriate multi-objective tech-
nique, it was implemented in CPLEX for test instances up to 15 jobs and three factories. To improve the obtained
Pareto solutions, by using the relaxed problem, several sub-problems for each couple of Pareto solutions were
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generated. The aim of solving these sub-problems is to find a new solution in the corresponding zones. Due to
high complexity and considerable time to solve the proposed model exactly, an effective multi-objective heuris-
tic approach, namely multi-structure local search (MSLS) which has six neighborhood structures, is designed.
In the obtained Pareto solutions, after detecting the sparse part of them, a covering technique with the aim
of improving the diversity and convergence of the MSLS results is proposed. For the real-life application, the
large-size test benchmarks are generated. Results indicated better performance of MSLS in comparison with
a genetic algorithm. Regarding the mean ideal distance index our proposed algorithm yields better solutions
while the GA shows better performance when the spread of non-dominated solutions is concerned. The rate of
simultaneous achievement to two objectives in the two algorithms (especially in large-size instances) is similar.
Furthermore by increasing the number of jobs the algorithms lose their qualities considering the mean ideal
distance and solutions spread indices.

The current paper ignores some realistic assumptions that can be studied in future research. Some of them
are as follows:

— Here, it is assumed machines are continuously available, but in most real-life industries, a machine can be
unavailable for many reasons. So, in future research, it can be assumed that the machines are not continuously
available at all time in all factories.

— Also, in the current research, the assumption is that job information is available before the scheduling is
started. But in real scheduling, such information may not be known beforehand and when a job is available,
it must immediately be assigned to one of the factories before the next job becomes available.

— Moreover, practical production usually operates in stochastic events, such as random job arrivals, machine
breakdowns and due dates. Stochastic multi-factory scheduling can be interesting for future research.

— Considering the production network with combined structures (i.e., parallel structure combined with series
structure) and network scheduling with dissimilar machine environments in each factory are also some open
areas on generalizing the proposed problem.

— In this paper, some neighborhood structures were proposed which can be improved, or other neighborhood
structures can be designed.

— Using other multi-objective techniques to solve the problem is our last suggestion for future research.
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