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OPTIMIZING DISTANCE CONSTRAINTS FREQUENCY ASSIGNMENT WITH
RELAXATION

ZEHUI SHAO!, ENQIANG ZHU', JIN XU?, ALEKSANDER VESEL>* AND XIUJUN ZHANG!

Abstract. In a typical wireless telecommunication network, a large number of communication links
is established with a limited number of available frequencies. The problem that addresses assigning
available frequencies to transmitters such that interference is avoided as far as possible is called the
frequency assignment problem. The problem is usually modeled as a graph coloring (labeling) problem.
We study in this paper the (s, t)-relaxed L(2, 1)-labeling of a graph which considers the situation where
transceivers that are very close receive frequencies that differ by at least two while transceivers that
are close receive frequencies that differ by at least one. In addition, the model allows at most s (resp. t)
anomalies at distance one (resp. two). The objective of the model is to minimize the span of frequencies
in a corresponding network. We show that it is NP-complete to decide whether the minimal span of
a (1,0)-relaxed L(2,1)-labeling of a graph is at most k. We also prove that the minimal span of this
labeling for two classes of graphs is bounded above with the the square of the largest degree in the
graph of interest. These results confirm Conjecture 6 and partially confirm Conjecture 3 stated in Lin
[J. Comb. Optim. 31 (2016) 1-22].
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1. INTRODUCTION

In a wireless telecommunication network, communication connections among transmitters are established by
means of radio links. A national regulation authority assigns for a wireless network provider a certain frequency
spectrum which is divided into so-called channels. The number of transmitters in a typical telecommunication
network is much larger than the number of available channels, therefore some of the transmitters have to use
same channels. However, the use of channels is limited by interference which can disable communication by
means of transmitted signals. Interference depends on a lot of factors, the most important of which is the
distance between two transmitters. In other words, if a transmitter and its close neighbor use the same channel,
the result can be a failure of the data transmission. Moreover, interference can also occur if two transmitters
that are very close use adjacent channels.
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For the reasons described above, the restricted availability of frequencies is one of the most important prob-
lems facing the radio network operators today. The problem that addresses assigning available frequencies to
transmitters such that interference is avoided as far as possible is called the Frequency Assignment Problem
(FAP).

A natural way to approach this problem is to model the described situation with a graph. A detailed graph
theoretical models of FAP is the concept of distance constrained labeling of graphs [7]. The most examined
variant of this concept is the L(2, 1)-labeling problem where adjacent vertices must be assigned labels of distance
at least two apart and vertices of distance two must be assigned different labels [5].

As usual, the distance between vertices u and v of a graph G is the shortest path distance and will be denoted
by d (u,v). A vertex v of a graph G is a neighbor (resp. a 2-neighbor) of u if u is adjacent to v (resp. at distance
two from v) in G.

An L(2,1)-labeling of a graph G is a function f from the vertex set V/(G) to the set of nonnegative integers
such that

(1) f(u) — f(v) € {0,—1,1} if v and v are neighbors;
(2) f(u) # f(v) if v and v are 2-neighbors.

The span of f is the difference between the largest and the smallest number in f(V(G)). The A-number of
G, denoted by A(G), is the minimum span over all L(2,1)-labelings of G.

Note that for the path, cycle and complete graph on n vertices we have A (P,) < 4, A(C,,) =4 and X (K,,) =
2(n — 1), respectively [5].

Since the spectrum of frequencies is very limited, there may not exist an L(2, 1)-labeling of a given graph with
a requested number of labels. Motivated with this situation, Lin [8] proposed the (s, t)-relaxed L(2, 1)-labeling
(see also [1,2,13)]).

For nonnegative integers s, ¢t and k, an (s,t)-relaxed k-L(2,1)-labeling f of a graph G is an assignment of
labels from {0,1,--- ,k} to the vertices of G if the following three conditions are satisfied:

(1) f(u) # f(v) if v and v are neighbors;
(2) for any vertex u of V(G), there are at most s neighbors of u receiving labels from {f(u) — 1, f(u) + 1};
(3) for any vertex u of V(G), the number of 2-neighbors of u with the label f(u) is at most ¢.

The (s,t)-relaxed L(2,1)-labeling number )\Zi (G) of G is the minimum & such that G admits an (s, t)-relaxed
k-L(2,1)-labeling.

If fis an (s,t)-relaxed L(2,1)-labeling, then the difference between the maximum and minimum labels used
under f is denoted as span(f).

In [8], the following problem is proposed:

Problem 1: Fixed parameter relaxed L(2,1)-labeling (FPRL21).
Instance: Graph G = (V, E) and a nonnegative integer k.
Question: Is A%:?(G) < k?

Conjecture 1.1 ([8]). FPRL21 is NP-complete for every k > 3.

They also suggested the following weak version of Griggs and Yehs conjecture:
Conjecture 1.2 ([8]). For any graph G with maximum degree A, )é:(l)(G) < A2

Lattices (also called grids) are frequently used models for the frequency assignment problems. In particular,
the (s,t)-relaxed L(2,1)-labeling number of the square lattice is determined in [1], the (s,t)-relaxed L(2,1)-
labeling number of the triangular lattice in [2], while the (s,t)-relaxed L(2,1)-labeling number of the hexagonal
lattice is given in [3].

The paper is organized as follows. In the sequel of this section we give basic definitions needed in this paper.
In Section 2, we confirm Conjecture 1.1 by showing that it is NP-complete to decide whether )\%:?(G) <k
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for k > 3. In Section 3, we show that A;:?(G) < A? for any claw-free graph G and therefore partially confirm
Conjecture 1.2. The paper is concluded with the results on (1,0)-relaxed L(2, 1)-labelings of some infinite families
of toroidal grids presented in Section 4. In particular, we present (1,0)-relaxed L(2, 1)-labeling numbers of three
infinite families of toroidal grids and prove that the (1,0)-relaxed L(2,1)-labeling number of a toroidal grid is
bounded from above by 6.

Given a vertex v in a graph G, the set consisting of all neighbors of v is denoted by N¢g(v) or simply N (v).

Let [n] denote the set {0,1,...,n — 1}. The path P, is the graph whose set of vertices is [n] and in which two
vertices are adjacent precisely if their difference is £1. For an integer n > 3, the cycle of length n is the graph
C,, whose vertices are [n] and whose edges are the pairs {i,i + 1}, where the arithmetic is done modulo n.

If every vertex in a graph has degree k, then we call the graph k-regular. In particular, we call a 3-regular
graph a cubic graph.

2. COMPLEXITY OF (1,0)-RELAXED L(2,1)-LABELING

Let k > 3 be an integer. A k-black-and-white coloring of a graph G is a coloring of the vertices of G with
labels black and white such that every vertex has exactly two neighbors of the same color and k& — 2 neighbors
of the opposite colors. If G admits a k-black-and-white coloring, then we can partition the edges of G into three
sets: white edges, i.e. edges with two white end-vertices, black edges, i.e. edges with two black end-vertices and
black-and-white edges, 1.e. edges with one black and one white end-vertex.

Let also a k-labeling of a graph G be an assignment of labels from {0, 1,...,k} to the vertices of G.

Let k > 3 be an integer. The BW (k)-problem is defined as follows.

Problem 2: BW(k)-problem.
Instance: A k-regular graph G.
Question: Is there a k-black-and-white coloring of G?

It is known that the BW(k) problem is NP-complete for every k > 3 [4].

Proposition 2.1. FPRL21 is NP-complete for k € {3,4}.

Proof. Let f be a k-labeling of a graph G. It can be verified in polynomial time whether f is a (1, 0)-relaxed
k-L(2,1)-labeling of G. It follows that the problem is in the class NP.

For k = 3 we use a reduction from BW(3). Let G be a 3-regular graph for which we want to find a 3-black-
and-white coloring. We may assume without loss of generality that G is connected. Let G’ be the graph obtained
from G by subdividing each edge of G by two new vertices of degree two.

Claim 1. G admits a BW(3)-coloring if and only if G’ admits a (1, 0)-relaxed 3-L(2, 1)-labeling.

Proof of Claim 1. We first assume that a 3-black-and-white coloring of G is given. Since every white (resp.
black) vertex of G has exactly two white (resp. black) neighbors in G, the set of white (resp. black) vertices of
G induces a 2-regular graph. Note that a 2-regular graph consists of disjoint union of cycles. Moreover, since
new vertices of G’ (i.e. vertices of V(G') \ V(QG)) are also of degree two, the set of white (resp. black) vertices
together with the vertices obtained by subdivision of white (resp. black) edges induce a disjoint union of cycles
in G'.

In G’, we assign label 0 to every white vertex of GG, and label 3 to every black vertex of G. A new vertex on
a black-and-white edge adjacent to the white (resp. black ) vertex we label 2 (resp. 1). On each of the cycles
that correspond to white vertices we use consecutively the pattern (0,1,3,0). Thus, a vertex labeled 0, say v,
has exactly one neighbor labeled 1, one neighbor labeled 2 and one neighbor labeled 3, i.e. v admits exactly one
neighbor with a label one apart while common neighbors of v are assigned different labels. Moreover, none of
2-neighbors of v is labeled 0. On each of the cycles that correspond to black vertices we use consecutively the
pattern (3,0,2,3). Note that every vertex labeled 3 has exactly one neighbor labeled 0, one neighbor labeled 1
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FIGURE 1. Replacement for k& = 4.

and one neighbor labeled 2. Since all new vertices in G’ also clearly satisfy the constraints of the (1, 0)-relaxed
L(2,1)-labeling, this gives a (1,0)-relaxed 3-L(2, 1)-labeling of G’.

Now assume that G’ admits a (1,0)-relaxed 3-L(2, 1)-labeling. An original vertex of G has degree three in
G’, so it has to be labeled either 0 (with neighbors labeled 1, 2, 3) or 3 (with neighbors labeled 0, 1, 2). It is not
difficult to establish that all possible labelings of the path on four vertices with end-vertices labeled 3 or 0, with
respect to the obvious symmetry, are (0,1, 3,0), (0,2,1,3), (0,3,2,0), (3,0,1,3), and (3,0,2,3). By the above
discussion, an original vertex labeled 0 has exactly one neighbor labeled 1 and an original vertex labeled 3 has
exactly one neighbor labeled 2.

Let = be an original vertex labeled O (resp. 3) and z its neighbor in G such that the path obtained by
subdividing the edge zz € E(G) contains the neighbor of x labeled 1 (resp. 2). We will say that that z is the
closely linked neighbor of z. Note that z is labeled 0 (resp. 3) if x is labeled 0 (resp. 3).

Let us now for every original vertex x and its closely linked neighbor z assign the direction from x towards
z to the edge zz in G, i.e. x is the tail and z is the head of the directed edge. Since every vertex in G admits
exactly one closely linked neighbor, the out-degree of every vertex of G is one. Moreover, since a vertex and
its closely linked neighbor are both labeled by the same label, the in-degree of every vertex of G is also one.
Tt follows that the vertices of the path that corresponds to a directed edge with the tail labeled 0 (resp. 3)
are labeled with respect to the direction of the edge with the the pattern (0,1,3,0) (resp. (3,2,0,3)) in G'.
Moreover, the vertices of the path that corresponds to an undirected edge of G are labeled with the the pattern
(0,2,1,3) in G'. Hence, every vertex of G labeled 0 (resp. 3) admits two neighbors labeled 0 (resp. 3) and one
neighbor labeled 3 (resp. 0) in G. Since by assigning label black (resp. white) to every vertex labeled 0 (resp. 3)
in G, we clearly obtain a 3-black-and-white coloring of G, Claim 1 is proved.

For k = 4 we use a reduction from BW(4). Let G be a 4-regular graph for which we want to find a 4-black-
and-white coloring. We show that the graph G’ obtained from G by replacing each edge of G by the graph
G4 depicted in Figure 1 admits a (1, 0)-relaxed 4-L(2, 1)-labeling if and only if G admits a 4-black-and-white
coloring.

Claim 2. G admits a BW(4)-coloring if and only if G’ admits a (1, 0)-relaxed 4-L(2, 1)-labeling.

Proof of Claim 2. Note first that vertices u and v of G4 are labeled 0 or 4 since both are of degree four in G’.
It can be checked that the vertices of the sequence u,x,y,v allow totally 8 combinations in a possible (1,0)-
relaxed 4-L(2,1)-labeling of G4. These 8 combinations are listed as follows: (4,0,2,4), (0,2,4,0), (4,1,3,0),
(0,1,3,4), (4,2,0,4), (0,4,2,0), (0,3,1,4), (4,3,1,0).

Suppose that f is a (1,0)-relaxed 4-L(2,1)-labeling of G’. It is already noted that f(u) € {0,4} since
de (u) = 4. Let vq,v9,v3,v4 be the four neighbors of w in G, and let ux;y;v;, i = 1,2,3,4, be the four paths
that start with w in G'. If u is labeled 0, then z;,xq, 23,24 are labeled with distinct labels from {1,2,3,4},
say f (x;) =1i. Thus, the paths ux;y;v;, i = 1,2, 3,4, are labeled (0, 1, 3,4), (0,2,4,0), (0,3,1,4) and (0,4,1,0),
respectively. If u is labeled 4, then z1, z2, 23, x4 are labeled 0, 1,2, 3, say f (z;) = ¢ — 1. Hence, the paths uz;y;v;,
i =1,2,3,4 are labeled (4,0,2,4), (4,1,3,0), (4,2,0,4) and (4, 3,1,0), respectively. By replacing label 0 with
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FIGURE 2. (1,0)-relaxed 4-L(2, 1)-labelings of G4 with f(u), f(v) € {0,4}.

color white and label 4 with color black in G, we see that the restriction of f to the original vertices of G is a
BW (4)-coloring of G.

Now assume that G has a BW(4)-coloring. In G’, we first assign label 0 to every white vertex and label 4 to
every black vertex of G. Since every white (resp. black) vertex of G is adjacent to exactly two white (resp. black)
vertices of G, white (resp. black) vertices of G induce a 2-regular graph (i.e. a disjoint union of cycles), hence,
the corresponding “white” (resp. “black”) cycles in G’ can be labeled consecutively (0,2, 4,0) (resp. (4,0,2,4)).
Analogously, every white (resp. black) vertex of G is adjacent to exactly two black (resp. white) vertices of G.
It follows that black-and-white edges of G also induce a disjoint union of cycles in G. Thus, we can label the
paths in G’ that correspond to black-and-white edges in these cycles consecutively by (4,1, 3,0).

Let for uv € E(G) the 4-tuple (c1,¢a,c3,¢4) denote the labels assigned to vertices (u,z,y,v) in the corre-
sponding Gy4. For each (c1,ca,c3,¢4), one can extend a (1,0)-relaxed 4-L(2,1)-labeling of G4 as depicted in
Figure 2. Since we obtain a (1, 0)-relaxed 4-L(2, 1)-labeling of G’, this case is settled. O

Theorem 2.2. FPRL21 is NP-complete for every k > 3.

Proof. The proof is by induction on k. For k € {3,4}, the result is obtained in Proposition 2.1.

A star S), is the complete bipartite graph K ,, where the vertex with a degree more that one is called the cen-
ter of S,,. We define a double star as the union of two stars with the edge joining the centers. More precisely, for
n > m > 0 the double star S(n,m) is the graph with the vertex set V(S(n,m)) = {vo, v1,...,0pn, ug, U1, ..., Um}
and the set of edges E(S(n,m)) = {vouo} U{vov; |i =1,2,...,n} U{uou;|j=1,2,...,m}.

Clearly, for ¢ € {1,2,...,n} and j € {1,2,...,m}, v; and u; are vertices of degree 1 in S(n, m). The vertices
vo and ug are called the centers of S(n,m), while v;, i =1,2,...,n and uj, j = 1,2,...,m, are called the leaves
of S(n,m).

Let G be a graph for which the existence of (1, 0)-relaxed k-L(2, 1)-labeling is to be verified. We will construct
a graph G’ which has a (1, 0)-relaxed (k + 2)-L(2, 1)-labeling if and only if G admits a (1,0)-relaxed k-L(2,1)-
labeling.

We construct G’ as follows. For each vertex z € V(G), we construct a unique double star S, (k+1,k+1), and
identify x and an arbitrary leaf of S, (k+1,k+ 1). That is to say, « and y are adjacent in G if and only if 2 and
y are adjacent in G’. This completes the construction of G’. Let «’ and z” denote the centers of S, (k+1,k+1)
such that z’ is adjacent to x.

Assume that G’ admits a (1,0)-relaxed (k+2)-L(2, 1)-labeling. Centers of double stars have degree k+ 2, and
therefore each of these centers is labeled either 0 or k + 2. Note also that two centers in the same double star
receive different labels. Moreover, every leaf of S, (k+1,k+1) is adjacent to one center of S, (k+1,k+1) and is
at distance two from the other center of S, (k+1,k+1). It follows that leafs cannot be labeled &k + 2 or 0. Since
we showed that V(G) have labels in {1,...,k+ 1}, it is trivially to obtain a (1,0)-relaxed k-L(2,1)-labeling
of G.

Now we assume that G admits a (1,0)-relaxed k-L(2,1)-labeling f. We construct the labeling f’ of G’ as
follows. For each z € V(G) we set f'(x) := f(x). Moreover, for each x € V(G) with f/(z) = k+1, we label 2’ and
2" with 0 and k+2, respectively, while for each « € V(G) with f'(x) # k+1 we label 2/ and 2" with k42 and 0,
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respectively. Finally, we label vertices of Ng/(2') \ {z, 2"} with distinct colors of {1,2,...,k+ 1}\ {f'(xz)} and
vertices of Ngv (") \ {2’} with distinct colors of {1,2, ...,k + 1}. One can readily check that f’is a (1, 0)-relaxed
(k +2)-L(2,1)-labeling of G’. O

3. CLAW-FREE GRAPHS

A claw is the complete bipartite graph Ki 3. A claw-free graph is a graph that does not have a claw as an
induced subgraph.
In this section, we show that Conjecture 1.2 is true for all claw-free graphs. More formally, we show

Theorem 3.1. If G is a connected claw-free graph, then Aé:?(G) < A2,

The results on L(2, 1)-labelings of K ,,-free graph studied in [10] provide the following
Proposition 3.2. If G is a claw-free graph, then A\(G) < %2 + 2A.

Since it is straightforward to see that /\%:?(G) < AQ) for any graph G, these two results together with
Proposition 3.2 imply that we have to show that Conjecture 1.2 holds also for claw-free graphs with a maximum
degree three.

A diamond is a complete graph of order 4 minus one edge.

Lemma 3.3 ([6]). If G # K4 is a connected, claw-free, cubic graph of order n, then the vertex set V(G) can be
uniquely partitioned into sets each of which induces a triangle or a diamond in G.

By Lemma 3.3, we can obtain a connected, claw-free, cubic graph G from a sequence of vertex-disjoint
triangles and diamonds by adding edges between vertices of degree two in the triangles and diamonds. We call
every triangle in G a triangle-unit and every diamond a diamond-unit.

Let G be a graph and S C V(G). Then G — S denotes the subgraph of G induced by V(G) \ S.

Theorem 3.4. If G is a connected, claw-free graph with A(G) = 3, then )\é:(l)(G) <9.

Proof. If G = Ky, then )\é:?(G) = 4. In what follows, we assume G # K,. Suppose the result is false, and
let G be a counterexample such that |V(G)| is as small as possible. By the choice of G, G is a connected,
claw-free graph of order n > 4 such that )\;?(G) > 9, and any connected, claw-free graph G’ of order n’ < n
has )\;?(G’) <.

If G contain a vertex u of degree one, by the minimality of G, G — {u} has a (1,0)-relaxed 9-L(2,1)-
labeling f’. Since we can easily extend f to a (1,0)-relaxed 9-L(2,1)-labeling of G by properly labeling u, we
obtain a contradiction.

If G contains a vertex u of degree two, then let Ng(u) = {v,w} and G’ = G — {u}. By the min-
imality of G, G’ has a (1,0)-relaxed 9-L(2,1)-labeling f’. If one of v and w, say v, is of degree less
than three in G, then let Ng/(v) = {v1} and Ng/(w) = {wi,w2}. We can label v with an arbitrary
label  from {07 L2,..., 9} \ {f/(’l}), f/(w)> f/(v) +1, f/(’l}) -1, fl(w) +1, f/(w) -1, fl (vl) ) f, (wl) ) f/ (w2)}
to obtain a (1,0)-relaxed 9-L(2,1)-labeling of G, a contradiction. If both v and w
are vertices of degree three in G, let Ng/(v) = {v1,v2} and Ng(w) = {wi,we}.
Consider the set S = {fl(v)a f/(w)a f/(’U) +1, fl(v) -1, f/(w) +1, f/(w) -1 f (U1> ! (UQ) ! (wl> ! (w2)}'
If |S| < 9, then we can label v with an arbitrary label from {0,1,2,...,9} \ S to obtain a (1,0)-relaxed
9-L(2,1)-labeling of G, a contradiction. If |S| = 10, then |f’ (v;) — f'(v)| # 1, |f (w;) — f'(v)] # 1, and
|f'(w) — f'(v)] # 1. Tt follows that we can label u with f’(v) + 1 or f’(v) — 1 to obtain a (1,0)-relaxed
9-L(2,1)-labeling of G, a contradiction.

Since we proved above that G cannot admit vertices of degree one or two, we assume in the following that
G is a connected, claw-free, cubic graph of order n > 4. By Lemma 3.4, G consists of triangle-units and
diamond-units.

Claim 1. G contains no diamond-unit.
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Suppose to the contrary that G admits a diamond-unit D, where V(D) = {a,b,¢,d}, ab ¢ E(G). Let
Ng(a) \ {¢,d} = {z} and Ng(b) \ {¢,d} = {y}. Define G’ as the resulting graph obtained from the graph
G —{a,b,c,d} by connecting x and y. Clearly, G’ is a connected, claw-free, cubic graph. By the minimality of G,
G’ has a (1,0)-relaxed 9-L(2,1)-labeling f’. Let f'(z) = ¢; and f’(y) = ca, where ca > ¢1. Note that ¢1,¢q €
{0,1,...,9}. We now extend f’ to a (1,0)-relaxed 9-L(2, 1)-labeling f of G by labeling a and b with ¢y and ¢y,
respectively, and by labeling ¢ and d with any two labels from {0,1,...,9}\ {c1,c2,¢c1 + 1,61 — 1,0+ 1,0 — 1}.
Since we obtain a contradiction, the proof is complete.

Claim 2. G does not contain two triangle-units connected with two or three edges.

Suppose to the contrary that T} and Ty are two adjacent triangle-units, where V (T1) = {x1, 91,21}, V (To) =
{z2,y2, 22}, and z122 € E(G). If y1y2 € E(G),z122 € E(G), then it is not difficult to find a (1,0)-relaxed
5-L(2,1)-labeling of G (note that G is isomorphic to the Cartesian product of a triangle and Kj) and we
obtain a contradiction. It follows that there is exact one edge between {y1,z1} and {ya, 22}. We may assume
w.lo.g. that y1y2 € E(G). Let Ng (z) \ {zi, i} = {w;i}, i = 1,2 (note that u; # ug since G is claw-free).
Consider the graph G’ obtained from G — {z1,y1,21,Z2,Y2,22} by connecting u; and uy. Clearly, G’ is a
connected, claw-free, cubic graph. By the minimality of G, G’ has a (1,0)-relaxed 9-L(2,1)-labeling f’. Let
f'(u1) = c1, ' (u2) = ca, where c2 > ¢1. Then, we can extend f’ to a (1,0)-relaxed 9-L(2, 1)-labeling of G
by labeling z; and zo with co and c¢p, respectively, and by properly labeling x1,y; and xo,ys with the labels
from {0,1,...,9}\{c1,¢c2,ca+1,c0 — 1} and {0,1,...,9} \ {c1,¢2,c1 + 1,1 — 1}, respectively. Since we obtain
a contradiction, and this assertion completes the proof.

From Lemma 3.3 and Claim 1 it follows, that G contains a triangle-unit. Let then T be a triangle-unit
induced by the set {z,y,2} and let Ng(x) \ {y,2} = {0}, Nao(y) \ {z,2} = {wo}, Ne(2) \ {z,y} = {20}
By Claim 1, we have zo # yo, o # 20, Yo # 20- Let Ng(x0) \ {z} = {z1,22}, No(yo) \ {z} = {y1,92},
and Ng (20) \ {#} = {#1,22}. Since G is claw-free, z12z2 € E(G), y1y2 € E(G), z122 € E(G). By Claim 1,
the sets {x1, 22}, {y1,92}, and {z1, 22} have pairwise a non-empty intersection. Moreover, by Claim 2, we also
have zo & {y1,y2, 21,22}, Yo & {x1,22,21,22}, and zg € {x1,22,y1,y2}. Let G := G — {x,y, z}. Clearly, G’
is a claw-free graph of maximum degree at most three. By the minimality of G, G’ admits a (1,0)-relaxed
9-L(2,1)-labeling f'. Let f' (z;) = as, f' (yi) =bi, f' (2:) = ¢, for i =0,1,2.

Let CO = {O, ]., o ,9} \ {al,ag,ao,ao + ]., ag — 1,b0, Co}, Cl = {0, ]., ceey 9} \ {bl, bQ,bo, bo + ]., bo - ]., agp, Co},
and Cy :={0,1,...,9}\ {e1,¢2,c0,c0 + 1,¢0 — 1,a0,bp}. Clearly, |C;| > 3 for i = 0,1, 2.

If |CoUCy UCy| > 4, then we may assume w.l.o.g. that there exists a € Cy such that a ¢ Cy. Observe that C;
contains an element b such that b ¢ {a — 1,a + 1,a}. Moreover, Cs contains an element ¢ such that ¢ ¢ {a, b}.
If|[b—a|] >2or|b—a|l =2 and 2¢ # b+ a, we label z, y, and z with a, b, and ¢, respectively. Since we extend
f" to a (1,0)-relaxed 9-L(2, 1)-labeling of G, we obtain a contradiction. If |b — a| = 2 and 2¢ = b + a, then we
distinguish two cases. If Cy # {a, b, c}, we choose the label ¢’ € Cs \ {c,a,b} and label z, y, and z with a, b,
and ¢, respectively. If Co = {¢, a, b}, we select V' € C; \ {c,b}, and label z, y, and z with a, ¥, and b. Since the
obtained labeling is in both cases a (1, 0)-relaxed 9-L(2, 1)-labeling of G, we come to contradiction.

If |CoUCLUC,| =3, let Cp =Cy = Cy := {a,b,c}. We may assume w.l.o.g that a < b < c. If ¢ # a + 2,
we label x, y and z with a, b, and ¢, respectively to obtain a (1, 0)-relaxed 9-L(2, 1)-labeling of G, a contradiction.
If ¢ = a+ 2, then b = a + 1. Note that |Cy| = 3, which implies that |{a1,as,ag,a0 + 1,a0 — 1,bp,co} |=7.
It follows that |a; —ag| # 1,7 = 1,2, |bg — ag| # 1, and |¢p — ag| # 1. We now label z with ag+ 1. If ag + 1 < a,
label y and z with b and ¢, respectively. If ag + 1 > ¢, label y and z with a and b, respectively. The obtained
labeling is a (1,0)-relaxed 9-L(2,1)-labeling of G, we come to contradiction. This assertion completes the
proof. O

Theorems 3.1 and 3.4 together with Proposition 3.2 give useful upper bounds for the (1,0)-relaxed L(2,1)-
labeling number of claw-free graphs. However, the complexity of FPRL21 on this class of graphs remains
open.
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4. TOROIDAL GRIDS

The Cartesian product of graphs G and H is the graph GOH with the vertex set V(G) x V(H) and
(x1,22) (Y1,y2) € E(GOH) whenever x1y; € E(G) and x2 = ya, or x2ys € E(H) and z1 = y;. Let u € V(G).

The subgraph of GOH induced by {u} x V (H) is isomorphic to H. It is called an H-fiber and is denoted by H™.
In particular, the subgraph of C,,,[JC,, induced by a vertex i of C,, is denoted by C?.

The Cartesian product of two cycles Cp,L0C,, is also called a toroidal grid and denoted by T}, . Note that
L(2,1)-labelings of toroidal grids are considered in [9].

Note that T}, ., is a 4-regular graph. Suppose that T, , admits a (1,0)-relaxed 4-L(2, 1)-labeling f. If u is a
vertex of T, ,, then f(u) is either 0 or 4. Since all neighbors of « cannot be labeled 0 or 4, we have the following
general lower bound.

Proposition 4.1. )‘%:(1) (Tmm) > 5.

In the following, we will use a rectangular pattern with m rows and n columns to represent a labeling of 15, ,,
in a natural way. If P and () are rectangular patterns which represent a labeling of T}, ,, and T, ¢, respectively,
then PQ denotes the rectangular pattern with m rows and n + ¢ columns obtained by concatenating P and
Q, such that PQ represents a labeling of T, 1. Moreover, P* represents a labeling of T}, , made by the
rectangular pattern with m rows and kn columns obtained by concatenating k copies of P.

As an example, let

P = and Q=

W Ut =
O N
Ot — W
N O
— W
=~ O N

Obviously, P* represents a (1,0)-relaxed 5-L(2,1)-labeling of T 4, while P*Q represents a (1,0)-relaxed
5-L(2,1)-labeling of T5 412.

The patterns that provide upper bounds for the (1,0)-relaxed L(2,1)-labeling number of T}, ,, which are not
present in the proofs of the following theorems are given in the Appendices A to C.

Theorem 4.2. Let n > 3. Then

n =23,

n =9,

n>17, mnisodd,
, miseven.

)‘;? (TSJL) =

Ut =1 0

Proof. We show above that P¥ and P*Q represents a (1, 0)-relaxed 5-L(2, 1)-labeling of T3 45 and a (1, 0)-relaxed
5-L(2, 1)-labeling of T 4542, respectively. It follows that )\;(1) (T3,,) < 5 for every even n. Thus, the upper bound

on )\éz(l) (T5,,) is proved for every even n.

Analogously, we found two patterns which obtain a (1,0)-relaxed 6-L(2,1)-labeling of T3 445 and (1,0)-
relaxed 6-L(2, 1)-labeling of T 4447, for any k > 1. Thus, the upper bound on /\;:(1) (T3.,,) is established also for
every odd n > 5.

Since we also found a (1,0)-relaxed 8-L(2,1)-labeling of T35, a (1,0)-relaxed 7-L(2,1)-labeling of T35,
and a (1,0)-relaxed 6-L(2, 1)-labeling of T5 7, upper bounds are confirmed for every n.

Note that the lower bound for even n follows from Proposition 4.1. In order to prove the lower bound for odd
n, suppose that f is a (1,0)-relaxed 5-L(2, 1)-labeling of T5 ,,. Let C%, i € [n], denote a Cj fiber in T5,, and let
F; be the set of labels assigned by f to the vertices C%. Consider now the vertices of two consecutive Cj fibers
C% and C5™, i € [n] (the arithmetic is done modulo n). Note that the vertices of C% and C5™ induce a graph
isomorphic to C30K5. We can see that that any two vertices of V' (Cé) uv (Cg“) are at distance at most two
in Ts,,. Thus, |Fj| + |Fy11] = 6, i.e. f assigns six different labels to the vertices of V (C§) UV (C3*"). Moreover,
we have F; = F;; o for every i € [n]. It follows that n must be even if )\é:? (T3.n) = 5.
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Suppose now that f is a (1,0)-relaxed 6-L(2,1)-labeling of T3 5 and let F; be the set of labels assigned by
f to the vertices C%, i € [5]. From the discussion above it follows that |F;| 4+ |Fi41| = 6. Moreover, we can see
that |F; N Fi12| > 2. In particular, |F5 N Fy| > 2 and |F3 N Fy| > 2. Since |Fy N Fy| = 0, we have |F5] > 4 and
we obtain a contradiction. Thus, )\éjg (Tz5) > 7.

If u is a vertex of V (T3 3), then every vertex of V (T33) \ {u} is at distance at most two from u. It follows
that we need nine labels for a (1,0)-relaxed L(2,1)-labeling of T3 3. The assertion completes the proof. O

Theorem 4.3. Let n > 4. Then

5’ TLZ57 nEO(modS)
)\é:? (Tyn) =<6, n>5n#0(mod3)
7, n=4.

Proof. Most upper bounds follow from a (1, 0)-relaxed 5-L(2, 1)-labeling of Ty 3 which together with a 6-labeling
of Ty 5 and 6-labeling of Ty 7 provide a (1, 0)-relaxed 5-L(2, 1)-labeling of Ty 31, as well as a (1, 0)-relaxed 6-L(2, 1)-
labelings of Ty 3x+5 and Ty skx+7. Since a (1, 0)-relaxed 7-L(2, 1)-labeling of T} 4, a (1, 0)-relaxed 6-L(2, 1)-labeling
of Ty 5 and a (1,0)-relaxed 6-L(2,1)-labeling of Ty 7 give the desired upper bounds for n = 4,5,7, all upper
bounds are settled.

By Proposition 4.1 we have /\éflJ (Tu.,) > 5. Since we established by a computer that /\éflJ (Tu.4) > 7, we are left
to show that )\;:(1) (Tyn) > 6 for n # 0 (mod 3).

All additions are modulo 4 in the sequel. Let f be a (1,0)-relaxed 5-L(2,1)-labeling of Ty, and let f(j,1)
denote the assignment of f to a vertex (j,4) € Tun, j € [4],¢ € [n]. Let also F; denote the set of labels assigned
by f to the vertices of C}. Clearly, |F;| = 4. Note also that if f(j,i) = f(k,i + 1), then k = j + 2.

Since |F;| = 4 and |F; U F;11| < 6, we have |F; N F; 1| > 2. We first show that |F; N F;41| = 2. Suppose to
the contrary that |F; N F;1| > 3. We can assume w.lo.g. f(0,7) = f(2,i+ 1), f(1,i) = f(3,i+ 1) and f(2,i) =
f(0,241). Since f is a 5-labeling and |F; N F;11] > 3, we have [[6] \ (F; N Fi41) | < 3. It follows that there exists
at least one j such that f(j,i+2) € {f(0,1), f(1,%), f(2,i)}. But then we have f(j,i4+2) = f(j4+2,i+1) = f(4,1)
and we obtain a contradiction.

Since |F; N Fiy1| = 2 and |F; U F;41| = 6, we may partition F; into two sets P; and N;, such that
N; = F; N F;41 = P;y1. Note that

P, + N; + Niyy = [6], (4.1)

and

By (42), we also have Pi+1+Pi+2+Ni+2 = [6] Since Pi+1 = Nl and Pi+2 = NiJrl, we have Ni+Ni+1+Ni+2 = [6]
From (4.1) then it follows that N,y = P;. Since N;13 = Piy1 = N; and P43 = N;12 = P;, we have F; = F; 3.
It is straightforward to see now that f exists only if n = 0 (mod 3). O

Theorem 4.4. Ifn > 5, then /\%:(1) (Ts.,) = 6.

Proof. A (1,0)-relaxed 6-L(2,1)-labeling of T5 4 together with 6-labelings of T5 5, T5 ¢ and T ¢ provide a (1, 0)-
relaxed 6-L(2, 1)-labeling of T5 45 and a (1, 0)-relaxed 6-L(2,1)-labeling of T5 4x+i, ¢ € {5,6, 7}. Moreover, since
(1,0)-relaxed 6-L(2,1)-labelings of T5 5, 156, and T5 7, give the desired labelings for n € {5,6,7}, the upper
bound is settled.

In order to establish the lower bound, let assume that all additions are modulo 5 in the sequel.

Suppose to the contrary that there exists a (1, 0)-relaxed 5-L(2,1)-labeling f of Ts,,. Let f(j,i) denote the
assignment of f to a vertex (4,4) € Tsn, j € [5],7 € [n]. Let also F; denote the set of labels assigned by f to the
vertices of Cf. Clearly, |F;| = 5. Moreover,

Claim 1. If f(j,i) = f(k,i £ 1), then either k = j+2 or k= j + 3.
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If f(j,i) = ¢, such that c— 1 € F; and ¢+ 1 € F; , then we say that the vertex (j,i) € F; is squeezed.

Claim 2. Let ¢’ be a label of f such that ¢ € F;. If f(j,4) = ¢ and (j,14) is squeezed, then either f(j,i+1) = ¢
or f(j,i—1)=¢.

Proof of Claim 2. Let f(j,4) = c. Since (j,) is squeezed, ¢ — 1 € F; and ¢+ 1 € F;. Suppose to the contrary
that f(j,i+1), f(j,i—1) € F;. Note that f(j+1,7) and f(j —1,4) cannot be both from {c¢ — 1,¢+ 1}. Suppose
first that neither of f(j + 1,¢) and f(j — 1,4) is from {¢ — 1,c+ 1}. Tt follows that f(j 4+ 2,i) and f(j — 2,1)
are both from {¢ — 1,¢+ 1}. If f(j,i+1) € F;, then, by Claim 1, f(j,i+1) € {¢ — 1,c¢+ 1}. Since (4,j) cannot
admit two two neighbors with labels from the set {f(4,7) — 1, f(j,4) + 1}, we obtain a contradiction. Suppose
now w.l.o.g. that f(j + 1,7) = ¢ — 1. Suppose also w.l.o.g. that f(j 4+ 2,7) =c+ 1. If f(4,i+ 1), f(4,i—1) € F},
then, by Claim 1, f(j,i 4+ 1), f(j,i — 1) € {c+ 1, f( — 2,4)}. Since (j,7) has already a neighbor labeled ¢ — 1,
we have f(j,i+1) #c—1and f(j,4 — 1) #c— 1. But then f(j,i+1) = f(j,i— 1) = f(j — 2,i) and we obtain
a contradiction.
We now consider the following three cases.

Case 1. F; ={0,1,2,3,4}.

Since vertices labeled 2, 3, and 4 are squeezed in F;, by Claim 2, we need to label 5 three ver-
tices in V(Cgfl) U V(Cg“). But then either |F;_i| < 5 or |Fi4+1| < 5 and we obtain a contradiction.
Thus, F; # {0,1,2,3,4}.

Case 2. F; ={0,2,3,4,5}.

We first show that for f(j,7) = 3 we have f(j = 1,7) # 4. Suppose to the contrary that f(j,7) = 3 and
f(G+1,i) = 4. From Case 1 it follows that F;1; # {0,1,2,3,4}. Therefore, 5 € F;1;. Since f(j+2,i) # 5, from
Claim 1 it follows that either f(j+1,i+1)=5or f(j+1,i —1) = 5. But then (j + 1,4) admits two neighbors
with labels from the set {f(j + 1,7) — 1, f(j + 1,4) + 1} and we obtain a contradiction.

Since we showed that Cf cannot admit consecutive vertices labeled 3 and 4, we are left with the following
six labelings of ((7,1), (j + 1,4),...,(j +4,1)): (3,0,4,2,5), (3,0,4,5,2), (3,2,4,0,5), (3,2,4,5,0), (3,5,4,0,2),
and (3,5,4,2,0).

Suppose that ((§,4), (j + 1,4),...,(j +4,1)) = (3,0,4,2,5). Vertices labeled 3 and 4 are squeezed in F;. Hence,
by Claim 2, we need to label 1 one vertex in V (C¢™") and V (C:™), respectively. Since 5 € Fi41, we have either
f(G+2,i+1)=50r f(j+2,i—1) = 5. Suppose w.l.o.g. that f(j+2,i+1) =5. It follows that f(j+2,i—1) =1
and f(j,i+ 1) = 1. By Claim 1, we then get f(j +1,i+1) =2 and f(j + 1,7+ 1) = 0. But then (j,4) admits
two neighbors with labels from the set {f(j,7) — 1, f(4,4) + 1} and we obtain a contradiction. The proof for the
other five labelings is analogous. Thus, F; # {0,2,3,4,5}.

Note that because of the obvious symmetry, Cases 1 and 2 also yield F; # {1,2,3,4,5} and F; # {0, 1,2, 3,5},
respectively.

Case 3. F; ={0,1,2,4,5}.

We first show that for f(j,7) = 1 we have f(j = 1,7) # 2. Suppose to the contrary that f(j,7) = 1 and
f(G+1,i) = 2. From Case 1 it follows that F;1; # {1,2,3,4,5}. Therefore, 0 € F;1;. Since f(j —1,i) # 0, from
Claim 1 it follows that either f(j,4+ 1) =0 or f(j,%— 1) = 0. But then (j,7) admits two neighbors with labels
from the set {f(4,7) — 1, f(j,4) + 1} and we obtain a contradiction.

Since we showed that CZ cannot admit consecutive vertices labeled 1 and 2, we are left with the following
six labelings of ((7,4), (j + 1,4),...,(j +4,9)): (1,0,2,4,5), (1,0,2,5,4), (1,4,2,0,5), (1,4,2,5,0), (1,5,2,0,4),
and (1,5,2,4,0).

Suppose that ((4,4), (j + 1,4),...,(J +4,4)) = (1,0,2,4,5). Vertex labeled 1 is squeezed and has a neighbor
labeled 0 in F;. Hence, by Claim 2, we need to label 3 either (j,# — 1) or (j,¢ + 1). Suppose w.l.o.g. that
f(,i+1) = 3. By Claim 1, we then get f(j+1,i+1) =4 and f(j+2,i+1) = 5. But then (j+ 1,7+ 1) admits
two neighbors with labels from the set {f(j + 1,44+ 1) — 1, f(j + 1,7+ 1) + 1} and we obtain a contradiction.
The proof for the other five labelings is analogous. Thus, F; # {0,1,2,4,5}. Moreover, because of the obvious
symmetry, we also have F; # {0,1,3,4,5}.
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Since we prove that f cannot exist, the proof is complete. O
Given two integers r and s, let S(r, s) denote the set of all nonnegative integer combinations of r and s:
S(r,s)={ar+pBs:a,8€Z"}.

We need the following result of Sylvester.
Lemma 4.5 ([12]). Ifr,s > 1 are relatively prime nonnegative integers, thent € S(r,s) for allt > (s—1)(r—1).

Theorem 4.6. If m,n > 64, then )\éz(l) (Tinn) <6.

Proof. Let
3 6 5 1 0] 3 5 2 6 0 3 5 1 2 4 6 0]
1 0 3 6 4 1 0 3 1 4 2 6 4 5 1 2 4
A=1|5 2 4 0 3|, B=|6 2 5 0 3 5 1 0 3 6 0 3],
0 3 6 5 1 0 3 6 4 1 0 4 5 1 2 5 6
14 1 0 3 6] 14 1 0 3 5 6 2 3 6 0 3 2]
(3 6 4 2 57 3 6 5 1 2 4 5 0 2 4 6 57
1 5 3 6 0 1 4 3 6 0 1 3 6 1 5 2 0
4 2 0 1 3 5 2 0 4 3 5 0 2 4 0 3 6
0 3 5 4 6 0 3 5 1 6 4 1 5 6 2 1 5
1 6 2 0 5 1 6 2 0 5 2 6 3 1 4 6 3
= 4 0 3 6 2 D 4 0 3 6 1 3 5 0 2 5 0 2
13 5 1 4 0] 13 5 1 2 4 6 1 4 6 3 4 6
1 4 0 2 6 1 2 4 0 3 5 0 2 5 1 2 0
5 2 6 1 3 5 0 6 5 1 2 4 6 0 4 6 3
6 1 3 5 2 6 4 2 3 6 0 3 5 1 3 0 2
0 5 2 6 4 0 3 5 1 2 4 6 2 4 5 1 4
12 4 0 3 5] 12 6 0 4 5 1 0 3 6 0 3 5]
Let also P, = APB and P, = CPD for p > 1. We now construct
P
Q= P ,  where Pj is repeated ¢ times and ¢ > 1.
1
P

Obviously, @) denotes the pattern with 5¢ + 12 rows and 5p + 12 columns.

Since the patterns A and P; constitute a (1,0)-relaxed 6-L(2,1)-labeling of 755 and T5 5,412, respec-
tively, while the leftmost five columns of @) constitute a (1,0)-relaxed 6-L(2, 1)-labeling of T5q412,5, it follows
that T5p417a,5¢+173 admits a (1, 0)-relaxed 6-L(2,1)-labeling for any p,q,«,3 > 1. By Lemma 4.5, we have
231 (Trn,n) < 6 for m,n > 64. 0

Theorem 4.6 shows that the (1,0)-relaxed L(2,1)-labeling number of T}, ,,, is bounded above by six whenever
n and m are sufficiently large. Note that Theorems 4.2—4.4 imply that A%:? (Tin) < 61if m > 5 and n is multiple
of three, four or five. Moreover, we have confirmed by a computer search, that (1,0)-relaxed L(2,1)-labeling
number of T}, ,, is at most six for various other values of n and m. Therefore, we propose the following conjecture:

Conjecture 4.7. If m,n > 5, then Aé:(l) (Thnn) < 6.
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APPENDIX A. PATTERNS FOR TOROIDAL GRIDS T3,

Let
1 4 3 0 5 2
P=1|5 2 1 4 and Q=13 O
3 0 5 2 1 4

P* represents a (1, 0)-relaxed 5-L(2, 1)-labeling of 75 41, while P*Q) represents a (1,0)-relaxed 5-L(2, 1)-labeling
of T3 ak12.

Let
(6 0 5 3 1 4 5 1 3
R=12 4 1 0 5 6 2 4 0 and
1 3 6 4 2 0 3 6 5
(6 0 4 3 6 5 1 0 4 2 3
S=12 3 1 5 4 0 6 3 1 6 5
4 5 2 0 1 3 4 2 5 0 1

By repeating the leftmost four columns of R and S, we obtain a (1, 0)-relaxed 6-L(2, 1)-labeling of T5 415 and
T35 4547, respectively, for any k£ > 1.

Let
5 8 4 2 0 6 5 3 2 0 6 1 4 3 5
Ps=13 6 2|, Ps=1|4 5 1 7 6|, and Pr=1{3 1 4 5 2 6 0
7 1 0 7 3 4 0 1 6 5 2 3 0 1 4

P5, P5, and P; represent a (1,0)-relaxed 8-L(2, 1)-labeling of T3 3, a (1, 0)-relaxed 7-L(2,1)-labeling of T3 5,
and a (1,0)-relaxed 6-L(2,1)-labeling of T3 7, respectively.

APPENDIX B. PATTERNS FOR TOROIDAL GRIDS 7},

Let
40 2 40 3 6 2 41 2 4 3 6 2
1 3 5 1 6 4 0 5 03 5 6 1 0 5
P=1g 9 4| @=]0 3 1 2 6|> 9=|6 2 0 3 4 2 6|
3 5 1 6 2 5 4 1 35 6 1 0 5 1
72 3 5 6 2 1 4 0 1 4 6 2 0 4 3
0 5 6 4 1 5 3 6 2 5 0 5 3 1 6 5
Pa=ls 1 9 7| =13 6 2 o 5| @ Pr=1, 5 2 o0 5 3 1
6 4 0 1 40 5 3 1 5 3 1 4 6 2 0

For any k > 1 and i € {5, 7}, the patterns P¥ and P*Q; represent a (1,0)-relaxed 5-L(2, 1)-labeling of T} 35
and a (1,0)-relaxed 6-L(2, 1)-labeling of Ty 3i44, respectively. The patterns Py, Ps and P; give a (1,0)-relaxed
7-L(2, 1)-labeling of T} 4, a (1, 0)-relaxed 6-L(2, 1)-labeling of Ty 5 and a (1, 0)-relaxed 6-L(2, 1)-labeling of T} 7,
respectively.
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APPENDIX C. PATTERNS FOR TOROIDAL GRIDS T},

Let
5 0 1 3 4 6 0 3 5 4 6 2 4 3
1 2 4 6 0 3 2 4 1 0O 5 3 0 6
P={3 5 0 2|, P=1|5 1 6 0 3|, @=[|3 1 6 5 2|,
6 1 3 5 6 0 3 2 4 6 4 0 3 4
12 4 6 O 2 5 1 6 0 1 3 5 1 0
5 4 0 2 4 3 6 1 3 2 0 5
1 2 5 3 0 6 0 4 6 5 3 1
Qe=14 0 1 6 5 2|, PB=1|5 3 1 0 2 6/,
6 3 4 0 3 4 1 6 5 3 4 0
12 1 6 5 1 0 4 2 0 6 1 3
5 1 3 6 2 0 4 1 6 5 3 2 5 3
0 2 4 1 5 3 6 0 4 2 0 6 4 2
Q=13 5 0 3 6 4 0|, and P,=1|3 1 6 4 1 0 5
1 6 2 4 1 2 5 2 5 0 2 5 3 6
12 4 5 0 3 6 1 4 3 1 6 4 1 0

For any k > 1 and i € {5,6,7}, the patterns P¥ and P*Q; constitute a (1,0)-relaxed 6-L(2,1)-labeling
of T5 4, and Ty ap+4, respectively. The patterns Ps, Ps and Pr give a (1,0)-relaxed 6-L(2,1)-labeling of Ty 5,
a (1,0)-relaxed 6-L(2, 1)-labeling of T5 ¢ and a (1,0)-relaxed 6-L(2, 1)-labeling of T5 7, respectively.
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