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SOME PROGRESS ON THE MIXED ROMAN DOMINATION IN GRAPHS

Hossein Abdollahzadeh Ahangar1,∗, Jafar Amjadi2, Mustapha Chellali3,
Saeed Kosari4, Vladimir Samodivkin5 and Seyed Mahmoud Sheikholeslami2

Abstract. Let G = (V,E) be a simple graph with vertex set V and edge set E. A mixed Roman
dominating function of G is a function f : V ∪E → {0, 1, 2} satisfying the condition that every element
x ∈ V ∪ E for which f(x) = 0 is adjacent or incident to at least one element y ∈ V ∪ E for which
f(y) = 2. The weight of a mixed Roman dominating function f is ω(f) =

∑
x∈V ∪E f(x). The mixed

Roman domination number γ∗R(G) of G is the minimum weight of a mixed Roman dominating function
of G. We first show that the problem of computing γ∗R(G) is NP-complete for bipartite graphs and then
we present upper and lower bounds on the mixed Roman domination number, some of them are for
the class of trees.
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1. Introduction

For terminology and notation on graph theory not given here, the reader is referred to [19]. In this paper, G is
a simple graph with vertex set V = V (G) and edge set E = E(G). The order |V | of G is denoted by n = n(G) and
the size |E| of G is denoted by m = m(G). The open neighborhood of a vertex v ∈ V is N(v) = {u ∈ V | uv ∈ E}
and its closed neighborhood is N [v] = N(v)∪{v}. For a set S ⊆ V , the open neighborhood is N(S) = ∪v∈SN(v)
and the closed neighborhood is N [S] = N(S) ∪ S. The degree of a vertex v ∈ V is degG(v) = deg (v) = |N(v)|.
A vertex of degree one is called a leaf and its neighbor is called a stem. A double star is a tree with exactly
two non-leaf vertices. A strong stem is a stem adjacent to at least two leaves. An end-stem is a stem having at
most one non-leaf neighbor. An edge incident with a leaf is called a pendant edge. We denote the set of leaves
and stems of a graph G by L(G) and S(G), respectively. Further we let |L(G)| = `(G) and |S(G)| = s(G).
A graph G is said to be a generalized corona if V (G) = L(G) ∪ S(G).

Keywords. Roman dominating function, Roman domination number, mixed Roman dominating function, mixed Roman
domination number.
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We write G for the complement of a graph G, Kn for the complete graph of order n, Cn for a cycle of length
n and Pn for a path of length n− 1.

An element of a graph is either a vertex or an edge. For any x ∈ V ∪ E, we denote by Nm[x] = {x} ∪
{y ∈ V ∪ E : y is either adjacent or incident with x}. For a set S ⊆ V , the open mixed neighborhood is Nm(S) =
∪v∈SNm(v) and the closed mixed neighborhood is Nm[S] = Nm(S) ∪ S.

A set S ⊆ V is independent if no two vertices in S are adjacent. A matching in a graph G is a set of
pairwise non-adjacent edges. The matching number α′(G) (α′ for short) is the size of a largest matching in G.
A perfect matching M of G is a matching with V (M) = V (G).

A set S ⊆ V is a dominating set of a graph G if N [S] = V , that is, every vertex in V \S is adjacent to a vertex
in S. The domination number γ(G) is the minimum cardinality of a dominating set of G. A set S ⊆ V ∪ E
is a mixed dominating set if for every element x ∈ V ∪ E we have Nm[x] ∩ S 6= ∅. The mixed domination
number γ∗(G) is the minimum cardinality of a mixed dominating set of G. Mixed domination was introduced
by Sampathkumar and Kamath [23]. Note that a mixed dominating set is also called total cover in [6,7,15,18].

A function f : V (G) → {0, 1, 2} is a Roman dominating function (RDF) on G if every vertex u ∈ V for
which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF is the value
f(V (G)) =

∑
u∈V (G) f(u). The Roman domination number γR(G) is the minimum weight of an RDF on G.

Roman domination was introduced by Cockayne et al. [13] in 2004 and was inspired by the work of ReVelle and
Rosing [22] and Stewart [24]. It is worth mentioning that since 2004, more than 150 papers were published on
the Roman domination and its several variants [1–3,5, 8, 10–12,14,16,20,25].

In this paper we are interested in mixed Roman domination which was recently introduced in [4]. A mixed
Roman dominating function (MRDF) of a graph G is a function f : V ∪ E → {0, 1, 2} such that every element
x ∈ V ∪E for which f(x) = 0, is adjacent or incident to at least one element y ∈ V ∪E with f(y) = 2. In other
words, we say that an element x for which f(x) ∈ {1, 2} dominates itself, while an element x with f(x) = 0
is dominated by the mixed Roman function f if it is adjacent or incident to at least one element y for which
f(y) = 2. The minimum weight, w(f) =

∑
x∈V ∪E f(x), of a MRDF is the mixed Roman domination number

γ∗R(G). A MRDF with minimum weight is called a γ∗R(G)-function. Each MRDF determines a partition of the
set V ∪E = (V0 ∪ E0)∪(V1 ∪ E1)∪(V2 ∪ E2), where Vi∪Ei = {x ∈ V ∪ E : f(x) = i}. For the sake of simplicity,
we will denote by f [x] = f (Nm[x]) =

∑
v∈Nm[x] f(v), for all x ∈ V ∪ E.

To clarify this definition of MRDF, we consider the example given in [4]. Let Cn be the cycle graph with
n ≡ 2, 3, 4 (mod 5). Suppose V (Cn) =

{
v1, v2, . . . , v5bn

5 c+j
}

, where j = 2, 3, 4 and consider the function

in G defined as follows: f (v5k−3) = 2 and f (v5k−1v5k) = 2 for 1 ≤ k ≤
⌊
n
5

⌋
, and f(x) = 0 for every

x ∈ V ∪ E −
{
v5k−3, v5k−1v5k : 1 ≤ k ≤

⌊
n
5

⌋}
except for f

(
vbn

5 c+2

)
= 2 if n ≡ 2, 3, 4 (mod 5), f (vnv1) = 1

if n ≡ 3 (mod 5), and f (vn) = 2 if n ≡ 4 (mod 5). Clearly, f is an MRDF with ω(f) ≤
⌈

4n
5

⌉
. Now using the

Proposition 3.2 [4] implies that ω(f) ≥
⌈

4n
5

⌉
, and so ω(f) =

⌈
4n
5

⌉
.

For Roman domination, each vertex in the graph model corresponds to a location (city) in the Roman
Empire, and for protection, legions (armies) are stationed at various locations. A location is protected if
a legion is located at it and unprotected, otherwise. A location having no legion can be protected by a le-
gion sent from a neighboring location. In order to prevent the problem of leaving a location unprotected when
its legion is dispatched to a neighboring location, Emperor Constantine the Great [13] decreed that a legion
cannot be sent to a neighboring location if it leaves its original station unprotected. Hence, every location with
no legion must be adjacent to a location that has at least two legions. The protection of both vertices (locations)
and edges (roads) has motivated the authors [4] to introduce mixed Roman domination. Thereby, for mixed
Roman domination, legions can be placed at a camp on a road as well as stationed in a location, and both
locations and roads must be protected. Any unprotected edge must be adjacent to a protected edge with two
legions or incident to a protected vertex with two legions. Further, any vertex or edge with two legions can
dispatch a legion to secure any unsecured element (vertex or edge) adjacent or incident to it.

Before presenting our results, we list below some known results that will be useful here.
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Proposition 1.1 ([4]). For any graph G,

γ∗(G) ≤ γ∗R(G) ≤ 2γ∗(G). (1.1)

We note that graphs G with γ∗R(G) = 2γ∗(G) are called mixed Roman graphs.

Proposition 1.2 ([4]). For any graph G of order n, γ∗R(G) ≤ n. Moreover, if G ∈
{
Kn,Kn

}
, then γ∗R(G) = n.

Proposition 1.3 ([4]). Let n ≥ 3 be a positive integer. Then

γ∗R (Pn) =


⌈

4n− 2
5

⌉
if n ≡ 0, 1, 2, 3 (mod 5)⌈

4n− 2
5

⌉
+ 1 if n ≡ 4 (mod 5).

Theorem 1.4. Let G be a connected graph of order n.

(i) [6] Then γ∗(G) ≤ dn/2e.
(ii) [7] If γ∗(G) = n/2, then G has a perfect matching.

This paper is organized as follows: in Section 2, we show that the problem of computing the mixed Roman
domination number is in the NP-complete class even when restricted to bipartite graphs. In Section 3, we
characterize all graphs of odd order attaining equality in the upper bound of Proposition 1.2, and we give
a necessary condition for such graphs when n is even. Finally we present in Section 4 some upper and lower
bounds on the mixed Roman domination number. More precisely, if T is a tree, then we show that γ∗R(T ) is
bounded below by 3α′(T )/2 and above by 3γ(T )−1. In addition, if T has order n ≥ 3 with `(T ) leaves and s(T )
stems, then γ∗R(T ) ≤ n − `(T ) + s(T ), and we characterize all extremal trees. For arbitrary connected graphs
G, we show that γ∗R(G) ≥ α′(G) + 1.

2. Complexity result

Our aim in this section is to study the complexity of the following decision problem, to which we shall refer
as MIXED ROMAN DOMINATION:

MIXED ROMAN DOMINATION (MRD)
Instance: Graph G = (V,E), positive integer k ≤ |V |.
Question: Does G have a mixed Roman dominating function of weight at most k?

We show that this problem is NP-complete by reducing the well-known NP-complete problem, Exact-3-Cover
(X3C), to MRD.

EXACT 3-COVER (X3C)
Instance: A finite set X with |X| = 3q and a collection C of 3-element subsets of X.
Question: Is there a subcollection C ′ of C such that every element ofX appears in exactly one element of C ′?

Theorem 2.1. Problem MRD is NP-Complete for bipartite graphs.

Proof. MRD is a member of NP, since we can check in polynomial time that a function f : V ∪E → {0, 1, 2} has
weight at most k and is a mixed Roman dominating function. Now let us show how to transform any instance
of X3C into an instance G of MRD so that one of them has a solution if and only if the other one has a solution.
Let X = {x1, x2, . . . , x3q} and C = {C1, C2, . . . , Ct} be an arbitrary instance of X3C.
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Figure 1. NP-completeness for bipartite graphs.

For each xi ∈ X, we create a vertex wi. Let W = {w1, w2, . . . , w3q}. For each Cj ∈ C we build a graph
Hj of order 5 obtained from a cycle C4 : aj–bj–rj–dj–aj and a new vertex cj by adding the edge cjrj . Let
Y = {c1, c2, . . . , ct}. Now to obtain a graph G, we add edges cjwi if xi ∈ Cj . Clearly G is a bipartite graph
(see Fig. 1). Set k = 4t + 2q, and let H be the subgraph of G induced by all V (Hj). Observe that for every
mixed Roman dominating function f on G, each Hj has weight at least 4, and so f(H) ≥ 4t. We also note that
if f (cj) = 2 for some vertex cj , then f (Hj) ≥ 6.

Suppose that the instance X,C of X3C has a solution C ′. We construct a mixed Roman dominating function
f on G of weight k. We assign the value 0 to every wi and to every edge incident with wi. For every Cj ∈ C ′,
assign the value 2 to cj , rj and aj , and 0 to the remaining elements of Hj . Also for every Cj /∈ C ′, assign the value
2 to edge cjrj and vertex aj , and 0 to the remaining elements of Hj . Note that since C ′ exists, its cardinality
is precisely q, and so the number of cj ’s with weight 2 is q, having disjoint neighborhoods in {x1, x2, . . . , x3q},
Since C ′ is a solution for X3C, every vertex in W is adjacent to a vertex assigned a 2. Moreover, every edge
incident with a vertex of Y is adjacent to an element assigned 2 under f . Hence, it is straightforward to see
that f is a mixed Roman dominating function with weight f(V ) = 6q + 4(t− q) = k.

Conversely, suppose that G has a mixed Roman dominating function with weight at most k. Among all such
functions, let g = (V0 ∪ E0, V1 ∪ E1, V2 ∪ E2) with a fewest elements assigned the value 1. According to our
choice of g, we claim that every vertex of Y is assigned either 0 or 2. Indeed, suppose that g (cj) = 1 for some
j. Then it is easy to see that g (Hj) ≥ 5. In this case, let g′ be the function defined on G by g′ (cjrj) = 2,
g′ (aj) = 2 and g′(y) = 0 for any other element y of Hj , and g′(x) = g(x) for every element x of G not in
Hj . Clearly g′ is a MRDF on G with weight at most k but with fewer vertices assigned the value 1 than those
under g, contradicting our choice of g, which proves the claim. Now, on the basis of the previous fact and since
g(H) ≥ 4t, we may assume that if g (cj) = 0, then g (cjrj) = 2. Hence regardless of the value assigned to every
cj ; all edges of the form wicj are assigned the value 0. Now since g(H) ≥ 4t, it follows that g(W ) ≤ 2q. Also
since |W | = 3q, we have W ∩ V0 6= ∅ which implies that Y ∩ V2 6= ∅. Let y = |Y ∩ V2|. Recall our earlier fact
that if f (cj) = 2 for some cj , then f (Hj) ≥ 6. This fact implies that y ≤ q (for otherwise g(H) > 4t+ 2q). On
the other hand, using the fact that each cj has exactly three neighbors in W we deduce that g(W ) ≥ 3q − 3y.
Note that g(H) ≥ 4t+ 2y. Now combining all these facts with g(G) ≤ k = 4t+ 2q we obtain y ≥ q. Hence y = q
and so W ⊂ V0. Consequently, C ′ = {Cj : g (cj) = 2} is an exact cover for C. �

3. Graphs with large mixed Roman domination number

The aim of this section is to characterize connected graphs attaining equality in the upper bound of Propo-
sition 1.2, that is graphs G of order n for which γ∗R(G) = n. We provide a complete characterization of such
graphs when n is odd and we give a necessary condition when n is even.
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Theorem 3.1. Let G be a connected graph of odd order n. Then γ∗R(G) = n if and only if G = Kn.

Proof. Let G be a connected graph of odd order n such that γ∗R(G) = n. Let M = {u1v1, . . . , uα′vα′} be
a maximum matching of G and X the independent set of M -unsaturated vertices. Since n is odd, |X| ≥ 1.
Note that if y ∈ X and yui ∈ E(G) for some i, then for every z ∈ X − {y} we have zvi /∈ E(G), for otherwise
(M − {uivi}) ∪ {yui, zvi} is a matching larger than M, a contradiction.

Claim 1. If u ∈ X, then uui ∈ E(G) if and only if uvi ∈ E(G).

Proof of Claim 1. Let uui ∈ E(G) for some i, say i = 1, and assume, to the contrary, that uv1 6∈ E(G). Then
zv1 /∈ E(G) for each z ∈ X−{u}. Define g : V (G)∪E(G)→ {0, 1, 2} by g (u1) = 2, g (uivi) = 2 for 2 ≤ i ≤ α′(G)
and g(x) = 0 otherwise. Clearly g is a MRDF on G of weight at most n−1 which is a contradiction. This proves
Claim 1.

According to Claim 1, for every two vertices x and y of X we have N(x) ∩N(y) = ∅.

Claim 2. |X| = 1.

Proof of Claim 2. Suppose that |X| ≥ 2 and let X = {x1, x2, . . . , xr}. By the connectedness of G and
Claim 1, we may assume that N (x1) = {ui, vi | 1 ≤ i ≤ t1}, N (x2) = {ui, vi | t1 + 1 ≤ i ≤ t2} , . . . , N (xr) =
{ui, vi | tr−1 + 1 ≤ i ≤ α′(G)}. Since G is connected, we may also assume, without loss of generality, that
ut1ut2 ∈ E(G). But then (M − {ut1vt1 , ut2vt2}) ∪ {ut1ut2 , x1vt1 , x2vt2} is a matching of G larger than M,
a contradiction. This proves Claim 2.

Let X = {x}.

Claim 3. N(x) = {ui, vi | 1 ≤ i ≤ α′(G)}.

Proof of Claim 3. Suppose to the contrary that ui 6∈ N(x) for some i. By Claim 1, we may assume that
N(x) = {ui, vi | 1 ≤ i ≤ t} , where t < α′(G). Since G is connected, we may assume, without loss of generality,
that ut is adjacent to ut+1. Then M1 = (M − {utvt})∪{xvt} is a maximum matching of G, where ut is an M1-
unsaturated vertex. Since utut+1 ∈ E(G), Claim 1 implies that utvt+1 ∈ E(G). Now if vtut+1, vtvt+1 6∈ E(G),
then the function g : V (G) ∪ E(G) → {0, 1, 2} defined by g (xvt) = g (ut+1vt+1) = 1, g (ut) = 2, g (uivi) = 2
for i ∈ {1, . . . , α′(G)} \ {t, t+ 1} and g(y) = 0 otherwise, is a MRDF of G of weight at most n − 1 which
is a contradiction. Hence we assume that vtut+1 ∈ E(G) (the case vtvt+1 ∈ E(G) is similar). Clearly
M2 = (M − {utvt, ut+1vt+1}) ∪ {xut, ut+1vt} is a maximum matching of G, where vt+1 is an M2-unsaturated
vertex. As seen above, Claim 1 implies that xvt+1 ∈ E(G), a contradiction. This proves Claim 3.

Thus x is adjacent to all vertices of G. For each 1 ≤ i ≤ α′(G), M ′ = (M − {uivi}) ∪ {xvi} is a maximum
matching of G and ui is a M ′-unsaturated vertex. Using the same argument as above, we conclude that ui is
adjacent to all vertices of G. Likewise, vi is adjacent to all vertices of G. Now since ui and vi are arbitrary
vertices, we deduce that G is a complete graph.

The converse follows from Proposition 1.2. �

Proposition 3.2. Let G be a connected graph of even order n. If γ∗R(G) = n, then G is a mixed Roman graph
having a perfect matching.

Proof. By (1.1) and Theorem 1.4(i) we have γ∗R(G) = n = 2 dn/2e ≥ 2γ∗(G) ≥ γ∗R(G). Therefore γ∗R(G) =
2γ∗(G) and γ∗(G) = n/2. The first equality implies that G is mixed Roman and the second one implies that G
has a perfect matching (by Theorem 1.4(ii)). �

4. Bounds on the mixed Roman domination number

We saw in Section 2 that computing γ∗R(G) is NP-complete even for bipartite graphs G. It is therefore natural
to look for new upper and lower bounds on the mixed Roman domination number. In this section, we present
two upper bounds as well as two lower bounds on this parameter, three of which are in the class of trees.
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4.1. Upper bounds

Our first upper bound relates the mixed Roman domination number to the domination number of any tree.

Proposition 4.1. For any nontrivial tree T , γ∗R(T ) ≤ 3γ(T )− 1.

Proof. Let D = {v1, . . . , vk} be a minimum dominating set of T , and let ED denote the set of edges that don’t
belong to Nm[D]. Note that every edge of ED is incident with only vertices of V−D. Let Ai = N (vi) \D for
i ∈ {1, . . . , k}. Since T is a tree, Ai is independent for each i. Let G be the graph with vertex set {x1, . . . , xk}
such that xi and xj are adjacent if and only if there is edge in ED between Ai and Aj . If (xi1xi2 . . . xisxi1)
is a cycle in G and aij bij+1 ∈ ED is the corresponding edge of xijxij+1 for each j (possibly aij = bij ), then(
vi1ai1bi2vi2 . . . vis−1ais−1bisvisaisbi1vi1

)
contains a cycle in T which is a contradiction. Thus G is a forest and

so |ED| = |E(G)| ≤ |D| − 1. Now define a MRDF g on T by g(x) = 2 for every vertex x ∈ D, g(x) = 0 for every
element x which is either adjacent or incident with a vertex of D, and g(e) = 1 for every edge e ∈ ED. Then g
has weight 2 |D|+ |ED| ≤ 3 |D| − 1, implying that γ∗R(T ) ≤ 3γ(T )− 1. �

In what follows, we give a necessary condition for trees T with γ∗R(T ) = 3γ(T ) − 1. We first need to recall
a couple of definitions and result on trees with a unique minimum dominating set due to Gunther et al. [17].
A set S of vertices in a graph G = (V,E) is a packing if the vertices in S are pairwise at distance at least 3
apart in G, or equivalently, for every vertex v ∈ V , |N [v] ∩ S| ≤ 1. As defined in Bange et al. [9], a dominating
set S for which |N [v] ∩ S| = 1 for all v ∈ V is an efficient dominating set. Equivalently, a set S is an efficient
dominating set if S is both a dominating set and a packing of G.

Theorem 4.2 ([17]). Let T be a tree of order at least 3. Then T has a unique γ(T )-set D if and only if every
vertex of D has at least two private neighbors in V−D.

Proposition 4.3. Let T be a tree of order n ≥ 3 such that γ∗R(T ) = 3γ(T )− 1. Then T has a unique γ(T )-set
D such that D is efficient and every vertex in V−D has degree at most three.

Proof. Assume now that γ∗R(T ) = 3γ(T ) − 1, and let D and ED be two sets as defined in the proof
of Proposition 4.1. By using the same argument to that used in the proof of Proposition 4.1, we obtain
3γ(T )− 1 = γ∗R(T ) ≤ 2 |D|+ |ED| ≤ 3γ(T )− 1. Hence γ∗R(T ) = 2 |D|+ |ED| and |ED| = |D| − 1. Observe that
the removal of ED from T yields to a forest with |D| components. Now if two vertices of D are adjacent or have
a common neighbor in V−D, then clearly |ED| < |D|−1, which implies that γ∗R(T ) ≤ 2 |D|+ |ED| < 3γ(T )−1,
a contradiction. We deduce that D is a packing set and so D is an efficient dominating set of T . Hence ev-
ery vertex of D has at least one private neighbor in V−D. Suppose to the contrary that some vertex x of
D has exactly one private neighbor in V−D, say y. Then the set D′ = (D − {x}) ∪ {y} is a γ(T )-set having
|ED′ | < |D| − 1 = |ED|. But then γ∗R(T ) ≤ 2 |D′|+ |ED′ | < 3 |D| − 1, a contradiction. Hence every vertex of D
has at least two private neighbors in V−D. By Theorem 4.2, D is a unique γ(T )-set. Finally, let us suppose that
some vertex u ∈ V−D has degree at least four. Since D is efficient, u has at least three neighbors in V−D. Let
Eu be the set of all edges incident with u belonging to the subgraph induced by V−D. Thus |Eu| ≥ 3. Define
a function h on T by h(x) = 2 for every vertex x ∈ D ∪ {u} , h(y) = 0 for every element y 6= u which is either
adjacent or incident with a vertex of D ∪ {u} , and h(e) = 1 for every edge e ∈ ED − Eu. Clearly, h is MRDF
on T , and so

w(h) =
∑

x∈V ∪E
h(x) = 2 (|D|+ 1) + |ED − Eu|

= 2 |D|+ |ED| − (|Eu| − 2) = 3 |D| − 1− (|Eu| − 2)

< 3 |D| − 1,

a contradiction. Hence every vertex of V−D has degree at most three. �
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We note that converse of Proposition 4.3 is not true. To see consider the tree T obtained from a star K1,3 by
subdividing two edges twice and the remaining edge four times. One can easily see that T has a unique γ(T )-set
D of size 4 such thatD is efficient and every vertex in V−D has degree at most three but γ∗R(T ) < 3γ(T )−1 = 11.

Theorem 4.4. If T is a tree of order n ≥ 3 with `(T ) leaves and s(T ) stems, then

γ∗R(T ) ≤ n− `(T ) + s(T )

with equality if and only if T is a generalized corona.

Proof. Let T ′ be the forest obtained from T by deleting all leaves and stems. By Proposition 1.2, γ∗R (T ′) ≤
n − `(T ) − s(T ). Suppose f is a γ∗R (T ′)-function and define g : V (T ) ∪ E(T ) → {0, 1, 2} by g(x) = f(x) for
x ∈ V (T ′) ∪ E (T ′), g(x) = 2 for x ∈ S(T ) and g(x) = 0 otherwise. Clearly g is a MRDF of T and hence

γ∗R(T ) ≤ ω(g) = γ∗R (T ′) + 2s(T ) ≤ (n− `(T )− s(T )) + 2s(T ) = n− `(T ) + s(T ).

Assume T is a generalized corona. We shall show that T has a γ∗R(T )-function f assigning the value
2 to each stem and 0 to the remaining elements of T . Clearly, in this case we have γ∗R(T ) ≥ 2s(T ) =
n − `(T ) + s(T ) as desired. Assume, to the contrary, that |V g2 ∩ S(T )| < s(T ) for every γ∗R(T )-function
g = (V g0 ∪ E

g
0 , V

g
1 ∪ E

g
1 , V

g
2 ∪ E

g
2 ) of T . Among all such functions, let f = (V0 ∪ E0, V1 ∪ E1, V2 ∪ E2) be one for

which |V f2 ∩S(T )| is as large as possible. Let v be a stem such that f(v) ≤ 1, and assume that L(v) = {v1, . . . , vk}.
If
∑k
i=1 (f (vi) + f (vvi)) ≥ 2, then the function h defined by h(v) = 2, h (vi) = h (vvi) = 0 for 1 ≤ i ≤ k and

h(x) = f(x) otherwise, is a γ∗R(T )-function with |V h2 ∩S(T )| > |V f2 ∩S(T )|, contradicting the choice of f . Hence∑k
i=1 (f (vi) + f (vvi)) ≤ 1. Since f (vi)+f (vvi) ≥ 1 for each i, we deduce that k = 1, f (v1) = 1 and f (vv1) = 0.

From f (v1) + f (vv1) ≤ 1 and f(v) ≤ 1 we deduce that f(vu) = 2 for some u ∈ N(v) − L(v), thus f(v) = 0,
f (vv1) = 0 and f (v1) = 1. If f(u) = 2, then the function h1 defined by h1(v) = 2, h1 (v1) = h1 (vv1) = h(uv) = 0
and h1(x) = f(x) otherwise, is a MRDF of T of weight less than γ∗R(T ), a contradiction. Thus f(u) ≤ 1. Recall
that, by assumption, u is a stem. Let w ∈ L(u). Since f(u) ≤ 1, we obtain that f(w) + f(uw) ≥ 1. Then the
function h2 defined by h2(u) = h2(v) = 2, h2(w) = h2(uw) = h2(uv) = h2 (v1) = h2 (vv1) = 0 and h2(x) = f(x)
otherwise, is a γ∗R(T )-function that contradicts the choice of f . We conclude that T has a γ∗R(T )-function f
assigning the value 2 to each stem and this proves the claim.

Conversely, let T be a tree of order n ≥ 3 such that γ∗R(T ) = n − `(T ) + s(T ). Assume that T contains at
least one vertex which is neither a stem nor a leaf. Let T ′ be the forest obtained from T by removing all stems
and leaves. We consider the following cases.

Case 1. T ′ has an isolated vertex v.
Let T ′′ = T ′ − v and f be a γ∗R (T ′′)-function. Define g : V (T ) ∪E(T )→ {0, 1, 2} by g(x) = 2 for x ∈ S(T ),
g(x) = f(x) for x ∈ V (T ′′)∪E (T ′′) and g(x) = 0 otherwise. Clearly g is a MRDF of T . By Proposition 1.2,

γ∗R(T ) ≤ ω(f) + 2s(T ) ≤ (n− `(T )− s(T )− 1) + 2s(T ) ≤ n− `(T ) + s(T )− 1,

a contradiction.
Case 2. T ′ has a component of order 2.

Let v and w be the vertices of such a component of T ′. Let T ′′ = T ′ − {v, w} and f be a γ∗R (T ′′)-function.
Define g : V (T )∪E(T )→ {0, 1, 2} by g(x) = 2 for x ∈ S(T ), g(vw) = 1, g(x) = f(x) for x ∈ V (T ′′)∪E (T ′′)
and g(x) = 0 otherwise. Obviously g is a MRDF of T and by Proposition 1.2, we obtain

γ∗R(T ) ≤ ω(f) + 2s(T ) + 1 ≤ (n− `(T )− s(T )− 2) + 2s(T ) + 1 ≤ n− `(T ) + s(T )− 1,

a contradiction.
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Case 3. T ′ has a strong stem.
Let v be a strong stem in T ′. Assume that T ′′ = T ′− ({v} ∪ LT ′(v)) and let f be a γ∗R (T ′′)-function. Define
g : V (T ) ∪ E(T ) → {0, 1, 2} by g(x) = 2 for x ∈ S(T ) ∪ {v}, g(x) = f(x) for x ∈ V (T ′′) ∪ E (T ′′) and
g(x) = 0 otherwise. Clearly, g is a MRDF of T . By Proposition 1.2, we have

γ∗R(T ) ≤ ω(f) + 2s(T ) + 2 ≤ (n− `(T )− s(T )− 1− |LT ′(v)|) + 2s(T ) + 2 ≤ n− `(T ) + s(T )− 1,

a contradiction.
According to Cases 1–3, we may assume that T ′ has no strong stem and every component of T ′ has order at

least four. Note that a component of order three implies that T ′ has a strong stem. Let v1 and v2 be two stems
of T ′ such that the distance between v1 and v2 in T ′, dT ′ (v1, v2), is as small as possible and let zi be the leaf
adjacent to vi, for i ∈ {1, 2}. Note that each zi is adjacent to a vertex of S(T ).
Case 4. dT ′ (v1, v2) = 1.

Let T ′′ = T ′−{v1, v2, z1, z2} and let f be a γ∗R (T ′′)-function. Define g : V (T )∪E(T )→ {0, 1, 2} by g(x) = 2
for x ∈ S(T ) ∪ {v1v2}, g(x) = f(x) for x ∈ V (T ′′) ∪ E (T ′′) and g(x) = 0 otherwise. Clearly g is a MRDF
of T and by Proposition 1.2

γ∗R(T ) ≤ (n− `(T )− s(T )− 4) + 2s(T ) + 2 < n− `(T ) + s(T ),

which is a contradiction.
Case 5. dT ′ (v1, v2) = 2.

Let w be the common vertex adjacent to v1 and v2. We deduce from the choice of v1 and v2 that w is
not a stem in T ′. Suppose T ′′ = T ′ − {w, v1, v2, z1, z2} and let f be a γ∗R (T ′′)-function. Then the function
g : V (T )∪E(T )→ {0, 1, 2} defined by g(x) = 2 for x ∈ S(T )∪{v1w, v2w}, g(x) = f(x) for x ∈ V (T ′′)∪E (T ′′)
and g(x) = 0 otherwise, is a MRDF of T . It follows from Proposition 1.2 that

γ∗R(T ) ≤ (n− `(T )− s(T )− 5) + 2s(T ) + 4 < n− `(T ) + s(T ),

a contradiction.
Case 6. dT ′ (v1, v2) = 3.

Let v1w1w2v2 be the (v1, v2)-path. By the choice of v1 and v2, we conclude that w1 and w2 are not
stems in T ′. Suppose T ′′ = T ′ − {w1, w2, v1, v2, z1, z2} and let f be a γ∗R (T ′′)-function. Then the function
g : V (T ) ∪ E(T ) → {0, 1, 2} defined by g(x) = 2 for x ∈ S(T ) ∪ {v1w1, v2w2}, g(x) = f(x) for
x ∈ V (T ′′) ∪ E (T ′′) and g(x) = 0 otherwise, is a MRDF of T . By Proposition 1.2, we obtain

γ∗R(T ) ≤ (n− `(T )− s(T )− 6) + 2s(T ) + 4 < n− `(T ) + s(T ),

a contradiction.
Case 7. dT ′ (v1, v2) ≥ 4.

Suppose v1w1 . . . wkv2 is the (v1, v2)-path. As above, each wi is not a stem in T ′.
Let T ′′ = T ′ − {w1, wk, v1, v2, z1, z2} and f be a γ∗R (T ′′)-function. Then the function g : V (T ) ∪ E(T ) →
{0, 1, 2} defined by g(x) = 2 for x ∈ S(T )∪{v1w1, v2wk}, g(x) = f(x) for x ∈ V (T ′′)∪E (T ′′) and g(x) = 0
otherwise, is a MRDF of T of weight less than n− `(T ) + s(T ), a contradiction.

Therefore, every vertex of T is either a stem or a leaf, and the proof is complete. �

The next result is an immediate consequence of Theorem 4.4. The corona of a graph G = (V,E) is the graph
formed from a copy of G by attaching for each v ∈ V , a new vertex v′ and edge vv′.

Corollary 4.5. Let T be a tree of order n. Then γ∗R(T ) = n if and only if T is a corona of some tree T ′.

It is worth mentioning that the bounds in Proposition 4.1 and Theorem 4.4 are incomparable and the difference
(3γ(T )− 1)− (n− `(T ) + s(T )) as well as (n− `(T ) + s(T ))− (3γ(T )− 1) can be arbitrarily large. Indeed, for
the corona tree H of high order we have (3γ(H)− 1) = 3n/2 − 1 while (n− `(H) + s(H)) = n = γ∗R(H). On
the other hand, for the tree Fk (k ≥ 2) obtained from a star K1,k by subdividing each edge of the star three
times we have (n− `(F ) + s(F )) = n while (3γ(F )− 1) = 3(k + 1)− 1 = γ∗R(F ).
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4.2. Lower bounds

The two lower bounds presented in this subsection relate the mixed Roman domination number to the
matching number.

Theorem 4.6. For every connected graph G of order n ≥ 2,

γ∗R(G) ≥ α′(G) + 1.

Moreover, this bound is sharp for stars.

Proof. Let M = {u1v1, . . . , uα′vα′} be a maximum matching of G and let X be the set of vertices not saturated
by M . Recall that X is independent. If y and z are vertices of X and yui ∈ E(G), then since the matching M is
maximum, zvi /∈ E(G). Therefore, for all i ∈ {1, 2, . . . , α′} there are at most two edges between the sets {ui, vi}
and {y, z}. Let Z = V (G) ∪ E(G) and Z∗ = {ui, vi, uivi | 1 ≤ i ≤ α′}. Obviously, |Z∗| = 3α′.

Assume, to the contrary, that γ∗R(G) ≤ α′(G) and let f = (Z0, Z1, Z2) be a γ∗R(G)-function, where Z0 ∪
Z1 ∪ Z2 = Z. Clearly |Z2| ≥ 1 and |Z1| + 2|Z2| ≤ α′(G). Hence |Z2| ≤

⌊
α′(G)

2

⌋
. Suppose |Z2 ∩ E(G)| = s and

|Z2 ∩ V (G)| = r. It is worth noting that an edge of Z2 ∩E(G) can dominate 2 edges as well as 2 vertices of Z∗

while a vertex of Z2 ∩ V (G) dominates at most one edge of Z∗ and possibly all vertices of Z∗. Based on these
facts, let us consider the following two cases.

Case 1. s = |Z2|. Hence r = 0. Clearly, at most 4s elements of Z∗ are dominated by Z2. Using the fact that
|Z2| ≤

⌊
α′(G)

2

⌋
we obtain 4s = 4|Z2| ≤ 4

⌊
α′(G)

2

⌋
≤ 2α′(G). This implies that |Z1 ∩ Z∗| ≥ 3α′ − 2α′ = α′.

Therefore, |Z1|+ 2|Z2| ≥ α′ + 2s > α′ + 1 which is a contradiction.
Case 2. s < |Z2|. Hence r ≥ 1. Since set Z2 dominates at most 2α′ + r + 2s elements of Z∗, we obtain that
|Z1 ∩Z∗| ≥ 3α′− (2α′ + r + 2s). Therefore, |Z1|+ 2|Z2| ≥ 3α′− (2α′ + r + 2s) + 2(r+ s) = α′+ r ≥ α′+ 1,
a contradiction.

We conclude that γ∗R(G) ≥ α′(G) + 1, and this completes the proof. �

Our next result improves the previous lower bound for the class of trees.

Observation 4.7. If T is a tree and v3v2v1 is a path in T such that deg (v1) = 1 and deg (v2) = 2, then for
any γ∗R(T )-function f , f (v1) + f (v2) + f (v1v2) + f (v2v3) ≥ 2.

Proof. If f (v1) = 0, then to Roman dominate v1 we must have f (v2) = 2 or f (v1v2) = 2 implying that
f (v1) + f (v2) + f (v1v2) + f (v2v3) ≥ 2. If f (v1v2) = 0, then to Roman dominate v1v2 we must have f (v1) = 0
or f (v2) = 2 or f (v2v3) = 2 yielding f (v1) + f (v2) + f (v1v2) + f (v2v3) ≥ 2. Hence we may assume that
f (v1) ≥ 1 and f (v1v2) ≥ 1 and so f (v1) + f (v2) + f (v1v2) + f (v2v3) ≥ 2. �

Theorem 4.8. For any tree T ,

γ∗R(T ) ≥
⌈

4α′(T )
3

⌉
·

Furthermore, this bound is sharp for the stars K1,t (t ≥ 1) and the path P8.

Proof. Since γ∗R(T ) is integer, it is enough to prove that γ∗R(T ) ≥ 4α′(T )
3 · We use an induction on the order n

of the tree T . The statement is clearly true for all trees of order n ≤ 4. Let n ≥ 5 and assume that for every
tree T ′ of order n′ less than n the result is true. Let T be a tree of order n and M a maximum matching of T .
If diam (T ) = 2, then T is a star which yields γ∗R(T ) = 2 ≥ 4α′(T )/3. If diam (T ) = 3, then T is a double star and
we have α′(T ) = 2 and γ∗R(T ) = 4 implying that γ∗R(T ) > 4α′(T )/3. Thus, we may assume that diam (T ) ≥ 4.
If T has a pendant edge uv with deg (u) = 1 such that uv 6∈ M , then for any γ∗R(T )-function f , the function
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g : V (T −u)∪E(T −uv)→ {0, 1, 2} defined by f(v) = min {2, f(v) + f(u) + f(uv)} and g(x) = f(x) otherwise,
is a MRDF of T − u and by the induction hypothesis we have γ∗R(T ) ≥ γ∗R(T − u) ≥ 4

3α
′(T − u) = 4

3α
′(T ).

Henceforth, we may assume all pendant edges of T belong to each maximum matching. It follows that all end-
stems of T have degree 2. If ∆(T ) = 2, then T is a path and the result follows by Proposition 1.3. Assume that
∆(T ) ≥ 3. Let P = v1v2 . . . vk be a longest path in T and root T at vk. By assumption all children of v3 with
depth one have degree two. In particular deg (v2) = 2. Suppose f is a γ∗R(T )-function such that f (v3) is as large
as possible. By Observation 4.7, we have f (v1) + f (v2) + f (v1v2) + f (v2v3) ≥ 2. We consider the following
cases.

Case 1. deg (v3) ≥ 3.
First suppose there is a path v3w2w1 in T such that deg (w1) = 1 and w2 6∈ {v2, v4}. Then deg (w2) = 2
and by Observation 4.7 we have f (w1) + f (w2) + f (w1w2) + f (w2v3) ≥ 2. We may assume without loss of
generality that f (v3w2) ≥ f (v3v2). Let T ′ = T − {v1, v2}. Clearly α′ (T ′) = α′(T ) − 1 and the function f
restricted to T ′ is a MRDF of T ′ of weight at most ω(f)− 2 and by the induction hypothesis we have

γ∗R(T ) ≥ γ∗R (T ′) + 2 ≥ 4 (α′(T )− 1)
3

+ 2 >
4α′(T )

3
·

Now let all children of v3 but v2 be leaves. Suppose w is a leaf adjacent to v3. If f(w) + f (v3) + f (v3w) ≥ 2,
then we may assume that f (v3) = 2 and then the function f , restricted to T ′ = T−{v1, v2} is a mixed Roman
dominating function of T ′ of weight at most ω(f) − 2 and the result follows as above. Let f(w) + f (v3) +
f (v3w) ≤ 1. Then we must have f(w) = 1 and f (v3w) = f (v3) = 0. To Roman dominate v3w, some edges
at v3 must assigned 2 under f . If f (v3v2) = 2, then clearly f (v1) = 1 and it is easy to see that the function
g : V (T ) ∪E(T )→ {0, 1, 2} defined by g (v3) = g (v1v2) = 2, g(w) = g (v3w) = g (v1) = g (v2) = g (v2v3) = 0
and g(x) = f(x) otherwise, is a γ∗R(T )-function with g (v3) > f (v3), which leads to a contradiction to the
choice of f . Let f (v3u) = 2 for some u ∈ N (v3)−{v2, w}. Then the function f , restricted to T ′ = T−{v1, v2}
is a mixed Roman dominating function of T ′ of weight at most ω(f)− 2, and the result follows as above.

Case 2. deg (v3) = 2 and deg (v4) ≥ 3.
Since M is a maximum matching and all pendant edges must belong to M , we deduce that v1v2, v4v3 ∈M .
It follows that v4 is not a stem. On the other hand, if there is a path v4w3w2w1 in T such that w3 6∈ {v3, v5}
and deg (w1) = 1, then by the assumption and Case 1, we may assume that deg (w2) = deg (w3) = 2.
By the assumption we have w1w2 ∈ M that implies w2w3, w3v4 6∈ M because of v4v3 ∈ M . But then
(M − {w1w2})∪{w2w3} is a maximum matching of T not containing a pendant edge which is a contradiction.
It follows from deg (v4) ≥ 3 and above argument that there is a path v4w2w1 with deg (w2) = 2 and
deg (w1) = 1.
By Observation 4.7, we have f (w1) + f (w2) + f (w1w2) + f (w2v4) ≥ 2 and f (v1) + f (v2) + f (v1v2) +
f (v2v3) ≥ 2, and so f (v1) + f (v2) + f (v3) + f (v1v2) + f (v2v3) + f (v3v4) ≥ 2. If f (v1) + f (v2) + f (v3) +
f (v1v2) + f (v2v3) + f (v3v4) + f (v4) ≥ 4, then the function g : V (T ) ∪ E(T ) → {0, 1, 2} defined by
g (v4) = g (v2) = 2, g (v1) = g (v3) = g (v1v2) = g (v2v3) = g (v3v4) = 0 and g(x) = f(x) otherwise,
is a γ∗R(T )-function such that its restriction on T − {w1, w2} is a mixed Roman dominating function of
weight at most ω(g) − 2 and using the induction hypothesis on T − {w1, w2} we get the result. Assume
that f (v1) + f (v2) + f (v3) + f (v1v2) + f (v2v3) + f (v3v4) + f (v4) ≤ 3. Similarly, we may assume that
f (w1)+f (w2)+f (w1w2)+f (w2v4)+f (v4) ≤ 3. This implies that f (v4) ≤ 1. We claim that f (v1)+f (v2)+
f (v3) + f (v1v2) + f (v2v3) + f (v3v4) + f (v4) < 3 or f (w1) + f (w2) + f (w1w2) + f (w2v3) + f (v4) < 3.
Suppose, to the contrary, that f (w1) + f (w2) + f (w1w2) + f (w2v3) + f (v4) = 3 and f (v1) + f (v2) +
f (v3) + f (v1v2) + f (v2v3) + f (v3v4) + f (v4) = 3. Then the function g : V (T ) ∪ E(T ) → {0, 1, 2} defined
by g (w1) = 1, g (v2) = g (w2v4) = 2, g (w2) = g (w1w2) = g (v1) = g (v3) = g (v1v2) = g (v2v3) = g (v3v4) = 0
and g(x) = f(x) otherwise, is a MRDF of T of weight less than ω(f), a contradiction. This proves the claim.
Consider the following subcases.
Subcase 2.1. f (w1) + f (w2) + f (w1w2) + f (w2v3) + f (v4) = 3 and f (v1) + f (v2) + f (v3) + f (v1v2) +

f (v2v3) + f (v3v4) + f (v4) = 2.
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Then we must have f (v2) = 2 and f (v1) = f (v3) = f (v1v2) = f (v2v3) = f (v4v3) = 0. On the other
hand, we may assume without loss of generality that f (w1) = 1, f (w2v4) = 2 and f (w2) = f (w1w2) = 0.
Let T ′ = T − {v1, v2, w1} and define g : V (T ′) ∪ E (T ′) → {0, 1, 2} by g (v4) = 2, g (w2) = g (v3) =
g (v4v3) = g (v4w2) = 0 and g(x) = f(x) otherwise. Clearly α′(T ) = α′(T )− 2 and g is a mixed Roman
dominating function of weight at most ω(f) − 3 and by the induction hypothesis on T ′ we obtain the
result.

Subcase 2.2. f (w1) + f (w2) + f (w1w2) + f (w2v3) + f (v4) = 2 and f (v1) + f (v2) + f (v3) + f (v1v2) +
f (v2v3) + f (v3v4) + f (v4) = 3.
Then we must have f (v4) = 0 and f (v4v3) ≤ 1. On the other hand, we may assume that f (w2) = 2.
Let T ′ = T − {v1, v2, v3}. Then α′(T ) = α′(T )− 2 and the function f restricted to T ′ is a mixed Roman
dominating function of weight at most ω(f)− 3 and the result follows from the induction hypothesis on
T ′.

Subcase 2.3. f (w1) + f (w2) + f (w1w2) + f (w2v3) + f (v4) = 2 and f (v1) + f (v2) + f (v3) + f (v1v2) +
f (v2v3) + f (v3v4) + f (v4) = 2.
Then we must have f (v2) = 2, f (v4) = f (w2v4) = f (v3v4) = 0. To Roman dominate the edge v3v4, there
is an edge incident to v4, say v4u such that f (v4u) = 2. Let T ′ = T −{w1, w2}. Then α′ (T ′) = α′(T )− 1
and the function f , restricted to T ′ is a mixed Roman dominating function of weight at most ω(f) − 2
and by the induction hypothesis on T ′ we get the result.

Case 3. deg (v3) = 2 and deg (v4) = 2.
By symmetry, we may assume that deg (vk−1) = deg (vk−2) = deg (vk−3) = 2. First let f (v5) = 2. It is easy
to see that f (v1) + f (v2) + f (v3) + f (v1v2) + f (v2v3) + f (v3v4) = 3. Then α′ (T − {v1, v2, v3}) = α′(T )− 2
and the function f , restricted to T − {v1, v2, v3} is a mixed Roman dominating function of weight at most
ω(f) − 3 and the result follows by the induction hypothesis on T ′. Now let f (v5) ≤ 1. It is easy to verify
that f (v1) + f (v2) + f (v3) + f (v4) + f (v1v2) + f (v2v3) + f (v3v4) + f (v4v5) ≥ 4. Consider the following
subcases.
Subcase 3.1. deg (v5) = 2.

Since f (v1) + f (v2) + f (v3) + f (v4) + f (v1v2) + f (v2v3) + f (v3v4) + f (v4v5) ≥ 4, we may assume that
f (v2) = f (v4v5) = 2. Let T ′ = T − {v1, v2, v3, v4, v5}. Since the edge v1v2 belongs to every maximum
matching, we deduce that α′ (T ′) = α′(T ) − 3. Now the function g : V (T ′) ∪ E (T ′) → {0, 1, 2} defined
by g (v6) = min {2, f (v6) +f (v5v6)} and g(x) = f(x) otherwise, is a mixed Roman dominating function
of T ′ of weight at most ω(f)− 4. Now the result follows by the induction hypothesis on T ′.

Subcase 3.2. deg (v5) ≥ 3 and T has a path v5w4w3w2w1 where w4 6∈ {v4, v6}.
Then deg (w1) = 1 and by the above cases and subcases, we may assume that deg (w4) = deg (w3) =
deg (w2) = 2. Since f (v5) ≤ 1, we have f (w1) + f (w2) + f (w3) + f (w4) + f (w1w2) + f (w2w3) +
f (w3w4) + f (w4v5) ≥ 4. Let r = max{f (w1) + f (w2) + f (w3) + f (w4) + f (w1w2) + f (w2w3) +
f (w3w4) + f (w4v5)− 4, f (v1) + f (v2) + f (v3) + f (v4) + f (v1v2) + f (v2v3) + f (v3v4) + f (v4v5)− 4}
and define g : V (T ) ∪ E(T ) → {0, 1, 2} by g (v5v4) = g (v2) = g (v5w4) = g (w2) = 2, g (v5) = f (v5) + r,
g(x) = 0 for x ∈ (V (Tv4 ∪ Tw4) ∪ E (Tv4 ∪ Tw4)) − {v2, w2} and g(x) = f(x) otherwise. Clearly g is a
γ∗R(T )-function. Then the function g, restricted to T − Tv4 is a mixed Roman dominating function of
weight at most ω(f)− 4 and the result follows from the induction hypothesis.

Subcase 3.3. deg (v5) ≥ 3 and v5 is a stem.
Let u be a leaf adjacent to v5. Since f (v5) ≤ 1, we have f(u) + f (uv5) ≥ 1 and f (v1) + f (v2) +
f (v3) + f (v4) + f (v1v2) + f (v2v3) + f (v3v4) + f (v4v5) ≥ 4. Let T ′ = T − {v1, v2, v3} and define
g : V (T ′) ∪ E (T ′) → {0, 1, 2} by g (v5) = 2, g (v4) = g (v5v4) = g(u) = g (uv5) = 0 and g(x) = f(x)
otherwise. Clearly g is a γ∗R (T ′)-function of weight at most ω(f)− 3. As α′ (T ′) = α′(T )− 2, we deduce
from induction hypothesis on T ′ that

γ∗R(T ) ≥ ω(g) + 3 ≥ 4 (α′ (T ′)− 2)
3

+ 3>
4α′(T )

3
·
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Subcase 3.4. deg (v5) ≥ 3 and v5 has a neighbor w2 with depth 1.
Let w1 be a leaf adjacent to w2. Since all end-stems of T have degree two, we have deg (w2) = 2. Since
f (v5) ≤ 1, we must have f (w1) + f (w2) + f (w1w2) + f (v5w2) ≥ 2 and f (v1) + f (v2) + f (v3) +
f (v4) + f (v1v2) + f (v2v3) + f (v3v4) + f (v4v5) ≥ 4. We may assume without loss of generality that
f (v2) = f (v4v5) = 2. Let T ′ = T − {w1, w2}. Then the function f restricted to T ′ is a MRDF of T ′ of
weight at most ω(f)−2 and it follows from the induction hypothesis on T ′ and the fact α′ (T ′) = α′(T )−1
that

γ∗R(T ) ≥ ω (f |T ′) + 2 ≥ 4 (α′ (T ′)− 1)
3

+ 2 >
4α′(T )

3
·

Subcase 3.5. deg (v5) ≥ 3 and v5 has a neighbor w3 with depth 2.
Let v5w3w2w1 be a path in T . Since all end-stems of T have degree two, we have deg (w2) = 2. By
Observation 4.7, f (w1) + f (w2) + f (w1w2) + f (w3w2) ≥ 2. If deg (w3) ≥ 3, then using an argument
similar to that described in Case 1, the result follows. Assume that deg (w3) = 2. Similarly we may
assume that all children of v5 with depth 2 have degree 2. Considering above subcases, we may assume
that all children of v5 have depth two. Since every pendant edge of T belongs to any maximum matching,
we conclude that w3 is the only child of v5 with depth two. Let T ′ = T − {v1, v2, v3, v4, v5, w1, w2, w3}.
Clearly the function f restricted to T ′ is a MRDF of T ′ and using the induction hypothesis on T ′ and
the fact α′ (T ′) = α′(T )− 4, we obtain

γ∗R(T ) ≥ ω (f |T ′) + 6 ≥ 4 (α′ (T ′)− 4)
3

+ 6 >
4α′(T )

3

and the proof is complete. �

We conclude this section with an open problem.

Problem. For any tree T , γ∗R(T ) ≥ 3α′(T )
2 ·

5. Conclusion

In this paper, we continued the study of the mixed Roman domination in graphs introduced by Abdollahzadeh
Ahangar et al. [4]. We first showed that computing the mixed Roman domination number in a graph is NP-
complete even for bipartite graphs and we characterized graphs of odd order n for which the mixed Roman
domination number equals n. We also focused on providing various bounds for general graphs and for trees. For
arbitrary connected graphs, two lower bounds in terms of the matching number have been established, while for
trees we have given two upper bounds in terms of the domination number and the number of leaves and stems.
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