RATIRO-Oper. Res. 55 (2021) S947-S966 RAIRO Operations Research
https://doi.org/10.1051/ro/2020037 WWW.rairo-ro.org

OPTIMAL POLICIES FOR A DETERMINISTIC CONTINUOUS-TIME
INVENTORY MODEL WITH SEVERAL SUPPLIERS

LAKDERE BENKHEROUF!* AND BRIAN H. GILDING?

Abstract. This paper is concerned with determining the optimal inventory policy for an infinite-
horizon deterministic continuous-time continuous-state inventory model, where, in the absence of in-
tervention, changes in inventory level are governed by a differential evolution equation. The decision
maker has the option of ordering from several suppliers, each of which entails differing ordering and
purchasing costs. The objective is to select the supplier and the size of the order that minimizes the
discounted cost over an infinite planning horizon. The optimal policy is formulated as the solution of
a quasi-variational inequality. It is shown that there are three possibilities regarding its solvability: it
has a unique solution that corresponds to an (s, S) policy; it does not admit a solution corresponding
to an (s, S) policy but does have a unique solution that corresponds to a generalized (s, S) policy; or, it
does not admit a solution corresponding to an (s, S) policy or a generalized (s, S) policy. A necessary
and sufficient condition for each possibility is obtained. Examples illustrate their occurrence.
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1. INTRODUCTION

Inventory control is concerned with the efficient management of stock of diverse items that are used in
a production process or the provision of a service. Such items may include raw materials, components for work
in progress, finished products, and consumables. The capital tied up with stocking such items is large enough
to call for the application of quantitative methods of management. Holding costs influence the balance between
variation in supply of the stock and demand.

A policy in inventory control that has proven to be practical and effective, and has stood the test of time, is
the (s, S) policy. This policy sets two levels of stock denoted by s and S > s. The policy recommends ordering
to bring the level up to S whenever it drops to s, and not replenishing when it exceeds s. Such a policy was
introduced in [1]. A policy of this type was shown to be optimal in each period of a multi-period dynamic
inventory problem with stochastic demand if the holding and shortage costs are linear functions of the level
of stock, and, in a single period problem if the expected cost function is a concave function of the level of
stock, in the well-known paper [21]. Assumptions in this paper regarding the differentiability of certain cost

Keywords. Optimal inventory policy, quasi-variational inequality, (s, S) policy, generalized (s, S) policy.

1 Department of Statistics and Operations Research, College of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait.

2 Department of Mathematics, College of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait.
*Corresponding author: lakdere.benkherouf@ku.edu.kw

Article published by EDP Sciences © EDP Sciences, ROADEF, SMAI 2021


https://doi.org/10.1051/ro/2020037
https://www.rairo-ro.org
mailto:lakdere.benkherouf@ku.edu.kw
https://www.edpsciences.org

S948 L. BENKHEROUF AND B.H. GILDING

functions were subsequently relaxed in [28]. An (s, S) policy was further shown to be optimal in an infinite-
horizon dynamic inventory model in [13]. All of the aforementioned results were generalized and shown to be
valid under alternative conditions in [25]. For a discrete-time stationary inventory model, an (s, S) policy was
shown to be optimal using a quasi-variational inequality (QVT) in [3]. Similar results confirming the optimality
of an (s, S) policy using a QVI were obtained in [4, 7].

A variation on the (s, S) inventory policy is the (s, .S, T') periodic review inventory policy, which was introduced
n [11]. Incorporating a cost as the consequence of a review, the policy is to bring the level of stock up to S > s
when it is s or less, and take no action otherwise, with period T'. For practical applications, particularly those
involving a stochastic demand that is expensive to monitor, such a policy has operational benefits. Policies of
this type are studied in [14] and references cited therein.

Another variation on the (s, S) inventory policy is what has become known in the inventory control literature
as the generalized (s,.5) policy. It involves several suppliers, and stock levels sy < sy—1 < -+ < 81 < 51 <
Sy < -+ < Sy for some natural number N. If the level of stock is greater than s; one does not replenish it,
if it is between so and s; one orders from supplier 1 to complete the stock to level S7, and so on, down to
a level of stock between sy and sy_; where one orders from supplier N — 1 to bring the stock up to level Sy_;.
If the stock level is less than sy one orders from supplier N to complete the stock to level Sy. The policy
may intentionally exclude further available suppliers. Introductions to generalized (s, S) policies may be found
in [5,19].

Although a generalized (s,.S) policy seems to be very practical in real life, there are few research articles on
the topic. A discrete-time stochastic inventory model with an ordering-cost function that is concave is considered
in [17,18]. A dynamic model with two suppliers, one with a high purchasing cost and no setup cost, and the
other with a low purchasing cost and a fixed ordering cost, is examined in [9]. With a finite and with an infinite
horizon, the existence of a generalized (s, S) policy is shown under the assumption that the probability density
function of the demand is log-concave. This assumption is met by many probability distributions, including the
normal and gamma distributions. More recently, the optimal policy for the model treated in [17] with a general
demand distribution has been shown to be a generalized (s, S) policy for all but a finite interval of inventory
levels, in [2].

In the present paper, an inventory manager is faced with the problem of determining an optimal replenishment
policy for a continuous-time continuous-state deterministic inventory model with a single item, where, in the
absence of intervention, the changes in the inventory level are modelled by a differential equation, and where
the control policies are of an impulse control type. Replenishment is offered by a number of suppliers, each of
which charges differently. The objective is to find an admissible control that minimizes the overall inventory
costs over an infinite planning horizon. For a single supplier model the optimal policy is of (s, S) type. However,
when several suppliers are available, the problem is far from straightforward. As it turns out, there are three
possibilities. Either there is a unique optimal policy that is an (s, S) policy, there is a unique optimal policy
that is a generalized (s, .S) policy but not an (s, S) policy, or, an optimal policy is neither of these. The technical
machinery employed to solve the problem is based on QVI techniques. A model related to that studied in
the present paper has been investigated in [23]. For further information on QVIs, the reader is referred to
[6,8].

Our results differ from those in [12,15,16,26,27]. These papers deal with the long-term average cost criterion
for continuous-time models, and indicate that under the respective circumstances an (s,.S) policy is optimal.
This is not the case, in general, for the infinite-horizon discounted model considered in the present paper.

The next section contains the formal statement of the inventory control problem as well as the QVI formula-
tion. The derivation of the optimality of the (s, S) policy for a single supplier is reviewed in Section 3 as a prelude
to the main contribution of the paper. The analysis of the problem with several suppliers is subsequently to be
found in Section 4. Examples 4.22—4.24 provide concrete illustrations of the three possible outcomes alluded to
above. A conclusion and some general remarks are provided in Section 5.
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2. PROBLEM STATEMENT

Consider a stock of a single item with J possible suppliers. The level of stock at time ¢ is given by z(t).
A level > 0 corresponds to the number of items held. A level x < 0 indicates a shortage of —z items. In the
absence of intervention, changes in x are governed by the evolution equation

#(t) = —G(x(t)), (2.1)

where G is a positive continuous function defined on R. From a modelling point of view, the latter accounts for
a stock-dependent demand rate and the deterioration of items. The forms of G that are commonly used have
been reviewed in [10,24]. A generic expression that amalgamates these forms is

g0 for <0
G(x) = 2.2
(z) {go + g1+ gpz?  for x>0, (2:2)

where go >0, g1 >0, gg > 0, and 0 < 8 < 1 are prescribed constants.
Placing an order with supplier j € J, where

j:{172a"'a‘]}a

entails a fixed cost k; and a cost c¢; per unit item. Given a choice between two suppliers j and ¢, for which
kj < k¢ and ¢; < ¢4, or for which k; < k¢ and ¢; < ¢, one would obviously opt for supplier j. Also, as far
as minimizing costs is involved, given a choice between two suppliers j and ¢ with k; = &k, and ¢; = ¢y, it is
immaterial which of them one chooses. So, with no loss of generality, it will be supposed that

ki >ky>--->k;>0 (2.3)

and
c<cp<---<cy. (2.4)

Under this assumption using a supplier with a higher set-up cost involves a lesser cost per item. For any supplier,
this may well be the case with regard to a larger competitor whose warehouse is located further away from the
customer. Whereas purchasing from the competitor requires a higher cost for transportation, say, which is then
transferred into the set-up cost, the price charged per unit by the competitor could be lower.

The holding cost is given by a continuous nonnegative function f defined on R. The classical expression is

—px for <0
= 2.
f(@) {qx for = >0, (25)

where p > 0 and ¢ > 0 are constants. This is a linear function of the inventory level for items in stock, and for
a shortage of items.
Variability of money-value in time is considered by the exponential discount of costs at a constant rate

a > 0. (2.6)

This method of discounting costs was proposed in [20], is an integral component of the continuous-time inventory
models in [4,5,7,8,22,23], and is possibly the most popular method of discounting applied in economics.
An admissible replenishment strategy consists of a sequence

Vn:{(t17£u.71)7z:17,n},

where t; > 0 represents the time of the ith control (intervention), & > 0 is the quantity ordered at that time,
and j; € J labels the supplier. One may note that should one wish to order a total of = items from a selection
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of suppliers Z C J at the same time, then the minimum of the total cost ZjeI (k;j +¢;&;) subject to the
constraints ; > 0 for every j € Z and ) jeT &; = E > 0 is necessarily given by a combination in which &; = =
for some j € Z, and & = 0 for every other ¢ € Z [5]. Thus, at any time ¢;, an order will be placed with a single

supplier.
In this setting, the problem of finding an optimal impulse control policy reduces to that of determining a sequence
V= lim V,
n—oo

that solves -
(o) = win{ [ plaoperar 3o b + e . (27)
0 i=1
Note that if = satisfies equation (2.1) then
" dn
o G(n)
satisfies the same equation with G replaced by the constant function 1. Concurrently, if u satisfies (2.7) then
w(2(0)) = u(x(0)) satisfies (2.7) with f(z(t)) replaced by f(#(t)). Conversely, by the reverse transformation,
any solution of (2.7) in which z is governed by (2.1) with G = 1 gives rise to a solution satisfying the original
equation (2.1) if

T d
/ e/ — +oo as x — too.
o G(n)

This condition is fulfilled by (2.2). Hence, with nominal loss of generality, we shall take G = 1.

With the aforementioned simplification, it will be shown that the optimal impulse control policy of (2.7)
corresponds to a solution of a QVI. If no order is made within a time interval from ¢ to ¢ + 7 where 7 > 0,
then (2.1) with G =1 and (2.7) lead to

t+7
ualt) < u(e(t+7) e+ [ falp)e 0

=u(z(t) —7)e”* + / fz(t) —v)e™* do.
0
Hence, dropping the dependence of x on t,
u(z) —u(x —7) + aru(z — 1) < au(r — T)/ (1—e™ ) dv+ / flz—v)e " dw.
0 0

Dividing by 7, and then letting 7 — 0, yields (Au) (z) < f(z), where
(Au)(z) = v/ (z) + au(x). (2.8)

On the other hand, if an order is made with supplier j at time ¢, then the quantity ordered should minimize
k; 4+ u(z(t) + &) + ¢;€ with respect to £ > 0. In other words, one should have u(z(t)) = (M;u)(z(t)), where

(Mju)(z) = k; + min {u(z + &) + ¢;€ : £ > 0}.
We deduce that the optimal impulse control policy corresponds to the solution of the QVI
Au < f
u< Mu (2.9)
(Au— f) (u — Mu) =0,
in which A is given by (2.8), and
(Mu)(z) = min{ (M;u)(z) : j € T} (2.10)
To show the existence of a solution of the QVT (2.9) it will be helpful to first examine the case where J = 1.
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3. THE (s,S) POLICY FOR A SINGLE SUPPLIER

When there is a single supplier, we may identify M with M;, and drop the subscript from k; and ¢;.
Subsequently, it can be verified that if u satisfies the QVI (2.9), then the function @ given by u(x) = u(x) +
cx — c/a satisfies (2.9) with f replaced by f, where f(z) = f(z) + acz, and ¢ replaced by 0, and vice versa.
Hence, with no loss of generality, we may suppose that ¢ = 0.

In the expectation that the optimal inventory control policy will involve levels of stock x defining a stopping
interval in which v = Mwu, and levels of stock & not necessitating replenishment defining an interval in which
u < Mu and Au = f, separated by some stock level s, we search for a solution of the QVI based on the following
premise.

Ansatz 3.1. The solution of (2.9) is a differentiable real function u such that « = Mu on (—o0, s], and, Au = f
and v < Mu in (s,00), for some number s.

Lemma 3.2. Under Ansatz 3.1, a solution of the QVI is given by

u(z) = {y(s) for z<s (3.1)

ylx)  for x>s,

where y is a solution of the differential equation

y+ay=f in R (3.2)
satisfyin,
" y'(s)=y'(5)=0 (3.3)
and
y(s) =y(S) +k (3.4)

for some number S > s.

Proof. Suppose that u is a solution of the QVI that satisfies the ansatz. Let < s. Then, since (Mu) (z) is well
defined, u must have a least absolute minimum in [z, 00), at S say. Because this implies that u(z) = (M u) (x) =
k 4+ u(S), necessarily S > . In turn this means that u has a least absolute minimum in [n,c0) at S for all
z < n < S. Whence, u(n) = (Mu)(n) =k +u(S) for all z < n < min{s, S}, and, u(min {s, S}) = k + u(S).
It follows that S > s, that S is the least absolute minimum of u on [s,00), that u(s) = k + u(S), and, in view
of the arbitrariness of x < s, that w is constant on (—oo, s]. Given the differentiability of u, the minimality of
S requires u/(S) = 0, and the constance of u on (—o0, s] requires v'(s) = 0. Moreover, the condition Au = f
in (s,00) says that v must be a solution of (3.2) there. However, under the assumption that f is a continuous
function on R, any solution of the ordinary differential equation (3.2) in (s,00) can be extended onto R. Thus
u must be as in (3.1) with y as stated. O

The following hypothesis is sufficient for the existence of a function y as indicated in Lemma 3.2.

Hypothesis 3.3. The function f is continuous on R, strictly decreasing on (—oo, | and strictly increasing on
[v,00) for some v € R, and is coercive, i.e. f(z) — oo as © — Fo0.

Lemma 3.4. There exists a unique function ¢ : (—o0,v) — (v,00) such that (3.2) admits a solution y satisfy-
ing (3.3) for s < S if and only if s <~ and S = p(s), in which case y is unique,

y <0 in (s,5), and y >0 in (—o0,s)U(S,00). (3.5)

Furthermore, ¢ is continuous and strictly decreasing, and such that p(s) — v as s — 7.
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Proof. Equation (3.2) has a unique solution satisfying y’(s) = 0 for any s. It is given by

o) e feee Ty [Peensianf.

e
Hence, it is such that
i) = {e @) e ()~ [ an}.

Applying the formula for integration by parts of Riemann—Stieltjes integrals, this yields

y@) = [Temag). (3.6)

The condition y'(S) = 0 consequently requires

S
/ e A f () = 0. (3.7)

In view of the monotonicity of f, this necessitates s < v and S = ¢(s) > v, where

L " on agn) = - / T af(n). (3.8)

Because B

/zea"df(n)> [ emasm=en (1) - )} tor 2>,

Y

and f(z) — oo as z — 00, such a value ¢(s) exists for all s < 7. The identity (3.8) leads to the properties of ¢.
Formulae (3.6) and (3.7) together with the monotonicity of f deliver (3.5). O

Given (3.2) and (3.3) for s < S, the condition (3.4) is equivalent to
f(s) = f(S) + ak. (3.9)
Consequently, in the light of Lemma 3.4, it can be reformulated as
F(s) =k, (3.10)

where

s) — s #(s)
F(sy= {07 /e) 1 | s (3.11)

o !
for s < 7. The next lemma leads to the conclusion that (3.10) has a unique solution.

Lemma 3.5. The function F is continuous, strictly decreasing, and such that F(s) — 0 as s — ~, and F(s) —
00 as § — —00.

Proof. The continuity of F' and its behaviour as s — « follow from (3.11) and the properties of ¢ provided by
Lemma 3.4. To verify the remaining characteristics of F, take s < r < v. By (3.11),

eoc{nfgp(r)} -1 w(s) ea{nfw(r)} —1
—df(n) + / S v—
« ®

F(s)—F(r) = ' d
()-Fn = [ s

e—av(r) re(r) e—aw(r) rels)
" [ emar - [ enar

(&% (0%
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The last two terms on the right-hand side of the above equality are zero by (3.8). The first two are positive by
the monotonicity of the exponential function and of f. In fact, of the very first it can be said that

rea{n—e(r} _ 1 rea{r—e(r} _q
e €
/ ——df(n) > / —df(n)

1 — eodr—w(n)}
=—— /(&) - N}

«

It follows that F(s) > F(r) for all s < r <, and F(s) — 0o as s — —0o0. O
The above analysis yields the following.

Theorem 3.6. Suppose that f satisfies Hypothesis 3.3. Then the QVI (2.9) has a unique solution satisfying
Ansatz 3.1.

Proof. Let u be given by (3.1), where y is as in Lemma 3.4. Then, u is constant on (—oo, s], and, by (3.5),

strictly decreasing on [s, S], and strictly increasing on [S, 00). For z < s this implies that (Mu)(z) = k+u(S) =

k4 y(S) — y(s) + u(z), for s < 2 < S it implies that (Mu)(z) = k + u(S) > k + y(S) — y(s) + u(z), and

for # > S it implies that (Mu)(z) = k + u(x) > u(z). Concurrently, (Au)(z) = f(s) < f(z) for z < s, and
) <

<
(Au)(z) = (Ay)(z) = f(z) for & > s. So, if y(s) > y(S) + k then u > Mu in (—o0,s). If y(s) < y(S )+kthen
(Au— f) (u— Mu) > 0 in (—o0,s). Finally, if (3.4) holds then Au < f and u = Mu in (—o00,s), and, Au = f
and v < Mu in (s,00). O

The above delivers the (s,S) policy in which the optimal course of action for an inventory manager is to
order up to level S when the inventory level is s or less, i.e. the level of shortage has reached —s or more, and
to freely let the inventory level decrease and shortages accrue in response to the demand otherwise.

Example 3.7. Suppose that f is given by (2.5) with p > 0 and ¢ > 0. Then Hypothesis 3.3 holds with v = 0,
s)=In{1+p(1—e*)/q}/c, and F(s) = — {ps + qp(s)} /o It follows that s is the unique solution of

aps + qIn{1 +p (1 —e**) /q} +a’k=0

in the interval (—oco,0),
S = —(ak+ps)/q,

and the function y in the solution (3.1) of (2.9) satisfying Ansatz 3.1 is given by

1—ar—e*=2] /a2 for <0
y(z) = {z[ 1/ g

[az — 14+ e¥5=2)] /a2 for x> 0.

The values of s and S in the (s, .S) policy naturally depend on the number k and the function f. The ensuing
corollaries of Theorem 3.6 deliver the monotonicity of this dependence.

Corollary 3.8. Let (s*,5%) be such that equation (3.2) has a solution y+ satisfying (3.3) and (3.4) for k = k*
with 0 < k= < k*. Then sT < s~ and S~ < ST.

Proof. Recalling that s* is the unique solution of the equation F(s) = kT for s € (—00, ), and that F is strictly
decreasing on (—oo,7) by Lemma 3.5, necessarily sT < s~. Since S* = ¢ (s*) where ¢ is given by Lemma 3.4,
and ¢ is strictly decreasing on (—o0,7), this implies that S* > S~. O

Corollary 3.9. Let (s*,S8%) be such that equation (3.2) with f replaced by f* has a solution yi satis-
fying (3.3) and (3.4), for functions f* satisfying Hypothesis 3.3 with the same number ~v. If f+ — f~ is
non-decreasing, then st < s~ and ST < ST with strict inequality in each case if (fT — f7)(S7) >

(f* = f7) (s7) and only if (f* = f7)(ST) > (f* = f7) (s7).
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Proof. Let ¢* denote the function given by Lemma 3.4, and F* the function (3.11), for f* respectively.
In addition, let SZ = lim,_._o »*(n), and 1) with domain (v, SE) denote the inverse of ¢*. By (3.8),

0 (s) ©~(s)
/ o df* (1) = / e d(f — £ () (3.12)
pt(s) s

for all s < 7. So, ot < ™~ in (—o0,7). Consequently, ST < S, and y* < ¢~ in (v,S%). Now, by (3.8)
and (3.11),

t(s) pa(n—X) _
Fo= [0 (313)

for any s < v and X. The same holds with the superscript changed from + to —. Thus, taking X = o™ (s),

et(s) 1 _ eof{n—eT ()}
Fre) P = [ a1 )
e (s) ga{n—e¢T ()} _q
- /+( S, (3.14)

Since v < ¢ < ¢, this implies that F'* < F'~ in (—o00,7). In particular, k = F (s7) < F~ (sT). Therefore,
F~(s7) =k < F~ (s7). In view of the monotonicity of F~, this necessitates s™ < s~. On the other hand,
taking s = 1*(9) and X = ¢~ (S) in (3.13) and its counterpart for v < S < SL,

s gofn—vT(®)}
A AR L)
6(S) | _ gofn—u ()}
+ / 1= T ). (3.15)
¥ (8) @

Hence, F'* (7)) > F~ (¢7) in (7,5%). As a consequence, k = F* (p+ (ST)) > F~ (¢~ (S*)). This implies
that F~ (¢~ (S7)) = k > F~ (¢~ (ST)), from which, in view of the monotonicity of F~ and ¢, it follows
that ST < S~. It remains to establish the necessary and sufficient conditions for strictness in the inequalities
st < s and ST < S™. Suppose first that (f* — f7) (S*) = (f© — f7) (s7). This means that ¢™ = ¢~ in
[~ (57),7). In particular, ™ (= (ST)) = ¢~ (¢~ (7)) = ST. Hence, sT = 4" (5T) =47 (p* (¥~ (S7))) =
Y= (ST) > ¢~ (S7) = s~. Therefore, s* = s~. Consequently, o™ = ¢~ on [sT,7), which in turn gives
St =T (st) = ¢t (s7) = ¢ (s7) = S™. Suppose next that (f+ — f7)(S™) > (f* — f7)(s*). This
necessitates (f+ — f_) (S*) > (f+ — f_) (s7), for if this were not the case, then by what we have just proven
we would have st = s~ and ST = S~, which would lead to an immediate contradiction of our supposition.
However, if (f* — f7)(ST) > (f* = f7)(s7), then (f* = f7)(S7) > (f© — f7) (s). Hence, (3.12) gives
ST = ¢ (s7) > ¢T(s7). So, by (3.14), F™(s7) > k. Whence, s < s~. The inequality S~ > ¢T (s7)
further implies that ¢ (S7) < s~. Therefore, by (3.15), F* (1 (S7)) > k. This gives ¢" (S7) < s*. Thus,
§* <t (Bt (57)) = 5 O

Hypothesis 3.3 includes the supposition that f(z) — oo as 2 — oo. The only place above where this has been
used is in the proof of Lemma 3.4. Careful consideration of this usage reveals the following.

Remark 3.10. Theorem 3.6 remains valid when the supposition that f(z) — oo as x — oo is replaced by

A Temafn) > / ; e df(1).
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Discounting future costs, the problem of finding an optimal control policy becomes that of finding a strategy
to minimize the long-term average cost per unit time of holding and replenishing the inventory.

Remark 3.11. In the limit o — 0, the (s,5) policy given by Theorem 3.6 converges to the classical EOQ
model with shortages.

See [5] for further details, and [22,23] for the corresponding result for related problems.

4. THE GENERALIZED (s,S) POLICY FOR SEVERAL SUPPLIERS

The results on the existence and uniqueness of an (s, .S) policy for the inventory model with a single supplier
provide a motif for the analysis of the problem with several suppliers, notwithstanding that emulation of these
results turns out not to be so straightforward. We shall analyse the problem with more than one supplier in
three phases. The first is to consider an ansatz that suitably generalizes the one employed for the problem
with one supplier. The second is to characterize a solution satisfying this ansatz to such an extent that it
becomes apparent that the QVI admits at most one such solution. The third and final phase is to prove that
the characterization yields a solution of the problem, thereby obtaining an existence result to complement that
of uniqueness.

4.1. The ansatz

As we shall duly demonstrate, the QVI (2.9) with several suppliers need not have a solution fulfilling
Ansatz 3.1. The scope for finding a solution can be widened by relaxing the assumptions within the ansatz. The
following involves just a minor relaxation, with far reaching consequences for the analysis.

Ansatz 4.1. The solution of (2.9) is a continuous real function u such that v = Mu on (—o0,s], and, u is
differentiable, Au = f, and u < Mwu in (s,00), for some number s.

Ansatze 3.1 and 4.1 are equivalent for a single supplier, as is revealed by the next theorem, which expands
on Lemma 3.2.

Theorem 4.2. Under Ansatz 4.1, a solution of the QVI is given by

for x<s

e
“(””)‘{y@c) for @,

where y is a solution of the differential equation (3.2) satisfying

y'(s) =y'(5) = —¢; (4.1)
and
y(s) = y(S) + kj +¢; (S —s) (4.2)
for some j € J and S > s, and
v(z) = min{ (Myy)(s) +c (s —z) : L€ T}. (4.3)
Furthermore,
y(s) = (Mjy)(s) < (Mey)(s) forevery £ e T\ {j}, (4.4)
and

y(z) <v(x) for x<s.
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We realize the proof of the above theorem through a sequence of lemmata. Throughout, v will be assumed
to be a given solution of (2.9) that satisfies Ansatz 4.1. We define

we(z) = u(x) + cox (4.5)
for £ € J and x € R, and note that
(Myu)(z) = k¢ — cox + min {ug(n) : g >z} (4.6)
Lemma 4.3. If u(z) = (Myu)(x) then u; has a least absolute minimum on [z, 00) at an X > x such that
wp(z) = ue(X) + ke (4.7)

and

we(2z) <wug(x) forall z < X. (4.8)

Proof. Since (Myu)(z) is well defined, u, has a least absolute minimum on [z, 00), at X say, whereby (Mu)(z) =
ke — cox 4+ we(X). As ug(z) = (Myu)(x) + co, this gives (4.7). Because k; > 0, the possibility that X = x is
excluded. Finally, for any z < X, by (2.9), (2.10), (4.6), and (4.7), u(z) < (Mu)(z) < (Meu)(z) < k¢ — coz +
ug(X) = ue(x) — cz. Whence, (4.8). O

Lemma 4.4. Suppose that w = Mu in the proper interval [a,b]. Then u is concave on [a,b].

Proof. Since u is continuous on R, each of the functions u, is uniformly continuous on [a, b]. Hence there exists
a 0 € (0,b— a] such that |ug(x) — ue(2)| < ke for every £ € J and all x and z in [a,b] with |z — z| < J. Now, let
w, z, and z be any three numbers in [a,b] with w <2 <z <w+ 4, and £ € J be such that u(z) = (Meu)(z).
By contrivance, ug(x) < ug(n) + k¢ for all x < n < x + 6. Hence, the number X given by Lemma 4.3 is such
that X > x4+ 6 > w+ § > z. Consequently, by (4.8),

(z —2)up(w) + (z —w)ue(2) < (2 — ) ue(z) + (x — w) ue(x) = (2 — w) ue(x).
Eliminating u, using (4.5) yields
(z —x)u(w) + (x —w)u(z) < (z — w) u(x).

In view of the arbitrariness of w, x, and z, this establishes that u is concave on any subinterval of [a, b] of length
0. Because (a,b) can be covered by a finite number of such open subintervals, the concavity on the whole of
[a, b] follows. O

Lemma 4.5. Suppose that w = Mu on [a,z] for some a < xz. Let £ be the least number in J such that
u(x) = (Myu)(z). Then ug is constant and u = Myu on [w, x| for some w € [a,z).

Proof. In the first instance, let £ € J be such that u(w;) = (Mu) (w;) for an increasing sequence {w;};*; C
[a,z) converging to z. By continuity, u(x) = (Myu)(x). By Lemma 4.4, u, is concave on [a,z]. Therefore, uy
has a right derivative D% u, at every point in [a,z), and a left derivative D~ uy at every point in (a,z], with
(D+ug) (no) > (D_W) (m) > (D+ug) (m) > (D_ug) (n2) for all @ < my < m1 < n2 < x. By (4.8) applied at
z =wy, (DTuyg) (wy) <0. By (4.8) applied as it is, (D~ ug)(z) > 0. Hence, (DT ug)(n) (D ug)(n) = 0 for all
n € (wi,z). This implies that wy is constant on [wi,z]. Consequently, (Mgu) = ky — cow +
min {u(n) : n > w} = ke—cow+min {ug(n) : n >z} = (Myu) (x)+c; (xz — w) = u(z)+c; (x — ) = up(z)—cow =
ug(w) — cow = u(w) for all w € [wy, z]. If now there is an L € J \ {¢} for which u(z) = (Mu)(z), then by (4.8)
with £ replaced by L, there holds (D uL)( )>0.S0,¢cp —¢p = (D uy, — D ue) (z) > 0. Thls can be the case
only if L > ¢. Consequently, ¢ must be the least number L € J for which u(x (M LU ) O
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Lemma 4.6. Suppose that w = Mu on [x,b] for some b > x. Let £ be the greatest number in J such that
u(x) = (Myu)(z). Then ug is constant and u = Myu on [, z] for some z € (z,b].

Proof. The proof of this lemma is analogous to that of the previous one. We omit the details. O

Lemma 4.7. Let j be the least number in J such that u(s) = (Mju)(s). Then u is differentiable at s,
u'(s) = —¢j, and, u = y in [s,00), where y is a solution of (3.2) that satisfies (4.1) and (4.2) for some
s< 8.

Proof. The requirement that u satisfies Au = f in (s, 00) is the same as asking that it is a solution of (3.2) there.
Furthermore, since f is continuous on R, said solution can be extended to one, y say, on R. By Lemma 4.5, there
is a w < s such that v’ = —¢; in (w, s). Hence, y/(z) + ay(z) = f(z) > (Au)(z) = v/(z) + au(z) = au(z) — ¢;
for all z € (w, s). Passage to the limit z — s gives y'(s) > —¢;. On the other hand, by Lemma 4.3, u; has a least
absolute minimum S in [s, 00) such that S > s, and, u;(z) < u;(s) for all € (s,5). The latter inequality can
be reformulated as y(z) —y(s) < —¢; (x — s). Hence, dividing by « — s and passing to the limit z — s, we obtain
y'(s) < —¢;. Combining the two inequalities comparing y'(s) to ¢; yields y'(s) = —c;, from which it follows that
u is differentiable at s and u'(s) = —c¢;. Because S is a minimum of u;, and u; is differentiable there, u};(S) = 0.
Inasmuch u;(z) = y(z) + ¢;x for x > s, this is equivalent to y'(S) = —c¢;. Thus we have obtained (4.1). The
identity (4.2) follows from the observation that Lemma 4.3 additionally says that u;(S) = u;(s) — k;. O

Lemma 4.8. Further to Lemma 4.7, (4.4) holds.

Proof. By Ansatz 3.1, u(s) = (Mu)(s) < (Mgu)(s) for every £ € J. Suppose now that u(s) = (Mu)(s) for
some £ € J \ {j}. Then by (4.8) at = = s, uy(s) < 0. Hence, ¢; = —u/(s) = ¢ — uj(s) > c¢,. This implies
that ¢ < j, which contradicts the definition of j as the least number ¢ € 7 for which u(s) = (Mu)(s). Hence,
necessarily, y(s) = u(s) < (Myu)(s) = (My)(s) for every £ € J with equality if and only if £ = j. O

Lemma 4.9. There holds y < u in (—o0, s].

Proof. By Lemmata 4.4-4.6, u is differentiable at all but a finite number of points in (—oo, s). At an n < s at
which u is differentiable,

d% {eu(n)} = e (Au) (n) < € f(n) = e (Ay) (1) = d% (e y(n)}.

Hence, integrating piecewise, from z < s to s, we obtain e*u(s) — e*®u(x) < e**y(s) — e*®y(z). Inasmuch
u(s) = y(s) by Lemma 4.7, the result follows. O

Lemma 4.10. There holds u = v in (—oo, s].

Proof. Let x < s. By (4.6), (Myu)(z) < k; — cox +min {ue(n) : n > s} = (Mgu)(s) +c¢ (s — z) for every £ € J.
So, u(z) = (Mu)(z) = min {(Meu)(z): £ € J} < v(x). Next, let £ be the greatest number in J such that
u(z) = (Myu)(z). By Lemma 4.6, there is a z € (z,s] such that ug is constant on [z, z]. From the concavity
of u established in Lemma 4.4, it follows that w, is non-increasing on [z, s]. Recalling (4.6), this means that
u(z) = ke — coz 4+ min {ue(n) : n > s} = (Meu)(s) + c¢ (s — ) > v(z). Thus we have proven that u(z) < v(x)
and u(z) > v(z). In view of the arbitrariness of x < s, this ascertains that « = v in (—o0, s). Lemmata 4.7 and
4.8 give u = v at s. ([

Theorem 4.2 is a product of Lemmata 4.7-4.10.
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4.2. Uniqueness

The basic thought behind our further analysis of the inventory model with several suppliers is that there
should be an optimal (s, S) policy for each of the suppliers in the absence of competitors. Thus, the function f;
defined by

fi(x) = f(z) + acjz for zeR (4.9)
should satisfy Hypothesis 3.3 for some number 7; for every j € J. In the light of (2.4) and (2.6), this
necessitates

M=V = 2 (4.10)
Subsequently, appealing to the theory in Section 3, for every j € J there is a unique pair (s;,S;) with s; <
v; < S; such that (3.2) has a solution y; satisfying (4.1) and (4.2) for some s < S if and only if (s, S) = (s;,.59;).
Furthermore, y; is unique,

y; < —c; on (s;,8;), and y;>—c; on (—o0,s;)U(S;,00). (4.11)

Theorem 4.2 tells us that a solution u of (2.9) satisfying Ansatz 4.1 is necessarily such that s = s;, v = y; in
[sj,00), and y; < u in (—o0, s;) for some j € J. Consequently, our search for a solution of (2.9) can be reduced
to that of finding an appropriate j € J.

Note that for every j € J and £ € 7, the function y; — y, is a solution of (3.2) with f = 0. Hence, given any
¢ € R, there holds

y; (@) = ye(z) = {y;(Q) — ()} ™™ forall z€eR,
which in turn implies that
yi(@) = yi(e) = —a{y;(Q) — pe(Q)}e* ™) forall zeR. (4.12)
Lemma 4.11. The number j is the greatest minimizer of y¢(C) with respect to £ € J for all ¢ € R.

Proof. Pick ¢ € R. Suppose that y,(¢) < y;(¢) for some £ € J. Under this supposition, (4.12) gives y; < y; in
R, with equality only if y¢({) = y;(¢). This has two consequences. Firstly,

Se
Y (Se) + we (50) — ye (Se) = y; (s0) + / {i(n) —ye(n)} dn < y; (se) (4.13)

with equality only if y¢(¢) = y;((). Secondly, if £ > j, then y (S¢) < y; (S¢) = —c; < —c¢;. Hence, by (4.11),
S¢ > s;j. On the other hand, if £ < j, then S; > v, > v; > s; by (4.10). So, S¢ > s; irrespective of the ordering
of j and ¢. Therefore, recalling (4.6),

(Mgu) (8@) < ky— cpSp+ uyp (S@) =Y (Sz) + ko +cp (Sz - Sl) =Yj (SZ) + ye (56) — Ye (SZ) . (4'14)
However, by Theorem 4.2,
y; (s0) < u(se) < (Mu) (s¢) < (Mou) (se) (4.15)

with equality in the second inequality only if s, < s;. In which case, by (4.11), —c; < yi(se) < yy(se) = —co.
Hence, by (2.4), £ < j. In combination, (4.13)—(4.15) are compatible only if they hold with equality throughout.
Moreover, this necessitates y,(¢) = y;(¢) and ¢ < j. We conclude that for every £ € J either y,(¢) > y;((), or,

ye(¢) = y;(¢) and £ < j. O
To further characterize a solution of (2.9), we have the next lemma.

Lemma 4.12. Suppose that j is a minimizer of y¢(C) with respect to £ € J for some ¢ € R. Then there exists
a sequence of numbers
Sj’j = Sj < Sj,jfl < Sj,jfg < - < Sj71

such that y; < —cg in (sj,8;.), and y; > —cp in (Sje,00) for every £ € {1,2,...,j}.



OPTIMAL POLICIES FOR AN INVENTORY MODEL WITH SEVERAL SUPPLIERS S959

Proof. Pick £ € {1,2,...,j}. By (4.12), y; > y; in R. Together with (4.11) for j = ¢, this tells us that y; > —c, in
(=00, 5¢)U(S, 00). Hence, in view of (4.11) as it stands, we can define s, = min {2 < s; : y/j(z) = —¢;} > sp and
S;¢=max{z>9;: yi(z) = —c¢} < Sp. Inasmuch f; satisfies Hypothesis 3.3, Lemma 3.4 says that Y < —c
in (sj,¢,Sj,¢), and y; > —c; in (00, 55,¢) U (Sj,¢,00). The ordering of the sequence {S;,: £ =1,2,...,j} follows
from the continuity of y/. O

We are now in a position to fully identify a solution of the QVI.

Theorem 4.13. Suppose that f; satisfies Hypothesis 3.3 for every ¢ € J. Then (2.9) has at most one solution
satisfying Ansatz 4.1. To be more specific, if u is such a solution, then

u(z) = {v(x) for x<s; (4.16)

yi(x)  for x>s,

where j is the greatest minimizer of ye(C) with respect to £ € J for all ( € R,

v(z) = min{ve(z) : 1 <€ < j}, (4.17)
ve(x) = y; (Sje) + ke +ce (S50 — ), (4.18)
and Sj ¢ is the unique number in (s;j,00) for which y; (Sj.¢) = —ce.

Proof. If (2.9) has a solution u satisfying Ansatz 4.1, then Theorem 4.2 says that s = s; and u = y; on [s, 00) for
some j € J. Furthermore, u = v on (—o0, s] where v is given by (4.3) with y = y;. Lemma 4.11 identifies j as the
greatest minimizer of y,({) with respect to £ € J for all ¢ € R. By its definition, v is piecewise linear and concave
on R. Moreover, (4.4) implies that v = v; in some proper interval (w, s). Consequently, £ € {j + 1,7 +2,...,J}
plays no role in the definition of v. Therefore, (4.3) reduces to (4.17) with ve(z) = (Mgy;) (s;) + ce (sj — ).
By Lemma 4.12, (ngj) (sj) = ke — cesj +min{y;(n) +cen:n > s;} = ke — ces; + y; (S5.0) + ¢0S;, for every
e {1,2,...,7}. So v, is given by (4.18) for such Z. O

We note that a priori, it is not possible to decide which j € J may or may not minimize y,({) with respect
to £ € J for all ¢ € R. In this regard the ordering (2.3) and the ordering (2.4) are opposing. This is borne out
by the result below.

Proposition 4.14. Let y4 be solutions of equation (3.2) satisfying (4.1) and (4.2) with s, S, ¢;, and k; replaced
by st, S*, ¢*, and kT respectively. Define f*(x) = f(x) + actz for x € R, and suppose that f* satisfy
Hypothesis 3.3 with the same number v. If c™ > ¢, kT > k™, andct + k™ >c™ + k™, thenyy >y_ inR.

Proof. Fix x € R. By the equivalence of the QVI for a single supplier with arbitrary ¢ and with ¢ = 0 outlined
at the start of Section 3, (3.2), and (3.6),

ays(z) — flz) = =y () = ¢ — /CE e1=2) q fE ().

So,

afys(@) —y—(2)p=c"—c - /x D A(fF — 7)) - /s =T df ()

=(c"—¢7) ) —/ =) 4 f~ ().

By Corollaries 3.8 and 3.9, st < s~ < v, which implies that the above expression is positive. Hence y, (z) >
y— (). 0
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4.3. Existence

Having shown that a solution of the QVI satisfying Ansatz 4.1 is necessarily given by (4.16)—(4.18), where
Jj is the greatest minimizer of y,(¢) with respect to £ € J for all ( € R, the task of proving existence is
somewhat eased. It suffices to show that the function u so defined is what we seek. To accomplish this, it will
be advantageous to first characterize said function in a little more detail.
Let
01 =8;>02> >0N (419)

be such that v is affine on each of the intervals
I, = (02,01), I = (03,02), ..., Iy = (—00,0nN) (4.20)
and not on the union of any two of them. Set
M={1,2...,N}, (4.21)
and define K : M — {1,2,...,5} by
V= V() On Iy (4.22)

When N > 2, u will not be differentiable at o, for m € {2,3,..., N}, irrespective of its differentiability at
s; in accordance with Lemma 4.7. Thus, Au is not well defined there. We subsequently interpret the condition
Au < fin (—o00,s) as Au < f in I, for every m € M. With this understanding, we formulate our existence
result.

Theorem 4.15. Suppose that f,; satisfies Hypothesis 3.3 for every ¢ € J, and j is the greatest minimizer of
ye(C) with respect to £ € J for some ¢ € R. Then the function u given by (4.16)—(4.18) satisfies Ansatz 4.1.
Moreover, if j = 1, then u solves (2.9) and satisfies Ansatz 3.1. On the other hand, if j > 2, then N > 2, and
u solves (2.9) if and only if

p(m) (Om) < [(Om) + Comy  forevery me{2,3,...,N}. (4.23)
The above theorem will be proven with the aid of four further lemmata.

Lemma 4.16. Suppose that j is as stated in Theorem 4.15. Then (ngj)(x) is well defined for all x € R and
every ¢ € J. Moreover, y;(z) < (ngj)(x) for all x > s; with equality if and only if x = s; and { = j.

Proof. Fix ¢ € J. Lemma 4.12 states that there is a number S;; such that y;(n) > —cp for all p > S;1.
Consequently, y}(n) > —c, for all such 7. It follows that 1 — y;(n) + c,n has an absolute minimum in [z, c0)
for all z € R. Thus (Myy;)(z) is well defined for all such . By (4.11) with j = £, 7 — ye(n) + ¢¢n is strictly
increasing on (—oo, sy, strictly decreasing on [sg, S¢], and strictly increasing on [Sy, 00). Therefore,

{ye(w) + ey — {ye(2) + oz} < {ye (se) + cese} — {ye (Se) + coSe}y = ke (4.24)
for all x < z, with equality if and only if x = sy and z = Sy. However, by (4.12),

yi(@) —y;(2) = ye(x) — ye(2) — / {y;(n) —ye(n)} dn < ye(@) — ye(2), (4.25)
with equality if and only if y;(¢) = y¢(¢) or z = . Combining (4.24) and (4.25), we deduce that
yi(x) —y;(2) <ke+co(z—z) forallz <z,

with equality if and only if z = s, 2 = S, and y;(¢) = y.(¢). It follows that y;(z) < (My;)(z) for all z > s;,
with equality if and only if « = s, and y;({) = y¢(¢). The latter criterion implies that y; = y,. The former
implies that s, > s;. Subsequently, recalling that (4.11) with j = £ holds, we have ¢, > —y; (s;) = —¥; (s;) = ¢;.
Thus, ¢ > j. However, j is the greatest minimizer of y,(¢) with respect to £ € J. We are therefore forced to
conclude that y;(z) < (Mgy;)(x) for all > s; with equality as in the statement of the lemma. O
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Lemma 4.17. Further to Lemma 4.16, the function u defined by (4.16) to (4.18) is continuous, and continuously
differentiable everywhere except at o, for m € {2,3,..., N} when N > 2.
Proof. Lemma 4.16 implies that
u(sj) = (Mju) (sj) < (Myu) (s;) forevery £ € {1,2,...,5}. (4.26)

By Lemma 4.12, (Myu) (s;) = v (s;), where vy is defined by (4.18), for every such ¢. By its definition (4.17),
v is piecewise linear and concave on R. Thus the numbers (4.19), the intervals (4.20), and the set (4.21) are
well defined. Moreover, (4.22) defines a strictly decreasing function « : M — J. Noting that (4.26) implies that

v =v; in I;, and that (¢; —¢¢) (s; —x) — —o0 as & — —oo for every ¢ € {2,3,...,j}, necessarily

k(1)=7 and k(N)=1. (4.27)
Because v = v; and therefore v’ = —¢; on I, and y§ (sj) = —c¢;j, u is differentiable at s;. Hence, u is continuous
in R, and continuously differentiable as stated. O

Lemma 4.18. There holds v = Mu on (—o0, s;].
Proof. We prove that v = Mu on I,,, by induction on m. Our induction hypothesis is
(Meu) (o0m) = ve (00) for 1 <4< k(m), (4.28)

and

(Mu) (o) = v (om) - (4.29)
Recalling that o1 = s, for m =1 (4.28) is a tautology, and (4.29) is true by Lemma 4.16. Suppose that (4.28)
and (4.29) are true for arbitrary m € M. Fix x € I,,,. For 1 < ¢ < k(m), resurrecting the notation (4.5), uy is non-
increasing on I,,,. Hence, (Myu)(z) = (Myu) (0 )+c¢ (0m — ). Substituting (4.28) gives (Myu)(z) = v (om)+
co (Om — x) = ve(x) > v(z), with equality for £ = x(m). On the other hand, for k(m) < ¢ < J, uy is nondecreasing
on I,,. Hence, it has an absolute minimum in [z,00) at z, or in [0,,,00). In the first instance, (Myu)(z) =
k¢ 4+ u(x). In the second instance, (Myu)(z) = (Mu) (om) + co (0m — @) > (Mu) (0m) + Com) (Om — ). So
by (4.29), (Meu)(z) > v (0m) + Caim) (Om — &) = Vu(m) (Om) + Cuo(m) (Om — ) = Vg(m)(x). Therefore, in both
instances, (Myu)(z) > v(z). Altogether this implies that (Mu)(z) = vi(x) for every ¢ € {1,2,...,k(m)},
and (Mu)(z) = v(z). Thus, Mu = v in I, and, (4.28) and (4.29) hold with m replaced by m + 1 when
m< N —1. (]

Lemma 4.19. There holds Au < f in (—o0,s;) if and only if (4.23) is true.
Proof. Let m € M. Recalling the notation (4.9), for z € I,

(Au — f) (x) = (Avn(m) - f) (7) = aV(m) (T) = Crim) — f(T)
= QU (m) (Um) - f (Um) — Cx(m) + fn(m) (.’L‘) - fn(m) (Um) .

Since 0, < 85 < v; < v and fp is strictly decreasing on (—oo, ] for every £ € {1,2...,5}, it follows that
Au— f <0 in I, if and only if av,(m) (0m) < faim) (Om) + Crim). However, av,1)(01) = av (s;) = ay; (s;) =
[ (s5) —vj (s5) = f(s5) +¢; = f(01) + cx(1)- So, the inequality can be discounted for m = 1. O

Given the above four lemmata, verification of Theorem 4.15 is a sinecure.

Proof of Theorem 4.15. Since y; solves (3.2), and v = y; in [s;,00), Au = f there. Inasmuch j is the greatest
minimizer of {y¢(¢):¢ € J}, Lemma 4.16 states that v < Mu in (s;,00) and v = Mu at s;. Hereupon,
Lemma 4.17 implies that u has the regularity set out in Ansatz 4.1. By Lemma 4.18, v = Mu in (—o0, s;].
Thus, u satisfies Ansatz 4.1 in full. Plainly, it satisfies Ansatz 3.1 if and only if N = 1. By (4.27), N =1
if and only if j = 1. To conclude whether u solves (2.9), it remains to ascertain whether Au < f in (—o0,s;).
By Lemma 4.19, this will be the case if and only if N =1, or, N > 2 and (4.23) holds. (]
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Together Theorems 4.13 and 4.15 reveal a computational procedure for finding a solution of the QVI.

Corollary 4.20. If it exists, the unique solution u of the QVI (2.9) satisfying Ansatz 4.1 is obtainable as
follows. Let sy < Sy be the unique so-ordered solution pair of the simultaneous equations

Sy
/ e dfe(n) =0 and fi(se) = fo(Se) + ke, (4.30)
Se
and set 0
Y= 1)+~ [ emafin) (431)
Se
forl e J. Let j be the largest number in J with the property that Yy > Y; for every £ € J. Define
By = {fj (sj) + ¢} /e (4.32)
If j =1 then
u(z) = e {eo‘sjf(sjiw —|—/ e f(n) dn} for x>s;, (4.33)
and

u(z) =By —cx  for x<s,;.
If j > 2, then for every £ € {1,2,...,5 — 1}, let
By = ke +{fo (Sje) +ce} e, (4.34)
where S; ¢ is the unique number in (S;,00) for which
Sje
/S e dfi(n) = (c; — co) 5L, (4.35)
5

Set o1 = s; and k(1) = j. By induction on m > 2, define k(m) as the least mazimizer and o, as the mazimum
value of (B,i(m_l) - Bg) / (cﬁ(m_l) - Cg) with respect to £ € {1,2,...,k(m —1) — 1}, and

Tn = fﬁ(m) (Um) + Cr(m) — aBn(m)-

If T,,, <0, then (2.9) has no solution satisfying Ansatz 4.1. Otherwise, continue the induction process, ending
when k(m) =1 and T, > 0. The number m at this stage is N. Hereupon, u is given by (4.33),

u(x) = By(m) — com)®  for omy1 <x<0om and 1<m <N -1,

and
u(x) =B; —cx  for x<on.

Proof. By the theory in Section 3, s, and Sy satisfy (3.7) and (3.9) with f and k replaced by fr and k; respectively
for every ¢ € J. In other words, they are given by (4.30). Furthermore, by (3.6),

T
yo(z) +co = / =) df,(n) forall z€R. (4.36)
se
So, by (3.2), y¢(0) = Yy /a. With j determined, (4.30) and (4.36) with £ = j imply that the unique number S, ,
in (sj,00) for which y (S ¢) = —c¢ is given by (4.35) for every £ € {1,2,...,j}. Writing (4.18) as

ve(x) = By — ¢y, (4.37)
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there holds By = Yj (Sj,e) + ko + Csz,z = {f (Sjyg) - y; (Sj,z)} /Oé + ko + CeSj,z = {f (Sj,z) + Ce} /a + ko + CgSj’g.
Thus, By is given by (4.34) for every ¢ € {1,2,...,7}. In the particular case ¢ = j, as f; (S;;) = f; (S;) =
fj (s;) + akj, (4.34) simplifies to (4.32). Herewith all the ingredients of Theorems 4.13 and 4.15 have been
assembled. The induction process extracts v from (4.17) and (4.37). The condition (4.23) translates as T;,, > 0
for every m € {2,3,..., N}. Explicit solution of (3.2) under the condition y; (s;) = —c; delivers (4.33). O

Example 4.21. Suppose that f is given by (2.5) with p > ac; > ac; > —q, so that f, satisfies Hypothesis 3.3
with v, = 0 for every £ € J. Then Example 3.7 tells us that s, is the unique solution of

a(p—acy) s+ (¢ +ac) In{l+ (p— ace) (1 —e*) / (¢ + acy) } + a’ke =0
in the interval (—o0,0), for every ¢ € J. Furthermore,

Sj = —{ak; + (p— acj) s;} /(g + acy)

and
u(z) = {[p(l —ax) — (p—acj)e*i=] Ja?  for s; <z <0
[q(az —1) + (¢ + acj) e*Si=2)] Ja?  for x> 0.

By (4.31),

YVi={p—(p—ac)e™} /o
By (4.32),

Bj ={c; = (p—acj) s;} /a.
By (4.35),

Sije=8;+{ln(q+ ac;) —In(¢+ ac))} /a,

and by (4.34),
By =k + {(q + acy) Sje+ e} /o (4.38)

for every £ € {1,2,...,j — 1}. With the further details as in the statement of Corollary 4.20,
T = Cr(m) — Br(m) — {p — ac,i(m)} om for 2<m<N.

Example 4.22. Takingp=qg=3,a=1,J =2, k1 =2, ks =1, ¢y = 1, and ¢y = 2, numerical calculation
with propriety software gives s; ~ —1.683, so &~ —1.767, Y7 ~ 2.628, and Y5 ~ 2.829. Thereafter, S; =~ 0.342.
So j = 1 and the QVI has a unique solution satisfying Ansatz 3.1. This means that the optimal control is an
(s,.S) policy involving supplier 1 only, whereby s = s; and S = 5.

Example 4.23. Substitution of k; = 6 in Example 4.22 gives similarly s; &~ —3.796, Y7 ~ 2.955, and s, and Y5
as in that example. Thereafter, So ~ 0.153, S2 1 =~ 0.377, By =~ 8.506, By ~ 3.767, 02 = —4.739, and T ~ 1.972.
So 7 = 2 and the QVI has a unique solution satisfying Ansatz 4.1 that does not satisfy Ansatz 3.1. This means
that the optimal control is a generalized (s, S) policy, whereby one does not intervene if the inventory level x is
greater than ss, one orders from supplier 2 up to the level Sy if 09 < x < s9, and one orders from supplier 1 up
to the level Sy if x < 3.

Example 4.24. Substitution of k; = 4 in Example 4.22 gives 51 ~ —2.769, Y7 =~ 2.875, and s, and Y5 as in
that example. Thereafter, Sa, S2 1, and By are as in Example 4.23, B, ~ 6.506, 02 ~ —2.739, and T3 ~ —0.028.
So the QVI has no solution satisfying Ansatz 4.1, and no optimal control in the form of a generalized (s, S)
policy.
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Examples 4.22 to 4.24 show that the three essentially different outcomes of Theorem 4.15 are each viable.

From Theorem 4.15 and the above examples, we deduce that the inventory control problem with several
suppliers may or may not admit a generalized (s,.S) policy as an optimal solution. If it does, there is only one
such a policy. This policy will be a conventional (s,S) policy if and only if it is to order solely from the first
supplier, i.e. the supplier with the least cost per unit item. Otherwise, there will be a unique generalized (s, S)
policy, which can be explained in terms of the above theory by defining S1 = S;; = S5, and Sy, = 5 () for
2 < m < N. Necessarily

ON <OoN_1 < <01 <81 <8 <--- < Sy.

The strategy of an inventory manager with inventory level z is as follows. If > o7 then do not intervene.
If 09 < # < o7 then order to the level S; from supplier j. If 0,41 < < oy, for some 2 < m < N — 1 then
order to the level S, from supplier k(m). If < sy then order to the level Sy from supplier 1. Suppliers j+ 1,
Jj+2,...,J are excluded from this policy, as may be supplier ¢ for £ € {x(m) + 1,k(m) +2,...,k(m —1) — 1}
when x(m) < k(m — 1) — 2 for some m € {2,3,...,N}. If = g, for such m then the manager could order to
the level S,,_1 from supplier x(m — 1) or to the level S,, from supplier x(m). In fact, from the construction of
the solution u of the QVI, a point (o, u (04,,)), at which the slope of the graph of u changes, could conceivably
be a point of intersection of the graphs of more than two functions vy. Supposing that such a point is common
to the graphs of v, for ¢ € £, where {k(m),k(m — 1)} C L C {k(m),k(m) +1,...,k(m — 1)}, the possibility is
open to place an order from the inventory level o, to the level S; , for every £ € L.
The aforementioned features of a generalized (s, S) policy are substantiated by the following.

Example 4.25. Suppose that & = 1 and f is given by (2.5) with p = ¢ = 9. Take J =4, ky = 14, ky = 12,
ks =3, ks =2, ¢c0 =3, co =4, cg =5, and ¢4 = 6. Pursuant to Example 4.21, s; =~ —3.114, so =~ —3.217,
s3 ~ —1.440, s4 = —1.360, Y7 = 8.734, Yo ~ 8.800, Y3 ~ 8.053, and Y; =~ 8.230. So, j = 3, (1) = 3, and
o1 = s3. Hereafter, it can be ascertained that S3 ~ 0.197, S32 =~ 0.271, S5; =~ 0.351, By =~ 21.22, By ~ 19.53,
and Bs ~ 10.76, leading to (B3 — By)/(c3 —¢1) &~ —5.228 > (B3 — Ba) / (¢3 — ¢2) &= —8.766. Thus, x(2) = 1,
o9 = (B3 — B1) /(c3 — ¢1), and Ty ~ 13.15. There is a unique generalized (s, S) policy, with N =2, §; = S5,
and SQ = 53’1.

Despite there being four suppliers available in Example 4.25, the optimal inventory policy involves only
suppliers 1 and 3. This illustrates that available suppliers may be excluded from the optimal policy (when it
exists), and, that this exclusion need not be confined to suppliers j+1, 742, ..., J, where supplier j is the last
supplier included. As a counterbalance to this example, the next, with the same number of available suppliers,
shows that it is possible that every supplier is included.

Example 4.26. Let «, f, J, and ¢, for 1 < ¢ < 4 be as in Example 4.25. Take ky = 18, k; = 11, ks = 6, and
k4 = 3. Employing the adopted computational strategy, s; ~ —3.796, s ~ —3.010, s3 =~ —2.301, s4 ~ —1.767,
Y1 ~ 8.865, Y2 ~ 8.754, Y3 ~ 8.599, and Yy ~ 8.488. So, j = 4, k(1) = 4, and 01 = s4. Then, Sy 4 = S4 ~ 0.153,
Saz ~ 0.222, Sy ~ 0.297, S41 ~ 0377, By =~ 25.52, By 18.86, B3 ~ 14.11, and By =~ 11.30, leading
to (B4 — B3) / (04 — Cg) ~ —2.812 > (B4 — Bg) / (64 — 02) =3.777 > (B4 — Bl) / (04 — Cl) ~ —4.739.
Thus, I{(Q) = 3, g9 = (B4 — Bg) / (04 — Cg), and T2 ~ 2.136. Thereafter, (Bg — BQ) / (03 — CQ) ~ —4.741 >
(B3 — By)/(c3 —c1) = —5.702. So, k(3) = 2,03 = (B3 — Bs2)/(c3 — ¢2), and T3 = 8.850. Finally, x(4) = 1,
04 = (Ba— B1)/(c2a —c1) = —6.664, and Ty ~ 17.46. There is a unique generalized (s, S) policy, with N = 4 and
Sm = S4,n(m) = 54,57m for 1 S m § 4.

~

~
~
~

The optimal policies in Examples 4.25 and 4.26 are both such that for every inventory level z = o,,, where
2 <m < N, a manager could order to the level S, ;1) from supplier x(m — 1), or to the level S, from
supplier x(m). Our final example, however improbable that its like would occur in practice, confirms that an
optimal policy could verily be such that it contains an inventory level o, from which one could order to the
level S; ¢ for a supplier ¢ supplementary to the obligatory x(m — 1) and x(m).
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Example 4.27. Let «, f, J, k1, k4, and ¢, for 1 < £ < 4 be as in Example 4.26. With s4, Y7, Yy, S4, for
1< ¢ <4, By, and By as in that example, set By = By — (By — By) (ca — ¢¢) / (c4 — ¢1) and define k¢ by (4.38)
for ¢ € {2,3}. This gives k1 > ko &~ 12.925 > k3 ~ 7.927 > k4. According to computational scheme, this leads
to s2 = —3.407, s3 = —2.814, and Y7 > Y5 &~ 8.834 > Y5 ~ 8.760 > Yj. So, j = 4, x(1) = 4, and 01 = s4,
justifying the retainment of Sy, for 1 < ¢ < 4. By design, (B4 — B1)/(ca —c1) = (Ba— Ba) /(ca —c2) =
(By— Bs) /(ca —c3). Hence, k(2) = 1 and o9 = (By— By) /(ca — o) = —4.739 for ¢ € {1,2,3}, with the
consequence that T5 ~ 5.916. There is a unique generalized (s, S) policy, with N =2, §1 = Sy 4, and S = S41.
Moreover, it has the property that from the inventory level o one can order to the level Sy, from supplier ¢
for every £ € {1,2, 3,4},

Beside the last-mentioned property, the optimal policy of Example 4.27 comprises not intervening if the
inventory level x > o7, ordering from supplier 4 if 02 < x < 071, and ordering from supplier 1 if x < o3.
Remarkably, this means that from the inventory level oo an order can be placed with two suppliers that are
otherwise excluded from the policy.

When future costs are discounted, the problem of minimizing the long-term average cost per unit time has
been studied in [15,16].

Remark 4.28. Given that there is a unique optimal policy minimizing the long-term average cost per unit time
for the inventory model discounting future costs, and that this policy is an (s, S) policy, consisting of ordering
to the inventory level S* from the level s* using the single supplier j* € J; under the assumption that for all
sufficiently small o > 0 the functions {f : £ € J} satisfy Hypothesis 3.3 with the same number 7: the numbers
J, sj, and S; given by Theorem 4.13 are such that j — j*, s; — s*, and §; — S as a — 0.

The above does not exclude the possibility that the solution of the QVI (2.9) corresponds to a generalized
(s,S) policy that is not an (s,.5) policy, nor that the QVI has no solution, for arbitrarily small a > 0.

5. CONCLUSION

This paper considers an inventory control problem for a continuous-time continuous-state single-item inven-
tory model with a general stationary demand-rate function. An inventory manager has a finite number of
suppliers from which to order the item according to an impulse control policy. The control problem is formu-
lated as a QVI. The solution of the QVI has been characterized and shown to be unique when it exists. This
gives rise to an (s,.9) policy, a generalized (s,.S) policy that is not an (s, S) policy, or there being no admissible
optimal policy. Necessary and sufficient conditions for each case have been found.

The technical machinery adopted above could be used as a road map to tackle more elaborate models. Possi-
bilities include the extension of models for a single supplier that lead to an (s, S, T) policy to the corresponding
models for several suppliers, the incorporation of the circumstance that suppliers might not being able to fulfil
orders, and taking lead-times, in particular different lead-times for different suppliers, into account. Of special
interest are stochastic continuous-time continuous-state inventory models. The well-known diffusion demand
model is one such model.
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