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AN ACCEPTABILITY INDEX BASED APPROACH FOR SOLVING SHORTEST
PATH PROBLEM ON A NETWORK WITH INTERVAL WEIGHTS

Ali Ebrahimnejad∗

Abstract. Based on the acceptability index for comparison of any two imprecise values, efficient
algorithms have been proposed in the literature for solving shortest path (SP) problem when the
weights of connected arcs in a transportation network are represented as interval numbers. In this
study, a generalized Dijkstra algorithm is proposed to handle the SP problem with interval weights.
Here it is shown that once the acceptability index is chosen, the interval SP problem is converted into
crisp one, which is easily solved by the standard SP algorithms. The main contribution here is the
reduction of the computational complexity of the existing algorithm for solving interval SP problem.
To show the advantages of the proposed algorithm over existing algorithm the numerical example
presented in literature is solved using the proposed algorithm and the obtained results are discussed.
Moreover, an small sized telecommunication network is provided to illustrate the potential application
of the proposed method. Finally, the practical relevance of the proposed algorithm is evaluated by
means of a large scale pilot case where a pharmaceutical shipment between the cities in Iran should be
transported.
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1. Introduction

Finding shortest path is among one of the most fundamental optimization problems in network theory.
Although this problem is one of the simple network problems, it has a wide range of applications. The aim of
shortest path (SP) problem is to find a path with minimum weight (cost, time or length) between two specified
nodes. Even though SP problems are relatively easy to solve, the design and analysis of most algorithms for
solving them require considerable ingenuity [4]. The deterministic SP problem has been widely studied in the
literature as (1) it can be used for a wide variety of situations such as transportation, routing, communications,
supply chain management and models involving agents [8,28]; and (2) it arises frequently as sub-problems when
solving many combinatorial and network optimization problems.

In traditional networks, the weights are deterministic. However, because of failure, maintenance, or other
reasons, the weights are non-deterministic in many situations. Transshipment time and transportation cost are
examples of data that are uncertain. In fact, since the time and cost fluctuate depending on traffic conditions,
payload and so on, imprecise or uncertain data of some kind are to be applied as weights of arcs. Some researchers
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believed that these non-deterministic phenomena conform to interval numbers, so they introduced interval theory
into network optimization problems and used interval variables to describe the non-deterministic weights.

The problem of finding the shortest path in a network with interval weights is known as the interval SP
problem which was analyzed by Nayeem and Pal [46]. They solved this problem by considering the acceptance
index introduced by Sengupta and Pal [55] for comparing the interval weights of paths. In this paper, it is
motivated to develop a simplified algorithm for solving the interval SP problems. Hereafter the existing algorithm
and the proposed algorithm are named Nayeem–Pal algorithm and SP-IW (shortest path with interval weights)
algorithm, respectively.

Since the SP problem is essentially a minimum cost network flow problem, using existing interval minimum
cost network flow problem techniques [24,25,29,54] is a straightforward approach to the interval one. However,
its frequent occurrence in practice and the specialized, more efficient procedures that can be developed for
handling this problem provide a strong case for considering them separately.

Generally speaking, one main issue that needs to be solved when applying the interval SP algorithms is the
ranking and comparison of interval numbers. To solve this problem, in this paper a simplified new algorithm is
presented when the weights in a transportation network are represented as interval numbers. It is shown that
the interval SP problem can be solved simply by solving an equivalent crisp one.

This rest of the paper is organized as follows. The relevant stochastic, fuzzy and interval SP problems literature
are reviewed in Section 2. In Section 3, some necessary concepts and backgrounds on interval arithmetic are
given. In Section 4, first the Nayeem–Pal algorithm for solving interval SP problem is stated and then SP-IW
algorithm is presented to find the interval path with lowest weights. In Section 5, two examples are given to
demonstrate the SP-IW algorithm. In Section 6, the practical relevance of the SP-IW algorithm is evaluated
by means of a case study for transportation of a pharmaceutical shipment in Iran. Finally, our conclusions and
future research directions are presented in Section 7.

2. Literature review

Shortest path problem with uncertainty weights is one of the important research topics from both theoretical
and practical aspects. Several researchers have contributed significantly in this area of research. In this section
a comprehensive literature review on solving SP problem with uncertain data is presented.

Fuzzy and stochastic approaches are frequently used to describe and treat imprecise and uncertain weights
in SP problem. Such approaches have received little attention although the deterministic version of the problem
has been studied extensively.

The probabilistic analysis is the most widely used method for characterizing uncertainty arc weights in SP
problem. As we know, Croucher [13] is the first to develop an algorithm for solving a “shortest route” network
problem in order to find the path which yields the shortest expected distance through the network. Sigal et al.
[58] introduces the concept of a path optimality index as a performance measure for selecting a path in stochastic
networks. They define the path optimality index as the probability a given path is shorter than all other paths.
Kamburowski [36] proposes an optimality index for choosing the shortest route in an acyclic stochastic network.
He associates a random variable given by a known probability distribution with each arc and assumes all random
variable are independent. Polychronopoulos and Tsitliklis [53] uses dynamic algorithms for solving SP problem
defined on a network with random costs. They assume that information on cost values is accumulated as network
is being traversed. Murthy and Sarkar [44] consider a form of the stochastic SP problem where the optimal path
is given by maximizing the concave and quadratic expected utility. The principal contribution of that paper is
the development of a relaxation based pruning technique which is incorporated into a label setting procedure.
Also, Murthy and Sarkar [45] consider a stochastic SP problem where the lengths are independent random
variables following a normal distribution. Alexopoulos [5] gives methods based on an iterative partition of the
network state space for computing measures related to shortest paths in networks with discrete random lengths.
These measures are included the probability that there exists a path with length not exceeding a specified value
and the probability that a given path is shortest. Cheung [10] considers a routing policy that forms a dynamic
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shortest path in a network with independent, positive and discrete random costs. He proposes an approach, which
mimics the classical label-correcting approach, to compute the expected path cost. Bander and White [6] present
a best-first heuristic search approach for determining an optimal policy for a stochastic SP problem. Ji [34]
solves the SP problem with stochastic length. According to different decision criteria, he originally proposes
the concepts of expected shortest path, α-shortest path and the most shortest path, and presents three new
types of models: expected value model, chance-constrained programming and dependent-chance programming.
Then he develops a hybrid intelligent algorithm integrating stochastic simulation and genetic algorithm in order
to solve these models. Nikolova et al. [47] considers the problem of finding SP in a network with independent
randomly distributed lengths. Beigy and Meybodi [7] first introduce a network of learning automata called as
distributed learning automata and then propose some iterative algorithms for solving stochastic SP problem.
Their algorithms use distributed learning automata to find a policy that determines a path from a source node
to a destination node with minimal expected cost (length). Peer and Sharma [52] present a new methodology
for computing shortest expected lengths in incomplete stochastic networks by utilizing linear programming.
Ohtsubo [48] considers a stochastic SP problem with associative criteria in which for each node of a graph
a probability distribution is chosen over the set of successor nodes so as to reach a given target node optimally.
Hutson and Shier [33] studies the problem of finding a path in the context of stochastic networks that combines
the mean and variance of its length. Horoba [32] consider ant colony optimization for stochastic SP problems
where weights are subject to noise that reflects delays and uncertainty. Yu and Bertsekas [60] consider a totally
asynchronous stochastic approximation algorithm, Q-learning, for solving finite space stochastic SP problems,
which are undiscounted, total cost Markov decision processes with an absorbing and cost-free state.

Guo et al. [27] propose hierarchical structured learning automata to determine the SP from source to destina-
tion when a stochastic network is given, whose weights are dynamically changed and the probability distribution
of the constantly changing lengths is unknown beforehand. Guillot and Stauffer [26] extend Dijkstra’s algorithm
for the stochastic SP problem in finite state and action spaces. Zhang et al. [62] study the issue of border
security in terms of resource allocation, and formed the problem as stochastic SP network interdiction models.
Ahmadi et al. [3] propose genetic algorithm to deal with the stochastic SP problem under probable weather
conditions. Sever et al. [57] study a dynamic SP problem with travel time-dependent stochastic disruptions
and proposed a hybrid approximate dynamic programming with a deterministic look ahead policy and value
function approximation in order to deal with the complexity of the problem.

Similarly, fuzzy theory can be used to uncertainty analysis with imprecise weights in SP problem. As we
know, Dubois and Prade [17] are the first to analyze the fuzzy SP (FSP) problem and to consider extensions
of the classic Floyd and Ford–Moore–Bellman (FMB) algorithms that return distances without an associated
path. Klein [37] introduces new models based on fuzzy shortest paths and also proposes a general algorithm
based on dynamic programming to solve the new models. In addition the SFP algorithms are analyzed in terms
of sub-modular functions in that paper. Lin and Chern [40] consider the case that the weights are fuzzy numbers
and propose an algorithm for finding the single most vital arc in a network as being that whose removal from
the path results in an increase in cost. Li et al. [39] propose the neural networks for solving SP problems.
Okada and Super [51] concentrate on the SP problem in a network with fuzzy weights. Then they propose
an algorithm to obtain all Pareto Optimal paths from the specified node to every other node by introducing
a concept of Pareto Optimal path based on an order relation between fuzzy numbers. Following the idea of
finding a fuzzy set solution, Okada [49] presents an algorithm to determine the degree of possibility for each arc
on the shortest path. Chuang and Kung [11] propose a heuristic procedure to find the FSP length among all
possible paths in a network. Chuang and Kung [12] propose a new algorithm that gives the FSP length and the
corresponding shortest path in a discrete FSP problem. Hernandes et al. [31] consider a generic algorithm for
solving FSP problem that can be implemented using any fuzzy numbers ranking index chosen by the decision-
maker. Ji et al. [35] introduce three types of models for FSP problem based on the concepts of expected shortest
path, α-shortest path and the most shortest path in fuzzy environment. They also propose a hybrid intelligent
algorithm integrating simulation and genetic algorithm in order to solve these models. Gao [23] proves that
there exists an equivalence relation between the α-shortest path of an uncertain network and the shortest
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path of the corresponding deterministic network. Kumar and Kaur [38] present a new algorithm for solving SP
problem on a network with imprecise weights. Deng et al. [14] propose a method to find the shortest path under
fuzzy lengths based on the graded mean integration representation of fuzzy numbers. Dou et al. [16] apply an
approach to select the SP in multi-constrained network using multi-criteria decision method based on vague
similarity measure. Mahdavi et al. [41] propose a dynamic programming approach to solve the fuzzy shortest
chain problem using a suitable ranking method. Tajdin et al. [59] design an algorithm for computing the SP in
a network having various types of fuzzy lengths. Moreover, Hassanzadeh et al. [30] present a genetic algorithm for
finding the SP in the network due to the complexity of the addition of various fuzzy numbers for larger problems.
Ebrahimnejad et al. [18, 19] use particle swarm optimization algorithm and artificial bee colony algorithm to
approximate the SP on a network with different types of fuzzy numbers. Dey et al. [15] propose an algorithmic
approach based on genetic algorithm for solving SP problem in a fuzzy network involving type-2 fuzzy weights.
Eshaghnezhad et al. [22] uses the KKT optimality conditions to propose an artificial neural network model as
a high-performance tool to provide the solution of FSP problem. Motameni and Ebrahimnejad [43] formulate
a constrained SP problem in a directed network where the weights represented by cost and time are intuitionistic
trapezoidal fuzzy numbers and then develop an approach for solving the resulting problem. Mani et al. [42]
propose an algorithm for finding shortest path and shortest weight on a hesitancy fuzzy network. Zero et al. [61]
propose two approaches for the bi-objective SP problem by introducing fuzzy logic to model the risk exposure in
solving hazmat routing selection problem. Enayattabar et al. [20] formulate the SP problem in an interval-valued
Pythagorean fuzzy environment and developed the traditional Dijkstra algorithm to find the cost of interval-
valued Pythagorean fuzzy SP. Enayattabar et al. [21] investigate a generalized kind of the SP problem under
interval-valued fuzzy environment namely all pairs shortest path (APSP) problem. Broumi et al. [9] consider SP
problem through Bellman’s algorithm for a network using interval-valued neutrosophic numbers and propose
a novel algorithm to obtain the neutrosophic shortest path between each pair of nodes. Abbaszadeh Sori et al. [1]
propose elite artificial bees colony algorithm to solve robot fuzzy constrained shortest route problem. Moreover,
Abbaszadeh Sori et al. [2] propose a fuzzy inference approach for solving multi objective constrained SP.

However, in literature in stochastic optimization, parameters are assumed to be with known probability
distributions and in the works of fuzzy optimization, fuzzy parameters are assumed to have known membership
functions. But, it is not always possible for a decision maker to determine the probability distribution or
membership function in an inexact environment. At least in some of the cases, the use of interval coefficients
may serve the purpose better. Okada and Gen [50] discuss the problem of finding the shortest paths from a fixed
origin to a specified node in a network with interval weights. Sengupta and Pal [56] define a solution procedure
for a SP problem in which the network arcs are represented as interval numbers. They generalize the Dijkstra’s
algorithm to incorporate interval parameters as data and considered fuzzy preference ordering of intervals from
pessimistic and optimistic decision maker’s point of view. Nayeem and Pal [46] propose an algorithm based on
the acceptance index introduced by Sengupta and Pal [55]. Their algorithm gives a single interval shortest path
or a guideline for choosing the best interval shortest path according to the decision maker’s viewpoint. However
one key issue need to be addressed in that algorithm is how to compare the distance between two different paths
with interval weights. Here it is shown that once the acceptability index is chosen, the interval SP problem is
converted into crisp one, which is easily solved by the standard SP algorithms.

3. Preliminaries

In this section, some necessary definitions, additions of interval numbers and comparison methods of such
numbers are recalled which will be used in the rest of paper [46].

3.1. Interval numbers

Definition 3.1. An interval number is defined as follows

A = [aL, aR] = {t |aL ≤ t ≤ aR } (3.1)
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where aL and aR are the real numbers called the left end point and the right end point of the interval number A.

In alternative notation, an interval number can be defined in terms of midpoint and width as follows

A = 〈m(A), w(A)〉 = {t |m(A)− w(A) ≤ t ≤ m(A) + w(A)} (3.2)

where m(A) = aL+aR

2 and w(A) = aR−aL

2 are the mid-point and half-width or, width (henceforth referred to as
width) of the interval number A, respectively.

Example 3.2. Let A = [aL, aR] = [20, 24] and B = [bL, bR] = [30, 36]. Then these interval numbers in terms
of midpoint and width are represented as A = 〈m(A), w(A)〉 = 〈22, 2〉 and B = 〈m(B), w(B)〉 = 〈33, 3〉,
respectively.

Definition 3.3. Two interval numbers A = 〈m(A), w(A)〉 and B = 〈m(B), w(B)〉 are said to be non-
dominating if m(A) = m(B) and w(A) 6= w(B).

Example 3.4. Let A = 〈m(A), w(A)〉 = 〈22, 2〉 and B = 〈m(B), w(B)〉 = 〈22, 3〉. Then these two interval
numbers are non-dominated since m(A) = m(B) = 22 and w(A) = 2 6= w(B) = 3.

Definition 3.5. The addition of two interval numbers A = [aL, aR] and B = [bL, bR] is given by

A⊕B = [aL + bL, aR + bR] . (3.3)

Example 3.6. Let A = [aL, aR] = [20, 24] and B = [bL, bR] = [30, 36]. ThenA⊕B = [50, 60].

Alternately, in mean-width notations, if A = 〈m(A), w(A)〉 and B = 〈m(B), w(B)〉 then,

A⊕B = 〈m(A) +m(B), w(A) + w(B)〉. (3.4)

Example 3.7. Let A = 〈m(A), w(A)〉 = 〈22, 2〉 and B = 〈m(B), w(B)〉 = 〈33, 3〉. Then A⊕B = 〈55, 5〉.

Comparison between two interval numbers is very important in interval arithmetic. Sengupta and Pal [55]
define an acceptability index (A-index) for comparing the values of any two interval numbers. The A-index
defines how much higher one interval is than another in terms of the interpreter’s level of satisfaction. Nayeem
and Pal [46] use this index for solving shortest path problem.

Definition 3.8. The A-index to proposition “A is inferior to B” is defined as follows:

A(A ≺ B) =
m(B)−m(A)
w(A) + w(B)

· (3.5)

In connection with this acceptability index, Nayeem and Pal [46] define the total dominance and partial
dominance of two interval numbers A = 〈m(A), w(A)〉 and B = 〈m(B), w(B)〉 one over another as follow:

Definition 3.9. If A(A ≺ B) ≥ 1 then, A is said to be totally dominating over B in the sense of minimization
and B is said to be totally dominating over A in the sense of maximization. This concept is denoted by A ≺ B,
i.e., min{A,B} = B.

Definition 3.10. If 0 < A(A ≺ B) < 1 then, A is said to be partially dominating over B in the sense of
minimization and B is said to be partially dominating over A in the sense of maximization. This concept is
denoted by A ≺P B, i.e., min{A,B} = A.
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But when, A(A ≺ B) = 0, i.e., m(B) −m(A) = 0 then it is not possible to get an order relation from the
above cases. Then it may emphasize on the widths of the interval numbers A and B.

If w(A) < w(B) then the left end point of A is less than that of B and on finding a minimum distance, there
is a chance that the distance may lie on A. But at the same time, since the right end point of A is greater
than that of B, if one prefers A to B in minimization then in worst case, he may be looser than one who
prefers B to A. Thus in such a situation an optimistic decision-maker would prefer A to B whereas a pessimistic
decision-maker would do the converse.

Example 3.11. Let A = 〈m(A), w(A)〉 = 〈22, 2〉 and B = 〈m(B), w(B)〉 = 〈33, 3〉. Then A(A ≺ B) = 33−22
5 =

11
5 = 2.2 > 1. So regarding Definition 3.9 in minimization, A is totally dominating over B.

Example 3.12. Let A = 〈m(A), w(A)〉 = 〈22, 2〉 and B = 〈m(B), w(B)〉 = 〈26, 3〉. Then A(A ≺ B) = 26−22
5 =

4
5 = 0.8 < 1. So regarding Definition 3.10 in minimization, A is partially dominating over B.

Example 3.13. Let A = 〈m(A), w(A)〉 = 〈22, 3〉 and B = 〈m(B), w(B)〉 = 〈22, 3〉. Then m(A) = m(B) = 22
and w(A) = w(B) = 3. So an optimistic decision-maker would prefer A to B whereas a pessimistic decision-
maker would do the converse.

4. Interval shortest path problem

In this section, first the Nayeem–Pal algorithm is described for finding the imprecise length of shortest path
between different nodes and then SP-IW algorithm is explored for the same problem.

4.1. The Nayeem–Pal algorithm

Consider a connected network G = (N,E), where N is the set of nodes (|N | = r) and E is the set of arcs.
Each arc is denoted by an ordered pair (i, j), where i, j ∈ E. The network has two distinguished nodes 1 and t,
called the source node and the destination node, respectively. It is supposed that there is only one arc (i, j)
from node i to node j. A path pij from node i to node j is a sequence of arcs pij = {(i, i1), (i, i2), . . . , (ik, j)}
in which the initial node of each arc is same as the terminal node of preceding arc in the sequence. The length
(weight) of a path is defined as the sum of the lengths (weights) of arcs in the path. A shortest path problem
is to determine for every node i ∈ N − {1}, a shortest length path from source node 1 to node i.

The problem of finding the shortest path form source node to every other node in a network with interval
weights is called interval SP problem. Let Cij = [cij,L, cij,R] denotes an interval number associated with the arc
(i, j) corresponding to the length necessary to traverse (i, j) from node i to node j. In this case, the mathematical
model of the interval shortest path problem is formulated as follows:

min
m∑

i=1

m∑
j=1

[cij,L, cij,R]xij =

 m∑
i=1

m∑
j=1

cij,Lxij ,

m∑
i=1

m∑
j=1

cij,Rxij


s.t.

m∑
j=1

xij −
m∑

k=1

xki =

1, i = 1
0, i 6= 1,m
−1, i = m

xij ≥ 0, i, j = 1, 2, . . . ,m.

The variable xij is the decision variable of the arc (i, j). Its takes is one if the arc (i, j) is a part of the shortest
path in the solution of the problem. Otherwise, its value is zero.

Define

Dij =

 [0, 0], i = j,
[∞,∞], (i, j) /∈ V,
[cij,L, cij,R], (i, j) ∈ V.

(4.1)
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Nayeem and Pal [46] develop an algorithm based on Dijkstra’s (1959) algorithm with the concept of multi-
labelling process. At every step, the temporary label of a node is obtained as a single number or more than one
with same mean. Then the minimum among the temporary labels is determined and it is called as permanent
label. In the case of multiple labels of a node as permanent label, then the method is proceeded for other
remaining nodes by taking each of the non-dominating multiple labels. Finally, the permanent label of the node
is the length of the shortest paths from the source node to that node. This algorithm is named Nayeem–Pal
algorithm.

The general steps of the Nayeem–Pal algorithm to find the interval shortest distances from the source node
1 to all other nodes are as follows:

Step 1: Set the permanent label of node 1 as 〈0, 0〉 and temporary label of every other node as 〈∞, 0〉. Denote
qth Permanent label of node i, kth Temporary Label of the node i and the last node got permanent label
by PLq(i), TLk(i) and LN, respectively. Set q := 0, PLq(1) := 〈0, 0〉, LN = 1, k := 0 and N∗ := {1},
TLk(j) = 〈∞, 0〉 for all j ∈ N −N∗.

Step 2: while N 6= N∗ do
Step 2.1: for j ∈ N −N∗ do

〈m(Lj), w(Lj)〉 := 〈m(DLNj), w(DLNj)〉 ⊕ PLq(LN)

If 〈m(Lj), w(Lj)〉 and TLk(j) are non-dominating then TLk+1(j) = 〈m(Lj), w(Lj)〉 ;
Else, based on the acceptability index find the minimum between TLk(i) and
〈m(DLNj), w(DLNj)〉 ⊕ PLq(LN). Let TLk(j) = min {TLk(j), 〈m(Lj), w(Lj)〉}.

Step 2.2: If TLq(i) totally dominating or partially dominating over all other temporary labels of all other
nodes of N −N∗ then, LN := i, PLq(LN) := TLq(i), N∗ := N∗ ∪ {i} and q := q + 1.

Step 2.3: But if there are more than one temporary label (say, r non-dominating temporary labels) of the
node i then, we split-up the process into r branches and do the Step 2.2 for each of the r branches and
then continue.

Step 3: The permanent labels PLk(j) of the node j are the final shortest distances from the node 1 to the node
j for all j ∈ N , where k represents the number of possible interval shortest distances from source node 1
to j with same mean but different widths.
In Nayyem–Pal algorithm all arithmetic operations are performed on interval numbers. In addition interval
numbers are compared in all iterations of this algorithm. In the following section, it is shown that the same
solution of the interval shortest path problem can be found with the help of crisp shortest path problem.
Hence, all arithmetic operations are done on real numbers instead of interval numbers.

4.2. The SP-IW algorithm

In this subsection, a simplified approach is presented for solving the interval SP problem. It is demonstrated
that once the acceptability index is chosen, the interval SP problem is converted into crisp one, which is easily
solved by the standard SP algorithms.

Applying Definitions 3.9 and 3.10 in the Sengupta and Pal acceptability index, in order to compassion of two
interval numbers A = 〈m(A), w(A)〉 and B = 〈m(B), w(B)〉 the following result is obtained.

Lemma 4.1. For two not non-dominating interval numbers A = 〈m(A), w(A)〉 and B = 〈m(B), w(B)〉, A ≺ B
or A ≺p B if and only if m(A) < m(B).
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Proof. Applying the acceptability index in equation (3.5) and regarding to Definitions 3.9 and 3.10, it follows
that A ≺ B or A ≺p B if and only if A(A ≺ B) > A(B ≺ A). This means that

m(B)−m(A)
w(A) + w(B)

>
m(A)−m(B)
w(A) + w(B)

⇔ m(B)−m(A)
w(A) + w(B)

− m(A)−m(B)
w(A) + w(B)

> 0

⇔ 2m(B)− 2m(A)
w(A) + w(B)

> 0

⇔ m(A) < m(B).

Hence, the corollary follows. �

Lemma 4.1 helps us to convert the interval shortest path problem into an equivalent crisp one. To this aim,
the module of each interval number is substituted instead of the corresponding interval number in the interval
shortest path problem under consideration. This leads to an equivalent crisp one which can be solved by the
standard shortest path algorithms. Then, all arithmetic operations are done on the crisp numbers. As a result,
the computational effort is decreased significantly in our proposed approach.

Now the optimality conditions in interval networks are stated as follows to design of solution algorithm. To do this,
the method given in Lemma 4.1 is used to compare the interval costs between different interval paths.

Theorem 4.2 (Optimality conditions). For every node j ∈ N , let Sj = 〈m(Sj), w(Sj)〉 denotes the interval
cost of some directed path from the node 1 to node j. Then, interval numbers Sj represent interval SP costs if
and only if they satisfy the following optimality conditions:

A(Sj ≺ Si ⊕ Cij) ≥ A(Si ⊕ Cij ≺ Sj) for all (i, j) ∈ E. (4.2)

Proof. If Sj is the interval cost of a shortest path from the source node 1 to node j then it must satisfy the
conditions (4.2). Suppose not, i.e., A(Sj ≺ Si⊕Cij) < A(Si⊕Cij ≺ Sj) for some arc (i, j) ∈ E. By Lemma 4.1,
this means that m(Sj) > m(Si⊕Cij). By assumption Si is the interval cost of a directed path like p1i from the
source node 1 to node i. This path plus the arc (i, j) constructs a new path from the source node 1 to node j
with the interval cost Si ⊕ Cij . This contradicts the optimality of interval cost Sj .

Now, it is shown in the case that the interval costs Sj satisfy the conditions in (4.2), they represent interval
SP costs. To do this, consider any interval cost Sj satisfying (4.2). Let 1 = i1 − i2 − · · · − ik = j be any path
p1j from the source node 1 to node j. The conditions (4.2) imply that

m(Sj) = m(Sik
) ≤ m

(
Sik−1 ⊕ Cik−1ik

)
,

m(Sik−1) ≤ m
(
Sik−2 ⊕ Cik−2ik−1

)
,

...
m(Si2) ≤ m (Si1 ⊕ Ci1i2) = m (Ci1i2) .

The last equality follows from the fact that Si1 = S1 = [0, 0]. Adding the equalities follows

m(Sj) = m(Sik
) ≤ m(Cik−1ik

) +m(Cik−2ik−1) + · · ·+m(Ci1i2) =
∑

(i,j)∈p1j

m(Cij)

Thus Sj is a lower bound on the interval cost of any path from the node 1 to node j. On the other hand, since
Sj is the interval cost of some path from the source node 1 to node j, it also is an upper bound on the interval
SP cost. Therefore, Sj is the interval SP cost. �

For avoiding the shortcoming of Nayeem–Pal algorithm, let the following steps of the SP-IW algorithm for
finding the interval SP from node 1 to every node in the directed network with interval costs.
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Step 1: Represent each interval weight Cij = [cij,L, cij,R] in terms of midpoint and width 〈m(Cij), w(Cij)〉.
In this case, the interval shortest path is formulated as follows:

min
m∑

i=1

m∑
j=1

〈m(Cij), w(Cij)〉xij

s.t.
m∑

j=1

xij −
m∑

k=1

xki =

1, i = 1
0, i 6= 1,m
−1, i = m

xij ≥ 0, i, j = 1, 2, · · · ,m.

Step 2: Substitute the module of each interval number instead of the corresponding interval number in the
interval shortest path problem under consideration and define:

dij =

0, i = j,
∞, (i, j) /∈ E,
m(Cij), (i, j) ∈ E.

(4.3)

This means that the interval shortest path problem formulated in Step 1 is reformulated as the following
crisp SP problem:

min
m∑

i=1

m∑
j=1

m(Cij)xij

s.t.
m∑

j=1

xij −
m∑

k=1

xki =

1, i = 1
0, i 6= 1,m
−1, i = m

xij ≥ 0, i, j = 1, 2, . . . ,m.

Step 3: Solve the obtained crisp SP problem in Step 2 by the generalized Dijkstra’s algorithm given in
Appendix A.

Step 4: Sum the interval weights of the arc on the shortest path obtained in Step 3 in order to find the interval
shortest path weight.

Step 5: Let P1, P2, . . . , Pt are all shortest paths obtained in Step 3 and 〈m(P1), w(P1)〉 ,〈m(P2), w(P2)〉,
. . . , 〈m(Pt), w(Pt)〉 are their corresponding interval weights. Let w(Pg) = min {w(P1), w(P2), . . . , w(Pt)}
and w(Ph) = max {w(P1), w(P2), . . . , w(Pt)}. In this case, an optimistic decision-maker selects path Pg as
the interval shortest path and a pessimistic decision-makers selects path Ph as the interval shortest path.

The overall procedure of the SP-IW algorithm to find the shortest path of an interval shortest path problem
and its associated interval fuzz is summarized in the flowchart of Figure 1.

It is worth noting that according to Nayeem–Pal algorithm, in order to carry out the Step 2.1 a lot of interval
additions and comparison on interval numbers over the all iterations are required. In addition, to carry out
the Step 2.2 it is required to compare more than two interval numbers simultaneously. But it is very difficult
to compare a large number of interval numbers simultaneously using the acceptability index. While based on
SP-IW algorithm all additions and comparisons are done on real numbers. These results confirm that SP-IW
algorithm is simpler and computationally more efficient than Nayeem–Pal algorithm.

We also consider the following additional methodology for assessing the validity of the SP-IW algorithm as
well as the validity of the Nayeem–Pal algorithm. Since the arc weights are represented with interval related
lower and upper bounds, let us assume that the interval for arc, say, (i, j) is divided in a given set of bundles,
so that let W 1

ij ,W
2
ij , . . . ,W

n
ij denote the weights of arc (i, j), being (W 1

ij , Wn
ij) the weight interval, W 1

ij is the
lower bound and Wn

ij is the upper bound. It seems acceptable to consider that the occurrence of the weights
has equal probability. The new scheme should be based on the simulation where a realization of the weight of
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Solve the obtained crisp SP problem by the 
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unique?
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path as the interval shortest path weight

End

No

Find the interval weights of all shortest paths.

The paths with minimum and maximum width are the 

shortest path based on optimistic and pessimistic 

decision makers

Figure 1. The flowchart of the SP-IW algorithm.

each arc (i, j) is taken from the interval (W 1
ij , Wn

ij). For each simulation, the Dijkstra algorithm is executed.
Once a given number of simulations are run, the interval of the minimum path is obtained, having minimum,
mean and maximum. Results can be compared with the ones obtained from the Neyeen–Pal algorithm and the
proposed one to assess the validity of the new proposal as well as the validity of the other algorithm.

5. Numerical examples

In this section, the advantages of SP-IW algorithm over Nayeem–Pal algorithm are illustrated by the numerical
example given in Nayeem and Pal [46]. Also, one application of SP-IW algorithm on a small sized telecommu-
nication network is presented.

Example 5.1. Let us consider the network in Figure 2 with interval weights as given in Table 1.
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4

5 6

Figure 2. A network having interval weights.

Table 1. Arc information of Example 5.1 in terms of interval numbers.

Arc Interval weight

(1, 2) [10, 12]
(1,3) [25, 28]
(1, 4) [19, 20]
(2, 3) [20, 21]
(2, 4) [30, 35]
(3, 4) [6.5, 7.5]
(3, 5) [38, 40]
(3, 6) [43, 44]
(4, 5) [35, 40]
(4, 6) [49, 51]
(5, 6) [12, 13]

Table 2. Arc information of Example 5.1 in terms of mean-width notation.

Arc Mean-width representation Midpoint of interval weight

(1, 2) 〈11, 1〉 11
(1, 3) 〈26.5, 1.5〉 26.5
(1, 4) 〈19.5, 0.5〉 19.5
(2, 3) 〈20.5, 0.5〉 20.5
(2, 4) 〈32.5, 2.5〉 32.5
(3, 4) 〈7, 0.5〉 7
(3, 5) 〈39, 1〉 39
(3, 6) 〈43.5, 0.5〉 43.5
(4, 5) 〈37.5, 2.5〉 37.5
(4, 6) 〈50, 1〉 50
(5, 6) 〈12.5, 0.5〉 12.5

Based on Step 1 of SP-IW algorithm, the mean-width representation of each interval weight is given in
Table 2.

Regarding the Step 2 of SP-IW algorithm, the module of each interval weight (given in Tab. 1) is put instead
of corresponding interval numbers to obtain the classical shortest path problem. The results are given in Table 2.
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The crisp shortest path problem with weights given in the third column of Table 2 can be solved by the
standard Dijkstra’s (1959) algorithm.

Now the Dijkstra’s (1959) algorithm given in Appendix A is used to obtain the shortest path between node 1
and node 6. Initialization Step of the algorithm follows:

P = {1}, T = {2, 3, 4, 5, 6}, PL(1) = 0, TL(2) = 11, TL(3) = 26.5, TL(4) = 19.5, TL(5) = TL(6) =∞.

Iteration 1

Step 1: By Step 1 TL(2) = 11 is the minimum temporary label among all other temporary labels and it is set
as permanent label of node 2. Thus, P = {1, 2}, T = {3, 4, 5, 6}, PL(1) = 0, PL(2) = 11.

Step 2: Since P 6= N , the process is repeated. The new temporary labels of nodes belonging to T are calculated
as follows:

TL(3) = min {TL(3), TL(2) +m(d23)} = min {26.5, 11 + 20.5} = 26.5,
TL(4) = min {TL(4), TL(2) +m(d24)} = min {19.5, 11 + 32.5} = 19.5,
TL(5) = min {TL(5), TL(2) +m(d25)} = min {∞, 11 +∞} =∞,
TL(6) = min {TL(6), TL(2) +m(d26)} = min {∞, 11 +∞} =∞.

Iteration 2

Step 1: Node 4 has the lowest temporary label among all other temporary labels and TL(4) = 19.5 is set as
permanent label of node 4. Thus, P = {1, 2, 4}, T = {3, 5, 6}, PL(1) = 0, PL(2) = 11, PL(4) = 19.5.

Step 2: Since P 6= N , the process is repeated. The new temporary labels of nodes belonging to T are calculated
as follows:

TL(3) = min {TL(3), TL(4) +m(d43)} = min {26.5, 19.5 + 7} = 26.5,
TL(5) = min {TL(5), TL(4) +m(d45)} = min {∞, 19.5 + 37.5} = 57,
TL(6) = min {TL(6), TL(4) +m(d46)} = min {∞, 19.5 + 50} = 69.5.

Iteration 3

Step 1: Node 3 has the lowest temporary label among all other temporary labels of nodes and TL(3) = 26.5
is set as permanent label of node 3. Thus,

P = {1, 2, 4, 3}, T = {5, 6}, PL(1) = 0, PL(2) = 11, PL(4) = 19.5, PL(3) = 26.5.

It is worth noting that, in this step the remaining steps can be splatted up into two steps, setting TL(4) +
m(d43) in one and TL(3) derived in Iteration 2 in the other as the permanent label of node 3.

Step 2: Since P 6= N , the process is repeated. The new temporary labels of nodes belonging to T are calculated
as follows:

TL(5) = min {TL(5), TL(3) +m(d35)} = min {57, 26.5 + 39} = 57,
TL(6) = min {TL(6), TL(3) +m(d36)} = min {69.5, 26.5 + 43.5} = 69.5.

Iteration 4

Step 1: Node 5 has the lowest temporary label among all other temporary labels of nodes and TL(5) = 57 is
set as permanent label of node 5. Thus,

P = {1, 2, 4, 3, 5}, T = {6}, PL(1) = 0, PL(2) = 11, PL(4) = 19.5, PL(3) = 26.5, PL(5) = 57.

Step 2: Since P 6= N , the process is repeated. The new temporary labels of nodes belonging to T are calculated
as follows:

TL(6) = min {TL(6), TL(5) +m(d56)} = min {69.5, 57 + 12.5} = 69.5.
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Table 3. Simulation results.

Path Number of being shortest path

P1 : 1 → 4 → 5 → 6 838
P2 : 1 → 4 → 6 162
Min 66
Max 71
Average 67.54
Count 1000

Iteration 5
Step 1: In this case TL(6) = 69.5 is set as permanent label of node 6. Thus,

P = {1, 2, 4, 3, 5, 6}, T = {}, PL(1) = 0, PL(2) = 11, PL(4) = 19.5, PL(3) = 26.5, PL(5) = 57, PL(6) = 62.5.

Again, in this step the remaining steps can be splatted up into two steps, setting TL(5) + m(d56) in one
and TL(6) derived in Iteration 3 in the other as the permanent label of node 6.

Step 2: Since P = N , the process stops.

Now based on Step 4 of SP-IW algorithm, the interval shortest path between node 1 and node 6 can be
obtained by the following procedure:

Case 1: If TL(5) + m(d56) is considered as the permanent label of node 6, then it comes from node 5. The
permanent label of node 5 is TL(4) + m(d45) which represents that it comes from node 4. The permanent
label of node 4 is TL(1) + m(d14) which represents that it comes from node 1. Hence the interval shortest
path is P1 : 1→ 4→ 5→ 6. Also, the interval weight of this path is obtained as follows:

〈m(P1), w(P1)〉 = 〈m(C14), w(C14)〉 ⊕ 〈m(C45), w(C45)〉 ⊕ 〈m(C56), w(C56)〉 = 〈69.5, 3.5〉 .

Case 2: If TL(6) = TL(4) +m(d46) derived in Iteration 2 or 3 is considered as the permanent label of node 6,
then it comes from node 4. The permanent label of node 4 is TL(1) +m(d14) which represents that it comes
from node 1. Hence the interval shortest path is P2 : 1 → 4 → 6. Also, the interval weight of this path is
obtained as follows:

〈m(P2), w(P2)〉 = 〈m(C14), w(C14)〉 ⊕ 〈m(C46), w(C46)〉 = 〈69.5, 1.5〉 .

It can be seen that that Nayeem–Pal algorithm and SP-IW algorithm produce the same paths, while Nayeem–
Pal algorithm is very confusing to understand and to apply for obtaining the interval shortest path compare
to SP-IW algorithm. Also, in Nayeem–Pal algorithm all arithmetic operations are performed on the interval
numbers, while in SP-IW algorithm all arithmetic operations are done on real numbers. Thus, it is concluded
that SP-IW algorithm is by far simpler and computationally more efficient than Nayeem–Pal algorithm.

Finally, we apply the mentioned methodology at the end of the previous section on the network given in
Figure 2 for assessing the validity of the proposed SP-IW algorithm and Nayeem–Pal algorithm. To do this, we
have divided each interval into n = 10 subinterval and for each simulation the Dijkstra algorithm is executed 100
times independently. The results are given in Table 3. As can be seen from Table 3, the path P1 : 1→ 4→ 5→ 6
is identified as the shortest path 838 times and the path P2 : 1 → 4 → 6 is identified as the shortest path 162
times. It should be mentioned that both the proposed SP-IW algorithm and Nayeem–Pal algorithm identified
the paths P1 : 1 → 4 → 5 → 6 and P2 : 1 → 4 → 6 as the shortest path. This confirms the validity of the
proposed SP-IW algorithm as well as the validity of the Nayeem–Pal algorithm.
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Figure 3. A telecommunication network.

Table 4. Arc information of Example 5.2 in terms of interval numbers.

Arc Interval weight

(1, 2) [1.5, 3.5]
(1, 3) [2.5, 4.5]
(2, 3) [4, 6]
(2, 4) [1.5, 3.5]
(2, 5) [3.5, 5.5]
(3, 4) [2, 4]
(4, 5) [2.5, 4.5]
(4, 6) [1.5, 3.5]
(5, 6) [4.5, 6.5]

Table 5. Arc information of Example 5.2 in terms of mean-width notation.

Arc Mean-width representation Midpoint of interval weight

(1, 2) 〈2.5, 1〉 2.5
(1, 3) 〈3.5, 1.5〉 3.5
(2, 3) 〈5, 1〉 5
(2, 4) 〈2.5, 1〉 2.5
(2, 5) 〈4.5, 1〉 4.5
(3, 5) 〈3, 1〉 3
(4, 5) 〈3.5, 1〉 3.5
(4, 6) 〈2.5, 1〉 2.5
(5, 6) 〈5.5, 10〉 5.5

Example 5.2. Consider a mobile service company which handles six geographical centers. A configuration of
a telecommunication network is presented in Figure 3. Assume that the distance between any two centers is
an interval number (the arc lengths are given in Tab. 4). The company wants to find a shortest path for an
effective message flow amongst the centers.

Based on Step 1 of SP-IW algorithm, the mean-width representation of each interval weight is given in
Table 5.

Regarding Step 2, the module of each interval weight (given in Tab. 4) is put instead of corresponding interval
numbers to get the crisp shortest path problem. The results are given in Table 5.

The crisp shortest path problem with weights given in the third column of Table 5 can be solved by the
Dijkstra’s (1959) algorithm given in the Appendix A. Now this algorithm is utilized to find the shortest path
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between node 1 and node 6. Initialization Step of the algorithm follows:

P = {1}, T = {2, 3, 4, 5, 6}, PL(1) = 0, TL(2) = 2.5, TL(3) = 3.5, TL(4) = TL(5) = TL(6) =∞.

Iteration 1

Step 1: By Step 1 TL(2) = 2.5 is the minimum temporary label among all other temporary labels and it is set
as permanent label of node 2. Thus, P = {1, 2}, T = {3, 4, 5, 6}, PL(1) = 0, PL(2) = 2.5.

Step 2: Since P 6= N , the process is repeated. The new temporary labels of nodes belonging to T are calculated
as follows:

TL(3) = min {TL(3), TL(2) +m(d23)} = min {3.5, 2.5 + 5} = 3.5,
TL(4) = min {TL(4), TL(2) +m(d24)} = min {∞, 2.5 + 2.5} = 5,
TL(5) = min {TL(5), TL(2) +m(d25)} = min {∞, 2.5 + 4.5} = 7,
TL(6) = min {TL(6), TL(2) +m(d26)} = min {∞, 2.5 +∞} =∞.

Iteration 2

Step 1: Node 3 has the lowest temporary label among all other temporary labels and TL(3) = 3.5 is set as
permanent label of node 3. Thus, P = {1, 2, 3}, T = {4, 5, 6}, PL(1) = 0, PL(2) = 2.5, PL(3) = 3.5.

Step 2: Since P 6= N , the process is repeated. The new temporary labels of nodes belonging to T are calculated
as follows:

TL(4) = min {TL(4), TL(3) +m(d34)} = min {5, 3.5 +∞} = 5,
TL(5) = min {TL(5), TL(3) +m(d35)} = min {7, 3.5 + 3} = 6.5,
TL(6) = min {TL(6), TL(3) +m(d36)} = min {∞, 3.5 +∞} =∞.

Iteration 3

Step 1: Node 4 has the lowest temporary label among all other temporary labels of nodes and TL(4) = 5 is
set as permanent label of node 5. Thus,

P = {1, 2, 3, 4}, T = {5, 6}, PL(1) = 0, PL(2) = 2.5, PL(3) = 3.5, PL(4) = 5.

Step 2: Since P 6= N , the process is repeated. The new temporary labels of nodes belonging to T are calculated
as follows:

TL(5) = min {TL(5), TL(4) +m(d45)} = min {6.5, 5 + 3.5} = 6.5,
TL(6) = min {TL(6), TL(4) +m(d46)} = min {∞, 5 + 2.5} = 7.5.

Iteration 4

Step 1: Node 5 has the lowest temporary label among all other temporary labels of nodes and TL(5) = 6.5 is
set as permanent label of node 5. Thus, we have

P = {1, 2, 3, 4, 5}, T = {6}, PL(1) = 0, PL(2) = 2.5, PL(3) = 3.5, PL(4) = 5, PL(5) = 6.5.

Step 2: Since P 6= N , the process is repeated. The new temporary labels of nodes belonging to T are calculated
as follows:

TL(6) = min {TL(6), TL(5) +m(d56)} = min {7.5, 6.5 + 5.5} = 7.5.
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Table 6. Shortest path from source node 1 to every other node.

Destination node Shortest path Shortest path weight

2 1 → 2 〈2.5, 1〉
3 1 → 3 〈3.5, 1.5〉
4 1 → 2 → 4 〈5, 2〉
5 1 → 3 → 5 〈6.5, 2.5〉

Iteration 5

Step 1: In this case TL(6) = 7.5 is set as permanent label of node 6. Thus,

P = {1, 2, 3, 4, 5, 6}, T = {}, PL(1) = 0, PL(2) = 2.5, PL(3) = 3.5, PL(4) = 5,PL(5) = 6.5, PL(6) = 7.5.

Step 2: Since P = N , the process stops.

Now, the interval shortest path between node 1 and every other node can be obtained. For instance, the
interval shortest path between node 1 and node 6 is obtained by the following procedure:

The permanent label of node 6 is TL(4) + m(d46) which represents it comes from node 4. The permanent
label of node 4 is TL(2) +m(d25) which represents that it comes from node 2. The permanent label of node 2 is
TL(1) + m(d12) which represents that it comes from node 1. Hence the interval shortest path is P1 : 1 → 2 →
4→ 6. Also, the interval weight of this path is obtained as follows:

〈m(P1), w(P1)〉 = 〈m(C12), w(C12)〉 ⊕ 〈m(C24), w(C24)〉 ⊕ 〈m(C46), w(C46)〉 = 〈7.5, 3〉 .

In a similar way, the interval shortest path from source node 1 to every other node can be determined. The
results are given in Table 6.

Moreover, the shortest path between source node i(i ∈ N, i 6= 1) and every other node can be determined
based on SP-IW algorithm.

Finally, it can be said that it is better to use SP-IW algorithm compared to Nayeem–Pal algorithm in order
to solve the interval SP problem from a computational point of view.

6. Large scale pilot case

In this section, the practical relevance of SP-IW algorithm is evaluated by means of a large-scale pilot case.
A pharmaceutical shipment must be shipped from Tabriz in Azarbayjan province to Bushehr in Bushehr province
in Iran. There are several different paths from Tabriz to Zahedan, shown in Figure 4. The problem is to obtain
a path to travel from Tabriz to Bushehr in the shortest time by car according to the map given in Figure 4.
The road network consists of 17 cities (each city is considered as a node) and 29 connecting links between cities
and their associated driving times. The shipping costs between cities connected by lines have been expressed as
intervals with a width equal to about 20% of the average shipping cost (unit: Riyal).

To determine the non-dominated shortest paths from Tabriz to Bushehr, the shortest path problem indicated
by the data of Table 7 is solved.

The SP-IW algorithm is used to solve the corresponding shortest path problem with the data in the last
column of Table 6. Three non-dominated paths are obtained as follows:

Path 1 : Tabriz → Zanjan→ Hamedan→ Sharekord→ Yasouj→ Bushehr
Path 2 : Tabriz → Zanjan→ Ghazvin→ Isfahan→ Shiraz→ Yasouj→ Bushehr
Path 3 : Tabriz → Zanjan→ Hamedan→ Sharekord→ Isfahan→ Shiraz→ Yasouj→ Bushehr

The interval weights corresponding to Path 1, Path 2 and Path 3 are 〈m(Path1), w(Path1)〉 = 〈394, 21〉,
〈m(Path2), w(Path2)〉 = 〈394, 14〉 and 〈m(Path3), w(Path3)〉 = 〈394, 15〉, respectively.
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Figure 4. The routes network.

Since there are three non-dominated paths from Tabriz to Bushehr, the SP-IW algorithm gives a guide-
line to the decision maker to choose the best of these paths according to his/her view. Since w(Path2) <
w(Path1), w(Path3) and w(Path1) > w(Path2), w(Path3), an optimistic decision maker selects Path 3 as the
interval shortest path and a pessimistic decision makers selects Path 1 as the interval shortest path.

7. Conclusions and discussions

In this study, we proposed a solution methodology for solving SP problems where imprecise weights are
represented in terms of interval numbers. An equivalent crisp SP problem was proposed to derive the interval
optimal path of the interval SP problem. In the proposed approach, the interval SP problem was transformed
into a crisp equivalent SP problem. The obtained results confirmed that SP-IW algorithm requires less interval
computations as opposed to Nayeem–Pal algorithm. In summary, to solve the interval SP problem by using
Nayeem–Pal algorithm, interval arithmetic operations and interval comparisons are required. On the other
hand, only arithmetic operations and comparison of real numbers are required to solve the same problem with
SP-IW algorithm. Let us explore the main advantages of the proposed method briefly.

(1) The proposed technique doesn’t use the genetic and interval solution approaches which are difficult to apply
in real life situations.
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Table 7. Interval shipping costs.

Arc number Route Interval weight Mean-width representation Midpoint

1 (Tabriz–Rasht) [69, 71] 〈70, 1〉 70
2 (Tabriz–Zanjan) [63, 67] 〈65, 2〉 65
3 (Zanjan–Rasht) [48, 56] 〈52, 4〉 52
4 (Zanjan–Hamedan) [56, 62] 〈59, 3〉 59
5 (Zanjan–Ghazvin) [42, 44] 〈43, 1〉 43
6 (Gazvin–Rasht) [48, 54] 〈51, 3〉 51
7 (Ghazvin–Isfahan) [91, 99] 〈95, 4〉 95
8 (Ghazvin–Tehran) [46, 50] 〈48, 2〉 48
9 (Yazd–Tehran) [103, 111] 〈107, 4〉 107
10 (Rasht–Chalous) [34, 38] 〈36, 2〉 36
11 (Chalous–Tehran) [62, 64] 〈63, 1〉 63
12 (Tehran–Arak) [49, 53] 〈51, 3〉 51
13 (Tehran–Isfahan) [65, 73] 〈69, 4〉 69
14 (Hamedan–Arak) [38, 44] 〈41, 3〉 41
15 (Hamedan–Shahrekord) [59, 63] 〈61, 2〉 61
16 (Arak–Isfahan) [73, 83] 〈78, 5〉 78
17 (Isfahan–Shiraz) [75, 83] 〈79, 4〉 79
18 (Shiraz–Yasouj) [50, 52] 〈51, 1〉 51
19 (Shiraz–Bandar Abbas) [98, 110 〈104, 6〉 104
20 (Shiraz–Yazd) [77, 81] 〈79, 2〉 79
21 (Yazd–Zahedan) [147, 167] 〈157, 10〉 157
22 (Yazd–Kerman) [88, 98] 〈93, 5〉 93
23 (Kerman–Zahedan) [133, 149] 〈141, 8〉 141
24 (Kerman–Bandar Abbas) [117, 131] 〈124, 7〉 124
25 (Bandar Abbas–Bushehr) [127, 147] 〈137, 10〉 137
26 (Bushehr–Yasouj) [59, 63] 〈61, 2〉 61
27 (Yasouj–Shahrekord) [136, 160] 〈148, 12〉 148
28 (Isfahan–Shahrekord) [17, 19] 〈18, 1〉 18
29 (Bandar Abbas–Zahedan) [180, 210] 〈195, 15〉 195

(2) Since, for applying SP-IW algorithm there is a need to solve crisp SP problem. So, the existing and easily
available software can be used for the same. However, for applying Nayeem–Pal algorithm there is a need to
solve interval SP problem so the existing and easily available software cannot be used and need to develop
new software.

(3) In contrast to Nayeem–Pal algorithm, which uses interval arithmetic operations for solving interval SP
problem, the SP-IWA needs arithmetic operations of real numbers. Moreover, in contrast to Nayeem–Pal
algorithm that compares a large number of interval numbers simultaneously using the acceptability index,
the SP-IWA determines the interval SP without any interval method. Hence, from a computation point of
view the SP-IWA is preferable to the Nayeem–Pal algorithm for solving the interval SP problem.

Many other areas remain to be researched. Some of these are discussed below.

– In many real-world applications several conflicting objectives must be considered. The proposed approach
can be extended for solving multi objective SP problem with interval numbers.

– The SP-IW algorithm cannot be applied in networks with negative interval numbers and it cannot detect
whether there are negative circuits. The generalization of this algorithm to overcome these shortcomings is
an interesting topic for future research.

– The development of SP-IW algorithm for deriving the interval SP between all pairs of nodes is left to the
next study.
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Appendix A.

Here, the steps of Dijkstra’s (1995) algorithm are presented for solving shortest path problem with the
midpoint of each interval weight as the length of each arc:

Initialization step

Assume P be the set of nodes with permanent labels and T = N − P . The permanent and temporary labels
of node i are represented by PL(i) and TL(i), respectively. Let,

P = {1}, PL(1) = 0, TL(j) = d1j , j ∈ N.

Main step

Step 1: If TL(k) is the minimum temporary label among all other temporary labels then it is set as permanent
label of node k and let P := P ∪ {k}, PL(k) := TL(k), T := T − {k}. If P = N , then stop.

Step 2: Modify the temporary label of node as follows and return to Step1:

TL(j) = min {TL(j), TL(k) + dkj} .

Remark A.1. If the minimum test of Step 1 accrues at more than one index (say, r temporary labels) then
we split-up the process into r branches and do the Step 1 for each of the r branches and then continue.

Acknowledgements. The author would like to thank the anonymous reviewers and the editors for their insightful com-
ments and suggestions.
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